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ABSTRACT

The Coefficient of Determination (CoD) plays an important role in Genomics

problems, for instance, in the inference of gene regulatory networks from gene-

expression data. However, the inference theory about CoD has not been investi-

gated systematically. In this dissertation, we study the inference of discrete CoD

from both frequentist and Bayesian perspectives, with its applications to system

identification problems in Genomics. From a frequentist viewpoint, we provide a

theoretical framework for CoD estimation by introducing nonparametric CoD esti-

mators and parametric maximum-likelihood (ML) CoD estimators based on static

and dynamical Boolean models. Inference algorithms are developed to discover gene

regulatory relationships, and numerical examples are provided to validate preferable

performance of the ML approach with access to sufficient prior knowledge. To make

the applications of the CoD independent of user-selectable thresholds, we describe

rigorous multiple testing procedures to investigate significant regulatory relation-

ships among genes using the discrete CoD, and to discover canalyzing genes using

the intrinsically multivariate prediction (IMP) criterion. We develop practical statis-

tic tools that are open to the scientific community. On the other hand, we propose

a Bayesian framework for the inference of the CoD across a parametrized family

of joint distributions between target and predictors. Examples of applications of

the Bayesian approach are provided against those of nonparametric and parametric

approaches by using synthetic data.

We have found that, with applications to system identification problems in Ge-

nomics, both parametric and Bayesian CoD estimation approaches outperform the

nonparametric approaches. Hence, we conclude that parametric and Bayesian esti-
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mation approaches are preferred when we have partial knowledge about gene regu-

lation. On the other hand, we have shown that the two proposed statistical testing

frameworks can detect well-known gene regulation and canalyzing genes like p53 and

DUSP1 from real data sets, respectively. This indicates that our methodology could

serve as a promising tool for the detection of potential gene regulatory relationships

and canalyzing genes. In one word, this dissertation is intended to serve as founda-

tion for a detailed study of applications of CoD estimation in Genomics and related

fields.
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1. INTRODUCTION *

The coefficient of determination (CoD) plays an important role in Genomics prob-

lems, for example, in the inference of gene regulatory networks from biological data.

In this dissertation, we introduce a rigorous statistical inference framework in the

context of coefficient of determination from both frequentist and Bayesian perspec-

tives. We also study its applications to the detection of gene regulatory relationships

by using quantized gene-expression data. We outline in the following the content of

this dissertation.

1.1 Background

DNA regulatory circuits can be often described by networks of Boolean logical

gates updated and observed at discrete time intervals [2,9,37,38,43,44]. In a stochas-

tic setting, the degree of association between Boolean predictors and targets can be

quantified by means of the discrete CoD [31]. In classical regression analysis, the

nonlinear CoD gives the relative decrease in unexplained variability when entering a

variable X into the regression of the dependent variable Y , in comparison with the

total unexplained variability when entering no variables. Applying this to pattern

prediction, Dougherty and collaborators [31] introduced a very similar concept, that

of CoD for binary random variables, which measures the predictive power of a set of

predictor variables X = {X1, X2, ..., Xn} ∈ {0, 1}n with respect to a target variable

*Parts of this section are reprinted with permission from “Exact Performance of CoD Estimators
in Discrete Predicition” by T. Chen, and U. Braga-Neto, 2012, EURASIP Journal on Advances
in Signal Processing (JASP), Special Issue on Genomic Signal Processing, Article ID 487893, 13
pages, 2010. doi:10.1155/2010/487893, © 2010 EURASIP, and “Maximum-Likelihood Estimation
of the Discrete Coefficient of Determination in Stochastic Boolean Systems” by T. Chen and U.
Braga-Neto, 2012, IEEE Transactions on Signal Processing, vol. 61, no. 15, pp. 3880–3894,© 2013
IEEE.
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Y ∈ {0, 1}, as given by the simple formula:

CoD =
ε0 − ε
ε0

, (1.1)

where ε0 is the error of the best predictor of Y in the absence of other observations

and ε is the error of the best predictor of Y based on the observation of X. The

binary CoD measures the relative decrease in prediction error when using predictor

variables to estimate the target variable, as opposed to using no predictor variables.

The closer it is to one, the tighter the regulation of the target variable by the predictor

variables is, whereas the closer it is to zero, the looser the regulation is. The CoD will

correctly produce low values in cases where the no-predictor error is already small,

or when adding predictors does not contribute to a significant decrease in error.

The concept of CoD has far-reaching applications in Genomics. The CoD was

perhaps the first predictive paradigm utilized in the context of microarray data, the

goal being to provide a measure of nonlinear interaction among genes [31, 46, 47, 52,

62,71]. In [47,52,71], the CoD is applied to the prediction problem dealing with gene

expressions quantized into discrete levels in discrete prediction. In [46,62], the CoD

has its application in the reconstruction or inference of gene regulatory networks. As

its classic counterpart, the binary CoD is a goodness-of-fit statistic that can be used

to assess the relationship between predictor and target variables, for example, the

associations between gene expression patterns in practical applications. The CoD

permits biologists to focus on particular connections in the genome, and coefficient

estimates are useful even if they are biased and not overly precise, because at least the

estimated coefficients provide a practical means of discrimination among potential

predictor sets [31].
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1.2 Contributions

The contributions made in this dissertation can be summarized into two parts.

First, we propose a frequentist inference framework for the estimation and testing of

the discrete CoD with the applications to the system identification problems in Ge-

nomics. We enrich the existing theory of the discrete CoD by studying both nonpara-

metric and parametric estimation of the CoD. Meanwhile, we develop novel statistic

tools for the discovery of significant gene regulatory relationships by conducting mul-

tiple tests for the nonzero CoD and for the detection of significant canalyzing genes

by testing the nonzero intrinsically multivariate prediction (IMP) criterion. Secondly,

we discuss a Bayesian inference framework for the estimation of the CoD across a

family of parametrized distributions of target and predictors from an optimization

perspective, and demonstrate its applications in several groups of simulations for the

recovery of gene regulatory relationships using synthetic and real gene-expression

data sets.

1.2.1 Frequentist Inference of the CoD

The error of the best predictor corresponds to the optimal prediction error, also

known as Bayes error, given a probability model [30, 32]. However, in practical

real-world problems, the underlying probability model is unknown, and thus we

arrive at the fundamental issue of how to find a good prediction error estimator in

small-sample settings [10,11]. An error estimator may be a deterministic function of

the sample data, in which case it is called a non-randomized error estimator; such

popular error estimators as resubstitution and leave-one-out are examples. These

error estimators are random only through the random sample data. Closed-form

analytical expressions for performance metrics such as bias, deviation variance, and

RMS of resubstitution and leave-one-out error estimators have been given in [10,
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58]. By contrast, randomized error estimators, like cross-validation and bootstrap,

have “internal” random factors that affect their outcome, and thus approximate

approaches, usually via Monte-Carlo sampling, are typically used to analyze their

performance.

Likewise, the CoD can be estimated from sample data, so that we can speak

of non-randomized CoD estimators, including the resubstitution and leave-one-out

CoD estimators, and randomized CoD estimators, including bootstrap and cross-

validation CoD estimators [21]. A CoD estimator is obtained by using one of the

usual error estimators for the prediction error with variables, and the empirical fre-

quency (resubstitution) estimator for the prediction error with no variables. As-

suming no knowledge about the underlying probability model, we will employ the

discrete histogram rule [11, 30], the most widely-used and intuitive rule for discrete

prediction problems, in order to estimate prediction errors from the sample data.

We present, for the first time, an exact formulation for performance metrics of

the resubstitution and leave-one-out CoD estimators, for the discrete histogram rule.

Numerical experiments are carried out using a parametric Zipf model, where we

compute the exact performance of resubstitution and leave-one-out CoD estimators

using the previously derived formulas, for varying actual CoD, sample size, and bin

size [21]. We compare these results to approximate performance metrics of random-

ized CoD estimators (bootstrap and cross-validation), computed via Monte-Carlo

sampling. The numerical results indicate that, for moderate and large values of the

actual CoD, the resubstitution CoD estimator is the least biased and least variable

among all CoD estimators, especially at small number of predictors. In fact, with

two predictors, the resubstitution CoD nearly dominates uniformly over all other

estimators across all values of actual CoD. The leave-one-out and cross-validation

CoD estimator tend to perform the worst, whereas the performance of the bootstrap
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CoD estimator is intermediary, despite its high computational complexity. This in-

dicates that, provided one has evidence of moderate to tight regulation between the

genes, and the number of predictors is not too large, the CoD estimator based on

resubstitution is the CoD estimator of choice [21].

Besides, we are most concerned with the feasibility of presenting a reasonable

mathematical model that can incorporate prior knowledge about biological systems.

This can be answered by introducing stochastic Boolean models that play a promi-

nent role in many applications, particularly in Genomic Signal Processing [61]. Fig-

ure 1.1 displays an example of regulatory network associated with the cell cycle.

Figure 1.1(a) gives gene regulatory relationships that lead to the activation or de-

pression of DNA synthesis. Figure 1.1(b) shows a logic circuit that functions the

same as the network. It is obvious that DNA synthesis occurs according to the

following equation:

DNA synthesis = Rb = CDK7 ∧ CycH ∧ CycE ∧ p21 , (1.2)

which tells that, in a healthy cell, DNA synthesis occurs only if all of the CDK7,

Cyclin H and Cyclin E genes are active and the p21 gene is silenced [62].

A common task in practice is the estimation of the strength of regulation between

the various components of the Boolean circuit from sample data according to partial

information or even no information available about the system. Estimation and

identification are complicated by the presence of system noise. For example, consider

the expression pattern “0 1 0 1” for the predicting genes in the hypothetical sample

data of Figure 1.1(c). According to eq (3.1), the state of the Rb gene should be

active, and no DNA synthesis should occur. However, three instances of the “0 1 0

1” pattern are observed in the data, and only one of them behaves as the mechanistic
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Figure 1.1: Example of regulatory network, equivalent logic circuit, and hypothet-
ical sample data for the DNA synthesis pathway of the cell cycle. Adapted from
Shmulevich et al. [62].

model predicts. This is the result of uncertainty in the mechanistic model, e.g.,

the influence of hidden or latent variables. An additional difficulty is the fact that

many expression patterns may be missing due to a small number of samples. These

considerations motivate the application of a stochastic approach to the problem.

As opposed to nonparametric methods, we propose a parametric maximum-

likelihood estimation (MLE) approach, by introducing stochastic Boolean models

for static and dynamical systems, and deriving the maximum-likelihood estimator

of the CoD. In the static case, we are interested in the CoD of a Boolean target

with respect to a Boolean predictor vector. In the dynamical case, we assume that

there is a Markov Boolean state process, and we are interested in the CoD of each

state variable with respect to the state vector at the previous time point, after the

system has reached the steady state. In each case, the relationship between targets

and predictors is contaminated by noise, the amplitude of which is not known and

must be estimated.

The basic idea behind parametric ML estimation is to take advantage of partial

knowledge about the model describing system behaviour. This information cannot

be used by nonparametric approaches, which must rely purely on the sample data. In
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many applications, prior knowledge about the system is available, even if this knowl-

edge is incomplete. This is common, for example, in Genomic Signal Processing

applications, where it is often the case that partial knowledge about the biochemical

pathways of interest is known, making the parametric approach especially suited to

this domain. Naturally, as more prior knowledge becomes available, the more we

expect that the parametric ML approach will outperform its nonparametric com-

petitors.

We develop a static Boolean model associated with an arbitrary predictor vector

and a dynamical Boolean model for dynamical systems in the steady state [16,22]. In

the static case, analytic expressions for the asymptotic bias and variance of the ML

CoD estimator are derived. Performance of the ML CoD estimator is compared to

the nonparametric alternatives in terms of bias, variance, and RMS, and the results

indicate that the parametric approach is to be preferred, provided that the system

noise level is not too high [16].

We also consider the system identification problem [50], that is, the case where

not only the system noise statistics are unknown, but also there is incomplete knowl-

edge about the Boolean relationships in the system. This may manifest itself as

partial knowledge about the logic gates regulating each target variable or about

which variables are the input to each logic gate (i.e., the network “wiring”). The

prior knowledge about the system is coded into a set of candidate models. In prac-

tice, the choice of models to be included in the candidate model set is a difficult one.

L. Ljung states “It is here that a priori knowledge and engineering intuition and in-

sight have to be combined with formal properties of models.” [50]. Here, we consider

the practical situation where partial knowledge may exist about which logic gates

are present in the system, but no knowledge exists about the wiring, except for the

degree of network connectivity, i.e., the number of inputs per gate. We propose infer-
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ence procedures based on the parametric ML CoD estimator to recover the missing

information, and investigate their performance by means of numerical experiments,

which showed that identification rates converge to 100% as sample size increases, and

that the convergence rate is much faster as more prior knowledge is available. For

wiring identification, the parametric ML approach is compared to the nonparametric

approaches, which showed that the parametric approach produces superior identifi-

cation rates, though as the amount of prior knowledge is reduced, its performance

approaches that of the nonparametric ML estimator, which was generally the best

nonparametric approach in all our experiments.

The fact that the parametric approach in the presence of prior knowledge turns

out to be superior to nonparametric alternatives is not surprising, but the amount

of improvement obtained as a function of system noise level and sample size is of

interest, and not obvious a-priori. One of the goals of our work is to quantify the

degree of improvement achieved by the use of the parametric approach in estimation

and system identification tasks.

Traditional applications of the CoD so far have been based on user-selected

thresholds to decide on the presence of gene regulation between the given predic-

tor and target genes. To address this problem, we develop a statistically rigorous

tool for this inference problem, by providing a statistical test, and associated confi-

dence interval, for a nonzero CoD between given Boolean predictors and a Boolean

target. Rejection of the null hypothesis of zero CoD gives evidence for the presence

of statistically-significant regulation [17].

This is done by framing the problem in the context of a stochastic logic model that

naturally allows the inclusion of prior knowledge if available; e.g., knowledge about

the logic gate governing the relationship sought for. For example, knowledge about

a canalizing relationship [69], i.e. a logic relationship in a class of AND or OR gates
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(with possibly negated inputs), can be easily added. Then an Intersection-Union

Test (IUT) [14] based on likelihood-ratio tests for the individual model parameters is

developed by deriving its rejection region, power, p-value, and associated confidence

interval.

To be useful as an inferential tool, the proposed methodology must be able to

deal with the multiple testing issue created by modern gene-expression experiments

that monitor thousands of genes simultaneously. We address this by describing the

application of two multiple testing procedures to control the overall Type I error rate,

namely the single-step Bonferroni correction and the step-up Benjamini-Hochberg

procedure, for controlling the family-wise error rate (FWER) and the false discovery

rate (FDR), respectively [3, 34]. The properties of the proposed statistical test and

multiple testing correction procedures are assessed by both theoretical analysis and

Monte-Carlo experiments, in order to analyze how FWER, FDR, average power,

and the confidence interval estimates behave under FWER- and FDR-controlling

procedures, for varying sample size and number of multiple tests. Furthermore, we

apply the proposed methodology to real gene-expression data sets, and the proposed

methodology could be verified to be a promising tool for discovery of significant gene

regulatory relationships from discrete gene-expression data.

Another problem of interest is how to identify canalyzing genes from a modelling

perspective. Canalizing genes are frequently found in signalling pathways, which

deliver information from a variety of sources to the machinery that enacts central

cellular functions such as cell-cycle, survival, apoptosis and metabolism. For exam-

ple, DUSP1 antagonizes the activity of the p38 mitogen activated kinase, MAPK1

(ERK), which is a central component of the pathway by which extracellular signal-

regulated kinases send mitogenic signals [15]. Therefore, DUSP1 is canalyzing when

it dephosphorylates MAPK1. Martins and collaborators [52] defined the concept
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of intrinsically multivariate prediction, in which case when the controlling gene is

active, it cannot be well-predicted by subsets of its predictor genes, but it can be

predicted by the full set with great accuracy. Such a set of predictor genes is called

Intrinsically Multivariate Predictive (IMP) set for the target gene [52]. Their work

showed that DUSP1 had the largest number of IMP gene sets in related pathways,

thereby providing evidence that the IMP criterion could be used as a practical tool

for discovery of canalyzing genes [52]. However, applications of the IMP criterion

so far have been based on user-selected thresholds to decide on the presence of gene

multivariate prediction between target and predictor genes. We develop a statisti-

cally rigorous tool for this inference problem, by providing a statistical test for a

nonzero IMP score between given a Boolean target and Boolean predictors. Rejec-

tion of the null hypothesis of zero IMP score gives evidence for the presence of IMP

properties of statistical significance [24]. This idea is quite similar to that used for the

detection of gene regulation between given predictor and target genes by testing the

nonzero associated CoD [17]. Furthermore, multiple testing procedures are proposed

by considering the availability of thousands of genes in gene-expression experiments.

Examples of applications of IMP-based multiple testing procedure are provided using

both synthetic and real data sets.

1.2.2 Bayesian Inference of the CoD

As mentioned in the frequentist perspective, nonparametric CoD estimators are

defined by the discrete histogram prediction rule, while ML model-based CoD esti-

mators are defined with respect to a parametric model. However, none of these CoD

estimators are optimized based on statistical inference across a family of possible joint

distributions between target and predictors, where the mass of the random parameter

concentrates around true parameter values for the true target-predictor distribution.
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This leads to a Bayesian approach to CoD estimation based on a parametrized family

of target-predictor distributions as a function of random parameters characterized

by assumed prior distributions. Such an idea was first introduced in the study of

Bayesian error estimation for classification, which optimizes sample-based error es-

timation relative to mean-square error (MSE) between the error estimator and true

error across a family of feature-label distributions [26,27].

Following the Bayesian idea, we present the definition of one Bayesian CoD es-

timator in the minimum mean-square error (MMSE) sense, that is, the Bayesian

MMSE CoD estimator, which minimizes the MSE with respect to the optimal CoD.

Appropriate priors are specified for a exact formulation of the Bayesian MMSE CoD

estimator based on discrete sample data. In addition, Dalton and Dougherty designed

an optimal Bayesian classifier that minimizes the Bayesian MMSE CoD estimator

over all classifiers from an arbitrary family of classifiers [28, 29]. Then we develop

another Bayesian CoD estimator using the optimal Bayesian classifier, whose per-

formance (i.e., bias, variance, RMS) can be analytically expressed. We compare the

performance of the two Bayesian CoD estimators against those of the nonparametric

CoD estimators, and validate the better performance of the Bayesian ones that allow

the inclusion of prior knowledge. We also propose Bayesian predictor inference pro-

cedures for the recovery of gene regulatory relationships (i.e., wiring and logic gates),

and compare their performance against the frequentist predictor inference algorithms

based on nonparametric and parametric ML CoD estimators in Section 3.

1.3 Organization

This dissertation is organized as follows.

In Section 2, we define several nonparametric CoD estimators that are functions

of nonparametric error estimators like resubstitution, leave-one-out, bootstrap and
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cross-validation, from a frequentist perspective. We formulate the analytical ex-

pressions of the performance metrics (i.e., bias, variance and RMS) of these CoD

estimators. Furthermore, we assess their performance by using a Zipf model.

In Section 3, we propose a parametric maximum-likelihood estimation framework

for the inference of the discrete CoD from sample data. We introduce stochastic

Boolean models for biology systems, and deriving the maximum-likelihood estimator

of the CoD given sample data drawn from the underlying distribution. We discuss

the performance of ML CoD estimators based on static Boolean models and dynam-

ical Boolean models, respectively. Furthermore, ML-based inference algorithms are

developed for the identification of gene regulatory relationships in both static and

dynamic cases. We validate our proposed algorithms using synthetic gene-expression

data by groups of simulations.

In Section 4, we provide a statistical test for a nonzero CoD between given Boolean

predictors and a Boolean target in the context of a stochastic logic model, and develop

a practical statistic tool for the detection of significant gene regulatory relationships

from discrete gene-expression data. We develop multiple testing procedures based on

the discrete CoD, and apply our methodology to synthetic and real gene-expression

data for further validation.

In Section 5, we present a rigorous statistical testing framework to investigate the

property of intrinsically multivariate predictive (IMP) of canalyzing genes, by using

the IMP criterion in the context of discrete CoD. Multiple testing procedures based

on the IMP criterion are proposed with the applications to real gene-expression data

for the detection of significant canalyzing genes.

In Section 6, we introduce a Bayesian inference framework to estimate the CoD

based on a parametrized family of joint distributions of given target and predictors

as a function of random parameters characterized by preassumed prior distribu-
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tions. We examine the performance of well-defined Bayesian CoD estimators, and

furthermore propose Bayesian predictor inference procedures with the applications

to synthetic gene-expression data sets.

In Section 7, we present concluding remarks and prospects in future research.
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2. FREQUENTIST INFERENCE: NONPARAMETRIC COD ESTIMATION*

The coefficient of determination (CoD) has significant applications in Genomics,

for example, in the inference of gene regulatory networks [31, 46, 47, 52, 62, 71]. The

CoD is closely related with the prediction error depending on the joint distribu-

tion between target and predictor variables, which, however, are usually unknown in

practice. Hence, the CoD must be estimated from sample data that are drawn from

the target-predictor distribution. In this chapter, we study several nonparametric

CoD estimators based upon the resubstitution, leave-one-out, cross-validation, and

bootstrap error estimators, from a frequentist perspective. The frequentist inference

approach gives an evaluative paradigm for a repeatable randomly sampling process

with unknown parameters of the true distribution remaining fixed, allowing no infor-

mation prior to model specification [14]. We are mostly interested in the comparison

among the performance of these nonparametric CoD estimators in such a setting,

which will be addressed in this chapter.

2.1 Discrete Prediction

Let X1, X2, . . . , Xp be p predictor random variables, such that each Xi take on

a finite number bi of values, and Y ∈ {0, 1} be the target random variable, for the

discrete prediction problem. The predictors as a group can take on values in a finite

space with b =
∏p

i=1 bi possible states. For analysis purposes, we establish a bijection

*Parts of this section are reprinted with permission from “Exact Performance of CoD Estimators
in Discrete Predicition” by T. Chen, and U. Braga-Neto, 2012, EURASIP Journal on Advances
in Signal Processing (JASP), Special Issue on Genomic Signal Processing, Article ID 487893, 13
pages, 2010. doi:10.1155/2010/487893, © 2010 EURASIP, and “Approximate expressions for the
variances of non-randomized error estimators and CoD estimators for the discrete histogram rule” by
T. Chen, and U. Braga-Neto, 2012, Proceedings of VIII IEEE International Workshop on Genomic
Signal Processing and Statistics (GENSIPS’2009), Cold Spring Harbor, NY, November 2010, pp
1–4, © 2010 IEEE.

14



between this finite state space and a single predictor variable X taking values in the

set X ∈ {1, 2, . . . , b}. The variable X has a one-to-one relationship with the finite

space state coded by X1, X2, . . . , Xp: one specific value of X represents a specific

combination of the values of the original predictors, i.e., a “bin” into which the data

is categorized. The value b is the number of bins, which provides a direct measure

of predictor complexity.

The probability model for the pair (X, Y ) is specified by class prior probabilities:

c0 = P (Y = 0), c1 = P (Y = 1), and class-conditional probabilities: pi = P (X = i |

Y = 0) and qi = P (X = i | Y = 1), for i = 1, . . . , b, where we have the identities

c0 + c1 = 1 ,

b∑
i=1

pi = 1 ,

b∑
i=1

qi = 1 .

(2.1)

Given a specific probability model, the optimal predictor for the problem is given

by

ψ(X = i) =

 1, c1qi > c0pi

0, o.w.
. (2.2)

with optimal error rate, also called the Bayes error [30], determined by

ε =
b∑
i=1

min{c0pi, c1qi} . (2.3)

If no features are provided, the optimal error rate becomes

ε0 = min{c0, c1} . (2.4)
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By using the simple inequality
∑

min{ai, bi} ≤ min{
∑
ai,
∑
bi}, one concludes that

ε ≤ ε0 in all cases.

The coefficient of determination [31] is defined as (assuming that ε0 6= 0):

CoD =
ε0 − ε
ε0

= 1− ε

ε0

= 1−
∑b

i=1 min{c0pi, c1qi}
min{c0, c1}

(2.5)

Since 0 ≤ ε ≤ ε0, we have that 0 ≤ CoD ≤ 1. We have CoD = 1 if and only if

ε = 0, that is, there is perfect regulation between predictors and target. On the

other hand, CoD = 0 if and only if ε = ε0, that is, the predictors exert no regulation

on the target.

2.2 Nonparametric CoD Estimation

In practice, the underlying probability model is unknown, and thus the CoD is

not known. The need arises thus to find estimators of the CoD from i.i.d. sam-

ple data Sn = {(X1, Y1), . . . , (Xn, Yn)} drawn from the unknown probability model

distribution. All CoD estimators considered here will be of the form:

ĈoD =
ε̂0 − ε̂
ε̂0

= 1− ε̂

ε̂0

, (2.6)

where ε̂ is one of the usual error estimators for a selected discrete prediction rule,

and ε̂0 is the empirical frequency estimator for the prediction error with no variables:

ε̂0 = min

{
N0

n
,
N1

n

}
. (2.7)

where N0 and N1 are random variables corresponding to the number of sample points

belonging to classes Y = 0 and Y = 1, respectively. We assume throughout that

ε̂0 6= 0, that is, each class is represented by at least one sample. Note that ε̂0 has the
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desirable property of being a universally consistent estimator of ε0 in (2.4), that is,

ε̂0 → ε0 in probability (in fact, almost surely) as n→∞, regardless of the probability

model.

The discrete prediction rule to be used with the error estimator ε̂ is the discrete

histogram rule, which is the “plug-in” rule for approximating the minimum-error

Bayes predictor [10]. Even though we make this choice, we remark that the methods

described here can be applied to any discrete prediction rule. Given the sample data

Sn, the discrete histogram classifier is given by:

ψn(X = i) = IVi>Ui =

 1, Vi > Ui

0, Ui ≥ Vi

, i = 1, 2, . . . , b , (2.8)

where Ui is the number of samples with Y = 0 in bin X = i, and Vi is the number

of samples with Y = 1 in bin X = i, for i = 1, . . . , b.

We review next some facts about the distribution of the random vectors U =

{U1, . . . , Ub} and V = {V1, . . . , Vb}, which will be needed in the sequel. The vari-

ables N0 =
∑b

i=1 Ui, N1 =
∑b

i=1 Vi, Ui, and Vi, for i = 1, . . . , b, are random variables

due to the randomness of the sample data Sn (this is the case referred to as “full

sampling” in [10]). More specifically, Ni is a random variable binomially distributed

with parameters (n, ci), i.e., Ni ∼ B(n, ci), for i = 0, 1, while the vector-valued ran-

dom variable (Ui, Vi) is trinomially distributed with the parameter set (n, c0pi, c1qi),

that is,

P (Ui = k, Vi = l) =

(
n

k, l, n− k − l

)
(c0pi)

k(c1qi)
l(1− c0pi − c1qi)

n−k−l, (2.9)

for i = 1, . . . , b. In addition, the vector {U1, . . . , Ub, V1, . . . , Vb} follows a multinomial
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distribution with parameters (n, c0p1, . . . , c0pb, c1q1, . . . , c1qb), so that

P (U1 = u1, . . . , Ub = ub, V1 = v1, . . . , Vb = vb) =(
n

u1, . . . , ub, v1, . . . , vb

)
× (c0p1)u1 . . . (c0pb)

ub(c1q1)v1 . . . (c1qb)
vb .

(2.10)

We introduce next each of the CoD estimators considered in this chapter.

2.2.1 Resubstitution CoD Estimator

This corresponds to the choice of resubstitution [65] as the prediction error esti-

mator:

ĈoDr = 1− ε̂r
ε̂0

, (2.11)

where, for the discrete histogram predictor,

ε̂r =
1

n

b∑
i=1

[UiIVi>Ui + ViIUi≥Vi ] . (2.12)

The resubstitution CoD can be written equivalently as

ĈoDr = 1−
∑b

i=1 min{N0

n
× Ui

N0
, N1

n
× Vi

N1
}

min
{
N0

n
, N1

n

} , (2.13)

which reveals that ĈoDr has the desirable property of being a universally consistent

estimator of CoD in (2.5), that is, ĈoDr → CoD in probability (in fact, almost

surely) as n→∞, regardless of the probability model.

2.2.2 Leave-One-Out CoD Estimator

This corresponds to the choice of the leave-one-out error estimator [48] as the

prediction error estimator:

ĈoDl = 1− ε̂l
ε̂0

, (2.14)
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where, for the discrete histogram predictor (as can be readily checked),

ε̂l =
1

n

b∑
i=1

[UiIVi≥Ui + ViIUi≥Vi−1] . (2.15)

The leave-one-out CoD estimator provides an opportunity to reflect on the uni-

form choice of the empirical frequency estimator ε̂0 in (3.9) as an estimator of ε0,

including here. Clearly, the empirical frequency corresponds to the resubstitution es-

timator of ε0. The question arises as to whether, for the leave-one-out CoD estimator,

the leave-one error estimator of ε0 should be used instead. For N0 = N1 = n/2, we

get ε̂0 = 1/2 with the choice of the resubstitution estimator (empirical frequency),

but ε̂0 = 1 with the choice of leave-one-out estimator, which is a useless result. Sim-

ilar problems beset other estimators of ε0. Hence, the empirical frequency estimator

is employed here as the estimator of ε0 for all CoD estimators.

2.2.3 Cross-Validation CoD Estimator

This corresponds to the choice of the cross-validation error estimator [48,66] as the

prediction error estimator. In k-fold cross-validation, sample data Sn is partitioned

into k folds Si, for i = 1, . . . , k. For simplicity, we assume that k can divide n. A

classifier ψi is designed on the training set Sn\Si, and tested on Si, for i = 1, . . . , k.

Since there are different partitions of the data into k folds, one can repeat the k-fold

cross-validation r times and then average the results. Such a process leads to the

r-repeated k-fold cross-validation error estimator ε̂cv, given by

ε̂cv =
1

nr

r∑
m=1

k∑
i=1

n/k∑
j=1

|Y i,m
j − ψi,m(X i,m

j )|, (2.16)

where (X i,m
j , Y i,m

j ) represents the j-th sample point in the i-th fold for the m-th

repetition of the cross-validation, for i = 1, . . . , k, m = 1, . . . , r and j = 1, . . . , n/k.
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Based upon (2.16), the r-repeated k-fold cross-validation CoD estimator is defined

by

ĈoDcv = 1− ε̂cv
ε̂0

, (2.17)

In order to get reasonable variance properties, a large number of repetitions may be

required, which can make the cross-validation CoD estimator slow to compute.

2.2.4 Bootstrap CoD Estimator

This corresponds to the use of the bootstrap [35, 36] for the prediction error

estimator. A bootstrap sample S∗n = {(X∗1 , Y ∗1 ), . . . , (X∗n, Y
∗
n ) consists of n equally-

likely draws with replacement from the original data Sn. Some sample points from

the original data may appear multiple times in the bootstrap sample, whereas other

sample points may not appear at all. The actual proportion of times a sample point

(Xi, Yi) appears in S∗n can be written as P ∗i = 1
n

∑n
j=1 I(X∗i ,Y

∗
i )=(Xi,Yi), for i = 1, . . . , n.

A predictor ψt may be designed on a bootstrap sample S∗tn , and tested on Sn\S∗tn ,

for t = 1, . . . , T , where T is a sufficiently large number of repetitions (in this paper,

T = 100). Then, the basic bootstrap zero estimator is given by

ε̂ZERO =

∑T
t=1

∑n
i=1 |Yi − ψt(Xi)|IP ∗ti =0∑T
t=1

∑n
i=1 IP ∗ti =0

, (2.18)

The .632 bootstrap estimator then performs a weighted average of the bootstrap zero

and resubstitution estimators:

ε̂b632 = (1− 0.632)ε̂r + 0.632 ε̂ZERO. (2.19)
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Based on (2.18) and (2.19), the .632 bootstrap CoD estimator is then defined as

ĈoDb632 = 1− ε̂b632

ε̂0

, (2.20)

The bootstrap CoD estimator can be very slow to compute due to the complexity of

ε̂ZERO.

2.3 Performance Metrics of CoD Estimators

In analogous fashion to the performance metrics of prediction error estimators

[11], the key performance metrics for an CoD estimator ĈoD are its bias,

Bias
[
ĈoD

]
= E

[
ĈoD− CoD

]
= E

[
ĈoD

]
− CoD , (2.21)

the deviation variance (which in the present case is equal simply to its variance),

Vard

[
ĈoD

]
= Var

(
ĈoD− CoD

)
= Var

(
ĈoD

)
, (2.22)

and the root mean-square (RMS) error,

RMS
[
ĈoD

]
=

√
E

[(
ĈoD− CoD

)2
]

=

√
Var

[
ĈoD

]
+ Bias

[
ĈoD

]2

(2.23)

For a given probability model, all the performance metrics are thus obtained as a

function of the expectation E[ĈoD] and variance Var(ĈoD).

Working further, we obtain

E[ĈoD] = 1 − E

[
ε̂

ε̂0

]
, (2.24)
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and

Var[ĈoD] = E
[
(ĈoD)2

]
−
(
E[ĈoD]

)2

= E

[
ε̂2

ε̂2
0

]
−
(
E

[
ε̂

ε̂0

])2

, (2.25)

as can be easily checked. We conclude that all the key performance metrics for CoD

estimators can be obtained from the first and second moments of ε̂/ε̂0.

2.4 Exact Moments of Non-Randomized CoD Estimators

As mentioned in the Introduction, we can categorize CoD estimators into non-

randomized and randomized, depending on whether the prediction error estimator

ε̂ is non-randomized or randomized. Non-randomized CoD estimators, such as the

resubstitution and leave-one-out CoD estimators, are deterministic functions of the

sample data, which makes it possible an analytical formulation of their performance

metrics. On the other hand, the performance of randomized CoD estimators, such

as the cross-validation and bootstrap CoD estimators, is very difficult to study an-

alytically and is typically investigated via Monte-Carlo sampling (which is done in

Section 2.6).

In this section, we will present exact expressions for the computation of the

first moment E
[
ε̂
ε̂0

]
and the second moment E

[
ε̂2

ε̂20

]
for the case of resubstitution

and leave-one-out error estimators, which suffices to compute the bias, variance, and

RMS of the corresponding CoD estimator, as discussed in the previous section. These

expressions are functions only of sample size, number of bins (complexity) and the

probability model. We will assume throughout, for definiteness, that the sample size

n is even. The case where n is odd is in fact slightly simpler and can be readily

obtained in analogous fashion to the derivations presented below.
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2.4.1 Resubstitution

The first moment of ε̂r/ε̂0 is given by

E

[
ε̂r
ε̂0

]
= E

[
E

[
ε̂r
ε̂0

| ε̂0

]]
=

n/2∑
m=1

E

[
ε̂r
m/n

|M = m

]
P (M = m), (2.26)

where M = nε̂0. Since ε̂0 = 1
n

min(N0, N1), we have M = min(N0, n−N0). It follows

that the event [M = m] is equal to the union of the disjoint events [N0 = m] and

[N0 = n−m], for m = 1, . . . , n/2 − 1, whereas [M = n/2] = [N0 = n/2]. By using

Proposition A in the Appendix, we can write both cases in a single expression as

follows:

E

[
ε̂r
m/n

|M = m

]
=

P (N0 = m)

P (N0 = m) + P (N0 = n−m)
E

[
ε̂r
m/n

| N0 = m

]
I1≤m<n

2
+

P (N0 = n−m)

P (N0 = m) + P (N0 = n−m)
E

[
ε̂r
m/n

| N0 = n−m
]
I1≤m≤n

2
,

m = 1, . . . , n/2 .

(2.27)

By using (2.27) in (2.26) and considering that P (M = m) = P (N0 = m) + P (N0 =

n−m), we obtain

E

[
ε̂r
ε̂0

]
=

n/2∑
m=1

{
E

[
ε̂r
m/n

| N0 = m

]
P (N0 = m)I1≤m<n

2
+

E

[
ε̂r
m/n

| N0 = n−m
]
P (N0 = n−m)I1≤m≤n

2

}
,

(2.28)

23



where

E

[
ε̂r
m/n

| N0 = t

]
=

1

m

b∑
i=1

{∑
l>k

kP (Ui = k, Vi = l | N0 = t) +

∑
k≥l

lP (Ui = k, Vi = l | N0 = t)

}
,

(2.29)

with

P (Ui = k, Vi = l | N0 = t) = P (Ui = k | N0 = t)P (Vi = l | N1 = n−t)

=

(
t

k

)
pki (1−pi)t−k

(
n−t
l

)
qli(1−qi)n−t−l,

(2.30)

for t = m, n−m.

The second moment of ε̂r/ε̂0 is given by

E

[
ε̂2
r

ε̂2
0

]
=

n/2∑
m=1

E

[
ε̂2
r

m2/n2
|M = m

]
P (M = m), (2.31)

where M = nε̂0, as before. By using Proposition 1 in the Appendix, and the same

reasoning applied previously in the case of the first moment, we can write

E

[
ε̂2
r

m2/n2
|M = m

]
=

P (N0 = m)

P (N0 = m) + P (N0 = n−m)
E

[
ε̂2
r

m2/n2
| N0 = m

]
I1≤m<n

2

+
P (N0 = n−m)

P (N0 = m) + P (N0 = n−m)
E

[
ε̂2
r

m2/n2
| N0 = n−m

]
I1≤m≤n

2
, m = 1, . . . , n/2 .

(2.32)
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Combining (2.32) and (2.31) leads to

E

[
ε̂2
r

ε̂2
0

]
=

n/2∑
m=1

{
E

[
ε̂2
r

m2/n2
| N0 = m

]
P (N0 = m)I1≤m<n

2
+

E

[
ε̂2
r

m2/n2
| N0 = n−m

]
P (N0 = n−m)I1≤m≤n

2

}
,

(2.33)

where

E

[
ε̂2
r

m2/n2
| N0 = t

]
=

1

m2

b∑
i=1

{∑
l>k

k2P (Ui = k, Vi = l | N0 = t) +
∑
k≥l

l2P (Ui = k, Vi = l | N0 = t)

}

+
1

m2

b∑
i,j=1
i 6=j

{∑
l>k

∑
s>r

krP (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t) +∑
l>k

∑
r≥s

ksP (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t) +

∑
k≥l

∑
s>r

lrP (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t) +∑
k≥l

∑
r≥s

lsP (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t)

}
,

(2.34)

with P (Ui = k, Vi = l | N0 = t) as in (2.30) and

P (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t)

= P (Ui = k, Uj = r | N0 = t)P (Vi = l, Vj = s | N1 = n−t)

=

(
t

k, r, t−k−r

)
pki p

r
j(1−pi−pj)t−k−r

(
n−t

l, s, n−t−l−s

)
qliq

s
j (1−qi−qj)n−t−l−s .

(2.35)

for t = m, n−m.
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2.4.2 Leave-one-out

To obtain the first moment of ε̂r/ε̂0, one can proceed exactly as in the resubsti-

tution case to get

E

[
ε̂l
ε̂0

]
=

n/2∑
m=1

{
E

[
ε̂l
m/n

| N0 = m

]
P (N0 = m)I1≤m<n

2
+

E

[
ε̂l
m/n

| N0 = n−m
]
P (N0 = n−m)I1≤m≤n

2

}
,

(2.36)

where now

E

[
ε̂l
m/n

| N0 = t

]
=

1

m

b∑
i=1

{∑
l≥k

kP (Ui = k, Vi = l | N0 = t) +

∑
k≥l−1

lP (Ui = k, Vi = l | N0 = t)

}
,

(2.37)

with P (Ui = k, Vi = l | N0 = t) as in (2.30), for t = m, n−m.

To obtain the second moment of ε̂r/ε̂0, one can again proceed as in the resubsti-

tution case to get

E

[
ε̂2
l

ε̂2
0

]
=

n/2∑
m=1

{
E

[
ε̂2
l

m2/n2
| N0 = m

]
P (N0 = m)I1≤m<n

2
+

E

[
ε̂2
l

m2/n2
| N0 = n−m

]
P (N0 = n−m)I1≤m≤n

2

}
,

(2.38)
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where now

E

[
ε̂2
l

m2/n2
|M = t

]
=

1

m2

b∑
i=1

{∑
l≥k

k2P (Ui = k, Vi = l | N0 = t)∑
k≥l−1

l2P (Ui = k, Vi = l | N0 = t) +∑
l−1≤k≤l

2klP (Ui = k, Vi = l | N0 = t)

}
+

1

m2

b∑
i,j=1
i 6=j

{∑
l≥k

∑
s≥r

krP (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t) +∑
l≥k

∑
r≥s−1

ksP (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t) +

∑
k≥l−1

∑
s≥r

lrP (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t) +∑
k≥l−1

∑
r≥s−1

lsP (Ui = k, Vi = l, Uj = r, Vj = s | N0 = t)

}

(2.39)

with P (Ui = k, Vi = l | N0 = t) as in (2.30) and P (Ui = k, Vi = l, Uj = r, Vj = s |

N0 = t) as in (2.35), for t = m, n−m.

2.5 Approximate Variances of Non-Randomized CoD Estimation

Though the variances of the resubstitution and leave-one-out error estimators and

CoD estimators could be computed exactly with the expressions derived in [10,21], it

is impractical to realize these computations for large sample size or high classification

complexity, given that second-order probabilities of the form P (Ui = k, Vi = l, Uj =

r, Vj = s) need to be calculated. In this Section, we propose an approximation

method for the fast compuation of variances of both resubstitution and leave-one-

out CoD estimators [20].

The variance of the resubstitution CoD estimator is given by
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Var[ĈoDr] = Var

[
1− ε̂r

ε̂0

]
= Var

[
b∑
i=1

(
UiIVi>Ui
nε̂0

+
ViIUi≥Vi
nε̂0

)]

=
b∑
i=1

Var

[
UiIVi>Ui
nε̂0

+
ViIUi≥Vi
nε̂0

]
+

2
∑
i<j

Cov

[
UiIVi>Ui + ViIUi≥Vi

nε̂0

,
UjIVj>Uj + VjIUj≥Vj

nε̂0

]
,

(2.40)

whereas the variance of the leave-one-out CoD estimator is formulated by substitut-

ing Vi > Ui and Uj ≥ Vj in (2.40) with Vi ≥ Ui and Uj ≥ Vj − 1, respectively. The

exact expressions of the variances of resubstitution and leave-one-out CoD estimators

have been formulated in [21]. Note that the covariance terms in both expressions are

related with the second-order joint probabilities, and thus the application of these

exact expressions become problematic regarding huge computation efforts for large

sample size or bin size.

Assuming that Ui/(nε̂0), Vi/(nε̂0), Uj/(nε̂0), Vj/(nε̂0) are less correlated as b in-

creases, for i, j = 1, . . . , b and i 6= j, the covariance terms in (2.40) tends to zero

as b increases. We drop the summation on these covariances including second-order

probabilities, and the approximate expression for the variance of the resubstitution

CoD estimator is given by:

Var[ĈoDr] =
b∑
i=1

Var

[
UiIVi>Ui
nε̂0

+
ViIUi≥Vi
nε̂0

]

=
b∑
i=1

Var

[
UiIVi>Ui
nε̂0

]
+

b∑
i=1

Var

[
ViIUi≥Vi
nε̂0

]
− 2

b∑
i=1

E

[
UiIVi>Ui
nε̂0

]
E

[
ViIUi≥Vi
nε̂0

]
,

(2.41)
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and the approximate expression for the variance of the leave-one-out is given by:

Var[ĈoDl] =
b∑
i=1

Var

[
UiIVi≥Ui
nε̂0

]
+

b∑
i=1

Var

[
ViIUi≥Vi−1

nε̂0

]
+

2
b∑
i=1

(
E

[
UiViIVi≥Ui,Ui≥Vi−1

(nε̂0)2

]
− E

[
UiIVi≥Ui
nε̂0

]
E

[
ViIUi≥Vi−1

nε̂0

])
.

(2.42)

In order to complete the formulations in (2.41) and (2.42), we need to express the

first and second moments involved, for example,

E

[
UiIVi>Ui
nε̂0

]
=

∑
1≤m<n

2

b∑
i=1

∑
l>k

k

m
P (Ui = k, Vi = l|N0 = m) +

∑
1≤m≤n

2

b∑
i=1

∑
l>k

k

m
P (Ui = k, Vi = l|N0 = n−m),

(2.43)

where P (Ui = k, Vi = l | N0 = t) is formed in eq. (2.30). Likewise, the other first

and second moments could be formulated.

2.6 Results and Discussion

Assuming a parametric probability model in this section, we plot the exact perfor-

mance metrics of the resubstitution and leave-one-out CoD estimators, by using the

analytical expressions obtained in Sections 2.3 and 2.4, under varying actual CoD,

sample size, and predictor complexity (number of bins). We also compare these exact

performance metrics with the approximate performance metrics for cross-validation

and bootstrap CoD estimators computed via Monte-Carlo sampling. The Monte-

Carlo computation was carried out by drawing M = 5000 simulated training data

sets of the required sample size from the probability model in each case, and employ-

ing sample means and sample variances to approximate the performance metrics in
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Section 2.3.

The probability model used here is a parametric Zipf model [72]. The class-

conditional probabilities under the parametric Zipf model are given by:

pi =
K

iα

qi = pb−i+1,

(2.44)

for i = 1, . . . , b, and α > 0. The normalizing constant K is given by:

K =

[
b∑
i=1

1

iα

]−1

, (2.45)

For simplicity, we assume that c0 = c1 = 1
2
. It can be seen easily from (2.5) that

the CoD increases monotonically with α, so that large α leads to tight regulation,

i.e. easy prediction, and vice-versa. There are two extreme cases. When α = 0,

there is maximal confusion between the classes, and CoD = 0. When α → ∞,

there is maximal discrimination between the classes, and CoD = 1. Thus, varying

the parameter α can traverse the probability model space continuously from easy to

difficult models.

We consider here the prediction setting where each predictor variable is binary.

If we employ 2, 3, and 4 predictor variables then this would correspond to bin sizes

b = 4, 8, 16, respectively. In functional genomics applications, these cases correspond

to the gene prediction problem by using 2, 3, and 4 genes, where the activity of each

gene is represented by binary gene expressions, e.g., the on-and-off switch effect of a

promoter.

Figure 2.1 displays bias, variance, and RMS of the CoD estimators considered

here, as a function of varying actual CoD (computed by suitable tuning the parameter
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α). We recall that, in the figure, tight regulation, i.e. easy prediction, is located on

the right of these plots, whereas loose regulation, i.e. difficult prediction, is located

on the left.
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Figure 2.1: Bias, variance, and RMS for several CoD estimators vs. actual CoD
under a Zipf model with c0 = 1/2, for n = 40 and varying number of bins. Plot key:
resubstitution (red), leave-one-out (blue), 0.632 bootstrap (green), 10-repeated 2-fold
cross-validation (black). The curves for resubstitution and leave-one-out are exact;
the curves for the other CoD estimators are approximations based on Monte-Carlo
sampling.
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Figure 2.2: Bias, variance, and RMS for several CoD estimators vs. number of bins
(b = 4, 8, 12, and 16) under a Zipf model with c0 = 1/2, for actual CoD=0.6 and vary-
ing sample size. Plot key: resubstitution (red), leave-one-out (blue), 0.632 bootstrap
(green), 10-repeated 2-fold cross-validation (black). The curves for resubstitution
and leave-one-out are exact; the curves for the other CoD estimators are approxima-
tions based on Monte-Carlo sampling.
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Figure 2.3: Bias, variance, and RMS for several CoD estimators vs. number of bins
(b = 4, 8, 12, and 16) under a Zipf model with c0 = 1/2, for actual CoD=0.8 and vary-
ing sample size. Plot key: resubstitution (red), leave-one-out (blue), 0.632 bootstrap
(green), 10-repeated 2-fold cross-validation (black). The curves for resubstitution
and leave-one-out are exact; the curves for the other CoD estimators are approxima-
tions based on Monte-Carlo sampling.
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Figure 2.4: Bias, variance, and RMS for several CoD estimators vs. sample size
(n = 20, 30, 40, 50, and 60) under a Zipf model with c0 = 1/2, for actual CoD=0.6
and varying number of bins. Plot key: resubstitution (red), leave-one-out (blue),
0.632 bootstrap (green), 10-repeated 2-fold cross-validation (black). The curves for
resubstitution and leave-one-out are exact; the curves for the other CoD estimators
are approximations based on Monte-Carlo sampling.
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Figure 2.5: Bias, variance, and RMS for several CoD estimators vs. sample size
(n = 20, 30, 40, 50, and 60) under a Zipf model with c0 = 1/2, for actual CoD=0.8
and varying number of bins. Plot key: resubstitution (red), leave-one-out (blue),
0.632 bootstrap (green), 10-repeated 2-fold cross-validation (black). The curves for
resubstitution and leave-one-out are exact; the curves for the other CoD estimators
are approximations based on Monte-Carlo sampling.

Figure 2.1 makes apparent several facts. The resubstitution CoD is often op-

timistically biased, except at moderate to large CoD with b = 4 (two binary pre-

dictors), whereas the other estimators are generally pessimistically biased. As the

number of predictors increase, the bias (in magnitude) of the resubstitution CoD
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increases accordingly; however its variance remains quite low in each case. The

leave-one-out CoD is highly variable, in addition to being pessimistically biased.

By observing the RMS, we conclude that the resubstitution CoD estimator is the

best-performing estimator, except at small values of the actual CoD, beating all

the other estimators, including the bootstrap. The leave-one-out CoD estimator is

the worst-performing estimator for cases with small number of predictors (b = 4),

whereas the cross-validation CoD estimator becomes the worst-performing estimator

for large number of predictors and moderate actual CoD. As the number of predictors

increases, the actual CoD cut-off decreases accordingly at which the leave-one-out

CoD estimator starts to outperform the cross-validation CoD estimator. It is also

interesting to note that, for b = 4, only the bootstrap beats resubstitution, and

for very small actual CoD. For b = 8, both bootstrap and cross-validation perform

better than the resubstitution, for small actual CoD. For b = 16, all the other CoD

estimators outperform resubstitution for small actual CoD. As the number of predic-

tors increases, the cut-off at which the resubstitution CoD estimator beats all other

estimators increases.

In order to assess the performance of the resubstitution CoD estimator and the

remaining CoD estimators with respect to the classifier complexity (number of pre-

dictors), we display the performance metrics as a function of varying number of bins

in Figures 2.2 and 2.3, for sample size n = 20, 40 and 60, and moderate CoD = 0.6

and large CoD = 0.80. The bias column shows that, for CoD = 0.60, the resubsti-

tution CoD is actually slightly pessimistically biased for b = 4 (a perhaps surprising

fact, given the optimistic bias of resubstitution in discrete classification), but quickly

becomes optimistically biased for larger bin sizes. In the RMS column, we can see

that the resubstitution CoD always beats all other estimators, especially in the case

of CoD = 0.80 (tight regulation), which is the more surprising when we consider that
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the other estimators are much more computation-intensive. It is interesting to see

that the leave-one-out CoD estimator beats the more complex cross-validation CoD

estimator for small number of bins and large sample size. The resubstitution CoD is

the least biased and least variable among all CoD estimators, across the whole range

of classifier complexity and sample size considered here, and thus it also displays the

best RMS overall.

In Figures 2.4 and Figure 2.5, we examine how these performance metrics behave

with varying sample sizes for b = 4, 8, 16, and moderate CoD = 0.6 and large CoD

= 0.80. As expected, bias (in magnitude), variance and RMS all decrease as sample

size increases. We can see that the resubstitution CoD is the least biased and least

variable among all estimators, and thus also displays the best RMS. The cross-

validation CoD estimator is the most biased, and the leave-one-out CoD estimator is

the most variable, among all CoD estimators. The bootstrap CoD estimator is less

variable than the cross-validation CoD estimator.
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Figure 2.6: Exact (solid line) and approximate (dashed line) variances of resubstitu-
tion CoD and leave-one-out CoD versus bin size for varying bin sizes.
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Figure 2.7: Exact (solid line) and approximate (dashed line) variances of resubstitu-
tion CoD and leave-one-out CoD versus bin size for varying sample sizes.

In addition, we run simulations for the comparison of exact variances and ap-

proximate variances (in Section 2.5) of non-randomized CoD estimators. Again, the

parametric Zipf model [10] is employed here due to its simplicity and robustness.

The parameter α is set to be 2.0, which corresponds to small Bayes error and large

CoD. Figures 2.6–2.7 display the exact and approximate variances of the resubsti-

tution and leave-one-out CoD estimators, respectively. We could observe that the

approximations perform better for larger sample size or bin size. Also, the good

accuracy of the approximations is attained while saving a lot of computation time.

For instance, it takes nearly 2 hrs 20 mins to compute the exact variance for resub-

stitution CoD estimator but just about 5 seconds to compute the approximate one,

using Eclipse (C/C++ programming tool) on Windows XP Pro Intel Duo 2.40GHz.

This makes practical the analytical study of error estimation and CoD estimation

for larger sample sizes and classification complexity.
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2.7 Summary

This chapter has presented a comprehensive study of CoD estimators. We de-

rived for the first time exact analytical expressions of performance metrics of the

resubstitution and leave-one-out CoD estimators. Using a parametric Zipf model,

we have compared the exact performance metrics of resubstitution and leave-one-out

between each other and against approximate performance metrics of cross-validation

and bootstrap CoD estimators. Our results lead to a perhaps surprising conclusion:

under the Zipf model under consideration, the resubstitution CoD estimator is the

best-performing estimator among all, for moderate to large actual CoD and not too

large number of predictors. However, for small actual CoD values and high classi-

fier complexity, the other three CoD estimators can outperform resubstitution. This

indicates that, provided one has evidence of moderate to tight regulation between

the genes, and the number of predictors is not too large, one should use the CoD

estimator based on resubstitution.
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3. FREQUENTIST INFERENCE: PARAMETRIC MAXIMUM-LIKELIHOOD

COD ESTMATION*

The CoD is commonly estimated through nonparametric methods [23, 31, 47, 52,

61,62,71]. We have investigated in Section 2 the performance of four nonparametric

CoD estimators, based on the resubstitution, leave-one-out, bootstrap and cross-

validation error rate estimators. It was observed that, provided one has evidence

of moderate to tight regulation between predictors and target, and the number of

predictors is not too large, one should use the resubstitution CoD estimator, which

happens to be the nonparametric maximum-likelihood estimator (NPMLE) for the

unknown joint distribution between predictors and target [57].

In this chapter, we propose a parametric MLE approach, by introducing stochastic

Boolean models for biology systems, and deriving the maximum-likelihood estimator

of the CoD given sample data drawn from the underlying true distribution. The basic

rationale behind parametric ML estimation is to take advantage of partial knowledge

about the model describing system behavior. This information cannot be used by

nonparametric approaches, which must rely purely on the sample data. In many

applications, prior knowledge about the system is available, even if this knowledge

is incomplete. This is common, for example, in Genomic Signal Processing, where

partial knowledge about the biochemical pathways of interest is often known. The

more prior knowledge is available, the more we expect that the parametric ML ap-

proach will outperform its nonparametric competitors. The prior knowledge about

*Parts of this section are reprinted with permission from “Maximum-Likelihood Estimation of the
Discrete Coefficient of Determination in Stochastic Boolean Systems” by T. Chen and U. Braga-
Neto, 2012, IEEE Transactions on Signal Processing, vol. 61, no. 15, pp. 3880–3894, © 2013
IEEE, and “Maximum Likelihood Estimation of the Binary Coefficient of Determination” by T.
Chen, and U. Braga-Neto, 2012, Proceedings of the 45th Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, November 2011, pp 1012–1016, © 2011 IEEE.
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the system is coded into a set of candidate models. We will consider in the Chapter

the system identification problem [50], where not only the system noise statistics are

unknown, but also there is incomplete knowledge about the Boolean relationships in

the system. Specifically, we consider the practical situation where partial knowledge

may exist about which logic gates are present in the system, but no knowledge exists

about the wiring, except for the degree of network connectivity, i.e., the number of

inputs per gate. Inference procedures will be discussed for the recovery of logic gates

and wiring from sample data.

3.1 Stochastic Boolean Systems

Stochastic Boolean models play a prominent role in many applications, partic-

ularly in Genomic Signal Processing [61]. Figure 1.1 displays an example of regu-

latory network associated with the cell cycle. Figure 1.1(a) depicts the activation

and suppression relationships between the various genetic switches, which lead to

the activation or not of DNA synthesis, a necessary preparatory step for cell division

and a tightly regulated mechanism in normal cells — this mechanism is often found

to be out of control in cancerous cells, due to deleterious gene mutations. We can

see in Figure 1.1(b) that this network, or pathway, corresponds to a logic circuit:

DNA synthesis = Rb = CDK7 ∧ CycH ∧ CycE ∧ p21 . (3.1)

In other words, in a healthy cell, DNA synthesis occurs only if all of the CDK7,

Cyclin H and Cyclin E genes are active and the p21 gene is silenced [62].

A common task in practice is the estimation of the strength of regulation between

the various components of the Boolean circuit from sample data. In addition, it is

often the case that only partial information (or even no information) is available

about the system, which must also be identified from the sample data. Estimation
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and identification are complicated by the presence of system noise. For example,

consider the expression pattern “0 1 0 1” for the predicting genes in the hypothetical

sample data of Figure 1.1(c). According to eq (3.1), the state of the Rb gene should

be active, and no DNA synthesis should occur. However, three instances of the

“0 1 0 1” pattern are observed in the data, and only one of them behaves as the

mechanistic model predicts. This is the result of uncertainty in the mechanistic

model, e.g., the influence of hidden or latent variables. An additional difficulty is

the fact that many expression patterns may be missing due to a small number of

samples. These considerations motivate the application of a stochastic approach

to the problem, which is described in the next subsection. Our stochastic model

does not attempt to include the effects of observation noise, that is, inaccuracies

intrinsic to the observation of the expression patterns (e.g., microarray noise). For

that purpose, more complex state-space models are necessary [63].

3.1.1 Predictive Power

Let Y ∈ {0, 1} be the Boolean (i.e., binary) target output to be predicted (in

the previous example, Y indicates the presence or not of DNA synthesis), and let

X = (X1, . . . , Xd) ∈ {0, 1}d be a set of d Boolean predictors (in the previous example,

these indicate the activation status of the CDK7, Cyc H, Cyc R, and p21 genes).

Let f be a proposed mechanistic model for the relationship between Y and X. In

accordance with the previous discussion, we define the predictive power p of the model

as

p = P (Y = f(X)) . (3.2)

If p = 1, there can be no inconsistencies between the model and the sample data,

i.e., the target is predicted deterministically, whereas if p = 1
2
, there is a maximum

amount of indeterminacy, and the model is essentially useless. Intermediates values
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of p in this range will produce variable amounts of inconsistency between the model

and the observed sample data. The mean-squared error (MSE) of the model, denoted

here by ε, is given by

ε = E
[
(Y − f(X))2

]
= P (Y 6= f(X)) = 1− p . (3.3)

It is a well known result [30] that, given the joint distribution between X and Y , the

minimum MSE (MMSE) model, or predictor, is given by

f ∗(X) = I

(
P (Y = 1 | X) >

1

2

)
, (3.4)

with MMSE

ε∗ = 1− p∗ = E [min{P (Y = 0 | X), P (Y = 1 | X)}]

=
∑

x∈{0,1}d
min{P (Y = 0,X = x), P (Y = 1,X = x)} .

(3.5)

In the previous equations, I(·) denotes the usual indicator function, and p∗ denotes

the predictive power of the optimal model.

3.1.2 The Coefficient of Determination

Following [31], we define the following measure of association between X and Y :

CoD =
ε0 − ε∗

ε0

= 1− ε∗

ε0

, (3.6)

where ε0 = min{P (Y = 1), P (Y = 0)} is the MMSE of the optimal constant pre-

dictor f0 = I(P (Y = 1) > 1
2
). It can be shown quite easily that ε∗ ≤ ε0, so that

0 ≤ CoD ≤ 1. Moreover, in case ε∗ = ε = 0, we define CoD = 1. In analogy to the

classical regression case, this measure is called the coefficient of determination. Note
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that CoD = 1⇔ ε∗ = 0⇔ p∗ = 1 , in which case Y is deterministically predicted by

X, whereas CoD = 0⇔ ε∗ = ε0 > 0, i.e., the predictor set X offers no improvement

in prediction accuracy over the constant predictor.

3.1.3 Estimation of the CoD

In practice, the probability structure of the problem is unknown or only partially

known, and one attempts to infer the underlying prediction relationships from i.i.d.

sample data Sn = {(X1, Y1), . . . , (Xn, Yn)} drawn from the underlying probability

model. The broad class of CoD estimators considered here are obtained by employing

estimators ε̂ of ε∗ and ε̂0 of ε0 in (3.6):

ĈoD =
ε̂0 − ε̂
ε̂0

= 1− ε̂

ε̂0

. (3.7)

It is assumed that 0 ≤ ε̂, ε̂0 ≤ 1. By definition, if ε̂ = ε̂0 = 0, then ĈoD = 1, whereas

if ε̂ > ε̂0 (including the case ε̂0 = 0), then ĈoD = 0.

3.1.3.1 Nonparametric Maximum-Likelihood CoD Estimation

If no information is available about the probability model that generates the data,

ε̂ and ε̂0 can be derived by empirical frequency estimators, i.e., the nonparametric

maximum-likelihood estimators (NPMLE) of the discrete distribution [57]. Let N0 =∑n
i=1 I(Yi = 0), N1 =

∑n
i=1 I(Yi = 1) = n − N0, U(x) =

∑n
i=1 I(Xi = x, Yi = 0),

and V (x) =
∑n

i=1 I(Xi = x, Yi = 1), for x ∈ {0, 1}d. Then the NPMLEs ε̂ and ε̂0

are given by

ε̂ =
∑

x∈{0,1}d
min{P̂ (Y = 0,X = x), P̂ (Y = 1,X = x)}

=
∑

x∈{0,1}d
min

{
U(x)

n
,
V (x)

n

} (3.8)
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and

ε̂0 = min{P̂ (Y = 1), P̂ (Y = 0)} = min

{
N1

n
,
N0

n

}
. (3.9)

leading to the NPML CoD estimator:

ĈoD
NPML

= 1−
∑

x∈{0,1}d min{U(x), V (x)}
min{N0, N1}

. (3.10)

It is easy to show that ĈoD
NPML

has the desirable property of being a universally

consistent estimator of CoD in (3.6), that is, ĈoD
NPML

→ CoD in probability (in

fact, almost surely) as n → ∞, regardless of the probability model. We remark

that the estimator ε̂ in (3.8) is also known in the Pattern Recognition literature as

the resubstitution estimator, and thus the NPML CoD estimator has been called the

resubstitution CoD elsewhere [21].

3.1.3.2 Nonparametric Resampling-Based CoD Estimation

Nonparametric resampling-based CoD estimation is a variation of NPMLE, where

the same estimator ε̂0 is used for ε0, but the MMSE ε∗ is estimated using a resampling

method, e.g., the leave-one-out [48], the cross-validation [66], and the 0.632 bootstrap

[36] estimators. The case of leave-one-out is the most basic one and exemplifies well

the other resampling methods: the MMSE is estimated by leaving one sample data

point out, estimating what the optimal predictor would be based on the remaining

n − 1 sample points using a NPMLE approach, and applying that to the left-out

sample. The process is repeated with each of the n sample points and the estimator

ε̂ is the number of errors made divided by n. It can be shown that this leads to the

leave-one-out CoD estimator:

ĈoD
LOO

= 1 −
∑

x∈{0,1}d U(x) I(A(x)) + V (x) I(B(x))

min{N0, N1}
, (3.11)
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where A(x) and B(x) are equivalent to U(x) ≤ V (x) and U(x) ≥ V (x)− 1, respec-

tively. See Chapter 2 for details about the cross-validation and .632 bootstrap CoD

estimators.

3.1.3.3 Parametric Maximum-Likelihood CoD Estimation

The previous CoD estimators utilize nonparametric estimators ε̂ and ε̂0, which

may have a large data requirement for high accuracy. It is often the case that at least

partial information is available about the phenomenon in question that might reduce

the data requirement, and the nonparametric approach cannot take advantage of this

fact. For example, the mechanistic model of DNA synthesis discussed previously has

been uncovered by many painstaking experiments in the Cell Biology literature, even

though the presence of noise and latent variables will mean that its predictive power

is not perfect. This a-priori knowledge can be captured by means of a statistical

model, where parts of the model that are unknown are coded by a finite, small

number of parameters that can be estimated from sample data in an optimal way,

e.g., by employing the principle of maximum likelihood (ML) [14]. By expressing ε

and ε0 in terms of these parameters, ML estimators ε̂ and ε̂0, and thus ĈoD, are

obtained by plugging in the ML estimators of the model parameters. This approach

will be pursued in the next sections, where we consider separately models for the

static and dynamical cases.

3.2 Static Model

For a target variable Y ∈ {0, 1} and predictor variables X = (X1, . . . , Xd) ∈

{0, 1}d, we study the following nonlinear model:

Y = f(X) ⊕ N , (3.12)
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where f : {0, 1}d → {0, 1} is a Boolean function, the symbol “⊕” indicates modulo-2

addition, and N ∈ {0, 1} is a noise random variable. The predictor X is a random

vector, the distribution of which is assumed to be arbitrary, whereas the target Y is a

random variable, the distribution of which is determined by (3.12). The distribution

of N is determined by a parameter p, such that P (N = 1) = 1 − p. Notice that

one can assume p ≥ 1
2

without loss of generality, since if p < 1
2

one can employ an

equivalent model with negated Boolean function f̄ and noise parameter 1 − p ≥ 1
2
.

The noise variable N is assumed to be independent of the predictor vector X. The

modulo-2 addition behaves as a XOR operation, which flips the state of the target

Y when N = 1, and leaves it unaltered when N = 0; the value 1 − p measures

therefore the amplitude of the noise. If p = 1, the system is noiseless and prediction

is deterministic, while if p = 1
2
, there is maximum indeterminacy in the state of

the target given the state of the predictors. We remark that the extension of this

model to the case of multivariate target Y can be readily accomplished, by essentially

considering multiple versions of (3.12), one for each component of Y.

From the previous discussion, it is apparent that p must be related to the pre-

dictive power of the model. In fact, p is itself the optimal predictive power. To see

that, note that

P (Y = 1 | X) = P (f(X) = 1, N = 0 | X) + P (f(X) = 0, N = 1 | X)

= I(f(X) = 1) p+ I(f(X) = 0)(1− p) ,
(3.13)

where we used the assumption that N is independent of X. From the fact that p ≥ 1
2
,

it follows that the optimal predictor of Y given X is f ∗(X) = I
(
P (Y = 1 | X) > 1

2

)
=

f(X), with optimal predictive power p∗ = P (Y = f(X)) = P (N = 0) = p, and

MMSE ε∗ = 1− p∗ = 1− p. In other words, f itself is the optimal predictor for this
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model, p is the optimal predictive power, and 1− p is the MMSE.

3.2.1 Maximum-Likelihood Inference of the CoD

The CoD according to model (3.12) is given by

CoD = 1− ε∗

ε0

= 1− 1− p
F (P (Y = 1))

= 1− 1− p

F

( ∑
x∈{0,1}d

P (Y = 1 | X = x)P (X = x)

)

= 1− 1− p

F

( ∑
x∈{0,1}d

[p+ I(f(x) = 0)(1− 2p)]P (X = x)

) ,

(3.14)

where F : [0, 1] → [0, 1] is a fixed functional given by F (x) = min{x, 1 − x}. As-

suming that f is known, a Maximum-Likelihood Estimator (MLE) to the CoD can

be obtained by deriving MLEs of the predictive power p and of the parameters of

the distribution P (X = x), and plugging those back into (3.14). The assumption of

known f corresponds to a model-based approach, which introduces a degree of regu-

larization into the inference problem by incorporating a-priori knowledge. However,

the assumption of known f will be relaxed later to reflect the presence of incomplete

a-priori knowledge; see Section 3.4.

Before we can proceed, we need to introduce a parametrization of the predictor

distribution P (X = x). Ideally, this parametrization will single out the marginal

probability parameters P (Xi = 1) = Pi, for i = 1, . . . , d, called here the predic-

tor biases, as well as the covariance structure among the predictors. This can be

accomplished in different ways.

One possibility is to employ the theory of multivariate cumulants, which has a

long and distinguished history in Signal Processing [53]. The cumulants of the joint
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distribution of X = (X1, . . . , Xd) are the coefficients in the Taylor series expansion

around the origin of the multivariate cumulant generating function K(ξ1, . . . , ξd) =

logE
[
e ξ1X1+···+ξdXd

]
. First-order cumulants are given simply by g(i) = E[Xi] = Pi,

for i = 1, . . . , d, giving the biases. On the other hand, higher-order cumulants can be

interpreted as the “covariance” among two or more variables variables; e.g., it can

be shown that g(i, j) = Cov(Xi, Xj) = E[XiXj] − E[Xi]E[Xj] = Cov(Xi, Xj), for

i, j = 1, . . . , d. We will not pursue this parametrization further here.

We will employ instead a slightly different approach. Let Jd = {1, . . . , d}. For an

arbitrary subset of indices {i1, . . . , ir} ⊆ Jd, define

γ(i1, . . . , ir) = E[Xi1 · · ·Xir ]− E[Xi1 ] · · ·E[Xir ] . (3.15)

Note that γ(i, j) = E[XiXj]−E[Xi]E[Xj] is the covariance between Xi and Xj. One

can show that

P (X1 = x1, . . . , Xd = xd) =
d∏
i=1

P xi
i (1− Pi)1−xi +

(−1)x1+···+xd
∑

{i1,...,ir}⊆Jd

(−1)r
∏

k∈Jd\{i1,...,ir}

(1− xk)γ(i1, . . . , ir) .

(3.16)

For instance, in the case of d = 2 predictors, the distribution P (X1 = x1, X2 = x2) is

parametrized by the predictor biases P1, P2 and the covariance γ(1, 2) = Cov(X1, X2):

P (X1 = x1, X2 = x2) =
2∏
i=1

P xi
i (1− Pi)1−xi + (−1)x1+x2γ(1, 2) . (3.17)

This parametrization allows one to easily to impose meaningful constraints such as

unbiased predictors, P1 = P2 = 0.5, or independent predictors, γ(1, 2) = 0, or both,

in which case the predictor distribution becomes uniform over the predictor states.
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In the case of d = 3 predictors, the distribution P (X1 = x1, X2 = x2, X3 = x3) is

parametrized by the predictor biases P1, P2, P3, and the four parameters:

γ(1, 2) = Cov(X1, X2) , γ(1, 3) = Cov(X1, X3) ,

γ(2, 3) = Cov(X2, X3) , γ(1, 2, 3) = E[X1X2X3]− E[X1]E[X2]E[X3] ,

(3.18)

such that

P (X1 = x1, X2 = x2, X3 = x3) =
3∏
i=1

P xi
i (1− Pi)1−xi + (−1)x1+x2+x3 ×

[ (1− x1)γ(1, 3) + (1− x2)γ(1, 3) + (1− x3)γ(1, 2)− γ(1, 2, 3) ] .

(3.19)

This parametrization allows one to obtain simple expressions for the CoD as a

function of the model parameters in many cases of interest. For example, under an

AND model, with an arbitrary number of predictors d, it follows easily from (3.14)

that

CoDANDd(p, P1, P2, . . . , Pd, γ) =



1− 1− p
(1− p) + (P1P2 · · ·Pd + γ)(2p− 1)

,

P1P2 · · ·Pd + γ ≤ 1
2

1− 1− p
p− (P1P2 · · ·Pd + γ)(2p− 1)

, o.w.,

(3.20)

where γ = γ(1, . . . , d).

Now, given i.i.d. sample data Sn = {(X11, . . . , X1d, Y1), . . . , (Xn1, . . . , Xnd, Yn)},

the MLE of the predictive power p = P (Y = f(X1, . . . , Xd) and the parameters in

the (unconstrained) model (3.17) are obtained by substituting empirical frequencies
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for probabilities and, equivalently, sample means for expectations, leading to

p̂ =
1

n

n∑
i=1

I(f(Xi1, . . . , Xid) = Yi) , P̂i =
1

n

n∑
j=1

Xji , i = 1, . . . , d ,

γ̂ (i1, . . . , ir) =
1

n

n∑
j=1

Xji1 . . . Xjir −
1

nr

n∑
j=1

Xji1 · · ·
n∑
j=1

Xjir , (i1, . . . , ir) ⊆ Jd .

(3.21)

Notice that there are 2d parameters to be estimated in the model. It is easy to show

that p̂ and P̂i, for (i = 1, 2, . . . , d), are minimum-variance unbiased, with Var[p̂] =

1
n
p(1− p), Var[P̂i] = 1

n
Pi(1−Pi), for i = 1, 2, . . . , d. However, γ̂ (i1, . . . , ir) is biased.

For example, for d = 2, E[γ̂(1, 2)] = n−1
n
γ, and for d = 3, E[γ̂(1, 2, 3)] = n2−1

n2 γ.

It is well-known that, under certain minimal regularity conditions, which are sat-

isfied in our case, MLEs are asymptotically unbiased, asymptotically efficient, and

consistent [14, Thm. 10.1.6], so that all the estimators defined previously have these

properties. Finally, the ML CoD estimator ĈoD
ML

is obtained by plugging in the

estimators in (3.21) back into equations (3.14) and (3.16). In practice, the estimators

are plugged into simplified expressions for specific models, such as (3.20) .

3.2.2 Performance Analysis

Regarding the performance of a CoD estimator ĈoD, the quantities of interest are

the bias, variance, and RMS, given by Bias[ĈoD] = E[ĈoD] − CoD, Var[ĈoD], and

RMS[ĈoD] =

√
Bias[ĈoD]2 + Var[ĈoD], respectively, which should be as small as

possible for best performance. For a general CoD estimator, these quantities can be

computed exactly via complete enumeration [1]. This requires a large amount of time

and computation, being applicable only if the sample size and number of variables

is small (but see [21] for exact expressions for the NPML and LOO CoD estimators,

which avoid complete enumeration). For the ML CoD estimator, we obtain here

asymptotic expressions for its bias, variance, and thus RMS. These expressions are
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asymptotically exact as the sample size increases, but they are also accurate for

moderate finite sample sizes.

3.2.2.1 Bias

Let θ = (θ1, . . . , θ2d)be the vector of model parameters, e.g., θ1 = p, θ2 =

P1, . . . , θd+1 = Pd, θd+2 = γ(1, 2), . . . , θ2d = γ(1, . . . , d), and let θ̂ = (θ̂1, . . . , θ̂r)

be the vector of corresponding ML parameter estimators, given by (3.21). We have

CoD = CoD(θ) and ĈoD
ML

= CoD(θ̂). Assuming differentiability at θ, one can

employ a Taylor series expansion to obtain:

ĈoD
ML
− CoD =

2d∑
i=1

∂ CoD(θ)

∂θi
(θ̂i − θi) + oP (1) . (3.22)

where oP (1) indicates a term that goes to zero in probability as n→∞, since θ̂ → θ

in probability — the latter convergence necessarily occurs because θ̂ is consistent, as

discussed at the end of the previous section. Taking expectations on both sides then

leads to

Bias[ĈoD
ML

] =
2d∑
i=1

∂ CoD(θ)

∂θi
Bias[θ̂i] + o(1) , (3.23)

where o(1) is a negligible term as n → ∞. Since p̂ and P̂i, for i = 1, 2, . . . , d, are

unbiased, we further obtain the simplified expression

Bias[ĈoD
ML

] =
∑

{i1,...,ir}⊆Jd

∂ CoD(θ)

∂γ(i1, . . . , ir)
Bias[γ̂(i1, . . . , ir)] + o(1) , (3.24)

and the bias of the ML CoD estimator is a function of the bias of the ML covari-

ance estimators. For the two-predictor AND model, for instance, this produces, by
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discarding the vanishing term:

Bias
[
ĈoD

ML

AND2

]
≈


−(1− p)(2p− 1)γ

n[(1− p) + (P1P2 + γ)(2p− 1)]2
, if P1P2 + γ <

1

2

(1− p)(2p− 1)γ

n[p− (P1P2 + γ)(2p− 1)]2
, if P1P2 + γ >

1

2

.

(3.25)

Hence, the estimator is optimistic if P1P2 + γ < 1
2
, and pessimistic if P1P2 + γ > 1

2
.

If P1P2 + γ = 1
2
, then the CoD is not differentiable at θ and the approximation

cannot be applied; however, in this case we obtain directly from (3.20) that CoD =

2p − 1, with ĈoD
ML

= 2p̂ − 1, so that Bias[ĈoD
ML

AND2 ] = 0, and the estimator is

unbiased for all n (this is an exact result). Equation (3.25) also allows us to conclude

that the bias becomes small for p close to the extreme values p = 1
2

and p = 1.

Moreover, the bias vanishes as n→∞, regardless of p and the other parameters. A

corresponding expression for the bias of the 3-input AND logic model can be found

in the Appendix B, with similar conclusions.

3.2.2.2 Variance

Using again the Taylor series expansion (3.22), one obtains

Var(ĈoD
ML

) = Var(CoD(θ̂)) = E

[(
CoD(θ̂)− E[CoD(θ̂)]

)2
]

= E

 2d∑
i=1

∂ CoD(θ)

∂θi
(θ̂i − E[θ̂i])

2 + o(1)

=
2d∑
i=1

(
∂ CoD(θ)

∂θi

)2

Var(θ̂i) + 2
2d∑

i,j=1
i<j

∂ CoD(θ)

∂θi

∂ CoD(θ)

∂θj
Cov(θ̂i, θ̂j) + o(1) .

(3.26)
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Figure 3.1: Bias and variance versus predictive power over sample size n = 10, 20, 30
and 40, in a two-input AND model with P1 = P2 = 0.5 and γ = 0.20. Blue: ex-
act results (via complete enumeration); Green: approximate results (via asymptotic
approximation).

Notice that this expression requires the computation of the entire covariance matrix

Σ(θ̂), i.e., the variances of the individual estimators θ̂i and the covariances between

all pairs of estimators θ̂i, θ̂j. For the two-predictor case, it can be verified that these

are given by:

Var(p̂) =
1

n
p(1− p) , Var(P̂1) =

1

n
P1(1− P1) , Var(P̂2) =

1

n
P2(1− P2)

Var(γ̂) =
n− 1

n2
P1P2(1− P1)(1− P2) +

(n− 1)2

n3
(1− 2P1)(1− 2P2)γ−

(n− 1)(n− 2)

n3
γ2 ,

Cov(p̂, P̂1) = Cov(p̂, P̂2) = Cov(p̂, γ̂) = 0 ,

Cov(P̂1, P̂2) = γ/n , Cov(P̂1, γ̂) =
n− 1

n2
(1− 2P1)γ ,

Cov(P̂2, γ̂) =
n− 1

n2
(1− 2P2)γ .

(3.27)

For the two-predictor AND model, for instance, this produces, by discarding the
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vanishing term:

Var
(

ĈoD
ML

AND2

)
≈

1

n[(1− p) + (P1P2 + γ)(2p− 1)]4

[
(P1P2 + γ)2p(1− p) + (1− p)2(2p− 1)2×

×
(
P1P

2
2 (1− P1) + P 2

1P2(1− P2) + 2P1P2γ +
n− 1

n
P1P2(1− P1)(1− P2) +

+
(n− 1)2

n2
(1− 2P1)(1− 2P2)γ − (n− 1)(n− 2)

n2
γ2+

2
n− 1

n
(P1 + P2 − 4P1P2)γ

)]
, if P1P2 + γ < 1

2

1

n[ p− (P1P2 + γ)(2p− 1)]4

[
(P1P2 + γ)2p(1− p) + (1− p)2(2p− 1)2×

×
(
P1P

2
2 (1− P1) + P 2

1P2(1− P2) + 2P1P2γ +
n− 1

n
P1P2(1− P1)(1− P2) +

+
(n− 1)2

n2
(1− 2P1)(1− 2P2)γ − (n− 1)(n− 2)

n2
γ2+

2
n− 1

n
(P1 + P2 − 4P1P2)γ

)]
, if P1P2 + γ > 1

2

.

(3.28)

If P1P2 + γ = 1
2

then, as mentioned previously, the CoD is not differentiable at

θ and the approximation cannot be applied; however, in this case ĈoD
ML

= 2p̂− 1,

so that Var[ĈoD
ML

AND2 ] = 4Var[p̂] = 4
n
p(1− p). Equation (3.28) allows us to conclude

that the the variance of the ML CoD estimator vanishes as n→∞. A corresponding

expression for the variance of the 3-input AND logic model can be found in the

Appendix B, and similar conclusions apply. In addition, Tables C.1 and C.2 in

Appendix C lists the bias and variance asymptotic expressions for five 2-predictor

logics: AND, XOR, OR, X1X̄2, and X̄1X2. The remaining five useful 2-predictor

logics are negations of these, and it can be easily verified that the expression for the

CoD and its bias and variance asymptotic approximations are the same for a logic
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Figure 3.2: Bias, deviation variance, and RMS for several CoD estimators vs.
predictive power with sample size n = 60. Top row, 2-input AND model with
P1 = 0.8, P2 = 0.6 and γ = 0.02. Bottom row, 3-input AND model with
P1 = 0.8, P2 = 0.6, P3 = 0.7, γ12 = 0.02, γ13 = 0.015, γ23 = 0.025, and γ = 0.02.
Plot key: resubstitution (red), leave-one-out (blue), cross-validation (black), 0.632
bootstrap (purple), MLE (green). The curves for resubstitution and leave-one-out
are exact; the curves for cross-validation and 0.632 bootstrap are approximated via
Monte Carlo sampling; the curve for the MLE is approximated via the asymptotic
method described in the text.

and its negation (except that p̂ is computed differently in each case, naturally).

Figure 3.1 illustrates the accuracy of the preceding approximations by comparing

them to the exact values computed by complete enumeration, across the entire range

of possible predictive values, for a 2-predictor AND model with P1 = P2 = 0.5 and

γ = 0.20. Complete enumeration is here possible due to the small sample sizes

considered, namely, n = 10, 20, 30, 40. The plots show that for sample sizes as small

as n = 30, the results produced by the asymptotic approximation are essentially

equal to the exact values, especially in the case of the variance, across the entire
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range of predictive power. We may therefore expect that the approximations will

be very accurate for larger sample sizes, for which exact computation via complete

enumeration is not possible. We also gather from the previous plots that the bias

of the ML CoD estimator is very small, being essentially zero for n = 40 and larger

sample sizes, also in agreement with the asymptotic approximation.

3.2.2.3 Comparison with Nonparametric CoD Estimators

Here we compare the performance of the parametric ML against that of the non-

parametric ML (resubstitution) and resampling-based (leave-one-out, cross-validation,

and 0.632 bootstrap) CoD estimators. Figure 3.2 displays results for the 2- and 3-

predictor AND models, for varying predictive power, given a sample size n = 60.

For the ML CoD estimator, the accurate asymptotic expressions developed in the

previous section are used, whereas for the resubstitution and leave-one-out CoD esti-

mators, exact formulas developed in [21] are used. For the cross-validation and 0.632

bootstrap CoD estimators, approximations based on Monte Carlo sampling are used

(hence the plot jitter in the case of these estimators). One can see that the ML

approaches have a clear advantage over the other estimators, being similar to each

other in variance and RMS. However, the parametric MLE has the least bias, and the

least RMS if the predictive power is not too small. The parametric MLE performs

better in the 3-input than in the 2-input case, since nonparametric estimation be-

comes more difficult in higher-dimensional spaces, where the model information used

by the parametric MLE becomes more important; this advantage can be expected

to increase with 4 or more inputs.

3.3 Dynamical Model

We assume a vector stochastic process {Xk; k = 0, 1, . . .}, where Xk ∈ {0, 1}d is

a Boolean vector of size d representing the system state Xk = (Xk(1), . . . ,Xk(d)) at

57



time point k. We study the following nonlinear model:

Xk = f (Xk−1) ⊕ nk , (3.29)

for k = 1, 2, . . .. Here, “⊕” indicates component-wise modulo-2 addition, f : {0, 1}d →

{0, 1}d is an arbitrary network function, which expresses a logical relationship be-

tween the system variables at consecutive time points, and {nk; k = 1, 2, . . .} is a

white noise process, with nk ∈ {0, 1}d. The noise process is “white” in the sense

that the noise at distinct time points are independent random variables. It is also

assumed that the noise process is independent of the state process. The network

function can be written in terms of its components, f = (f1, f2, . . . , fd), where each

component fi : {0, 1}d → {0, 1}, i = 1, . . . , d, is a Boolean function expressing a

logical relationship between Xk(i) and the previous state vector Xk−1.

Under model (3.29), it is clear that {Xk; k = 0, 1, . . .} is a Markov chain. Fur-

thermore, it is a time-homogeneous Markov Chain if the noise process is identically

distributed, i.e., nk has the same distribution for all k = 1, 2, . . . which is assumed

here. We make the additional assumption that the noise components nk(i) are inde-

pendent, with P (nk(i) = 1) = 1−p, for i = 1, . . . , d, for a parameter 1
2
≤ p < 1. In a

similar fashion to the static model previously considered, one can assume p ≥ 1
2

with-

out loss of generality, with 1−p giving the amplitude of the noise; i.e. how often the

state vector will be perturbed by flipping its components. Notice that components

are flipped independently; it is only the rate of flipping that is assumed to be the

same for all components. Under this noise distribution, the model (3.29) has been

known in the literature as the “Boolean Network with perturbation” model [51].

58



The transition matrix M = [Mij] of the corresponding Markov Chain is given by

Mij = P (Xk = xi | Xk−1 = xj) = P
(
nk = xi ⊕ f(xj)

)
=

d∏
k=1

p1−xi(k)⊕fk(xj)(1− p)xi(k)⊕fk(xj) ,
(3.30)

for i, j = 1, . . . , 2d, where (x1, . . . ,x2d) is an arbitrary enumeration of the state

vectors. It is clear that M is the transition matrix of an ergodic Markov chain [59].

Let π be the stationary probability distribution vector, with π(i) = P (Xk = xi), for

i = 1, . . . , 2d. We have Mπ = π. It can be shown that π can be computed explicitly

as [41]

π = (11T + I −M)−1 1 , (3.31)

where I is the 2d × 2d identity matrix, and 1 = (1, . . . , 1) has length 2d. From

eqs. (3.30) and (3.31), we gather that π is a function of only the network function f

and the noise parameter p, a fact that will be important in the next section.

3.3.1 Maximum-Likelihood Inference of the CoD

Consider the vector CoD, where CoD(i) is the individual CoD of variable Xk(i)

with respect to the preceding state Xk−1, for i = 1, . . . , d. The MLE of CoD is

defined here as the vector ĈoD consisting of the MLEs of the individual CoDs. We

derive in this section an accurate approximation to ĈoD, under the assumption of

stationarity, i,e, we assume that the system is in the steady state. In other words, we

assume that the system has already been allowed to evolve “for a long time,” so that

the process {Xk; k = 0, 1, . . .} is identically distributed according to the stationary

distribution π of the Markov chain. Due to this, CoD is itself time-invariant and

does not depend on k. Notice that, while identically distributed, {Xk; k = 0, 1, . . .}

is not independent.
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According to the model (3.29),

CoD(i) = 1− ε∗

ε0

= 1− 1− p
F (P (Xk(i) = 1))

= 1− 1− p

F

(
2d∑
j=1

P (Xk(i) = 1 | Xk−1 = xj)P (Xk−1 = xj)

)

= 1− 1− p

F

(
2d∑
j=1

[I(fi(xj) = 1) p+ I(fi(xj) = 0)(1− p)]π(j)

) ,

(3.32)

for i = 1, . . . , d. Since π is a function of only f and p, and f is assumed to be known,

it follows that only the MLE p̂ of p is needed to obtain the MLE of CoD(i). In

particular, it is not necessary to estimate any of the bias and covariance parameters

present in the static case, discussed in Section 3.2.
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Figure 3.3: Comparison between p̂ and p̂MLE as a function of increasing sample size,
for 6-variable network functions with l = 2, 3, 4 predictors per target and p = 0.85.

Let Sn = {Xm = xim , . . . ,Xm+n = xim+n} be an observation of the stationary

process {Xk; k = 0, 1, . . .}, consisting of n + 1 consecutive observations, comprising

n state transitions. The likelihood function is:

L(p | Sn) = π(im)Mim+1im · · · Mim+nim+n−1 . (3.33)
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There appears to be no simple analytical solution to the maximization of this like-

lihood function, as it involves the complex matrix inversion in (3.31). However, by

noting that

p = P (Xk(1) = f1(Xk−1)) = P (Xk(2) = f2(Xk−1)) = · · · = P (Xk(d) = fd(Xk−1)) ,

(3.34)

the following estimator immeditely presents itself

p̂ =
1

dn

d∑
j=1

n∑
k=1

I
(
xim+k(j) = fj(x

im+k−1)
)

(3.35)

We can actually show that p̂ → p̂MLE, the MLE of parameter p, in probability as

n→∞. But p̂ is also quite accurate for finite sample sizes, as shown in Figure 3.3,

which plots p̂ and p̂MLE as a function of increasing sample size, for 6-variable network

functions with l = 2, 3, 4 predictors per target and p = 0.85. Here, p̂MLE is computed,

to a good approximation, via numerical maximization of L(p | Sn) in (3.33).

An accurate approximation to the MLE ĈoD(i) is then obtained by plugging

p̂ in (3.30), (3.31), and (3.29). A comment on (3.31): since this involves matrix

inversion of a potentially very large matrix, an alternative to find the stationary

distribution is to use the fact that each row of limk→∞M
k is equal to π [59]. The

procedure adopted here is to increase k until ||Mk−Mk−1|| is smaller than a certain

pre-specified tolerance, and then read π off the resulting matrix.

3.3.1.1 Comparison with Nonparametric CoD Estimators

As in the static case, it is of interest to study how accurate the MLE developed

in the previous section is, as compared to nonparametric alternatives. We again con-

sider the nonparametric ML (resubstitution) and resampling-based (leave-one-out,
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Figure 3.4: Bias, deviation variance, and RMS for several CoD estimators vs. pre-
dictive power with sample size n = 60. Top row: 2-input XOR; Midde row: 3-input
XOR; Bottom row: 4-input XOR. All curves are approximated via Monte Carlo
sampling.

cross-validation, and 0.632 bootstrap) CoD estimators. The bias, variance and RMS

of estimation for the vector target are defined as the averages of the corresponding

quantities for the estimators of each individual target. In the dynamical case, it is not

desirable to consider systems containing only AND logics, as the underlying Boolean

network converges quickly to the single attractor state 00 · · · 0. In the case where

the noise is small, i.e., p is close to 1, the stationary distribution of the associated

Markov process will assign large probability to this single state, which renders the
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comparison among the several CoD estimators problematic. Here we consider instead

networks of XOR logics, which produce much less peaked stationary distributions for

large p (see Supplementary Information). Figure 3.4 displays results for XOR models

with l = 2, 3, 4 predictors per logic gate, for varying predictive power, given a sample

containing n = 60 transitions. All results are approximations based on Monte Carlo

sampling (hence the plot jitter). One can see that the general behavior is similar to

that obtained in the static case with AND gates, c.f. Figure 3.2, except that now the

MLE has an even bigger advantage over the other estimators. This can be explained

by the fact that the MLE takes advantage here of the additional modeling assump-

tion of a fixed p for all targets, whereas the nonparametric estimators, being unable

to take advantage of any modeling assumptions, estimate p “anew” for each of the

targets.

3.4 Application to System Identification

In this section we consider the system identification problem [50], that is, the case

where incomplete knowledge about the network function is available, in the form of

partial knowledge about the logic gates regulating each target variable, but no knowl-

edge about the input variables to each logic gate (i.e., the network “wiring”). We

propose inference procedures based on the parametric ML CoD estimator to recover

the missing information, and investigate their performance by means of simulation.

In the case of network wiring recovery, we compare the performance of the ML ap-

proach against the use of nonparametric CoD estimators, which are not capable of

taking advantage of the available partial information.

We consider separately the static and dynamical cases. In both cases, the prior

knowledge about the system The simulated numerical examples in this section take

this into account by considering nested sets of candidate models, from more (smaller
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set) to less (larger set) informative. This allows us to examine the impact of the

amount of prior knowledge has on inference accuracy.

3.4.1 Static Case: Predictor Inference

We consider here inference of the Boolean function f , or predictor, in model

(3.12). It is assumed that the true predictor f is unknown but is a member of a

candidate model set F containing several Boolean functions. For simplicity, it is

assumed here that each predictor f in F depend on the same number l of essential

predictive variables, or inputs, but the approach can be extended to remove this

assumption. Each predictor f in F is thus specified by (1) a Boolean function

g : {0, 1}l → {0, 1}, or logic gate, and (2) the indices for the predicting variable set

{i1, . . . , il} ⊂ {1, . . . , d}, or wiring, such that

f(X) = f(X1, . . . , Xd) = g (Xi1 , . . . , Xid) . (3.36)

The total number of possible predictors is therefore 2l ×
(
d
l

)
.

Here we assume that the model set F consists of a number c of possible logic

gates and arbitrary wiring of connectivity l. This reduces the number of all possible

networks to c ×
(
d
l

)
. The parameter c is inversely related to the amount of prior

knowledge available; the smaller c is, the more is known about the system, and

vice-versa.

We propose the following predictor inference procedure to select a predictor from

F .

1. For each logic gate, pick the wiring that produces the largest ML CoD estimate.

Ties, if any, are broken randomly.

2. Among the c candidate predictors obtained from the previous step, select the
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one that presents the largest predictive power estimate. Ties, if any, are broken

randomly.

The previous procedure provides heuristics for the application of the ML CoD and

ML predictive power estimators to predictor inference. Its effectiveness is assessed

in the sequel by means of numerical experiments.

3.4.1.1 Numerical Experiments

We let d = 8 and set up three groups of experiments, corresponding to l = 2, 3, 4.

A set of k = 8 models are considered in each case, each model being obtained by a

random wiring assignment {i1, . . . , il} and a choice of one of two logic gates:

� l = 2: g1(Xi1 , Xi2) = Xi1Xi2 ; g2(Xi1 , Xi2) = Xi1 ⊕Xi2 .

� l = 3: g1(Xi1 , Xi2 , Xi3) = Xi1Xi3+Xi2⊕Xi3 ; g2(Xi1 , Xi2 , Xi3) = Xi1⊕Xi2⊕Xi3 .

� l = 4: g1(Xi1 , Xi2 , Xi3 , Xi4) = Xi1 Xi2 Xi4+(Xi1⊕Xi2)Xi3 ⊕Xi4+Xi1Xi2(Xi3⊕

Xi4) ; g2(Xi1 , Xi2 , Xi3 , Xi4) = Xi1 ⊕Xi2 ⊕Xi3 ⊕Xi4 .

Furthermore, we consider three different values of predictive power, p = 0.65, p =

0.75, and p = 0.85.

To set up the inference problem, we consider, for each value of l, three candidate

model sets F 1
l ⊂ F 2

l ⊂ F 3
l , each containing all

(
8
l

)
possible predictor variable assign-

ments {i1, . . . , il}, for l = 2, 3, 4, and the logic gates depicted in Tables 3.1–3.3. As

mentioned previously, the nesting of the candidate model sets allows us to assess the

impact of a decreasing amount of prior knowledge about the system.

For each number of inputs l, predictive power p, and sample size n, a total of

r = 100 datasets are drawn from each model. The proposed inference procedure is

applied, and two performance measures are recorded for each of the three candidate

model sets: the average rate of correct logic gates recovered and the average rate
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Table 3.1: Logic gates for candidate model sets, static case, l = 2.

F 1
2 F 2

2 F 3
2

Xi1Xi2 Xi1Xi2 Xi1Xi2

Xi1 ⊕Xi2 Xi1 ⊕Xi2 Xi1 ⊕Xi2

Xi1Xi2 Xi1Xi2

Xi1 +Xi2 Xi1 +Xi2

Xi1Xi2

Xi1 +Xi2

Table 3.2: Logic gates for candidate model sets, static case, l = 3.

F 1
3 F 2

3 F 3
3

Xi1Xi3 +Xi2 ⊕Xi3 Xi1Xi3 +Xi2 ⊕Xi3 Xi1Xi3 +Xi2 ⊕Xi3

Xi1 ⊕Xi2 ⊕Xi3 Xi1 ⊕Xi2 ⊕Xi3 Xi1 ⊕Xi2 ⊕Xi3

Xi1(Xi2 ⊕Xi3) +Xi1Xi2 Xi1(Xi2 ⊕Xi3) +Xi1Xi2

Xi1 Xi2 +Xi1Xi2 ⊕Xi3 Xi1 Xi2 +Xi1Xi2 ⊕Xi3

Xi1Xi2 +Xi1Xi2 ⊕Xi3

Xi1Xi3 +Xi2 ⊕Xi3

Xi1 Xi2 ⊕Xi2 +Xi1Xi2

Xi1 Xi2 ⊕Xi2 +Xi1(Xi2 ⊕Xi3)
Xi1 Xi3 +Xi1(Xi2 ⊕Xi3)
Xi1 Xi3 +Xi1Xi2 ⊕Xi3

of predictive variables correctly recovered For the latter, we count the number of

correct predictive variables, not correct predicitive variable sets; this assigns partial

credit if 3 out of l = 4 input variables are recovered for the wiring of a given target,

for example.

The nonparametric CoD estimators are also employed to recover the wiring,

through the simple inference procedure: all possible
(
d
l

)
wirings {i1, . . . , il} are con-

sidered, and the one that produces the largest estimated CoD is selected. The same

measure of average rate of predictive variables correctly recovered, described above,

is used to assess performance. Notice that nonparametric CoD estimators cannot
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Table 3.3: Logic gates for candidate model sets, static case, l = 4.

F 1
4

Xi1 Xi2 Xi4 + (Xi1 ⊕Xi2)Xi3 ⊕Xi4 +Xi1Xi2(Xi3 ⊕Xi4)
Xi1 ⊕Xi2 ⊕Xi3 ⊕Xi4

F 2
4

Xi1 Xi2 Xi4 + (Xi1 ⊕Xi2)Xi3 ⊕Xi4 +Xi1Xi2(Xi3 ⊕Xi4)
Xi1 ⊕Xi2 ⊕Xi3 ⊕Xi4

Xi1Xi2 Xi3 ⊕Xi4 +Xi1Xi2(Xi3 ⊕Xi4)
Xi1 Xi2 ⊕Xi4 +Xi1Xi2 Xi3 +Xi1Xi2(Xi3 ⊕Xi4)

F 3
4

Xi1 Xi2 Xi4 + (Xi1 ⊕Xi2)Xi3 ⊕Xi4 +Xi1Xi2(Xi3 ⊕Xi4)
Xi1 ⊕Xi2 ⊕Xi3 ⊕Xi4

Xi1Xi2 Xi3 ⊕Xi4 +Xi1Xi2(Xi3 ⊕Xi4)
Xi1 Xi2 ⊕Xi4 +Xi1Xi2 Xi3 +Xi1Xi2(Xi3 ⊕Xi4)

Xi1 Xi4 +Xi1Xi2 ⊕Xi3 ⊕Xi4

Xi1 ⊕Xi4 Xi2 +Xi1 ⊕Xi3 ⊕Xi4 Xi2

Xi2 Xi4 +Xi1 ⊕Xi3 ⊕Xi4 Xi2

Xi1 ⊕Xi2 Xi4 + (Xi1 ⊕Xi2)Xi3 ⊕Xi4

Xi1 Xi2 Xi3Xi4 +Xi1Xi2 Xi4 + (Xi1 ⊕Xi2)Xi3 ⊕Xi4

Xi1 Xi2 Xi3Xi4 +Xi1Xi2 Xi4 + (Xi1 ⊕Xi2))Xi3 ⊕Xi4

be used, by themselves, to recover the logic gates, only the wiring. Therefore, a

comparison between ML and nonparametric methods for logic gate recovery cannot

be performed.

Figure 3.5 and 3.6 display the results as a function of sample size, corresponding to

the three candidate model sets F 1
l ⊂ F 2

l ⊂ F 3
l , for l = 2, 3, 4 and p = 0.65, 0.75, 0.85.

We can see that in each case the recovery rates converge to 100% as sample size

increases in all cases, but that convergence is much slower in the case of small pre-

dictive power p, i.e., more noise (note that the sample size scale is different among

the plots). We can see that the performance of the ML-based inference method im-

proves as more prior knowledge is available. We can see in Figure 3.6 that, in all

cases, even for very small sample sizes, parametric ML-based inference is superior
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Figure 3.5: Average percentage of logic gates correctly recovered vs. sample size:
static model.

to that of nonparametric methods. This is particularly true for l = 3 and l = 4

inputs, when the dimensionality and size of the search space becomes larger than

for l = 2. Among the nonparametric methods, those based on the nonparametric

ML (resubstitution) and bootstrap are the best, being nearly indistiguishable from

each other (bootstrap in fact uses the nonparametric ML in its formulation), whereas

cross-validation methods are the worst, with leave-one-out coming in last.

Notice that the performance of ML F 3
2 is very close to that of resubstitution

and bootstrap. This is because in the l = 2 input case, there are only a total of
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Figure 3.6: Average percentage of predictors correctly recovered vs. sample size:
static model.

24 = 16 possible logics, among which only 10 are nontrivial 2-input logics, so that

with a c = 6 candidate logic gates in model set F 3
2 , there is little prior knowledge and

performance of the parametric ML reduces to that of the nonparametric ML. Since

the latter is less computationally expensive than the ML approach, and especially

bootstrap, it would be the method of choice in the absence of any prior knowledge

about the logic gates.
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Figure 3.7: Average percentage of logics correctly recovered vs. time series length:
dynamical model.

3.4.2 Dynamical Case: Network Inference

Here we address the inference of the network function f , or simply network, in

model (3.29). As in the static case, we assume that the unknown f = (f1, . . . , fd)

is a member of a candidate network set F . For simplicity, it is assumed here that

the connectivity of the networks is fixed, i.e, the component Boolean functions fi

have the same number l of essential variables or inputs, for i = 1, . . . , d. It has been

suggested that low connectivity is a requirement for ordered system behavior [44] —

accordingly, we consider here low connectivity values l = 2, 3, 4. Each network f is
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Figure 3.8: Average percentage of predictors correctly recovered vs. time series
length: dynamical model

specified by the logic gates and wiring of its component Boolean functions (see the

previous subsection). The total number of possible networks is thus
(
2l ×

(
d
l

))d
, a

very large number, even for modest values of d and l.

Here we assume that the model set F consists of a number c of possible logic gates

and arbitrary wiring of connectivity l for each component Boolean function (the same

set of c logic gates being considered for all components). This reduces the number

of all possible networks to
(
c×

(
d
l

))d
. As in the static case, c is inversely related to

the amount of prior knowledge available. Notice that the number of networks is still
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very large – the inference procedure described below proposes a heuristic to reduce

this search space to a manageable size. We remark that the number of networks

cannot be reduced by considering the inference of the component Boolean functions

separately, as the shared distribution of the noise nk in (3.29) renders the inference

problem irreducibly multivariate.

We propose the following network inference procedure to select a network from

F .

1. For each of the d target variables, pick the two combinations of logic gate and

wiring that present the largest predictive power estimate. Ties, if any, are

broken randomly.

2. Compute the MLE ĈoD for each of the 2d possible networks obtained form

the previous step, and pick the one with the largest CoD in the L1 sense, i.e.

the one that maximizes ||ĈoD||1 =
∑d

i=1 ĈoD(i). Ties, if any, are broken

randomly.

The purpose of step 1. is to reduce the size of the search space in order to alleviate

the computational complexity issue mentioned previously. After that, step 2. simply

picks the network with the largest estimated CoD in the L1 sense. The effectiveness

of this procedure is assessed in the sequel by means of numerical experiments.

3.4.2.1 Numerical Experiments

We let d = 6, as opposed to d = 8 used in static case, for computational cost

reasons. The network model consists of XOR logic gates regulating all targets and

random wiring assignments corresponding to l = 2, 3, 4 connectivity. Furthermore,

three different values of predictive power are considered, p = 0.65, p = 0.75, and

p = 0.85.
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The candidate model set F 1
l consists of only the XOR gate with l inputs, and

arbitrary wiring, for l = 2, 3, 4. This correspond to the situation where it is known

that all logic gates in the network are XOR, but nothing is known about the wiring,

which is to be inferred from the data. The candidate model sets F 2
l and F 3

l , for

l = 2, 3, 4, are the same as in the numerical experiments for the static case (see

Tables 3.1–3.3), with the understanding that the logic gates in each model set apply

to all the targets. The wiring for each target is entirely arbitrary, as before. Notice

that

For each connectivity l and predictive power p, a total of r = 100 time series

of length n + 1 (and thus n state transitions) are are drawn from each model in

the steady-state regimen. The proposed inference procedure is applied to each se-

quence, and two performance measures are recorded for each of the three candidate

model sets: the average rate of correct logic gates recovered and the average rate of

predictive variables correctly recovered As before, we count the number of correct

predictive variables recovered, as opposed to whether or not the entire wiring of the

network is correctly recovered.

As in the static case, the nonparametric CoD estimators are also employed to

recover the wiring, by simply picking, for each target, the wiring that produces the

maximal CoD estimate.

Figure 3.7 and 3.6 display the results as a function of time series length. Note that

in Figure 3.7, only two curves are plotted, for F 2
l and F 3

l , since F 1
l corresponds to

full knowledge about the logic gates (XOR), for l = 2, 3, 4. Interestingly, the results

are very similar to those obtained in the static case, and similar conclusions apply.

For wiring recovery, the performance of parametric ML is superior to that of non-

parametric methods. As the amount of prior knowledge is reduced, the performance

of the parametric ML tends towards that of the nonparametric ML (resubstitution).
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The latter is to be preferred in a situation where nothing is known about the network.

3.5 Summary

This chapter has presented a systematic theoretical framework for the inference

of the CoD based upon a parametric maximum-likelihood approach, while highlight-

ing its practical applications to estimation and system identification for static and

dynamical Boolean models. Results reveal that the parametric ML CoD estimator

outperforms the nonparametric alternatives provided that sufficient prior knowledge

is available and the predictive power is not too small, i.e., the system noise level

is not too high. The performance gap is larger for smaller sample sizes and larger

dimensionality of the predictor vectors (i.e., larger connectivity of the regulatory

network).

In fact, the parametric approach is especially suitable for small sample and large

dimensionality situations, which can be ameliorated by the use of prior knowledge.

Nonparametric approaches do not use prior knowledge and their performance thus

degrades considerably with small sample sizes and large dimensionality. On the other

hand, as less prior knowledge was available, the performance of the parametric and

nonparametric ML CoD estimators were observed to equalize. This suggests that,

in the no-information case, the NPML estimator would be preferable, due to its low

computational complexity.
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4. STATISTICAL DETECTION OF BOOLEAN REGULATORY

RELATIONSHIPS*

DNA regulatory circuits can be often described by networks of Boolean logical

gates updated and observed at discrete time intervals [2, 9, 37, 38, 44]. In a stochas-

tic setting, the degree of association between Boolean predictors and targets can

be quantified by means of the discrete Coefficient of Determination (CoD) [31], as

discussed in previous chapters.

The CoD is often used in the inference of gene regulatory networks from gene-

expression data [16,62,68]. However, applications of the CoD so far have been based

on user-selected thresholds to decide on the presence of gene regulation between

the given predictor and target genes. In this chapter, we will address this issue by

providing a statistical test for a nonzero CoD between given Boolean predictors and

a Boolean target in the context of a stochastic logic model that naturally allows the

inclusion of prior knowledge if available. Rejection of the null hypothesis of zero CoD

gives evidence for the presence of statistically-significant regulation. Even though

the user still needs to choose the significance level, substituting this choice for the

choice of an arbitrary CoD threshold has nevertheless advantages, beyond the fact

that “standard” significance levels are available, such as α = 0.05. The significance

level can be interpreted as an upper bound on the false positive rate, whereas no

such statistical interpretation can be attached to a user-selected CoD threshold.

Due to the multiple testing issue created by modern gene-expression experiments

that monitor thousands of genes simultaneously, we furthermore propose multiple

*Parts of this section are reprinted with permission from “A Statistical Test for Intrinsically Multi-
variate Predictive Genes” by T. Chen and U.M. Braga-Neto, 2012, Proceedings of IEEE Interna-
tional Workshop on Genomic Signal Processing and Statistics (GENSIPS’2012), Washington, DC,
December 2012, pp. 151–154,© 2012 IEEE.
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testing procedures to control the overall Type I error rate, namely the single-step

Bonferroni correction and the step-up Benjamini-Hochberg procedure, for controlling

the family-wise error rate (FWER) and the false discovery rate (FDR), respectively

[3,34]. We also discuss in this chapter the applications of the proposed methodology

to real data sets for the detection of significant gene regulatory relationships.

4.1 Mathematical Preliminaries

After continuous measurements of gene expression have been binarized, a step

that is not discussed here — for optimal methods to do this, see for example [60,71]

— the sample data consist of a binary target random variable Y ∈ {0, 1} and a

vector of binary predictor random variables X = (X1, . . . , Xd) ∈ {0, 1}d. Due to

uncertainty, noise affects the Boolean relationship between the predictors and the

target, which is addressed here by a simple Boolean “additive-noise” model, that is,

stochastic logic model, which has been discussed in our recent work [16,23]:

Y = f(X)⊕N, (4.1)

where f : {0, 1}d → {0, 1} is a Boolean logic function, the symbol “⊕” indicates

modulo-2 addition, and the noise N is a Bernoulli random variable that is indepen-

dent of X and Y , such that P (N = 1) = 1−p, for 1/2 ≤ p ≤ 1. Here, 1−p measures

the amplitude of the noise. Please refer to Section 3.2 in Section 3 for more details.

We recall that the conditional distribution of the target given the predictor can

be written entirely as a function of the logic function f and the parameter p:

P (Y = 1 | X = x)

= I(f(x) = 1)p + I(f(x) = 0)(1− p) ,
(4.2)
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where I(A) is 1 when A is true, and 0, otherwise.

Let ξ = P (f(X) = 1); as we shall see, this distributional quantity plays a funda-

mental role in the sequel. In the context of model (4.1), it can be shown easily, by

using (4.2), that the CoD is given by

CoD = 1− 1− p
F [ξp + (1− ξ)(1− p)]

, (4.3)

where F [u] = min{u, 1 − u}, for 0 ≤ u ≤ 1. The CoD is therefore a function of the

distributional parameters p ≥ 1/2 and 0 ≤ ξ ≤ 1. Note that deterministic prediction

is a function of p only: CoD = 1 ⇔ εX,Y = 0 ⇔ p = 1. The case CoD = 0 (i.e., no

regulation) depends on both p and ξ, and is stated in the next proposition.

Proposition 1. In the context of model (4.1), the following statements are equiva-

lent:

(i) CoD = 0.

(ii) p = 1/2 or ξ ∈ {0, 1}.

Proof. The result follows from equating the numerator and denominator in the

ratio appearing in (4.3). Q.E.D.

For 0 < ξ < 1, Proposition 1 assures us that CoD = 0⇔ p = 1/2, i.e., maximum

noise. This would be the case, regardless of logic, if P (X = x) > 0 for all x ∈

{0, 1}d. Without distributional knowledge, one cannot however ignore the boundary

condition ξ ∈ {0, 1} when testing for null CoD.

As a concrete example, consider the case of d = 2 predictors, X = (X1, X2).

In this case, there are a total of 22d = 16 possible prediction logics. Among those,

six are either constant or depend only on one of the predictors, namely, 0, 1, X1,

X2, X1, and X2. The remaining 10 logics are “true” 2-input logics, namely X1X2

77



(AND), X1 +X2 (OR), X1 ⊕X2 (XOR), X1X2, X1X2, and their negations. Logics

can be represented by a bit string corresponding to the output column in its truth

table; for example, 0001 (AND), 0111 (OR), 0110 (XOR), 0100 (X1X2), and 0010

(X1X2). The bit string representation is particularly convenient when checking the

distributional constraint ξ ∈ {0, 1} in condition (ii) of Proposition 1. Now, note that

if logic f̄ is the negation of logic f , then ξ̄ = 1− ξ, so that the constraint ξ ∈ {0, 1},

and in fact the expression for the CoD in (4.3), are the same for f and f̄ , as can be

easily checked. Among the 10 2-input logics, there are therefore a total of five cases

to consider, which are listed in Table 4.1.

Similarly, for the case of CoD = θ ∈ [0, 1), we can prove that

CoD = θ ⇔ p =
δ + min{ξ, 1− ξ}
δ + 2 min{ξ, 1− ξ}

, (4.4)

where δ = θ
1−θ . A small value of θ implies a loose regulation between a target and

its predictors, whereas a large value implies a tight regulation.

Table 4.1: Distributional constraints for CoD = 0 : 2-input logic case

logic bit string constraint
OR / NOR 0111 / 1000 p = 1/2 or P (0, 0) ∈ {0, 1}

X1X2 / X1 +X2 0100 / 1011 p = 1/2 or P (0, 1) ∈ {0, 1}
X1X2 / X1 +X2 0010 / 1101 p = 1/2 or P (1, 0) ∈ {0, 1}
AND / NAND 0001 / 1110 p = 1/2 or P (1, 1) ∈ {0, 1}
XOR / NXOR 0110 / 1001 p = 1/2 or P (0, 0) + P (1, 1) ∈ {0, 1}

4.2 CoD Hypothesis Test

The CoD is a function of the distribution parameters p and ξ of (X, Y ), c.f. (4.3),

and therefore statements about it can be statistically tested based on an i.i.d. sample

Sn = {(X1, Y1), . . . , (Xn, Yn)} [14]. In particular, we are interested in the following
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hypothesis testing problem:

H0 : CoD = 0 (p = 1/2 or ξ ∈ {0, 1})

H1 : CoD > 0 (p > 1/2 and 0 < ξ < 1) .

(4.5)

The null hypothesis H0 indicates the absence of useful prediction in X concerning

the target Y , whereas the alternative hypothesis H1 states that there is a degree of

association between them.

This is a composite, multiparameter hypothesis testing problem. As the null

parameter space is a union of two subsets [p = 1/2] and [ξ ∈ {0, 1}], the appropriate

strategy to employ here is the intersection-union test (IUT) method; the individual

tests for p = 1/2 and ξ ∈ {0, 1} are level-α likelihood-ratio tests (LRTs), leading to

an overall level-α IUT test [5, 6]. This is summarized in the following result (details

are found in the Appendix in the supplementary material).

Proposition 2. For given 0 ≤ α ≤ 1, the test with rejection region

R =

{
sn

∣∣∣∣ n∑
i=1

I(f(xi) = yi) ≥ k and

∃ 1 ≤ i, j ≤ n s.t. f(xi) 6= f(xj)} ,

(4.6)

where k is the 100(1 − α)% percentile of a Binomial(n, 1/2) distribution, i.e., k is

the smallest integer such that

∑
l>k

(
n

l

)(
1

2

)n
≤ α , (4.7)

is a level-α test for (5.7).

Proof. See Appendix D.

The following statements follow from Proposition 2.
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(1) Rejection region. Notice thatR = R1∩R2, whereR1 = {sn |
∑n

i=1 I(f(xi) =

yi) ≥ k} is the rejection region for the [p = 1/2] LRT, and expresses how tightly the

data follows the proposed model, while R2 = {sn | ∃ 1 ≤ i, j ≤ n s.t. f(xi) 6= f(xj)}

is the rejection region for the [ξ ∈ {0, 1}] LRT, and indicates that the null hypothesis

cannot be rejected if f(xi) is constant, for i = 1, . . . , n. Notice that

PR2 = P (Sn ∈ R2) = 1− P ([f(Xi) = 1, ∀i = 1, . . . , n]

∪ [f(Xi) = 0,∀i = 1, . . . , n])

= 1− ξn − (1− ξ)n .

(4.8)

It follows that, unless ξ ∈ {0, 1}, in which case Sn 6∈ R2 with probability 1, we have

PR2 → 1 as sample size increases to infinity. Therefore, the criterion for rejecting

the null hypothesis will be, with probability approaching 1, whether or not Sn ∈ R1,

and the proposed test approaches an LRT for p = 1/2.

(2) p-value. The rejection regions for varying significance level α are nested,

that is, R(α1) ⊆ R(α2), whenever α1 ≤ α2. This allows us to define a p-value for

the proposed test as

π(sn) =


∑

l ≥
∑n
i=1I(f(xi)=yi)

(
n

l

)(
1

2

)n
, if sn ∈ R2

1 , otherwise.

(4.9)

It is clear that π(sn) is a valid p-value [14], i.e., under the null hypothesis, P (π(sn) ≤

u) ≤ u, for all 0 ≤ u ≤ 1.

(3) Statistical power. The power function [14] of the proposed test can be

80



shown to be

β(p, ξ) = P (Sn ∈ R) =(∑
l>k

(
n

l

)
pl(1− p)n−l

)
× (1− ξn − (1− ξ)n) ,

(4.10)

for p ≥ 1/2 and 0 ≤ ξ ≤ 1, where k is given by (5.9). Note that, under the null

hypothesis, either β(p, ξ) = 0, if ξ ∈ {0, 1}, or β(p, ξ) ≤ α, if p = 1/2 and 0 < ξ < 1

(by virtue of eq. 5.9). Therefore, sup β(p, ξ) ≤ α under the null hypothesis, so

that this is indeed an α-level test. Under the alternative hypothesis, β(p, ξ) gives

the statistical power of the test. Notice from (4.10) that β(p, ξ) not only on the

distributional parameters p and ξ, but also on the level α sample size n, and logic

function f (through ξ). Therefore, a power analysis has to take into account all of

these factors. We consider below two important special cases for statistical power,

where the analysis is facilitated.

Consider a uniform predictor distribution, P (X = x) = 1/2d, for x ∈ {0, 1}d. It

is easy to see that this implies that the individual predictors X1, . . . , Xd are inde-

pendent. Clearly, ξ = m/2d, where m is the number of minterms of logic f , i.e., the

number of 1’s in its bit string representation (c.f. Section 4.1). The cases m = 0 and

m = 2d are uninteresting, since they correspond to the constant logics f ≡ 0 and

f ≡ 1, respectively. In addition, m and 2d −m lead to the same value for the CoD

(c.f. equation 4.3), and hence for p and the power β(p, ξ). It suffices thus to consider

logics with m = 1, . . . , 2d−1 minterms, in which case it is possible to show that

CoD =
m(2p− 1)

mp + (2d −m)(1− p)
⇒ p =

1

2

m+ (2d −m)CoD

m+ (2d−1 −m)CoD
. (4.11)

Substituting this into (4.10) allows us to compute the power function in terms of the

CoD (i.e., the “effect size”), and the number of minterms m and sample size n, which
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is displayed in Figure 4.1, in the case d = 4. A few values for the number of minterms

are selected in the interval m = 1, . . . , 2d−1. We remark that for small values of m,

the logic is of a canalizing type, which are very relevant in the investigation of gene

regulatory relationships [44, 52]. Briefly, a canalizing logic is one where just one of

the inputs alone can largely dictate the output, as in an AND logic (m = 1). We can

see in Figure 4.1, that for large sample size, power increases to 1 very rapidly with

effect size. In addition, power increases monotonically with a decreasing number

of minterms, i.e., power is larger for canalizing logics. However, the behavior for

small sample sizes is complex. Generally speaking, we can say that logics with fewer

minterms lead to more powerful tests at small effect sizes, whereas logics with more

minterms produce more power if the effect size is large. We can also see that the

behavior of curves is qualitatively different at a severely small sample size, n = 10,

where power is very small unless the CoD approaches 1.

Figure 4.2(a) on the other hand displays the minimum sample size necessary

to achieve a standard power value of 80%, for d = 4 and a few values of number of

minterms selected in the interval m = 1, . . . , 2d−1. The staircase pattern in the curves

is due to the discrete nature of sample size. We can see that sample size requirement

is monotonically decreasing with increasing CoD effect size, as expected. For small

CoD effect size, the sample requirement is much larger for large values of m. For

example, if CoD = 0.2, a 4-input AND logic (m = 1) would require a sample size of

about n = 40, whereas the requirement for a 4-input XOR logic (m = 8) would be

around n = 180 (for CoD = 0.1 the sample size for a XOR logic would be enormous).

This shows the difficulty of detecting small CoDs, especially if the logic has many

minterms. As for large CoDs, the situation improves considerably: we can see that

sample requirement is low and essentially independent of m. In fact, the situation is

reversed with respect to small CoDs, larger m here leads to slightly smaller required
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sample sizes.

n = 10 n = 20 n = 100 n = 500

Figure 4.1: Statistical power vs. CoD for proposed test, in the uniform predictor case,
with d = 4 and α = 0.05, and varying sample size n and number of logic function
minterms m.
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Figure 4.2: Minimum sample size to achieve power = 0.8 vs. CoD for proposed test,
with α = 0.05. (a) Uniform predictor case, with d = 4 and varying number of
logic function minterms m. (b-c) Correlated predictor case, with d = 2 and varying
predictor covariance γ, for logic functions AND (b) and XOR (c).

Consider two predictors X1 and X2, such that P (X1) = P (X2) = 1/2; these are
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referred to as “unbiased” predictors in [16,52]. Let

γ = Cov(X1, X2) = E[X1X2]− E[X1]E[X2]

= P (X1 = 1, X2 = 1)− 1

4
.

(4.12)

From the constraint P (X1) = P (X2) = 1/2 it follows that −1
4
≤ γ ≤ 1

4
. When

γ = 0 one obtains the case of uniform independent predictors previously considered,

for d = 2.

With d = 2, there are only two families of useful logics to consider, according

to number of minterms: the case m = 1, 3, represented here by the AND logic,

and m = 2, represented here by the XOR logic. These cases correspond to the

minimum (canalizing) and maximum (non-canalizing) number of minterms possible,

respectively. For the AND logic, it is easy to see that ξ = 1/4 + γ. In addition, it

can be shown that:

CoD =
(2p− 1)(1 + 4γ)

4(1− p) + (2p− 1)(1 + 4γ)
⇒ p =

1

2

(1 + 4γ) + (3− 4γ)CoD

(1 + 4γ) + (1− 4γ)CoD
.

(4.13)

For the XOR logic, on the other hand, we have ξ = 1/2− 2γ. Furthermore,

CoD =
(2p− 1)(1− 4|γ|)

2(1− p) + (2p− 1)(1− 4|γ|)
⇒ p =

1

2

(1− 4|γ|) + (1 + 4|γ|)CoD

(1− 4|γ|) + 4|γ|CoD
.

(4.14)

Substituting the expressions for p and ξ in each case above into (4.10) allows us

to compute the power function in terms of the CoD effect size and the covariance

parameter γ, which is displayed in Figure 4.3, for the AND and XOR logic cases. A

few values of the covariance parameter are selected from the allowed interval −1/4 ≤

γ ≤ 1/4, but the case of perfectly negatively correlated predictors, γ = −0.25, is
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n = 10 n = 20 n = 100 n = 500

Figure 4.3: Statistical power vs. CoD for proposed test, in the correlated predictor
case with d = 2, and varying sample size n and predictor covariance γ. Top row:
AND logic. Bottom row: XOR logic.

excluded, as it corresponds to the null hypothesis CoD = 0, in both AND and XOR

cases. In addition, power is a function of |γ| in the XOR case, so that only curves for

γ ≥ 0 are plotted (each of which give the cases of both positive γ and negative −γ

correlation, of course). As in the previous example of uncorrelated predictors, we can

see that for large sample size, power increases to 1 very rapidly with effect size. For

n = 500, power decreases monotonically with increasing predictor correlation in the

AND case; while it monotonically increases with increasing magnitude of predictor

correlation, in the XOR case. However, as before, the behavior for small sample

sizes is complex. It can be said that in the AND case, power generally is larger for

negatively correlated predictors if the effect size is small, while positively correlated

predictors lead to more powerful tests at large effect sizes. For the XOR logic, highly

correlated predictors (regardless of sign) lead to more powerful tests for small effect
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size, while weakly correlated predictors produce more power at large effect sizes. As

before, the behavior of curves is qualitatively different at a severely small sample

size, n = 10, where power is very small unless the CoD approaches 1.

Figure 4.2(b-c) displays the minimum sample size necessary to achieve a standard

power value of 80%, for for the AND and XOR logic cases, respectively, and a few

values of the covariance parameter in the allowed interval −1/4 ≤ γ ≤ 1/4. As

in the previous example of uncorrelated predictors, we can see that the sample size

requirement is monotonically decreasing with increasing CoD effect size. For small

CoD effect size, the sample requirement is much larger for large values of covariance

γ (in the case of XOR, large values in magnitude). For large CoD size, the situation

is reversed, dramatically so in the case of predictors with large negative correlation

in the AND case, and uncorrelated predictors in the XOR case.

We remark than an extension of these results to d ≥ 3 predictors is possible using

an appropriate parametrization for the covariance structure of the predictor vector;

such a parametrization is given in [16].

The results of the power analysis for the proposed test, displayed in Figures 4.1

and 4.3, may be summarized as follows. If a small CoD effect size is expected, then

sample sizes in the neighborhood of n = 100 or larger are required for effective

statistical power; in this case, small number of minterms (canalizing logics) lead

to larger statistical power, while uncorrelated predictors lead to smaller power. If

large CoD values, i.e., a tightly regulated target, is expected, then smaller sample

sizes may be employed, as long as the logic of prediction contains a sufficiently large

number of minterms and the predictors are weakly correlated, or, if the logic is closer

to a canalizing type, the predictors are sufficiently positively correlated.

(4) Confidence Interval. A confidence interval for the CoD can be derived by
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considering a test of

H0 : CoD = θ vs. H1 : CoD 6= θ, (4.15)

where θ ∈ (0, 1). The likelihood ratio test statistic is given by ({i1, . . . , id} ⊆ {0, 1}d)

λ(sn; θ) =
supCoD=θ P (Sn = sn)

supP (Sn = sn)
=

sup pnf (1− p)nf
∏
{i1,...,id} P (X = {i1, . . . , ib})ni1...ib

(nf/n)nf (1− nf/n)n−nf (ni1...ib/n)ni1...ib
,

(4.16)

where nf =
∑n

i=1 I(f(Xi) = Yi), ni1...ib =
∑n

i=1 I(Xi = {i1, . . . , ib}), and p is ex-

pressed by eq. (4.4). Note that the optimization problem of the numerator in eq.

(4.16) can be solved by the method of gradient descent when there are multiple pa-

rameters [55]. Under regularity conditions, the LRT statistic follows an asymptotic

distribution, that is, under the H0, as n → ∞, −2 log λ(Sn; θ) → χ2
1 [14]. Hence,

given some θ, the rejection region of such an asymptotic size α test is formulated by

R =

{
sn

∣∣∣∣ − 2 log λ(sn; θ) ≥ χ2
1(α)

}
, (4.17)

where λ(Sn) is shown in eq. (4.16).

By inverting the LRT [14], the approximate 1−α confidence interval of the CoD,

the set with plausible values of θ, is given by

C(sn) =

{
θ

∣∣∣∣ − 2 log λ(sn; θ) ≤ χ2
1(α)

}
, (4.18)

which can be numerically solved by the bisection method [12].

In the following, we consider again two important special cases (i.e., uniform and

correlated predictors) for estimation of the confidence interval.

In the uniform predictor case, CoD is a function of only p (c.f. eq. 4.11). Since
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nf =
∑n

i=1 I(f(xi) = yi) Binomial(n, p), the Clopper-Pearson interval is employed to

calculate the 1−α binomial confidence interval [25]. By substituting this confidence

interval for p into eq. (4.11), we can obtain the confidence interval for the CoD, that

is, [
m(2pL − 1)

mpL + (2d −m)(1− pL)
,

m(2pU − 1)

mpL + (2d −m)(1− pU)

]
, (4.19)

where pL = Beta (α/2; nf , n− nf + 1) and pU = Beta (1− α/2; nf + 1, n− nf). Note

that Beta(t; a, b) is the t-th quantile from a beta distribution with parameters a and

b.

In the correlated predictor case, the confidence interval is approximated by the

asymptotic distribution, that is, χ2
1 distribution, as discussed in the general case.

Table 4.2 shows the confidence interval estimate of the CoD based on random sample

with n = 100 generated by a 2-input AND logic model in the general, uniform, and

correlated predictor cases, respectively. We observe that the true values of θ lie in the

corresponding confidence intervals in all cases. Note that the approximation works

better for a larger sample size.

Table 4.2: 95% Confidence interval (CI) for the CoD based on one random sample
generated from a 2-input AND logic model (n = 100): (a) in the general case (P1 =
0.8, P2 = 0.6, γ = 0.05, d = 2); (b) in the uniform predictor case (m = 1, d = 2); (c)
correlated predictor case (γ = 0.05, d = 2)

θ CI (General) CI (Uniform) CI (Correlated)
0.0 [0.0000, 0.2153] [−0.1229, 0.0668] [0.0000, 0.1303]
0.1 [0.0000, 0.2369] [0.0178, 0.2743] [0.0096, 0.2506]
0.2 [0.0925, 0.4488] [0.1113, 0.4037] [0.0854, 0.3026]
0.3 [0.1023, 0.4738] [0.2286, 0.5545] [0.2917, 0.5201]
0.4 [0.1486, 0.4927] [0.1813, 0.4953] [0.3192, 0.4166]
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4.3 Multiple Testing Procedure

For a given target Y , the proposed test for multivariate Boolean relationships

presupposes the model (4.1), which in turn depends on the choice of logic function

f and predictor vector X. Assuming dimensionality d and a number of genes G in

the original gene-expression dataset, the total number of possible logic functions is

2d and the number of distinct predictors is
(
G
d

)
. This creates a multiple testing issue;

the total number of tests to be carried out would be, in this case, M = 2d ×
(
G
d

)
. In

typical gene-expression microarray or RNA-seq studies, G tends to be very large (in

the order of thousands or more) so that, even if d is kept small, the number of tests

may be very large indeed. In this section, we address the multiple testing problem in

the context of the proposed detection method. We also comment on how to reduce

the number of tests by use of prior knowledge.

4.3.1 Type-I Error Rates and Power

In a multiple testing procedure (MTP), there is a total of M null hypotheses to

be simultaneously tested, {H0(m) | m = 1, . . . ,M}. While there is no ambiguity

in defining a type-I error for a single test, in the case of MTPs the situation is less

clear [33]. Let 0 ≤ R ≤M be the number of hypotheses rejected by the test, and let

0 ≤ V ≤ R be the number of hypotheses falsely rejected (i.e., “false positives”). We

consider in this paper two specific definitions of type-I error rates for MTPs:

� The family-wise error rate [54] is defined as FWER = P (V ≥ 1).

� The false discovery rate [3] is defined as

FDR = E

[
V

R
I(R > 0)

]
= E

[
V

R
| R > 0

]
P (R > 0) .

(4.20)
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The FWER gives the probability of at least one false positive, whereas the FDR

essentially gives the average, or expected, proportion of false positives in the list of

rejected hypotheses (with the proviso that, if no hypotheses are rejected, i.e., R = 0,

then FDR = 0). It can be shown quite easily that the FDR is always smaller or

equal than the FWER, with strict equality holding in the case where all the null

hypotheses are true [3].

In the multiple testing procedures that control the Type-I error rate at a given

level α, one also expects to maximize power. We consider here the definition of the

power for MTPs as given by:

PWR =
E[S]

h1

, (4.21)

where S is the true positives and h1 is the number of false null hypotheses [34].

Obviously, The power gives the expected value of the proportion of true positives

among the false null hypotheses. Note that the power estimate is mathematically

equal to the true positive rate, that is, S/h1.

4.3.2 Control of the Type-I Error Rate

For a given 0 < α < 1, an MTP is said to control the FWER at level α if

FWER ≤ α. Similarly, an MTP is said to control the FDR at level α if FDR ≤ α.

Notice that, since FDR ≤ FWER, any FWER-controlling procedure is also FDR-

controlling, but the converse is not true in general, unless all null hypotheses are

true, in which case FDR = FWER, as mentioned previously.

Suppose that individual tests of the hypotheses {H0(m) | m = 1, . . . ,M} are

performed, producing a set of (valid) unadjusted p-values {π1, . . . , πM}. Let

π′m = min{Mπm, 1} , m = 1, . . . ,M (4.22)
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be the set of adjusted p-values. Then it can be shown, by an application of Boole’s

inequality, that rejection of H0(m) if π′m ≤ α, for m = 1, . . . ,m, is an MTP that

controls the FWER at level α [33]. This is the well-known Bonferroni Correction

method [54].

Similarly, let {π∗1, . . . , π∗M} be the list of unadjusted p-values sorted in increasing

order, and define the set of adjusted p-values by

π′′m = min
h=m,...,M

{
min

{
M

h
π∗(h), 1

}}
, m = 1, . . . ,M . (4.23)

Then it can be shown that rejection of H0(m) if π′′m ≤ α, for m = 1, . . . ,M , is an

MTP that controls the FDR at level α, under the assumption of independence of the

p-values for the true null hypotheses [3, Thm. 1] or for certain dependence structures

among the p-values [4, Thm. 1.2]. If the p-values have an arbitrary dependence

structure, the previous procedure will only control the FDR approximately. Here we

utilize this FDR-controlling procedure, and assess its efficacy by means of simulation

(see the next subsection).

As pointed out in [3], the power of the FWER- and FDR-controlling procedures

described previously decreases as the number of tests M increases. In practice, to

have a useful MTP with reasonable power, the number of tests has to be reduced by

using prior knowledge. In our case, let the true predictor set belong to a set L, and

assume that it is related to the target via a logic function f in a set K. The total

number of tests is thus M = |L| × |K|. Provided that |L| �
(
G
d

)
and |K| � 2d,

which are the prior knowledge constraints of the problem, then the number of tests

M may be kept reasonably small.

From the previous considerations, we arrive at the following MTP.

Coefficient of Determination MTP.
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(1) Set the significance level α, and model sets L and K. The total number of

tests is M = |L| × |K|.

(2) For the given data set Sn = sn, compute the unadjusted p-values {π1(sn), . . . ,

πM(sn)} for the tests H0(m) : CoD = 0 vs. H1(m) : CoD > 0, for m = 1, . . . ,M ,

using Eq. (4.9).

(3-a) FWER-controlling step. Compute the adjusted p-values {π′1(sn), . . . ,

π′M(sn)} according to Eq. (4.22). Reject those hypotheses H0(m) such that π′m ≤ α,

for m = 1, . . . ,M .

(3-b) FDR-controlling step. Compute the adjusted p-values {π′′1(sn), . . . ,

π′′M(sn)} according to Eq. (4.23). Reject those hypotheses H0(m) such that π′′m ≤ α,

for m = 1, . . . ,M .

It can be shown that the FDR-controlling step can be equivalently implemented

by the following more efficient procedure [3]:

(3-b)’ FDR-controlling step. Find the list of increasing unadjusted p-values

{π∗1(sn), . . . , π∗M(sn)} and let H∗0 (m) be the null hypothesis corresponding to π∗m(sn),

for m = 1, . . . ,M . Let m∗ be the largest m such that π∗m(sn) ≤ m
M
α. Reject all

H∗0 (m) for m = 1, . . . ,m∗. If π∗m(sn) > m
M
α for all m = 1, . . . ,M , then reject none of

the hypotheses.

4.3.3 Performance of Multiple Testing Procedures

In this section, we assess the effectiveness of the previous CoD MTP by means

of simulation experiments. For the first experiment, we assume that each target Y

is regulated by predictors X1 and X2 among a set of possible predictors X1, . . . , XG,

such that Y = X1XORX2⊕N, whereN ∼ Bernoulli(1−p), for 1/2 ≤ p ≤ 1, as before.

Furthermore, we assume that the distribution of the random vector (X1, . . . , XG) is

uniform. This specifies the stochastic model. Notice that here L =
(
G
2

)
. Provided
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that G is not too large, this does not create a serious multiplicity issue; in our

simulation, G ranges from 4 to 24. In addition, we consider a number of targets

D varying from 1 to 8. As for the logic model set K, we consider three scenarios:

(1) the prediction logic is known, K1 = {XOR}; (2) K2 = {AND,XOR}; and (3)

K3 = {AND,XOR, X̄1X̄2, X̄1 + X2}. The total number of tests is given by Mi =

D ×
(
G
2

)
× Ki, under each of the prior-knowledge scenarios i = 1, 2, 3 described

previously. Hence, the MTP increases in difficulty as the number of predictors and

targets increase, and as less prior knowledge is available. We draw 5000 samples

of varying size n and form averages of FWER, FDR, and power estimates under

FWER-controlling and FDR-controlling procedures.

In the first set of results, we fix D = 1, G = 24, and plot the results as a

function of the sample size n. The total number of tests is M1 = 276, M2 = 552, and

M3 = 1104, under each logic model set. Note that, as there is only one target under

consideration, the number of false null hypotheses is one, whereas the number of true

null hypotheses is the total of tests in each case minus one. The results are displayed

in Figure 4.4. We can observe that the FWER- and FDR-controlling procedures are

able to control the FWER and FDR, respectively, at all sample sizes. In addition, as

expected from the theory, FWER estimates are always larger than FDR estimates

(in particular, FDR is controlled by the FWER-controlling procedure, but not vice-

versa). We can also see that the FWER-controlling procedure is more conservative,

producing smaller FWER and FDR estimates than the FDR-controlling procedure.

As for power, there is little difference between the two procedures in this case, with

a very small advantage for the FDR-controlling procedure, as expected. We can

see, for small sample sizes, that there is a loss of power as less prior knowledge is

available.
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Figure 4.4: Average FWER and FDR estimates (top row) and power estimates
(bottom row) as a function of sample size under FWER- and FDR-controlling
procedures, for three logic model sets, K1 = {XOR}; K2 = {AND,XOR}; and
K3 = {AND,XOR, X̄1X̄2, X̄1 + X2}, and predictive power p = 0.85. There is a single
target to be predicted by two among G = 24 genes.

For the next group of experiments, we fix D = 1, n = 40 and plot the results as

a function of the initial number of genes G. The total number of tests varies from a

minimum of 6 in the case of G = 4 and complete knowledge about the prediction logic

to a maximum of 1104, for G = 24 and logic model set K3. The results are displayed

in Figure 4.5. The previous observations regarding the FWER and FDR estimates

are still valid in this case. As for power, we can again observe little difference between

the FWER- and FDR-controlling procedures, but it is possible to observe a clear and

accentuated decrease in power as G increases. This indicates that in experiments

with more than a few dozen initial genes and small sample sizes (here, n = 40), one

can expect to face the issue of lack of power, in case of a very small number of false

94



Logic Model Set K1 Logic Model Set K2 Logic Model Set K3

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Number of Initial Genes

Ty
pe

 I 
E

rr
or

 R
at

e 
E

st
im

at
es

●

●
●

●

●

●

●

● ●

●

●

●

4 8 12 16 20 24

●

●

FWER, FWER−controlling
FDR, FWER−controlling
FWER, FDR−controlling
FDR, FDR−controlling

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Number of Initial Genes

Ty
pe

 I 
E

rr
or

 R
at

e 
E

st
im

at
es

●

●

●

●

●

●

●

●

●

●

●

●

4 8 12 16 20 24

●

●

FWER, FWER−controlling
FDR, FWER−controlling
FWER, FDR−controlling
FDR, FDR−controlling

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Number of Initial Genes

Ty
pe

 I 
E

rr
or

 R
at

e 
E

st
im

at
es

●

●

●

●

●

●

●

●

●

●

●

●

4 8 12 16 20 24

●

●

FWER, FWER−controlling
FDR, FWER−controlling
FWER, FDR−controlling
FDR, FDR−controlling

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Initial Genes

A
ve

ra
ge

 P
ow

er
 E

st
im

at
es

●

●

● ●

● ●

4 8 12 16 20 24

● FWER−controlling
FDR−controlling

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Initial Genes

A
ve

ra
ge

 P
ow

er
 E

st
im

at
es

●

● ●

● ●

●

4 8 12 16 20 24

● FWER−controlling
FDR−controlling

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Initial Genes

A
ve

ra
ge

 P
ow

er
 E

st
im

at
es

●
●

● ●

● ●

4 8 12 16 20 24

● FWER−controlling
FDR−controlling

Figure 4.5: Average FWER and FDR estimates (top row) and power estimates
(bottom row) as a function of initial number of genes under FWER- and FDR-
controlling procedures, for three logic model sets, K1 = {XOR}; K2 = {AND,XOR};
and K3 = {AND,XOR, X̄1X̄2, X̄1 + X2}, and predictive power p = 0.85. There is a
single target to be predicted by two among a varying number of initial genes. Sample
size is fixed at n = 40.

null hypotheses. Finally, it is again possible to see a decrease in power as less prior

knowledge is available.

For the final group of experiments, we investigate how the number of targets to

be tested can affect the FWER- and FDR-controlling procedures. We fix n = 40 and

G = 24, and plot the results as a function of the number of targets D. The total

number of tests varies from a minimum of 276 in the case of D = 1 and complete

knowledge about the prediction logic to a maximum of 8832, for D = 8 and logic

model set K3. Note that here the number of false null hypotheses is D, whereas

the number of true null hypotheses is obviously the total of tests in each case minus

D. The results are displayed in Figure 4.6. The previous observations regarding the

95



Logic Model Set K1 Logic Model Set K2 Logic Model Set K3

0.
00

0.
10

0.
20

0.
30

Number of Multiple Test

Ty
pe

 I 
E

rr
or

 R
at

e 
E

st
im

at
es

●

●

●
●

●

● ● ●●

● ● ● ●
● ● ●

1 2 3 4 5 6 7 8

●

●

FWER, FWER−controlling
FDR, FWER−controlling
FWER, FDR−controlling
FDR, FDR−controlling

0.
00

0.
10

0.
20

0.
30

Number of Targets

Ty
pe

 I 
E

rr
or

 R
at

e 
E

st
im

at
es

●

●

●
● ●

● ●
●

● ●
● ● ● ● ● ●

1 2 3 4 5 6 7 8

●

●

FWER, FWER−controlling
FDR, FWER−controlling
FWER, FDR−controlling
FDR, FDR−controlling

0.
00

0.
10

0.
20

0.
30

Number of Targets

Ty
pe

 I 
E

rr
or

 R
at

e 
E

st
im

at
es

●

●
●

●

●
● ● ●●

● ● ●
● ● ● ●

1 2 3 4 5 6 7 8

●

●

FWER, FWER−controlling
FDR, FWER−controlling
FWER, FDR−controlling
FDR, FDR−controlling

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Multiple Test

A
ve

ra
ge

 P
ow

er
 E

st
im

at
es

●

● ● ● ●

● ● ●

1 2 3 4 5 6 7 8

● FWER−controlling
FDR−controlling

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Targets

A
ve

ra
ge

 P
ow

er
 E

st
im

at
es

● ●

● ● ● ● ● ●

1 2 3 4 5 6 7 8

● FWER−controlling
FDR−controlling

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Targets

A
ve

ra
ge

 P
ow

er
 E

st
im

at
es

●

● ● ●

● ● ● ●

1 2 3 4 5 6 7 8

● FWER−controlling
FDR−controlling

Figure 4.6: Average FWER and FDR estimates (top row) and power estimates
(bottom row) as a function of number of targets under FWER- and FDR-controlling
procedures, for three logic model sets, K1 = {XOR}; K2 = {AND,XOR}; and
K3 = {AND,XOR, X̄1X̄2, X̄1 + X2}, and predictive power p = 0.85. There is a
varying number of targets D to be predicted by two among G = 24 genes. Sample
size is fixed at n = 40.

FWER and FDR estimates are still valid in this case. As for power, however, we can

observe a clear superiority of the FDR- over the FWER-controlling procedure. This

is of course related to the presence of a larger number of true alternative hypotheses

in this case. We can see that the power of the FDR-controlling procedure, besides

being excellent, is also robust to the increase in number of tests, in contrast to the

FWER-controlling procedure.

We have selected to run the previous two simulation experiments with n = 40,

small sample settings, due to limited availability of sample gene-expression data in

practice. To investigate the appropriateness of this choice, we have re-run these

simulations with n = 20 and n = 60 —results are shown in Figures 1-4 in the
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supplementary material. We observed that the general conclusions from the n =

40 case were still valid. With a smaller sample size n = 20, the FDR-controlling

procedure has a very clear superiority over the FWER-controlling one, as was already

observed with n = 40. With n = 60, the performance of the FWER- and FDR-

controlling procedures become very close due to the fact that larger sample size

leads to stronger power.

The overall conclusion on the comparison between FWER- and FDR-controlling

procedures is that in application with multiple targets, the FDR-controlling pro-

cedure is to be preferred due its superior power, whereas the FWER-controlling

procedure is to be preferred in applications with very small number of targets since

there is no appreciable difference in power, while the FWER and FDR rates are

smaller.

4.4 Case Study: Genotoxic Stress Responsive Genes

In this section, we illustrate the application of the proposed multivariate Boolean

detection methodology based on the CoD to real gene expression data, from a study

on ionizing radiation (IR) responsive genes in [46]. This data set consists of 12

genes under 3 conditions (i.e., IR, MMS, UV) in 30 cell lines of both p53 proficient

and p53 deficient cells. The data is ternary, indicating up-regulated (+1), down-

regulated (-1), or no-change (0) status. Here we map this to binary expression using

the following code: change (1), for either up-regulated or down-regulated genes, and

no-change (0), as before. Additionally, we consider the three binary conditions (IR,

MMS, and UV) as possible predictive factors, for a total of 15 Boolean variables in

the data set.
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4.4.1 Detection of Significant Regulatory Relationships

In the first group of experiments, we use the proposed approach to find significant

regulatory relationships between two predictors and a target. We assume no prior

knowledge, and thus make no constraints on the allowed regulatory relationships,

other than a gene does not predict itself. Hence, all
(

14
2

)
two-predictor sets and

10 possible “true” 2-predictor logic candidates are considered for each target, for a

total of
(

14
2

)
× 10 = 910 possible models; note that each gene can appear in multiple

models, both as a member of different pairs and under different logic relationships. In

addition, we consider each of the 12 genes in the data set as a possible target, so that

the number of multiple tests performed is M =
(

14
2

)
× 10× 12 = 10, 920. We apply

both the FWER- and the FDR-controlling procedures outlined in the previous section

with a significance level α = 0.05. Figure 4.7 displays the gene targets possessing

significant predictors and the number of significant predictive relationships (out of

the maximum of 910) detected, under each of the two approaches.

BCL3 ATF3 IAP1 SSAT MBP1 p53

FWER−controlling approach

# 
of

 s
ig

ni
fic

an
t p

re
di

ct
or

s

0
20

40
60

80

1 1

15

23

34

70

MDM2 FRA1 p21 RELB RCH1 ATF3 PC1 BCL3 IAP1 SSAT MBP1 p53

FDR−controlling approach

# 
of

 s
ig

ni
fic

an
t p

re
di

ct
or

s

0
50

10
0

15
0

20
0

25
0

30
0

16

109

154 160 161
171

192

231
245

252 253
262

Figure 4.7: Significant predictive relationships detected in the IR-response stress
gene-expression data of [46], under the FWER- and FDR-controlling approaches.
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Table 4.3: Examples of detected relationships that are consistent with known bio-
logical groundtruth

Target Pred. 1 Pred. 2 Controlling Logic Adjusted P-value
p53 p21 MDM2 FDR OR 7.1025× 10−3

p21 MDM2 ATF3 FDR OR 6.1272× 10−4

p21 MDM2 ATF3 FDR X1 + X̄2 3.9910× 10−2

Interestingly, p53 turns out to possess the largest number of significant predictive

relationships, under both approaches. This is in accordance with the known fact

that p53 is a significantly active gene involved in various pathways associated with

stress responses. Notice that the FWER-controlling approach is more conservative

and thus produces fewer significant predictive relationships than the FDR-controlling

approach, for each of the targets. Table 4.3 provides examples of detected regulatory

relationships that are consistent with well-known biological groundtruth. All of these

relationships are detected under the FDR-controlling approach. As is known in the

biological literature, p53 is found to be expressed when at least one of p21 and

MDM2 is expressed, while p21 is found to be regulated in two ways: is is expressed

when MDM2 is expressed or ATF3 is expressed, or when MDM2 is expressed or

ATF3 is not expressed — the adjusted p-value for the former result is smaller than

that for the latter, which may be evidence that the OR logic can provide a better

model for this regulatory relationship. Table 4.4 lists top 20 significant regulatory

relationships under FDR- and FWER-controlling approaches. These results could

serve as candidate regulatory relationships for further experimental verification.

Notice that the adjusted p-values in Table 4.4 are identical for FWER- and FDR-

controlling procedures, respectively. This is due to the discrete nature of the problem.

For instance, considering the FWER-controlling procedure, all the 20 detections with

their predicted logics share the same k = 28 in eq. (5.9) in form of the rejection
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Table 4.4: A list of top 20 significant regulatory relationships detected in the IR-
response stress gene-expression data of [46] under the FWER- and FDR-controlling
approaches

Target Pred. 1 Pred. 2 Logic π′ (FWER) π′′ (FDR)
MBP1 RCH1 IAP1 AND 3.153× 10−4 7.006× 10−6

MBP1 BCL3 IAP1 X̄1X2 3.153× 10−4 7.006× 10−6

MBP1 FRA1 IAP1 AND 3.153× 10−4 7.006× 10−6

MBP1 FRA1 SSAT AND 3.153× 10−4 7.006× 10−6

MBP1 ATF3 IAP1 AND 3.153× 10−4 7.006× 10−6

MBP1 IAP1 SSAT AND 3.153× 10−4 7.006× 10−6

MBP1 IAP1 MDM2 AND 3.153× 10−4 7.006× 10−6

MBP1 IAP1 p21 AND 3.153× 10−4 7.006× 10−6

MBP1 SSAT MDM2 AND 3.153× 10−4 7.006× 10−6

SSAT BCL3 MBP1 AND 3.153× 10−4 7.006× 10−6

SSAT BCL3 p21 AND 3.153× 10−4 7.006× 10−6

SSAT FRA1 IAP1 AND 3.153× 10−4 7.006× 10−6

SSAT FRA1 MBP1 AND 3.153× 10−4 7.006× 10−6

p53 RCH1 BCL3 X1 + X̄2 3.153× 10−4 7.006× 10−6

p53 RCH1 IAP1 X1 + X̄2 3.153× 10−4 7.006× 10−6

p53 RCH1 MMS NAND 3.153× 10−4 7.006× 10−6

p53 RCH1 UV NAND 3.153× 10−4 7.006× 10−6

p53 BCL3 ATF3 X̄1 +X2 3.153× 10−4 7.006× 10−6

p53 BCL3 IAP1 X1 + X̄2 3.153× 10−4 7.006× 10−6

p53 BCL3 MBP1 NAND 3.153× 10−4 7.006× 10−6

region, which naturally leads to the same adjusted p-values according to eqs. (4.9)

and (4.22).

4.4.2 Detection of Synthetic Target Genes

Following [47], we further examine the properties of the proposed methodology by

generating 8 synthetic target genes, SYN1, SYN2, . . . SYN8, which are assumed to be

predicted by two of 12 genes in the IR-response stress gene-expression data of [46].

Hence, each new data set consists of 23 genes (with 3 conditions included). The

synthetic relationships are shown in Table 4.5, where the noise N ∼ Bernoulli(1−p).

A total of M = 100 realizations are generated for the eight synthetic genes, based
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on the relationships in Table 4.5. As for the logic model set K, we consider three

cases: (1) the logic is known, K1 = {XOR}; (2)K2 = {XOR, AND, NAND}; and

K3 = {10 2− predictorlogics}. We assume here that a gene cannot predict itself.

Hence, with the addition of the 8 synthetic target genes, the total number of multiple

tests is M1 =
(

22
2

)
× 1 × 8 = 1848 for the set K1, M2 =

(
22
2

)
× 3 × 8 = 5, 544 for

the set K2, and M3 =
(

22
2

)
× 10× 8 = 18, 480 for the set K3. We apply the FWER-

and FDR-controlling procedures with a significance level α = 0.05. Figure 4.8 shows

the power estimates as a function of the predictive power under each of the two

procedures. It is observed that the FDR-controlling approach achieves larger power

than the FWER-controlling one as expected. As the predictive power increases, the

power increases to 1 for both approaches. When we have less prior knowledge about

logic models, the power tends to be smaller.

Table 4.5: Synthetic Relationships based on the IR-response stress gene-expression
data of [46]

Target Synthetic Relationship
1 SYN1 = PC1 XOR MDM2 ⊕ N
2 SYN2 = IAP1 XOR SSAT ⊕ N
3 SYN3 = PC1 XOR MMS ⊕ N
4 SYN4 = ATF3 XOR p53 ⊕ N
5 SYN5 = RCH1 XOR FRA1 ⊕ N
6 SYN6 = RELB XOR MMS ⊕ N
7 SYN7 = p53 XOR IR ⊕ N
8 SYN8 = BCL3 XOR IAP1 ⊕ N

4.5 Summary

We have described in this paper a rigorous statistical testing framework to inves-

tigate regulatory relationships among genes, by using the discrete CoD. This marks
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Figure 4.8: Power estimates as a function of predictive power for 8 synthetic targets
using both FWER- and FDR-controlling procedures, for three logic candidate sets,
K1 = {XOR}, K2 = {XOR, AND, NAND} and K3 = {10 meaningful logics}.

a significant change in the application of the CoD to such problems, since thus far

its use depended on user-selected thresholds to characterize the presence of signifi-

cant relationships. Multiple-testing procedures are also described, which make the

methodology applicable to large data sets. Furthermore, software that implements

the COD test is made available to the scientific community as an R codtest package

through our website (http://gsp.tamu.edu/Publications/

supplementary/ting13a). It is expected that this methodology will be a useful prac-

tical tool for the inference of gene regulatory relationships and networks from gene-

expression data.
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5. STATISTICAL DETECTION OF INTRINSICALLY MULTIVARIATE

PREDICTIVE GENES*

Canalization, i.e. buffering or robustness, of genotypes plays an important role

in the developmental processes of organisms, which suppresses phenotypic varia-

tion. Back in 1942, Waddington proposed the existence of canalizing genes that

can constrain a biological system to acquired characters in the face of environmental

stimuli [69]. Canalizing genes make adaptive and optimal reactions to environmental

perturbations, and can produce reliable developmental effects against genetic muta-

tions or environmental changes during evolution [49, 70]. In one word, canalization

preserves biological systems with characteristics born from natural selection. How-

ever, this significant property of biological systems during the course of evolution is

not well understood and verified since then. Until recently, Lehner has studied global

quantitative gene datasets in yeast to investigate Waddington’s intuition, and con-

firmed that canalizing genes, also known as “hub” genes, present similar robustness

when faced with environmental, stochastic and genetic perturbations [49].

Canalizing genes are frequently found in signalling pathways, which deliver in-

formation from a variety of sources to the machinery that enacts central cellular

functions such as cell-cycle, survival, apoptosis and metabolism [52]. For exam-

ple, DUSP1 antagonizes the activity of the p38 mitogen activated kinase, MAPK1

(ERK), which is known to be a central component that assists extracellular signal-

regulated kinases to send mitogenic signals [15]. Hence, the gene DUSP1 canalyzes

when it dephosphorylates MAPK1. DUSP1 provides a complicated transcriptional

*Parts of this section are reprinted with permission from “A Statistical Test for Intrinsically Multi-
variate Predictive Genes” by T. Chen and U.M. Braga-Neto, 2012, Proceedings of IEEE Interna-
tional Workshop on Genomic Signal Processing and Statistics (GENSIPS’2012), Washington, DC,
December 2012, pp. 151–154,© 2012 IEEE.
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mechanism for dephosphorylating MAPK1, and the expression of DUSP1 is induced

strongly by growth factors and cellular stresses [13,56]. Since the function of DUSP1

might lead to abnormal MAPK1 signalling, this will have negative impact both on

processes like proliferation and apoptosis critical to the development of human cancer

and on the active response of tumour cells to conventional cancer therapies [45, 64].

Canalyzing behavior is often observed in signal transducing pathways. For instance,

canalyzation was associated with the behavior of RAS gene family in the mitogenic

pathway [67]. In addition, the p53 (TP53) gene is also well known to be a canalyzing

gene for signal integration under stresses, which exerts strong control with cellular

stress responses [39].

Martins and collaborators [52] defined the concept of intrinsically multivariate

prediction, in which case when the controlling gene is active, it cannot be well-

predicted by subsets of its predictor genes, but it can be predicted by the full set

with great accuracy. Such a set of predictor genes is called Intrinsically Multivariate

Predictive (IMP) set for the target gene [52]. The IMP characterizes the property of

a canalyzing gene that it can be able to exert overriding control. Based on the notion

of IMP, they proposed a very nice mathematical expression of IMP in the context of

the binary Coefficient of Determination (CoD), the IMP score being used to measure

how closely a series of slave genes coordinate with their master gene [31]. As such,

IMP depends on the probability model connecting one controlling gene and its slave

genes, which, however, is usually unknown, or only partially known in practice.

Their work showed that DUSP1 had the largest number of IMP gene sets in

related pathways, thereby providing evidence that the IMP criterion could be used

as a practical tool for discovery of canalyzing genes [52]. However, applications

of the IMP criterion so far have been based on user-selected thresholds to decide

on the presence of gene multivariate prediction between the given predictor and
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target genes. In this chapter, we describe a multiple testing framework for the

detection of significant intrinsically multivariate predictive genes, by providing a

statistical test for a nonzero IMP score between given a Boolean target and Boolean

predictors [18, 24]. Our proposed multiple testing procedures are validated by using

both synthetic and real data sets.

5.1 Intrinsically Multivariate Prediction

We first review the concept of intrinsically multivariate prediction in the context

of the CoD, based on a proposed stochastic logic model [16] that mimics the behavior

of stochastic biological systems in practice.

The concept of intrinsically multivariate prediction (IMP) was first introduced

by [52] for the investigation of canalyzing genes. A predictor set X is said to be

intrinsically multivariate predictive (IMP) of the target Y if X predicts Y accurately,

but Y cannot be predicted accurately by any subset of X. Mathematically, this can

be expressed by the IMP score of the pair (X, Y ) [52]

IMPY(X) = CoDY(X)−max
Z$X

CoDY(Z), (5.1)

where Z 6= ∅. In the two-predictor case, the IMP score is given by

IMPY(X1,X2) = CoDY(X1,X2)−max
i=1,2

CoDY(Xi) . (5.2)

Clearly, IMPY(X) = 0 implies that X is not IMP of Y . The larger the IMP score is,

the stronger the IMP effect is. Note that, since Z cannot be either ∅ or full set X,

there are totally 2d − 2 subsets Z’s in the set X.

What of our interest is the case of IMP = 0 (i.e., no imp affect). This can

furthermore be written into the equivalent statement via the definition of IMP, that
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is, εY (X) = minZ$X εY (Z) by assuming that εY 6= 0. Since predictor X is the perfect

predictor of target Y , εY (Z) ≥ εY (X), for any Z $ X. Suppose the predictive power

of X over Y is p, and then we have the optimal error εY (X) = 1 − p. Hence, if

εY (T) = εY (X) = 1 − p for some T $ X, then εY (T) is clearly the minimum of

εY (Z) for all Z $ X. Let V(X) := {V1,V2, . . . ,V2d−2} = P(X)\{{∅}, {X}}, that

is, the power set of X excluding empty set and X itself. We give next a result

that relates IMPYX = 0 (i.e., no IMP) with parameter p and the joint probability

distribution of predictor X under the d-predictor logic model (3.12).

Proposition 3. Under a d-predictor stochastic logic model, the following statements

are equivalent:

(i) IMPY(X) = 0 .

(ii) p = 1/2 or any of statement Wi (i = 1, 2, . . . , 2d − 2) works, where

Wi =
∑

x
(1)
i ∈{0,1}

|x(1)
i
|

P
(
X

(1)
i = x

(1)
i ,X

(2)
i = x

(2)
i

)
1(f(x) = 1) = 0 or

∑
x
(1)
i ∈{0,1}

|x(1)
i
|

P
(
X

(1)
i = x

(1)
i ,X

(2)
i = x

(2)
i

)
1(f(x) = 0) = 0,

for all x
(2)
i ∈ {0, 1}|x

(2)
i | |X(2)

i = Vi ∈ V(X)
}
,

(5.3)

for i = 1, 2, . . . , 2d − 2 and X = X
(1)
i ∪X

(2)
i .

Proof. See Appendix E. Q.E.D.

It is easy to check that a logic f and its negated logic share the same Wi, for

i = 1, . . . , 2d − 2. It should be noted that, for some fixed X
(2)
i , the corresponding
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statement Wi contains si = 22|x
(2)
i
|

sub-statements, namely, {W (l)
i }

si
l=1. When state-

ment Wi holds, W
(1)
i works, . . . , or W

(si)
i works. Furthermore, IMP = 0 is equivalent

to the statement that at least one of W
(l)
i (l = 1, . . . , si, i = 1, . . . , 2d−2) holds, where

W
(l)
i =


∑

x
(1)
i ∈{0,1}

|x(1)
i
|

P (X
(1)
i = x

(1)
i ,X

(2)
i = x

(2)
i )×

1(f(x) = z) = 0, for all z ∈ al} ,

(5.4)

where al is the l-th element of 2|x
(2)
i |-ary Cartesian product over 2|x

(2)
i | equivalent sets

of {0, 1}.

For conciseness, we further explain IMP = 0 with an equivalent expression by

eliminating repeated results from all W
(l)
i ’s, which is formulated by

∑
x∈Di

P (X = x) = 0, . . . , or
∑

x∈Dd∗

P (X = x) = 0, or

∑
x∈Di

P (X = x) = 0, . . . , or
∑

x∈Dd∗

P (X = x) = 0 ,
(5.5)

where Di is the complementary set of Di, for i = 1, . . . , d∗. For example, under a

2-predictor stochastic AND logic model, we have D1, D2, . . . , D3 expressed by

D1 = {(0, 1)}, D2 = {(1, 0)}, D3 = {(1, 1)}. (5.6)

Thus, we give next a proposition relating IMPY(X) = 0 with the model information

in the model (3.12) in the 2-predictor case.

Proposition 4. Given a 2-input stochastic logic model, the following statements are

equivalent:
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(i) IMPY(X) = 0 .

(ii) p = 1/2 or
∑

x∈Di P (X = x) = 0, or
∑

x∈Di P (X = x) = 1, for i = 1, 2, ..., d∗,

where Di’s regarding all 10 meaningful logics are shown in Table 5.1 .

Table 5.1: Di’s in IMPY(X) = 0 for 2-Input Logics

logic bit string constraint
AND / NAND 0001 / 1110 {(0, 1)}, {(1, 0)}, {(1, 1)}
XOR / NXOR 0110 / 1001 {(0, 0), (1, 1)}, {(0, 0), (0, 1)}, {(0, 0), (1, 0)}
X1X2 / X1 +X2 0100 / 1011 {(0, 1)}, {(1, 0)}, {(1, 1)}
X1X2 / X1 +X2 0010 / 1101 {(0, 0)}, {(0, 1)}, {(1, 0)}

OR / NOR 0111 / 1000 {(0, 0)}, {(0, 1)}, {(1, 0)}

. It is easy to check that CoD = 0 implies that IMP = 0. For example, if the

logic f is AND, then IMPY(X) = 0 if and only if p = 1/2 or P (0, 1) = 0 or 1 or

P (1, 0) = 0 or 1 or P (1, 1) = 0 or 1, from which it follows that CoDY (X) = 0 →

IMPY(X) = 0 (it can be shown that this is a general fact). Notice that only 10 out

of 24 = 16 possible logics are shown in Table 5.1, since the remaining 6 logics are

either constant or depend on only one of the predictors. Note also that there are

only 5 rows in Table 5.1, since a logic f and its negated logic share the same D, as

they share the same expression for their full CoD with respect to the full set X and

individual CoD’s with respect to any subset of X.

For conciseness, we will denote in the sequel CoDY (X) and IMPY(X) by CoD

and IMP, respectively.

5.2 IMP Hypothesis Test

The IMP is a function of the logic f , the distribution parameters p and the joint

probability distribution of X, and therefore statements about it can be statistically

tested based on an i.i.d. sample. Following the CoD hypthesis test in [17], we are
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particularly interested in the following statistical hypothesis problem:

H0 : IMP = 0 (p = 1/2 or λ1 = 0 or 1, or . . . λd∗ = 0 or 1)

H1 : IMP > 0 (p > 1/2 and 0 < λ1 < 1 and . . . 0 < λd∗ < 1) ,

(5.7)

where λi =
∑

x∈Di P (X = x). The null hypothesis H0 indicates the absence of IMP

affect of X concerning the target Y , whereas the alternative hypothesis H1 states

that there is a degree of IMP effect between them.

This is a composite, multiparameter hypothesis testing problem. As the null

parameter space is a union of 2d∗ + 1 subsets [p = 1/2], [λ1 = 0] , [λ1 = 1],. . .,

[λd∗ = 0], and [λd∗ = 1], the appropriate strategy to employ here is the intersection-

union test (IUT) method; the individual tests for p = 1/2, λ1 = 0, λ1 = 1, . . . ,

λd∗ = 0 and λd∗ = 1 are level-α likelihood-ratio tests (LRTs), leading to an overall

level-α IUT test [5,6]. It is proven that, when using the IUT method, the composite

test is a level α test if each test divided from the composite test is a level α test

[5,6]. Let Sn = {Xi1, . . . , Xid, Yi}ni=1 be a random vector of i.i.d. observations whose

distribution follows the stochastic model in (3.12). One observation, or sample, of

Sn is denoted by sn. For simplicity we will introduce the notation Xi to denote the

random vector with the components Xi1, . . . , Xid, and xi is one observation of this

random vector. This is summarized in the following proposition for the 2-predictor

case. Details can be found in the supplementary information.

Proposition 5. Under a 2-predictor stochastic logic model, a level α IUT test of

H0 : IMP = 0 vs. H1 : IMP > 0 is given by Φ = 1(sn ∈ R), where R = R1 ∩
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R21 · · · ∩ R2d∗ ∩R31 · · · ∩ R3d∗ with (j = 1, 2, ..., d∗)

R1 = {sn |
n∑
i=1

1(f(xi) = yi) ≥ K},

R2j = {sn | xi ∈ Dj for some i ∈ {1, . . . , n}}

R3j = {sn | xi ∈ Dj for some i ∈ {1, . . . , n}} ,

(5.8)

where Dj (j = 1, . . . , d∗) is formed in Table 5.1, Dj is a complementary set of Dj, for

j = 1, . . . , d∗, and k is the 100(1−α)% percentile of a Binomial(n,1/2) distribution,

i.e., k is the smallest integer such that

∑
t≥k

(
n

t

)(
1

2

)n
≤ α , (5.9)

is a level-α test for (5.7).

Proof. See Appendix F. Q.E.D.

The following statements are made from Proposition 5.

(1) Rejection region. Notice thatR = R1∩R21 · · ·∩R2d∗∩R31 · · ·∩R3d∗ , where

R1 = {sn |
∑n

i=1 I(f(xi) = yi) ≥ k} is the rejection region for the [p = 1/2] LRT, and

expresses how tightly the data follows the proposed model, while R2i = {sn | xi ∈

Dj for some i ∈ {1, . . . , n}} is the rejection region for the [
∑

x∈Di P (X = x) = 0]

LRT, and R3i = {sn | xi ∈ Dj for some i ∈ {1, . . . , n}} is the rejection region for the

[
∑

x∈Di P (X = x) = 1] LRT, for i = 1, . . . , d, and indicates that the null hypothesis

cannot be rejected if these constraints on the sample of predicor X are not satisfied.

For the simplification of the following formulation, let R̃ = R21 · · · ∩R2d∗ ∩R31 · · · ∩

R3d∗ = R̃1 ∩ R̃2 · · · ∩ R̃2d∗ and (D̃1, . . . , D̃2d∗) = (D1, . . . ,Dd∗ ,D1, . . . ,D2d∗). Notice
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Figure 5.1: Relationship among power function, sample size and the IMP value given
a 2-input stochastic XOR model with P1 = P2 = 0.05, γ = 0.05, for the proposed
IMP test with α = 0.05. (a) Statistical power vs. IMP over varying sample size n.
(b) Minimum sample size to achieve varying power vs. IMP.

that

PR̃ = P (Sn ∈ R̃) = 1− P
(
R̃c

1 ∪ · · · ∪ R̃c
2d∗

)
= 1 −

2d∗∑
i=1

P (R̃c
i)

+
∑

1≤i<j≤2d∗

P (R̃c
i ∩ R̃c

j)− · · ·+ (−1)2d∗P (R̃c
1 ∩ · · · ∩ R̃c

2d∗) =

1−
2d∗∑
i=1

∑
x∈D̃ci

P (X = x)

n

+
∑

1≤i<j≤2d∗

 ∑
x∈D̃ci∩D̃cj

P (X = x)


n

− . . . + (−1)2d∗

 ∑
x∈D̃c1∩···∩D̃c2d∗

n

.

(5.10)

When the joint probability of predictors satisfies eq. (5.5), PR̃ is always zero; Oth-

erwise, PR̃ → 0 as n→∞.

(2) p-value. The rejection regions for varying significance level α is nested, that

is, Rn(α1) ⊆ Rn(α2), whenever α1 ≤ α2.. This allows us to define a p-value for the
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proposed test as

π(sn) =


∑

t≥
∑n
i=1 1(f(xi)=yi)

(
n

t

)(
1

2

)n
, for sn ∈ R2

1. otherwise

(5.11)

(3) Statistical power. The power function [14] of the proposed test can be

shown to be

β(p, f, P (X)) = P (Sn ∈ R) =

(
n∑
t=k

(
n

t

)
pt(1− p)n−t

)
× PR23 , (5.12)

for p ≥ 1/2, where k us given by (5.9). For instance, we can see in Fig. 5.1(a), that

for large sample size, power increases to 1 very rapidly. In addition, power increases

monotonically with increasing IMP. Fig. 5.1(b) displays the minimum sample size

necessary to achieve varying standard power value. As expected, the larger the power

value is, the less sample size is needed for a fixed IMP effect size. We may summerize

that, if a small IMP effect size is expected, then sample sizes in the neighborhood of

n = 100 or larger are required for effective statistical power.

5.3 Multiple Testing Procedures

For a given target Y , the proposed test for IMP effect presupposes the model

(3.12), which in turn depends on the choice of logic function f and predictor vector

X. Assuming dimensionality d (that is, d-predictor per target) and a number of

genes G in the original gene-expression dataset, the total number of possible logic

functions is 2d and the number of distinct predictors is
(
G
d

)
. This creates a multiple

testing issue with the total number of tests to be carried out being, in this case,

M = 2d ×
(
G
d

)
. In typical gene-expression microarray or RNA-seq studies, G tends

to be very large (in the order of thousands or more). Therefore, even if d is kept
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small, the number of tests may be very large indeed, which may lead to no rejections

of the null hypotheses (and no significant results can be concluded). In this section,

we address the multiple testing problem in the context of the proposed detection

method. We also comment on how to reduce the number of tests by use of prior

knowledge.

In a multiple testing procedure (MTP), there is a total number of M null hy-

potheses to be simultaneously tested, {H0(m) | m = 1, . . . ,M}. The basic rationale

behind a MTP is that, when there are M ≥ 1 parallel null hypotheses, we need to

provide rejection regions for each null hypothesis H0(m)(m = 1, . . . ,M), and then to

decide which of the M hypotheses should be rejected with a controlled Type-I error

rate.

We recall that, for a given 0 < α < 1, an MTP is said to control the FWER at level

α if FWER ≤ α. Similarly, an MTP is said to control the FDR at level α if FDR ≤ α.

Notice that, since FDR ≤ FWER, any FWER-controlling procedure is also FDR-

controlling, but the converse is not true in general, unless all null hypotheses are

true, in which case FDR = FWER, as mentioned previously.

Formally, we develop in the following a statistical multiple testing framework for

the identification of significant IMP pairs of predictors and targets. Suppose that a

given target may be predicted by a predictor set Xi among a possible number L of

predictor sets. Suppose that only partial knowledge about the logical regulations is

known, that is, a number Ki of candidate logics for each predictor set Xj, and the

total number of tests to be performed is therefore M =
∑L

i=1 Ki. Given a significance

level α, the significant IMP gene sets for the target can be found by the following

procedures:

(1) We compute the unadjusted p-values {π(1), . . . , π(M)} for tests H0(m) :

IMP = 0 vs. H1(m) : IMP > 0, for m = 1, . . . ,M .
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(2-a) FWER-controlling approach: Reject those null hypotheses H0(m) such

that the corresponding adjusted p-value π′(m) ≤ α, and the corresponding predictor

sets are regarded as the significant IMP sets of the given target.

(2-b) FDR-controlling approach: Reject those null hypotheses H0(m) such

that the corresponding adjusted p-value π′′(m) ≤ α. This can be realized in an equiv-

alent way: order the unadjusted p-values to obtain the vector {π∗(1), . . . , π∗(M)}

such that π∗(1) ≤ π∗(2) ≤ . . . ≤ π∗(M). Let m∗ be the largest m such that

π∗(m) ≤ m
M
α. Then reject the null hypotheses H∗(m)(m = 1, . . . ,m∗) associated

with the p-vlaues {π∗(1), . . . , π∗(m∗)}. Hence, the corresponding predictor sets are

IMP sets of statistical significance.

Note that, given D multiple targets, two approaches, depending on the largeness

of M , can be employed with the above procedures. Suppose that, each target shares

the same lists of candidate predictor sets and candidate logic sets. The proposed

multiple testing procedures can be applied to mulitple D targets in parallel tests

with the numbe of tests M =
∑L

i=1 ki ×D to be performed being reasonably large.

Otherwise, the proposed procedures are used for each target (with M =
∑L

i=1 ki),

respectively. Details will be discussed in the applications to real data sets in the next

Section.

5.4 Results and Discussion

In this section, we illustrate the application of the proposed multivariate Boolean

detection methodology based on the IMP in a number of experiments using both

synthetic and real data. The performance of effective recovery of canalyzing genes is

investigated.
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Figure 5.2: Examples of IMP pairs for a target and graphs of IMP pairs. (a) An
example of 5 IMP pairs out of 6 predictor genes for one target; (b) Graph for IMP
pairs in (a) withouth cycle (A line means the two connected genes function as an
IMP pair for the target); (c) An example of 5 IMP pairs out of 5 predictor genes for
one target ; (d) Graph for IMP pairs in (c) with cycle.

5.4.1 Synthetic Data

Consider a target gene TRG as variable Y and a set of G predictors PRD1, ...,

PRDG as variable vector X1, . . . , XG. We assume that the target TRG is predicted

by T IMP pairs with corresponding logic functions LGC1, ..., LGCT . Suppose

that the T IMP pairs include U unrepeated predictors PRD1, ..., PRDU , and then

the remaining G − U predictors can be regarded regarded as “noises” that do not

influence the expression of TRG. Fig. 5.2 gives an example of TRGT and its IMP

pairs. For example, TRG (Y ) is regulated by the IMP pair (PRD1(X1), PRD2(X2))

through a stochastic XOR logic function, such that Y = X1XORX2 ⊕ N , where

N ∼ Bernoulli(1− p), for 1/2 ≤ p ≤ 1, as before. We generate i.i.d. sample data of

size n for TRG, PRD1, ..., PRDG with following steps.
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Figure 5.3: Average FWER and FDR estimates (left column) and power estimates
(right column) as a function of sample size under FWER- and FDR-controlling pro-
cedures, for three logic model sets and preditive power p = 0.85. (a) FWER and
FDR estimates for model set K1 = {AND}. (b) Power estimates for model set
K1 = {AND}. (c) FWER and FDR estimates for model set K1 = {AND,XOR}.
(d) Power estimates for model set K1 = {AND,XOR}. (e) FWER and FDR esti-
mates for model set K1 = {AND,XOR, X1X2}. (f) Power estimates for model set
K1 = {AND,XOR, X1X2}. There is a single target to be predicted by 5 IMP pairs
(as shown in Figs. 5.2) among G = 24 genes.
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Figure 5.4: (a) Average FWER and FDR estimates (left column) and power esti-
mates (right column) as a function of sample size under FWER- and FDR-controlling
procedures, for three logic model sets and preditive power p = 0.85. (a) FWER and
FDR estimates for model set K1 = {AND}. (b) Power estimates for model set
K1 = {AND}. (c) FWER and FDR estimates for model set K1 = {AND,XOR}.
(d) Power estimates for model set K1 = {AND,XOR}. (e) FWER and FDR esti-
mates for model set K1 = {AND,XOR, X1X2}. (f) Power estimates for model set
K1 = {AND,XOR, X1X2}. There is a single test to be predicted by 5 IMP pairs
(as shown in Figs. 5.2) among a vaying number of initial genes K = 6, 8, 10, 12, 14.
Sample size is fixed at n = 40.
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Step 1: Generate i.i.d. sample binary data of size n, y1, . . . , yn, for gene TRG

following P (Y = 0) = c ≤ 0.5, for a given c.

Do Step 2 and Step 3 from the 1st IMP pair to the t-th pair:

Step 2: Generate n i.i.d. nosie samples n1, n2, . . . ., nn that satisfies P (N = 1) =

1 − p. Next, we obtain a new sequence y∗i = ni ⊕ yi, for i = 1, . . . , n, which is the

true sample of Y before it is contaminated by noise.

Step 3: For the i-th IMP pair, if the sample data of the 1st predictor have not

been generated yet, we generate n i.i.d. samples for this predictor by following a

uniform distribution. By knowing the logic function LGCi associated with output y∗

and input of the 1st predictor, sample data for the 2nd predictor can be generated

deterministically. If there are more than 1 possible solutions, just randomly pick one.

Step 4: Generate i.i.d. sample binary data of size n for PRDU + 1, ..., PRDG

following a uniform distribution.

Note that the proposed data-generating procedure has its limitations on the re-

lationships among predictors in the IMP pairs. To put this more clear, examples

of graphs (with cycle or without cycle) of IMP pairs are shown in Fig. 5.2. In the

graphs, all unrepeated predictors in the IMP pairs are considered as vertices of the

graphs, and two vertices are connected if the corresponding two predictors consist

of an IMP pair for the target. Obviously, the proposed procedure can only be em-

ployed to the case with no cycle in the graph. This is because the existence of cycles

in the graph of IMP pairs will result in conflicts in the generation of samples for

predictors, which, however, can be avoided in the case of no cycles using the above

data-generating procedure.

Here the number of candidate predictor set for a given target is L =
(
G
2

)
. Pro-

vided that G is not too large, this does not create a serious multiplicity issue; in our

simulation, G ranges from 6 to 14. As for the logic model set K, we consider three

118



scenarios: (1) the prediction logic is known, K1 = {XOR}; (2) K2 = {AND,XOR};

and (3) K3 = {AND,XOR,X1X2,X1X2}. The total number of tests to be performed

is given by Mi =
(
G
2

)
× Ki, under each of the prio-knowledge scenarios i = 1, 2, 3

described previously. Hence, the MTP increases in difficulty as the number of pre-

dictors and targets increase, and as less prior knowledge is available. We draw 5000

samples of varying size n and form averages of FWER, FDR, and power estimates

under FWER-controlling and FDR-controlling procedures.

Figures 5.3 and 5.4 show the performance of FWER and FDR estimates and

power estimates for varying sample size and number of multiple tests, where FWER-

and FDR-controlling procedures are employed, respectively. In Fig. 5.3, we fix

G = 24, and we plot the results as a function of sample size n. The total number

of tests is M1 = 276, M2 = 553 and M3 = 828, under each logic model set. In

Fig. 5.4, we fix n = 40 and vary G from 6 to 14. The total number of tests varies

from a minimum of 15 in the case of G = 6 and complete knowledge (K1) about

the prediction logic to a maxim of 273, for G = 14 and logic model set K3. Results

are plotted as a function of M . Several observations are made in the following from

these figures.

� The FWER- and FDR-controlling procedures are able to control the FWER

and FDR, respectively. In addition, FWER estimates are always larger than

FDR estimates, as expected from theroy, and thus the FDR is always controlled

under the FWER-controlling procedure, which is more conservative for the

smaller FWER and FDR estimates than the FDR-controlling procedure, as we

observe.

� As for the power, we can see a clear superiority of the FDR- over the FWER-

controlling procedure. Moreover, the power of the FDR-controlling procedure,
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besides being excellent, is also robust to the increase in number of tests (M),

in comparison the FWER-controlling procedure.

� As the sample size increases, the power estimates increase for both procedures,

whereas, as the number of multiple tests increases, the power estimates de-

crease, as expected.

These results indicate that the FDR-controlling procedure is preferred in real

applications due to its superior power over the FWER-controlling procedure.

5.4.2 Real Data

In this section, the proposed multiple testing procedures are applied to real data

sets for the identification of canalyzing genes and their IMP sets of statistical signif-

icance.

5.4.2.1 Case study I: melanoma and gene DUSP1

One data set of interest consists of 31 samples with 587 gene expressions. 19

sample out of the 31 samples are normal tissues and the remaining 12 samples are

tissues with melanoma. All the gene expressions are binarized into 0 or 1, where 0

indicates no significant expression whereas 1 represents significant expression (either

over- or under-expression). We eliminate 469 genes out of 587 genes in the original

dataset by following the criterion that there should be enough variability in the data.

As a comparison, we preserve the gene DUSP1 of our particular interest. Hence, we

have 119 genes left for analysis.
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Figure 5.5: Number of significant IMP pairs versus target gene discovered from
melanoma data set (a) using the FWER-controlling approach; (b) using the FDR-
controlling approach.

We fix the significance level α to be 0.05. We assume no prior knowledge, and

thus make no constraints on the allowed regulatory relationships, other than a gene

does not predict itself. Suppose that each target is predicted by d = 2 predictors,

and there are 10 possible 2-predictor candidate logics for each target gene. Hence,

the total number of multiple tests to be performed is M =
(

118
2

)
∗ 10 = 69, 030 for

each target gene. Note that, we conduct here multiple testing procedures target by

target as proposed in Section 5.3 due to the large number of genes in the processed

data.

Figure 5.5 shows the number of significant IMP pairs for six targets (CYP27A1,

ELF3, MMP3, PLCG1, IFIT1 and DUSP1) by using FWER- and FDR-controlling

procedures, respectively. It is observed that, DUSP1, a hypothesized canalizing

gene, has the largest number of significant IMP pairs for both approaches. This

is consistent with the fact that the gene DUSP1 plays an active role in regulating

central and process-integrating signaling pathways. By using the FWER-controlling

121



approach, there are 38 significant IMP pairs for DUSP1, whereas, 3215 significant

IMP pairs for DUSP1 by the FDR-controlling approach, since the latter approach is

less conservative than the former one. We present in Table 5.2 in the supplementary

information the top 20 significant IMP sets for target genes under both FDR- and

FWER-controlling approaches, which gives the potential multivariate predictions of

statistical significance for the guidance of further biological experimental studies.

5.4.2.2 Case study II: genotoxic stresses and gene p53

This data set consists of 12 genes under 3 conditions (i.e., IR, MMS, UV) in 30

cell lines of both p53 proficient and p53 deficient cells. The data is ternary, indicating

up-regulated (+1), down-regulated (-1), or no-change (0) status. Here we map this

to binary expression using the following code: change (1), for either up-regulated or

down-regulated genes, and no-change (0), as before. Additionally, we consider the

three binary conditions (IR, MMS, and UV) as possible predictive factors, for a total

of 15 Boolean variables in the data set.

We employ the proposed multiple testing procedures to find significant IMP sets

of target genes. We again assume no prior knowledge about regulatory relationships

and that a gene does not predict itself. Hence, all
(

14
2

)
two-predictor sets and 10

possible “true” 2-predictor logic candidates are considered for each target, for a total

of
(

14
2

)
× 10 = 910 possible models; note that each gene can appear in multiple

models, both as a member of different pairs and under different logic relationships.

In addition, we consider each of the 12 genes in the data set as a possible target,

so that the number of multiple tests performed is M =
(

14
2

)
× 10 × 12 = 10, 920.

We apply both the FWER- and the FDR-controlling procedures outlined in the

previous section with a significance level α = 0.05. Figure 5.6 displays the number of

significant IMP set for corresponding gene targets, under each of the two approaches.
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Interestingly, p53 turns out to possess the largest number of significant IMP sets,

under both approaches. This is in accordance with the known fact that p53 is a sig-

nificantly active gene involved in various pathways associated with stress responses.

p53 plays a crucial role in arresting the cell cycle, inhibiting angiogenesis, activating

DNA repair and conserving genome stability. In unstressed cells, p53 is kept in a low

level through a continuous degradation of itself. However, it becomes activated in

reponse to environmental stresses like UV, IR and oxidative stress, gaining a quick

accumulation of p53 in stressed cells and acting as a transcriptional regulator in cells.

Notice that the FWER-controlling approach is more conservative and thus pro-

duces fewer significant IMP sets than the FDR-controlling approach, for each of the

targets. By using the FDR-controlling approach, one detection is consistent with

biological groundtruth that p21 is found to be expressed when MDM2 is expressed

or ATF3 is expressed. Table 5.3 lists top 20 significant IMP pairs of target genes un-

der FDR- and FWER-controlling approaches. These results could serve as candidate

regulatory relationships for further experimental verification.
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Figure 5.6: Number of significant IMP pairs versus target gene discovered from
genotoxic stress-responsive data set (a) using the FWER-controlling approach; (b)
using the FDR-controlling approach.
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5.5 Summary

We have presented a rigorous statistical testing framework to detect canalyzing

genes, by using the intrinsically multivariate predictive (IMP) criterion in the context

of discrete CoD. Multiple-testing procedures are also proposed by taking advantage

of a-priori knowledge about logical predictions if available, thus making the method-

ology applicable to large data sets. Furthermore, an R imptest package is developed

for the implementation of the IMP hypothesis test, which is available to the scientific

community through our website (http://gsp.tamu.edu/Publications/supplementary/

ting13c). It is expected that this methodology will serve as a potential tool for the

inference of canalyzing genes from discrete gene-expression data.
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Table 5.2: A list of top 20 significant IMP pairs detected in the melanoma data

Target Predictor 1 Predictor 2 Logic π′ (FWER) π′′ (FDR)
IFIT1 MMP3 TNF1F7 OR 1.209× 10−3 NA

DUSP1 MMP3 TNF1C2 AND 1.209× 10−3 1.286× 10−4

DUSP1 UG5F5 LO1D6 AND 1.209× 10−3 1.286× 10−4

DUSP1 TNF1F7 TNF1C2 AND 1.209× 10−3 1.286× 10−4

DUSP1 HV2h5 HV70c10 X̄1X̄2 1.209× 10−3 1.286× 10−4

DUSP1 IFIT1 TNF1C2 AND 1.209× 10−3 1.286× 10−4

DUSP1 CYP27A1 TNF1C2 AND 1.209× 10−3 1.286× 10−4

DUSP1 CYP27A1 HV48d10 X1X̄2 1.209× 10−3 1.286× 10−4

DUSP1 HV5c12 LO1D6 AND 1.209× 10−3 1.286× 10−4

DUSP1 HV25e5 PLCG1 AND 1.598× 10−2 4.204× 10−4

DUSP1 HV14e11 CYP27A1 X̄1X2 1.598× 10−2 4.204× 10−4

DUSP1 MMP3 UG3G1 AND 1.598× 10−2 4.204× 10−4

MMP3 IFIT1 HV70c10 X1X̄2 1.598× 10−2 NA
PLCG1 CYP27A1 ELF3 OR 1.598× 10−2 NA
PLCG1 ELF3 DUSP1 OR 1.598× 10−2 NA
IFIT1 MMP3 HV23e2 OR 1.598× 10−2 NA
IFIT1 MMP3 ELF3 OR 1.598× 10−2 NA
IFIT1 TNF1F7 DUSP1 OR 1.598× 10−2 NA

CYP27A1 PLCG1 HV12d1 AND 1.598× 10−2 NA
ELF3 PLCG1 HV24f12 AND 1.598× 10−2 NA

DUSP1 MMP3 HV5d9 X1X̄2 NA 4.204× 10−4

DUSP1 MMP3 HV2h5 X1X̄2 NA 4.204× 10−4

DUSP1 MMP3 ESTs AND NA 4.204× 10−4

DUSP1 MMP3 HV5c12 AND NA 4.204× 10−4

DUSP1 PLCG1 HV2h5 X1X̄2 NA 4.204× 10−4

DUSP1 PLCG1 TNF1C2 AND NA 4.204× 10−4

DUSP1 PLCG1 HV5c12 AND NA 4.204× 10−4

DUSP1 PLCG1 HV48d10 X1X̄2 NA 4.204× 10−4

DUSP1 UG5F5 HV48d10 X1X̄2 NA 4.204× 10−4

125



Table 5.3: A list of top 20 significant IMP pairs detected in IR-response stress data
under FWER- and FDR-controlling approaches

Target Predictor 1 Predictor 2 Logic π′ (FWER) π′′ (FDR)
MBP1 RCH1 IAP1 AND 3.153× 10−4 7.006× 10−6

MBP1 BCL3 IAP1 X̄1X2 3.153× 10−4 7.006× 10−6

MBP1 FRA1 IAP1 AND 3.153× 10−4 7.006× 10−6

MBP1 FRA1 SSAT AND 3.153× 10−4 7.006× 10−6

MBP1 ATF3 IAP1 AND 3.153× 10−4 7.006× 10−6

MBP1 IAP1 SSAT AND 3.153× 10−4 7.006× 10−6

MBP1 IAP1 MDM2 AND 3.153× 10−4 7.006× 10−6

MBP1 IAP1 p21 AND 3.153× 10−4 7.006× 10−6

MBP1 SSAT MDM2 AND 3.153× 10−4 7.006× 10−6

SSAT BCL3 MBP1 AND 3.153× 10−4 7.006× 10−6

SSAT BCL3 p21 AND 3.153× 10−4 7.006× 10−6

SSAT FRA1 IAP1 AND 3.153× 10−4 7.006× 10−6

SSAT FRA1 MBP1 AND 3.153× 10−4 7.006× 10−6

p53 RCH1 BCL3 X1 + X̄2 3.153× 10−4 7.006× 10−6

p53 RCH1 IAP1 X1 + X̄2 3.153× 10−4 7.006× 10−6

p53 RCH1 MMS NAND 3.153× 10−4 7.006× 10−6

p53 RCH1 UV NAND 3.153× 10−4 7.006× 10−6

p53 BCL3 ATF3 X̄1 +X2 3.153× 10−4 7.006× 10−6

p53 BCL3 IAP1 X1 + X̄2 3.153× 10−4 7.006× 10−6

p53 BCL3 MBP1 NAND 3.153× 10−4 7.006× 10−6

126



6. BAYESIAN COD ESTIMATION

As discussed in Sections 2 and 3, the CoD was estimated through nonparametric

and nonparametric methods from a frequentist perspective, respectively [16,21]. We

investigated the performance of four nonparametric CoD estimators, based on the

resubstitution, leave-one-out, bootstrap and cross-validation error estimators and

that of parametric maximum-likelihood (ML) CoD estimator, based on parametric

models for gene regulatory relationships. It was observed that, with the availability

of prior knowledge about logic predictions, the ML CoD estimator is preferred for its

best performance, whereas, one, without any prior knowledge, should use the resub-

stitution CoD estimator, provided one has evidence of moderate to tight regulation

between predictors and target, and the number of predictors is not too large.

The nonparametric CoD estimators are defined by the discrete histogram pre-

diction rule, while ML model-based CoD estimators are defined with respect to a

parametric model. However, none of these CoD estimators are optimized based on

statistical inference across a family of possible joint distributions between target and

predictors, where the mass of the random parameter is concentrated around true

parameter values for the true target-predictor distribution. This leads to a Bayesian

approach to CoD estimation based on a parametrized family of target-predictor dis-

tributions as a function of random parameters characterized by assumed prior distri-

butions. Such an idea was first introduced in the study of Bayesian error estimation

for classification, which optimizes sample-based error estimation relative to mean-

square error (MSE) between the error estimator and true error across a family of

feature-label distributions [26,27].

Following the Bayesian idea, we first introduce in this Chapter the exact for-
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mulation of the Bayesian CoD estimator in a minimum mean-square error (MMSE)

sense, and the Bayesian CoD estimator based on the optimal Bayesian classifier [19].

Next, we employ Monte Carlo sampling experiments to assess the performance of

the Bayesian CoD estimator against that of resubstitution, leave-one-out, bootstrap

and cross-validation CoD estimators. Finally, Bayesian inference algorithms are de-

veloped with comparison to frequentist inference algorithms in Section 3. We also

provide examples of their practical applications to gene-expression data sets.

6.1 Discrete Model

We define in this Section the discrete prediction setting. Let X = (X1, X2, . . . , Xd)

∈ {0, 1}d be a predictor random vector and Y ∈ {0, 1} be a target random variable

in our discrete prediction problem. The predictors as a group can take on values

in a finite space with b = 2d possible states. For analysis purposes, we establish

a bijection between this finite state space and a single predictor variable X taking

values in the set X ∈ {1, 2, . . . , b}. One specific value of X corresponds to a specific

combination of the values of the original predictors, i.e., a “bin” into which the data

is categorized. The value b is the number of bins, which provides a direct measure

of predictor complexity.

The probability distribution of the pair (X, Y ) is specified by target prior prob-

abilities: c = P (Y = 0), 1− c = P (Y = 1), and probabilities pi = P (X = i | Y = 0)

and qi = P (X = i | Y = 1), for i = 1, . . . , b. Notice that
∑b

i=1 pi = 1 and∑b
i=1 qi = 1. Let the vector p denote (p1, . . . , pb−1), q denote (q1, . . . , qb−1) and θ be

the parameter vector (c,p,q). Given sample data, define Ui as the number of sam-

ples with Y = 0 in bin X = i, and Vi as the number of samples with Y = 1 in bin

X = i, for i = 1, . . . , b. Define also the sample sizes N0 =
∑b

i=1 Ui and N1 =
∑b

i=1 Vi.

In what follows, realizations of the random variables N0, N1, Ui, Vi will be denoted
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by the respective small letters.

In the discrete prediction setting formulated previously, the CoD in eq. (2.5) can

clearly be formulated as

CoD =
1− c
g(c)

+
b∑
i=1

(
c

g(c)
pi −

1− c
g(c)

qi

)
Ipi< 1−c

c
qi
, (6.1)

where g(x) = min(x, 1− x), for x ∈ [0, 1], and IA is an indicator function giving 1 if

condition A is satisfied; otherwise 0.

6.2 Bayesian CoD Estimators

We present in this Section the formulation of two well-defined Bayesian MMSE

estimators for the CoD in eq. (6.1). One approach is analogous to that followed

by [26] in defining the Bayesian MMSE classification error estimator, whereas the

other one makes use of the optimal Bayesian classifier in [28].

In the Bayesian setting, our model set is indexed by the parameter vector θ =

(c,p,q), defined previously. The appropriate definitions of the priors for these pa-

rameters could take advantage of prior knowledge about the biological problem. For

simplicity, here we will consider as priors the Dirichlet and Beta distributions [14]:

c ∼ Beta(α, β) , p ∼ Dirichlet(α0
1, . . . , α

0
b) , q ∼ Dirichlet(α1

1, . . . , α
1
b) , (6.2)

where these hyperparameters α, β, α0
i , α

1
i , i = 1, . . . , b, are positive numbers. The

case α0
i = α1

i = 1, for all i = 1, . . . , b, corresponds to uninformative uniform priors.

It is well-known that these are conjugate priors that take the same form as the
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corresponding posteriors, which are shown in [26,27] to be:

c | Sn ∼ Beta(n0 + α, n1 + β) , p | Sn ∼ Dirichlet(ui + α0
1, . . . , ub + α0

b) ,

q | Sn ∼ Dirichlet(vi + α1
1, . . . , vb + α1

b) .

(6.3)

Furthermore, it is also known that each element in p and q is beta-distributed:

pi ∼ Beta(tiap, t
i
bp) and qi ∼ Beta(tiaq, t

i
bq), where tiap = ui+α

0
i , t

i
bp = n0+α0−(ui+α

0
i ),

tiaq = ui + α1
i , and tibq = n1 + α1 − (vi + α1

i ), for i = 1, . . . , b.

6.2.1 The Bayesian MMSE CoD Estimator

We are interested in finding a sample-based estimator ĈoD that minimizes Eθ,Sn [|ĈoD−

CoD|2]. The solution is the Bayesian MMSE CoD estimator ĈoD
∗
, which can be

shown to be given by:

ĈoD
∗

= Eθ[CoD | Sn], (6.4)

where the CoD is expressed in eq. (6.1). Notice that ĈoD
∗

is an unbiased estimator

and displays the least root mean-square error (RMS) over the distribution of (θ,Sn).

However, for a specific model with fixed θ, ĈoD
∗

might not be unbiased or have the

least RMS.

An interesting and useful fact proved in [26] is that c, p and q are independent

given the sample data. Starting from (6.1), we can exploit this independence to write

the Bayesian MMSE CoD estimator as

Eθ[CoD | Sn] = 1− Ec|Sn
[

1− c
g(c)

]
︸ ︷︷ ︸

A

−
b∑
i=1

{Ec|Sn
[
Eq|Sn

[
Ep|Sn

[
c

g(c)
piIpi< 1−c

c
qi

]]]
︸ ︷︷ ︸

Bi

+ Ec|Sn

[
Eq|Sn

[
Ep|Sn

[
1− c
g(c)

qiIpi< 1−c
c
qi

]]]
︸ ︷︷ ︸

Ci

}.

(6.5)
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In what follows, we give expressions for A, Bi, and Ci.

(1) Term A is given by

A = Ec|Sn

[
1− c
c

Ic<1/2 + Ic≥1/2

]
= 1 +

1

B(n0 + α, n1 + β)
× {IB(1/2;n0 + α− 1, n1 + β + 1)

−IB(1/2;n0 + α, n1 + β)} ,

(6.6)

where B is the Beta function and IB is the incomplete Beta function:

IB(k; a, b) =

∫ k

0

xa−1(1− x)b−1dx =
∑b−1

i=0
(−1)ika+i

a+i

(
b−1
i

)
, b is an integer,∑∞

i=0
(−1)ika+i

a+i

(
b−1
i

)
, o.w.

.

(6.7)

for a, b > 0 and 0 ≤ k ≤ 1.

Before we proceed, we mention a useful fact concerning a Beta random variable.

Proposition 6. Given X ∼ Beta(α, β), we have

E[XIX≤k] =
IB(k;α + 1, β)

B(α, β)
Ik<1 +

B(α + 1, β)

B(α, β)
Ik≥1 . (6.8)

Proof. This is obvious due to the fact that 0 ≤ X ≤ 1. �

(2) By taking first the expectation over p | Sn and using the definition of function
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IB in eq. (6.7), we have that

Bi =
1

B(tiap, t
i
bp)

b∑
i=1

 P i∑
j=0

(−1)j
(tibp−1

j

)
tiap + 1 + j

×

Ec|Sn

[
1

g(c)

(1− c)tiap+1+j

ct
i
ap+j

Eq|Sn

[
q
tiap+1+j

i Iqi< c
1−c

]]
︸ ︷︷ ︸

B1
i

+ B(tiap + 1, tibp) Ec|Sn

[
c

g(c)
Eq|Sn

[
Iqi≥ c

1−c

]]
︸ ︷︷ ︸

B2
i

 ,

(6.9)

where P i = tibp − 1 if tibp is an integer; otherwise P i = ∞, and B1
i and B2

i can be

obtained by taking expectation over q | Sn, using the definition of function IB, and

applying Proposition A:

B1
i =

1

B(tiaq, t
i
bq)

 Qi∑
k=0

(−1)k
(tibq−1

k

)
tiaq + tiap + 1 + j + k

Ec|Sn

[
c

g(c)

(
c

1− c

)tiaq+k
Ic<1/2

]
︸ ︷︷ ︸

B3
i

+B(tiaq + tiap + 1 + j, tibq)

Ec|Sn

[
c

g(c)

(
1− c
c

)tiap+1+j

Ic≥1/2

]
︸ ︷︷ ︸

B4
i

 ,

B2
i = Ec|Sn

[
c

g(c)
Ic≤1/2

]
︸ ︷︷ ︸

B5

− 1

B(tiaq, t
i
bq)

Qi∑
k=0

(−1)k
(tibq−1

k

)
tiaq + k

×

Ec|Sn

[
c

g(c)

(
c

1− c

)tiaq+k
Ic<1/2

]
︸ ︷︷ ︸

B6
i

,

(6.10)
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where Qi = tibq − 1 if tibq is an integer; otherwise Qi =∞, while

Bi
3 = IB(1/2;n0 + α + tiaq + k, n1 + β − tiaq − k) ,

Bi
4 =

B(n0 + α− tiap − j, n1 + β + tiap + j)

B(n0 + α, n1 + β)
−

IB(1/2;n0 + α− tiap − j, n1 + β + tiap + j)

B(n0 + α, n1 + β)
,

B5 = IB(1/2;n0 + α, n1 + β) ,

Bi
6 = IB(1/2;n0 + α + tiaq + k, n1 + β − tiaq − k) .

(6.11)

(3) Similarly as in item (2), we have that:

Ci =
1

B(tiap, t
i
bp)

b∑
i=1

 P i∑
j=0

(−1)j
(tibp−1

j

)
tiap + j

×

Ec|Sn

[
1

g(c)

(1− c)tiap+j+1

ct
i
ap+j

Eq|Sn

[
q
tiap+1+j

i Iqi< c
1−c

]]
︸ ︷︷ ︸

C1
i

+

B(tiap, t
i
bp) Ec|Sn

[
1− c
g(c)

Eq|Sn

[
qiIqi≥ c

1−c

]]
︸ ︷︷ ︸

C2
i

 ,

(6.12)

with C1
i = B1

i and C2
i being given by:

C2
i =

B(tiaq + 1, tibq)

B(tiaq, t
i
bq)

Ec|Sn

[
1− c
g(c)

Ic≤1/2

]
︸ ︷︷ ︸

C5

− 1

B(tiaq, t
i
bq)

Qi∑
k=0

(−1)k
(tibq−1

k

)
tiaq + k + 1

Ec|Sn

[
1− c
g(c)

(
c

1− c

)tiaq+k+1

Ic<1/2

]
︸ ︷︷ ︸

C6
i

,

(6.13)

where

C5 = IB(1/2;n0 + α− 1, n1 + β + 1) , (6.14)
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and C6
i = B6

i .

Finally, in order to get positive a and b in eq. (6.7), the hyperparameters for c,

p, q must satisfy the following conditions:

α >

b∑
i=1

α0
i − 1, β >

b∑
i=1

α1
i − 1 . (6.15)

Hence, if we choose uniform priors for p and q, it is clear that the prior for c cannot

be uniform.

6.2.2 The Bayesian CoD Estimator Based on the Optimal Bayesian Classifier

In Section 2, we have discussed several nonparametric CoD estimators based on

the resubstitution, leave-one-out, bootstrap and cross-validation error estimators.

Likewise, we will investigate another Bayesian CoD estimator in terms of Bayesian

error estimators, in which case the Bayesian error estimator is minimized over some

optimal Bayesian classifier [28, 29]. Such a Bayesian CoD estimator is quite similar

to the nonparametric CoD estimator as a function of corresponding nonparametric

error estimators in Section 2.

Let us first recall the concepts of Bayesian error estimation and optimal Bayesian

classification. The optimization of error estimation is addressed in a Bayesian mod-

elling framework throughout a family of distributions between target and predic-

tors [26–29]. For an arbitrary classifier ψ, the Bayesian MMSE error estimator based

on given information of X is expressed as [26,27]:

ε̂ =
b∑

j=1

{
n0 + α

n+ α + β
×
Uj + α0

j

n0 + α0
I(ψ(j) = 1) +

n1 + β

n+ α + β
×
Vj + α1

j

n1 + α1
I(ψ(j) = 0)

}
.

(6.16)
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To optimize classifier design, an optimal Bayesian classifier, ψOBC, is defined as

Ep|Sn,q|Sn,c|Sn [ε(θ, ψOBC)] ≤ Ep|Sn,q|Sn,c|Sn [ε(θ, ψ)] , (6.17)

for all ψ ∈ C, where C is an arbitrary family of classifier [28, 29]. It has been shown

that the optimal Bayesian classifier in the discrete model with (p,q, c) is formed as

ψOBC =

 1, n0+α
n+α+β

Uj+α
0
j

n0+α0 <
n1+β
n+α+β

Vj+α
1
j

n1+α1

0, o.w.
. (6.18)

By substituting ψOBC for ψ in eq. (6.16), we have the Bayesian error estimator

based on the optimal Bayesian classifier:

ε̂OBC =
b∑
i=1

min

{
n0 + α

n+ α + β

Uj + α0
j

n0 + α0
,
n1 + β

n+ α + β

Vj + α1
j

n1 + α1
,

}
(6.19)

which is shown to minimize Bayesian error estimator over all possible ψ ∈ C.

Similarly, given no information about predictor X, its corresponding minimum

Bayesian error estimator of Y is formed as (in terms of the optimal Bayesian classi-

fier):

ε̂0,OBC = min

{
n0 + α

n+ α + β
,
n1 + β

n+ α + β

}
. (6.20)

In terms of ε̂OBC in eq. (6.19) and ε̂0,OBC in eq. (6.20), the Bayesian CoD estimator

based on the optimal Bayesian classifier, ĈoDOBC, is given by:

ĈoDOBC = 1− ε̂OBC

ε̂0,OBC

. (6.21)

It is easy to show that 0 < ε̂OBC < ε̂0,OBC, and thus ĈoDOBC ∈ (0, 1).
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6.3 Exact Moments of Bayesian CoD Estimator Based on Optimal Bayesian

Classifier

As noted in Section 2, the performance metrics for an CoD estimator ĈoD are

its bias,

Bias
[
ĈoD

]
= E

[
ĈoD

]
− CoD , (6.22)

the deviation variance,

Vard

[
ĈoD

]
= Var

(
ĈoD− CoD

)
= Var

(
ĈoD

)
, (6.23)

and the root mean-square (RMS) error,

RMS
[
ĈoD

]
=

√
Var

[
ĈoD

]
+ Bias

[
ĈoD

]2

(6.24)

According to eqs. (2.21), (2.22) and (2.23), the peformance metrics (i.e., bias, de-

viation variance and RMS) for the Bayesian CoD estimator based on the optimal

Bayesian classifier, ĈoDOBC, can be obtained from the first and second momemts of

ε̂OBC/ε̂0,OBC, namesly, E
[
ε̂OBC

ε̂0,OBC

]
and E

[
ε̂2OBC

ε̂20,OBC

]
.

The first moment of ε̂OBC/ε̂0,OBC is given by

E

[
ε̂OBC

ε̂0,OBC

]
=
∑
m∈U

E

[
ε̂OBC

m/n+ α + β
|M = m

]
P (M = m), (6.25)

where U =
{
α, α + 1, . . . , bn+β−α

2
c+ α, β, β + 1, . . . , bn+α−β

2
c+ β

}
and M = (n +

α + β)ε̂0,OBC. Since ε̂0,OBC = 1
n+α+β

min(N0 + α,N1 + β), we have M = min(N0 +

α, n − N0 + β). Notice that bAc denote that the largest integer that is not greater

than A. Let I0 =
{
α, α + 1, . . . , bn+β−α

2
c+ α

}
, I1 =

{
β, β + 1, . . . , bn+α−β

2
c+ β

}
and n′ = n + α + β. Suppose bαc 6= bβc, and it follows that the event [M = m] is
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equal to the union of the disjoint events [N0 = m−α], for m ∈ I0, and [N0 = n−m+β],

for m ∈ I1. By using Proposition 7 in the Appendix A, we can write E
[
ε̂OBC

ε̂0,OBC

]
as:

E

[
ε̂OBC

ε̂0,OBC

]
=
∑
m∈I0

E

[
ε̂OBC

m/n′
| N0 = m− α

]
P (N0 = m− α) +

∑
m∈I1

E

[
ε̂OBC

m/n′
| N0 = n−m+ β

]
P (N0 = n−m+ β),

=

bn+β−α
2
c∑

nr1=0

E

[
ε̂OBC

(nr1 + α)/n′
| N0 = nr1

]
P (N0 = nr1) +

bn+α−β
2
c∑

nr2=0

E

[
ε̂OBC

(nr2 + β)/n′
| N0 = n−nr2

]
P (N0 = n−nr2)

(nr1 , nr2 are integers),

(6.26)

where

E

[
ε̂OBC

(nr1 + α)/n′
| N0 = t

]
=

1

nr1 + α

b∑
i=1


∑

(t+α)(k+α0i )

t+α0
<

(n−t+β)(l+α1i )
n−t+α1

k≤t, k+l≤n

(t+ α)(k + α0
i )

t+ α0
+

∑
(t+α)(k+α0i )

t+α0
≥ (n−t+β)(l+α1i )

n−t+α1
k≤t, k+l≤n

(n− t+ β)(l + α1
i )

n− t+ α1

P (Ui = k, Vi = l | N0 = t) ,

(6.27)

with P (Ui = k, Vi = l | N0 = t) expressed in eq. (2.30), for t = nr1 , and

E
[

ε̂OBC

(nr2+β)/n′
| N0 = t

]
is formed as the one in eq. (6.27) with nr1 + α replaced with

nr2 + β, for t = n−nr2 . It is easy to show that eqs. (6.26) and (6.27) can be applied

to the general case associated with α and β.
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The second moment of ε̂2
OBC/ε̂

2
0,OBC is given by

E

[
ε̂2

OBC

ε̂2
0,OBC

]
=
∑
m∈U

E

[(
ε̂OBC

m/n′

)2

|M = m

]
P (M = m) , (6.28)

where M = n′ε̂0,OBC, as before. By using Proposition 7 in the Appendix A, and the

same reasoning applied previously in the case of the first moment, we further have

E

[
ε̂2

OBC

ε̂2
0,OBC

]
=
∑
m∈I0

E

[
ε̂2

OBC

m2/n′2
| N0 = m− α

]
P (N0 = m− α) +

∑
m∈I1

E

[
ε̂2

OBC

m2/n′2
| N0 = n−m+ β

]
P (N0 = n−m+ β),

=

bn+β−α
2
c∑

nr1=0

E

[
ε̂2

OBC

(nr1 + α)2/n′2
| N0 = nr1

]
P (N0 = nr1) +

bn+α−β
2
c∑

nr2=0

E

[
ε̂2

OBC

(nr2 + β)2/n′2
| N0 = n−nr2

]
P (N0 = n−nr2) ,

(6.29)

E

[
ε̂2

OBC

(nr1 + α)2/n′2
| N0 = t

]
=

1

(nr1 + α)2
×

b∑
i=1

∑
l′i>k

′
i

k′2j P (Ui = k′i, Vi = l′i | N0 = t) +
∑
k≥l

l′2i P (Ui = k′i, Vi = l′i | N0 = t)

 +

1

(nr1 + α)2

b∑
i,j=1
i 6=j

∑
l′i>k

′
i

∑
s′j>r

′
j

k′ir
′
jP (Ui = k′i, Vi = l′i, Uj = r′j, Vj = s′j | N0 = t) +

∑
l′i>k

′
i

∑
r′j≥s′j

k′is
′
jP (Ui = k′i, Vi = l′i, Uj = r′j, Vj = s′j | N0 = t) +∑

k′i≥l′i

∑
s′j>r

′
j

l′ir
′
jP (Ui = k′i, Vi = l′i, Uj = r′j, Vj = s′j | N0 = t) +

∑
k′i≥l′i

∑
r′j≥s′j

l′is
′
jP (Ui = k′i, Vi = l′i, Uj = r′j, Vj = s′j | N0 = t)

 ,

(6.30)
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with P (Ui = k, Vi = l | N0 = t) as in (2.30) and P (Ui = k, Vi = l, Uj = r, Vj = s |

N0 = t) expressed in eq. (2.35), for t = nr1 , and E
[

ε̂2OBC

(nr2+β)2/n′2
| N0 = t

]
is formed

as the one in eq. (6.30) with nr1 + α replaced with nr2 + β, for t = n−nr2 .

6.4 Performance of Bayesian CoD Estimators

In this Section, we study the performance of two well-defined Bayesian CoD

estimators in Section 6.2 in two simulation studies. One study investigates how

noninformative and informative priors can affect the performance of Bayesian CoD

estimators by considering a discrete distribution with one single predictor (i.e., b

=2) and its target, whereas the other study discusses their performance averaged

over all the distributions and observes the optimality of the Bayesian MMSE CoD

estimation. All the results are compared with the performance of nonparametric

CoD estimators like resubstitution, leave-one-out, cross-validation and bootstrap.

6.4.1 Performance Over One Specific Distribution

In this Section, we consider a binary problem with b = 2. Let p be the probability

for bin 1 with Y = 0 and q be the probability for bin 1 with Y = 1, that is, p = p1 =

1 − p2 and q = q1 = 1 − q2. We assume beta priors for p with hyperparameters α0
1

and α0
2. As to the priors for q, we set α1

1 = α0
2 and α1

2 = α0
1, and thus E[p] = 1−E[q].

In our simulations, we fix p = 0.7, q = 0.3 and c = 0.5. We first generate a random

non-stratified sample for the sample size of data with Y = 0 (n0) by following the

fact that n0 ∼ Binomial(n, c). Then the sample point of each bin (u1, . . . , ub and

v1, . . . , vb) is assigned by using the binomial or multinomial distribution associated.

For each sample, we calculate the Bayesian MMSE CoD estimate, Bayesian CoD

estimate based on the optimal Bayesian classifier and all the nonparameteric CoD

estimates based on the discrete histogram rule. Finally, we generate 5000 Monte

Carlo samples to obtain approximations for the bias, variance and RMS of all the
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Figure 6.1: Bias, variance, and RMS for several CoD estimators vs. sample size over
one distribution in the 2-predictor case. Fix p = 0.7, q = 1 − p = 0.3 and c = 0.5.
Plot key: bayesian (brown), obc (purple), resubstitution (red), leave-one-out (blue),
0.632 bootstrap (green), 10-repeated 2-fold cross-validation (black). As comparison,
we assume noninformative uniform priors for p, q and c as shown in solid brown and
purple lines. In dashed lines, a beta prior for c with α = β = 6.0 is specified. All
results are approximated by Monte Carlo sampling method. Note that computations
of the Bayesian MMSE CoD estimates associated with beta priors (in dashed lines)
are exact, whereas the Bayesian MMSE CoD estimate with uniform priors for true
distributions is approximated with Monte Carlo sampling method.

Bayesian and non-Bayesian CoD estimators. In order to examine how different priors

affect the results of Bayesian estimation, both non-informative priors (uniform priors

for p, q and c) and informative priors (beta priors for p, q and c) are discussed in our
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Figure 6.2: Bias, variance, and RMS for several CoD estimators vs. sample size
over all distributions. Top row: b = 2; Middle row: b = 4; Bottom row: b = 8 Plot
key: bayesian (brown), obc (purple), resubstitution (red), leave-one-out (blue), 0.632
bootstrap (green), 10-repeated 2-fold cross-validation (black). We assume uniform
priors for all bin probabilities and a beta distribution B(α, β) for c, with α = b + 1
and β = b + 1. All results are approximated by the Monte Carlo sampling method,
and computations of the Bayesian MMSE CoD estimates are exact.

studies.

Figure 6.1 shows the bias, variance and RMS of Bayesian MMSE CoD estimator

and Bayesian CoD estimator based on the optimal Bayesian classifier associated with
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various priors (i.e., noninformative uniform priors and informative beta priors) for p

and q and their comparison to the performance of nonparametric CoD estimators.

Figure 6.1(a) shows the beta priors for p we use in the Bayesian case. It is observed

that the prior distribution with E(p) = 0.8 has the highest density at the true value of

p = 0.70. The closer one prior centers at the true distribution, the better estimation

it is expected to achieve. As a result, we observe that the prior with a higher density

(e.g., the prior with E[p] = 0.8 in our simulations) at the true distributions tends to

give better performance small(i.e. smaller RMS) than Bayesian CoD estimators with

other priors. In addition, when the prior distribution has a smaller density around the

true value of p, the performance of Bayesian estimators can be even worse than the

resubstitution and leave-one-out. For instance, assuming the prior with E[p] = 0.4

as shown in the Figure 6.1, we can see that the resubstitution and leave-one-out

converge to the optimal CoD much faster than the Bayesian ones regarding the

RMS. Among the Bayesian CoD estimators associated with various priors, the one

based on the prior with E[p] = 0.6 has the highest bias in amplitude and the least

variance, whereas the Bayesian CoD estimator with uniform priors has the largest

variance. As a summary, we can forecast that, with available knowledge about true

distributions p,q and c in the d-predictor case (with b = 2d), the priors with higher

densities around these true distributions are preferred for better estimation of the

CoD.

6.4.2 Performance Over All Distributions

Following the simulation studies in [26], we compute the performance metrics

of the Bayesian CoD estimator, for a given sample size, over all distributions in

the probability model, with a beta prior for target probability c and uniform priors

for the bin probabilities (p,q). This is done by the Monte Carlo sampling method
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drawing M = 10000 simulated training data sets of the required sample size from

the probability model in two steps. In the first step, we randomly generate the true

distributions of c and (p,q) based on the assumptions of priors, and then, in the

second step, collect samples that are randomly generated according to the current

distributions. Given sample data, we can compute the exact Bayesian MMSE CoD

estimate as expressed in Section 6.2, as well as obtain Monte Carlo approximations of

nonparametric CoD estimators such as resubstitution, leave-one-out, bootstrap and

cross-validation. Based on a large number of simulated experiments, sample means

and sample variances are employed to approximate the performance metrics.

Figure 6.2 shows the comparison results between the performance of the Bayesian

CoD estimator and that of the other four nonparametric CoD estimators, as a func-

tion of varying sample size, for difference bin sizes b = 2, b = 4 and b = 8. Several

observations are made in what follows. First, as expected, the Bayesian CoD esti-

mator is observed to perform the best, given its unbiasedness and least RMS, when

averaged over all distributions. Secondly, the leave-one-out CoD estimator has the

second-best performance according to RMS when averaged over all the distributions,

whereas we know from a previous publication that the resubstitution performs best

among the nonparametric list for a fixed model [21]. Last but not least, as the sam-

ple size or bin size increases, the performance of the Bayesian CoD estimator has

obvious improvement over the others.

6.5 Applications to System Identification Problems

By following the problems of system identification in Section 3, we consider in this

section the inference of gene regulatory relationships with partial knowledge about

the logic gates regulating each target variable but no knowledge about the wiring

associated with each logic gate. We propose inference procedures based on the two
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proposed Bayesian estimators (i.e., Bayesian MMSE CoD estimator and Bayesian

CoD estimator based on the optimal Bayesian classifier) to recover both wiring and

logic information. In the case of wiring recovery, we compare the performance of

two Bayesian approaches against the use of the parametric ML approach and non-

parametric approaches, whereas, in the case of logic gate recovery, we compare the

performance of Bayesian approaches with the ML one and the resubstitution among

nonparametric approaches. Notice that the nonparametric CoD estimators are not

capable of taking advantage of the available incomplete knowledge, which only de-

pend on the discrete histogram rule to decide on the logic prediction.

We consider the static case only. Like what is described in Section 3, we also

consider nested sets of candidate models, from more (smaller set) to less (larger set)

informative, in the simulated numerical examples in this section, which allows us to

investigate how the amount of prior knowledge can affect inference accuracy.

We consider here inference of the Boolean function f , or predictor, in the static

model (3.12). It is assumed that the true predictor f is unknown but is a member

of a candidate model set F containing several Boolean functions, as mentioned in

Section 3. Again we assume that each predictor f in F depends on the same number

l of essential predictive variables, or inputs. It is assumed that the model set F

consists of a number c of possible logic gates and arbitrary wiring of connectivity l.

The larger c is, the less is known about the system.

We propose the following Bayesian predictor inference procedure to select a pre-

dictor from F based on Bayesian approaches. For each target and its d-predictor set,

we assume Dirichlet distributions for class-conditional probabilities (p1, . . . , p2d−1),

(q1, . . . , q2d−1) and a beta distribution of class 0 probability c, as mentioned in eqs.

(6.2).
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1. For each logic gate, specify the hyperparameters of priors in eqs. (6.2) and

then pick the wiring that produces the largest MMSE Bayesian CoD estimate

/ Bayesian CoD estimate based on the optimal Bayesian classifier. Ties, if any,

are broken randomly.

2. Among the c candidate predictors obtained from the previous step, select the

one that presents the largest predictive power estimate. Ties, if any, are broken

randomly.

Notice that the specification of the hyperparameters of priors is very important

since an informative prior will probably lead to a good Bayesian CoD estimator that

better recovers the regulatory relationship between one target and its predictors.

A detailed discussion of initiation of those hyperparameters will be given regarding

the numerical experiments in the following section. Moreover, we will make assess-

ment of the effectiveness of our propose inference procedures based on the Bayesian

approaches by means of numerical experiments.

6.5.1 Numerical Experiments

In this section, we follow the numerical experiment settings as discussed in Sec-

tion 3.4.1.1, where the static model in eq. (3.12) is employed.

6.5.1.1 Experimental Settings

We let d = 8 and set up two groups of experiments, corresponding to l = 2, 3.

A set of k = 8 models are considered in each case, each model being obtained by a

random wiring assignment {i1, . . . , il} and a choice of a logic gate:

� l = 2: g(Xi1 , Xi2) = Xi1 ⊕Xi2 .

� l = 3: g(Xi1 , Xi2 , Xi3) = Xi1 ⊕Xi2 ⊕Xi3 .
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� l = 4: g(Xi1 , Xi2 , Xi3 , Xi4) = Xi1 ⊕Xi2 ⊕Xi3 ⊕Xi4 .

In addition, two different values of predictive power (p = 0.75 and p = 0.85) are

considered. For each value of l, three nested candidate model sets F 1
l ⊂ F 2

l ⊂ F 3
l are

employed, each containing all
(

8
l

)
possible predictor variable assignments {i1, . . . , il},

for l = 2, 3, 4, and the logic gates depicted in Tables 6.1 and 6.2.

Table 6.1: Logic gates for candidate model sets, static case, l = 2.

F 1
2 F 2

2 F 3
2

Xi1 ⊕Xi2 Xi1Xi2 Xi1Xi2

Xi1 ⊕Xi2 Xi1 ⊕Xi2

Xi1Xi2 Xi1Xi2

Xi1 +Xi2 Xi1 +Xi2

Xi1Xi2

Xi1 +Xi2

6.5.1.2 Specification of Hyperparameters of Priors

Given a l−input stochastic logic model, class condidtional probabilities p and q

and class 0 probability c are functions of predictive power p and joint distributions

of predictors. Assuming the uniformity of predictors, we can easily show that:

pi =
pIf(X=i)=0 + (1− p)If(X=i)=1∑2l

i=1 pIf(X=i)=0 + (1− p)If(X=i)=1

, i = 1, . . . , 2l

qi =
pIf(X=i)=1 + (1− p)If(X=i)=0∑2l

i=1 pIf(X=i)=1 + (1− p)If(X=i)=0

, i = 1, . . . , 2l

c =
1

2l

2l∑
i=1

pIf(X=i)=0 + (1− p)If(X=i)=1 .

(6.31)

For improved Bayesian estimation, the choice of priors for p, q and c is desired

to concentrate their densities at the true values of p, q and c in eqs. (6.31), as

concluded in Section sec:pm-fix. In practice, the model parameter p is not known,
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Table 6.2: Logic gates for candidate model sets, static case, l = 3.

F 1
3 F 2

3 F 3
3

Xi1 ⊕Xi2 ⊕Xi3 Xi1Xi3 +Xi2 ⊕Xi3 Xi1Xi3 +Xi2 ⊕Xi3

Xi1 ⊕Xi2 ⊕Xi3 Xi1 ⊕Xi2 ⊕Xi3

Xi1(Xi2 ⊕Xi3) +Xi1Xi2 Xi1(Xi2 ⊕Xi3) +Xi1Xi2

Xi1 Xi2 +Xi1Xi2 ⊕Xi3 Xi1 Xi2 +Xi1Xi2 ⊕Xi3

Xi1Xi2 +Xi1Xi2 ⊕Xi3

Xi1Xi3 +Xi2 ⊕Xi3

Xi1 Xi2 ⊕Xi2 +Xi1Xi2

Xi1 Xi2 ⊕Xi2 +Xi1(Xi2 ⊕Xi3)
Xi1 Xi3 +Xi1(Xi2 ⊕Xi3)
Xi1 Xi3 +Xi1Xi2 ⊕Xi3

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

c

pd
f

c∆ = 5, E[c] = .65
∆ = 10, E[c] = .65
∆ = 15, E[c] = .65
∆ = 20, E[c] = .65
∆ = 25, E[c] = .65

Figure 6.3: An example of probability distribution functions of beta priors for the
class 0 probability c in a 2-input AND logic model for varying ∆. Set p = 0.8 and
thus c = 2p+1

4
= 0.65.
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Table 6.3: Specification of hyperparameters of priors for p using sample data drawn
from the static model in the 2-predictor case

Logic (α0
1, . . . , α

0
4)

AND
(
d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e, d∆(1−p̂)

2p̂+1
e
)

NAND
(
d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d ∆p̂

3−2p̂
e
)

XOR
(
d∆p̂

2
e, d∆(1−p̂)

2
e, d∆(1−p̂)

2
e, d∆p̂

2
e
)

NXOR
(
d∆(1−p̂)

2
e, d∆p̂

2
e, d∆p̂

2
e, d∆(1−p̂)

2
e
)

X1 + X̄2

(
d∆(1−p̂)

3−2p̂
e, d ∆p̂

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e
)

X̄1X2

(
d ∆p̂

2p̂+1
e, d∆(1(1−p̂)

2p̂+1
e, d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e
)

X1X̄2

(
d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e, d∆(1−p̂)

2p̂+1
e, d ∆p̂

2p̂+1
e
)

X2 + X̄1

(
d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d ∆p̂

3−2p̂
e, d∆(1−p̂)

3−2p̂
e
)

OR
(
d ∆p̂

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e
)

NOR
(
d∆(1−p̂)

2p̂+1
e, d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e
)

which, however, can be estimated from sample data drawn from the given logic

model. By using the maximum-likelihood estimation approach, p can be estimated

as a function of sample data, that is, p̂, as shown in eq. (3.21). By substituting p̂

into eqs. (6.31), we can obtain p̂, q̂ and ĉ as a function of p̂. To adjust the shape of

concentration, we multiply p̂, q̂ and ĉ with a factor ∆, and take dp̂1∆e, . . . , dp̂2l∆e,

dq̂1∆e, . . . , dq̂2l∆e and dĉ∆e as the hyperparameter values of these priors. Note

that dxe gives the smallest integer that is not less than x. Here we Tables 6.3–6.5

presents the specification of hyperparameters of priors for p,q and c based on sample

data drawn from the 2-input stochastic logic model. To examine how ∆ affects the

concentration of priors, Figure 6.3 shows the probability distribution of the beta

prior for the class 0 probability c for a varying factor ∆ by considering a 2-input

AND logic model. It is observed that, as the factor ∆ increases, the distribution

tends to center at the true value of c = 0.65. The larger the ∆ is, the lower variance
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Table 6.4: Specification of hyperparameters of priors for q using sample data drawn
from the static model in the 2-predictor case

Logic (α1
1, . . . , α

1
4)

AND
(
d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d ∆p̂

3−2p̂
e
)

NAND
(
d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e, d∆(1−p̂)

2p̂+1
e
)

XOR
(
d∆(1−p̂)

2
e, d∆p̂

2
e, d∆p̂

2
e, d∆(1−p̂)

2
e
)

NXOR
(
d∆p̂

2
e, d∆(1−p̂)

2
e, d∆(1−p̂)

2
e, d∆p̂

2
e
)

X̄1X2

(
d∆(1−p̂)

3−2p̂
e, d ∆p̂

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e
)

X1 + X̄2

(
d ∆p̂

2p̂+1
e, d∆(1−p̂)

2p̂+1
e, d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e
)

X1X̄2

(
d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d ∆p̂

3−2p̂
e, d∆(1−p̂)

3−2p̂
e
)

X2 + X̄1

(
d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e, d∆(1−p̂)

2p̂+1
e, d ∆p̂

2p̂+1
e
)

OR
(
d∆(1−p̂)

2p̂+1
e, d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e, d ∆p̂

2p̂+1
e
)

NOR
(
d ∆p̂

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e, d∆(1−p̂)

3−2p̂
e
)

the prior presents. In our simulations, we set ∆ = 10.

6.5.1.3 Simulation Results

For each number of inputs l, predictive power p, and sample size n, a total of

r = 50 datasets are drawn from each model. After applying the proposed Bayesian

inference procedures, we record the average percentage of correctly-recovered logic

gates and the average percentage of correct predictive variables for each of the three

candidate model sets, as shown in Section 3.4.1.1. Moreover, we compare these re-

sults with those of using the nonparametric and parametric CoD estimators in the

inference procedures in Section 3.4.1.1. Notice that, for the quickness in produc-

ing results, we employ the Monte Carlo sampling method to obtain the Bayesian

MMSE CoD estimates throughout all the simulation studies in this Section and such

approximations have been checked to guarantee good accuracy.
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Table 6.5: Specification of hyperparameters of priors for c using sample data drawn
from the static model in the 2-predictor case

Logic (α, β)

AND
(
d∆(2p̂+1)

4
e, d∆(3−2p̂)

4
e
)

NAND
(
d∆(3−2p̂)

4
e, d∆(2p̂+1)

4
e
)

XOR
(
d∆

2
e, d∆

2
e
)

NXOR
(
d∆

2
e, d∆

2
e
)

X̄1X2

(
d∆(2p̂+1)

4
e, d∆(3−2p̂)

4
e
)

X1 + X̄2

(
d∆(3−2p̂)

4
e, d∆(2p̂+1)

4
e
)

X1X̄2

(
d∆(2p̂+1)

4
e, d∆(3−2p̂)

4
e
)

X2 + X̄1

(
d∆(3−2p̂)

4
e, d∆(2p̂+1)

4
e
)

OR
(
d∆(3−2p̂)

4
e, d∆(2p̂+1)

4
e
)

NOR
(
d∆(2p̂+1)

4
e, d∆(3−2p̂)

4
e
)

Figure 6.4 – 6.7 display the results as a function of sample size, corresponding

to the three candidate model sets F 1
l ⊂ F 2

l ⊂ F 3
l , for l = 2, 3 and p = 0.75, 0.85.

Several observations are made in the following.

� As the sample size increases, the performance of the two Bayesian methods

increases accordingly. Obviously, the more prior knowledge we know, the more

quickly their performance converges to 100%. The same results apply to the

other methods.

� It is observed that, in the 2-predictor case, the performance of the Bayesian-

based inference methods is very close to the ML-based one, and they all beat

the nonparametric methods. As the number of predictors (l) increases (e.g.

l = 3), the performance of the ML-based inference method performs better

than the two Bayesian methods over the sample size.

� We can see in Figures 6.6 and 6.7 that, when l = 2, the parametric ML-based

150



Logic Candidate Set 1 Logic Candidate Set 2 Logic Candidate Set 3

10 20 30 40 50 60

0.
4

0.
6

0.
8

1.
0

sample size

pr
ed

ic
to

r 
re

co
ve

ry
 (

%
)

●

●

●

●

●

● ● ● ●

●

ML F2
1

obc
bayes mmse

resub
loo
cv
bootstrap

10 20 30 40 50 60

0.
4

0.
6

0.
8

1.
0

sample size

pr
ed

ic
to

r 
re

co
ve

ry
 (

%
)

●

●

●

●

●

● ● ● ●

●

ML F2
2

obc
bayes mmse

resub
loo
cv
bootstrap

10 20 30 40 50 60

0.
4

0.
6

0.
8

1.
0

sample size

pr
ed

ic
to

r 
re

co
ve

ry
 (

%
)

●

●

●

●

●

●
●

● ●

●

ML F2
3

obc
bayes mmse

resub
loo
cv
bootstrap

10 20 30 40 50 60

0.
4

0.
6

0.
8

1.
0

sample size

pr
ed

ic
to

r 
re

co
ve

ry
 (

%
)

●

●

●

●

●

●

●

● ●

●

ML F3
1

obc
bayes mmse

resub
loo
cv
bootstrap

10 20 30 40 50 60

0.
4

0.
6

0.
8

1.
0

sample size

pr
ed

ic
to

r 
re

co
ve

ry
 (

%
)

●

●

●

●

●

●

● ●

●

●

ML F3
2

obc
bayes mmse

resub
loo
cv
bootstrap

10 20 30 40 50 60

0.
4

0.
6

0.
8

1.
0

sample size

pr
ed

ic
to

r 
re

co
ve

ry
 (

%
)

●

●

●

●

●

●
●

●

●

●

ML F3
3

obc
bayes mmse

resub
loo
cv
bootstrap

Figure 6.4: Percentage of predictor recovery vs. sample size. Top row: b = 2; Bottom
row: b = 3. Predictive power p is set to be 0.85. The Bayesian MMSE CoD estimator
is approximated by the Monte Carlo sampling method.

inference is superior to that of the Bayesian methods for very small sample size

(e.g., n = 10). As the sample sizes increases, the Bayesian methods start to

outperform the ML-based one only by very little improvement. When l = 3,

the ML approach performs better than the Bayesian approaches, which is more

obvious for a smaller predictive power value p = 0.75.

� We can see that the performance of the Bayesian-based inference methods im-

prove as more prior knowledge is available since the specification of hyperpa-

rameters of priors can take more advantage of the prior knowledge by allowing

the prior distributions to center at true distributions (p,q, c).

� In the case of larger dimensionality of the predictor vector (e.g., l = 3), it
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Figure 6.5: Percentage of predictor recovery vs. sample size. Top row: b = 2; Bottom
row: b = 3. Predictive power p is set to be 0.75. The Bayesian MMSE CoD estimator
is approximated by the Monte Carlo sampling method.

is more obvious that both Bayesian and ML-based approaches are superior

to nonparametric approaches, since the former both take advantage of prior

knowledge about gene regulation.

6.6 Summary

In this paper, we have introduced a Bayesian framework to estimate the CoD in

discrete prediction settings and its applications to inference problems in Genomics.

We have defined two Bayesian CoD estimators, one from a MMSE perspective and

the other based on the optimal Bayesian classifier. We have derived exact analytical

expressions of the Bayesian MMSE CoD estimator that optimizes CoD estimation

with respect to MSE, across a family of target-predictor distributions, and exact

152



Logic Candidate Set 2 Logic Candidate Set 3

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

lo
gi

c 
re

co
ve

ry
 (

%
)

●

●

●

● ●
● ● ● ●

● ML F2
2

obc
bayes mmse

resub

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

lo
gi

c 
re

co
ve

ry
 (

%
)

●

●

●

●

●
●

●
● ●

● ML F2
2

obc
bayes mmse

resub

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

lo
gi

c 
re

co
ve

ry
 (

%
)

●

●

●

●

●
●

● ● ●

● ML F3
2

obc
bayes mmse

resub

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

lo
gi

c 
re

co
ve

ry
 (

%
)

●

●

●

●

●

●
●

●
●

● ML F3
3

obc
bayes mmse

resub

Figure 6.6: Percentage of logic recovery vs. sample size. Top row: b = 2; Bottom
row: b = 3. Predictive power p is set to be 0.85. The Bayesian MMSE CoD estimator
is approximated by the Monte Carlo sampling method.

formulas for the performance metrics (i.e., bias, variance and RMS) of the Bayesian

CoD estimator based on the optimal Bayesian classifier. We have compared the

performance metrics of the two Bayesian CoD estimators against those of resub-

stitution, leave-one-out, bootstrap and cross-validation CoD estimators over all the

distributions and over one specific distribution, by means of Monte Carlo sampling

experiments. Our results demonstrate that the Bayesian MMSE CoD estimator has
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Figure 6.7: Percentage of logic recovery vs. sample size. Top row: b = 2; Bottom
row: b = 3. Predictive power p is set to be 0.75. The Bayesian MMSE CoD estimator
is approximated by the Monte Carlo sampling method.

excellent performance with zero bias and least RMS, when averaged over all distribu-

tions and sample data. According to results with respect to one specific distribution,

we conclude that priors with higher densities around true distributions present better

performance with less RMS.

We have studied the applications of CoD estimation to the inference of gene

regulatory relationships based on sample microarray data, from a frequentist view-
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point [16]. Likewise, we have proposed predictor inference procedures based on

Bayesian CoD estimators for the recovery of both wiring and logic gates of target

and predictor genes of interest. We address the issue of incorporation of prior knowl-

edge in the Bayesian setting by specifying the hyperparameters of priors from sample

data with a possible list of candidate models. Therefore, we have made the unsurpris-

ing observation that the proposed Bayesian procedures give better prediction than

the ones using nonparametric CoD estimators such as resubstitution, leave-one-out,

cross-validation and bootstrap, and present very close results to the ML-based infer-

ence procedures that also allow the inclusion of prior knowledge.
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7. CONCLUSION

In this dissertation, we have presented a comprehensive study of the inference of

the discrete CoD from both frequentist and Bayesian perspectives, with the appli-

cations to the system identification problems in Genomics. In addition, we develop

two promising statistics tools for the detection of multivariate gene regulatory re-

lationships and canalyzing genes of statistical significance, respectively. We make

significant contributions in this dissertation by not only enriching the theoretical

understanding of inference problems of the discrete CoD but also improving the ap-

plications of the CoD to the inference of multivariate gene regulatory relationships

in practice.

First, we define the sample-based nonparametric CoD estimators from a frequen-

tist perspective, and derive exact analytical expressions of performance metrics of the

resubstitution and leave-one-out CoD estimators. Using a parametric Zipf model,

we have compared the exact performance metrics of resubstitution and leave-one-out

between each other and against approximate performance metrics of cross-validation

and bootstrap CoD estimators. Our results indicate that, provided one has evidence

of moderate to tight regulation between the genes, and the number of predictors is

not too large, one should use the CoD estimator based on resubstitution.

Secondly, we have presented a systematic theoretical framework for the inference

of the CoD based upon a parametric maximum-likelihood approach, with its ap-

plications to estimation and system identification for static and dynamical Boolean

models. Inference algorithms are proposed for both static and dynamic cases to

recover gene regulatory relationships (i.e., wiring and logic gates). Analytical and

numerical results show that the parametric ML CoD estimator outperforms the non-
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parametric alternatives when sufficient prior knowledge is available and the system

noise level is not too high. The performance gap is larger for smaller sample sizes

and larger dimensionality of the predictor vectors, in which situations the estimation

via the parametric approach can be ameliorated by the use of prior knowledge. In

addition, as less prior knowledge was available, the performance of the parametric

and nonparametric ML CoD estimators were observed to equalize. This suggests

that, in the no-information case, the NPML estimator (i.e. resubstitution estimator)

would be preferred, due to its low computational complexity.

Thirdly, we have described a rigorous statistical testing framework to investigate

regulatory relationships among genes, by using the discrete Coefficient of Deter-

mination (CoD), and to discover canalyzing genes by using the intrinsically mul-

tivariate prediction (IMP). This marks a significant change in the application of

the CoD to such problems, since thus far its use depended on user-selected thresh-

olds to characterize the presence of significant relationships or canalyzing genes.

Multiple-testing procedures are also described, which make the methodology appli-

cable to large data sets. Furthermore, software that implements the CoD test is

made available to the scientific community as an R codtest package through our web-

site (http://gsp.tamu.edu/Publications/supplementary/ting13a), and the R imptest

package for the IMP test is available at our website (http://gsp.tamu.edu/Publications/

supplementary/ting13c). It is expected that this methodology will be a useful prac-

tical tool for the inference of gene regulatory relationships and canalyzing genes from

gene-expression data.

Finally, we have proposed a Bayesian estimation framework for the inference of

CoD across a parametrized family of joint distributions between target and pre-

dictors, where the prior distribution of the parameters are desired to concentrate

around the true distributions. We have shown that the Bayesian CoD estimator that
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achieves minimum mean-square error between one CoD estimator and the optimal

CoD possesses the best performance when averaged over a given family of distribu-

tions and sample data. We also define another Bayesian CoD estimator based on

the optimal Bayesian classifier, which performs better than the four nonparametric

CoD estimators but worse than the Bayesian MMSE one. Moreover, inference al-

gorithms based on these Bayesian CoD estimators have been developed to recover

the gene regulatory relationships (i.e., wiring and logic gates) by using the discrete

gene-expression data. Results show that the Bayesian inference algorithms are very

comparable to the ML-based algorithms that could take advantage of available prior

knowledge.

In conclusion, this dissertation is intended to serve as foundation for a detailed

study of the application of CoD estimation in Genomics and related fields. An

obvious application is the inference of genomic regulatory networks from sample

microarray data, as discussed here. In addition to that, there are several issues

related to nonlinear prediction in the discrete domain, which can benefit from the

work presented here. Still there are several important problems to be investigated,

as summarized in the following:

� Regarding the maximum-likelihood inference of the discrete CoD in dynam-

ical systems, future investigations should include the extension to suitably-

constrained nonstationary dynamical systems, as well as the comparison to

alternative approaches for small-sample inference of discrete systems, such as

discrete Bayesian networks [40].

� The Bayesian approach to hypothesis testing of the discrete CoD should be

studied to take model uncertainty into account [7, 8, 42]. What also deserves

careful investigation is the parametric model we could use, appropriate pri-
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ors of parameters we could specify for possible closed-form solutions and the

calculation of the Bayes factor for the formulation of one Bayesian test with

its applications to detection of significant gene regulatory relationships in Ge-

nomics problems.
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APPENDIX A

RESULTS ON CONDITIONAL EXPECTATION GIVEN DISJOINT EVENTS

Proposition 7. For a discrete random variable X and disjoint events A and B, we

have

E[X | A ∪B] =
P (A)

P (A) + P (B)
E[X | A] +

P (B)

P (A) + P (B)
E[X | B] . (A.1)

Proof.

E[X | A ∪B] =
∑
x

xP (X = x | A ∪B)

=
∑
x

x
P (A ∪B | X = x)P (X = x)

P (A ∪B)

=
∑
x

x
[P (A | X = x) + P (B | X = x)]P (X = x)

P (A) + P (B)

=
∑
x

x
P (X = x | A)P (A) + P (X = x | B)P (B)

P (A) + P (B)

=
P (A)

P (A) + P (B)

∑
x

xP (X = x | A) +
P (B)

P (A) + P (B)

∑
x

xP (X = x | B)

=
P (A)

P (A) + P (B)
E[X | A] +

P (B)

P (A) + P (B)
E[X | B] .

(A.2)

Q.E.D.
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APPENDIX B

EXPRESSIONS OF BIAS AND VARIANCE OF THE ML COD ESTIMATOR IN

3-INPUT AND LOGIC MODEL

The bias is expressed in the form of

Bias
[
ĈoD

ML

AND3

]
≈

−
(1− p)(1− 2p)γ

[
− γ
n2 + n−1

n2 (P1γ23 + P2γ13 + P3γ12)
]

[1− P1P2P3 − γ − (1− 2P1P2P3 − 2γ)p]2
,

P1P2P3 + γ < 1
2

(1− p)(1− 2p)γ
[
− γ
n2 + n−1

n2 (P1γ23 + P2γ13 + P3γ12)
]

[P1P2P3 + γ + (1− 2P1P2P3 − 2γ)p]2
,

P1P2P3 + γ > 1
2

(B.1)

and the variance is given by

Var[ĈoD
ML

AND3 ] ≈

(P1P2P3+γ)2Var(p̂)
[1−P1P2P3−γ−(1−2P1P2P3−2γ)p]4

+ (1− p)2(1− 2p)2×[
2P1P2P 2

3 Cov(P̂1,P̂2)+2P1P 2
2 P3Cov(P̂1,P̂3)+2P 2

1 P2P3Cov(P̂2,P̂3)

[1−P1P2P3−γ−(1−2P1P2P3−2γ)p]4
+

P 2
2 P

2
3 Var(P̂1)+P 2

1 P
2
3 Var(P̂2)+P 2

1 P
2
2 Var(P̂3)+2P1P2Cov(P̂1,P̂2)

[1−P1P2P3−γ−(1−2P1P2P3−2γ)p]4
+

Var(γ̂)+2P2P3Cov(P̂1,γ̂)+2P1P3Cov(P̂2,γ̂)+2P1P2Cov(P̂3,γ̂)
[1−P1P2P3−γ−(1−2P1P2P3−2γ)p]4

]
, P1P2P3 + γ < 1

2

(P1P2P3+γ−1)2Var(p̂)
[P1P2P3+γ+(1−2P1P2P3−2γ)p]4

+ (1− p)2(1− 2p)2×[
2P1P2P 2

3 Cov(P̂1,P̂2)+2P1P 2
2 P3Cov(P̂1,P̂3)+2P 2

1 P2P3Cov(P̂2,P̂3)

[P1P2P3+γ+(1−2P1P2P3−2γ)p]4
+

P 2
2 P

2
3 Var(P̂1)+P 2

1 P
2
3 Var(P̂2)+P 2

1 P
2
2 Var(P̂3)+2P1P2Cov(P̂1,P̂2)

[P1P2P3+γ+(1−2P1P2P3−2γ)p]4

Var(γ̂)+2P2P3Cov(P̂1,γ̂)+2P1P3Cov(P̂2,γ̂)+2P1P2Cov(P̂3,γ̂)
[P1P2P3+γ+(1−2P1P2P3−2γ)p]4

]
, P1P2P3 + γ > 1

2

(B.2)
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where the ML estimators for the three-input logic model parameters satisfy:

Var[γ̂ij] =
n− 1

n2
PiPj(1− Pi)(1− Pj)+

(n− 1)2

n3
(1− 2Pi)(1− 2Pj)γ −

(n− 1)(n− 2)

n3
γ2
ij,

(B.3)

for i, j ∈ 1, 2, 3 and i < j,

Cov(P̂i, γ̂) =
n− 1

n3
[(n+ 1)γ − (n+ 2)Piγ − (n− 2)(PiPkγij + PiPjγik)−

(Piγjk + Pjγik + Pkγij)− 2γijγik + 2P 2
i γjk

]
,

Cov(γ̂ij, γ̂) =

n− 1

n2
(PiPjPk + P 2

i P
2
j Pk − P 2

i PjPk − PiP 2
j Pk)−

(n− 1)2(n+ 2)

n4
(Piγ + Pjγ)+

n− 1

n4
(Piγjk + Pjγik − (n− 1)Pkγij) +

(n− 1)(n− 2))

n4
(P 2

i γjk + P 2
j γik)+

(n− 1)(3n− 4)

n4
P 2
k γij +

(n− 1)(5n− 8)

n4
(Piγijγjk + Pjγijγik)+

(n− 1)(n− 2)

n4
(PiPjγjk + PiPjγik)−

(n− 1)2(n− 2)

n4
(PjPkγij + PiPkγij)+

(n− 1)(n− 2)2

n4
(PiP

2
j γik + P 2

i Pjγjk) +
4(n− 1)2

n4
PiPjγ +

4(n− 1)3

n4
PiPjPkγij+

(n− 1)2(n+ 1)

n4
γ − (n− 1)(n2 + n− 4)

n4
γijγ −

(n− 1)(n− 2)

n4
(γijγik + γijγjk),

(B.4)

for i, j, k ∈ {1, 2, 3} and i < j (i 6= k, j 6= k) with γij = γji,

Cov(p̂, P̂i) = 0, for i = 1, 2, 3 , Cov(p̂, γ̂) = 0,

Cov(P̂i, P̂j) = γij/n, for i, j ∈ {1, 2, 3} and i < j with γij = γji,

Cov(P̂i, γ̂ij) =
n− 1

n2
(1− 2Pi)γij, for 1 ≤ i < j ≤ 3,

Cov(P̂1, γ̂23) = Cov(P̂2, γ̂13) = Cov(P̂3, γ̂12) =
n− 1

n2
(γ − P1γ23 − P2γ13 − P3γ12) ,

(B.5)
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and we have the variance for γ̂ as given by:

Var[γ̂] =
n2 − 1

n3
P1P2P3 −

n− 1

n2
(P 2

1P
2
2P3 + P 2

1P2P
2
3 + P1P

2
2P

2
3 )−

n− 1

n3
(P 2

1P2P3 + P1P
2
2P3 + P1P2P

2
3 )−

(n− 1)(2n− 1)

n3
P 2

1P
2
2P

2
3 +

(n− 1)(4n3 + 4n2 − 16n+ 8)

n5
P1P2P3γ+

(n− 1)(2n3 − 12n2 + 20n− 8)

n5
(P 2

1P2P3γ23 + P1P
2
2P3γ13 + P1P2P

2
3 γ12)+

(n− 1)(2n2 − 8n+ 4)

n5
(P1P2P3γ12 + P1P2P3γ13 + P1P2P3γ23)+

(n− 1)2(4− 2n2)

n5
(P1P2 + P1P3 + P2P3)γ − 2(n− 1)2(n+ 1)

n5
(P1 + P2 + P3)γ

2(n− 1)2(n− 2)

n5
(P1P

2
2 γ13 + P 2

1P2γ23 + P1P
2
3 γ12 + P 2

1P3γ23 + P2P
2
3 γ12 + P 2

2P3γ13)+

(n− 1)(6n2 − 30n+ 32)

n5
(P1P2γ13γ23 + P1P3γ12γ23 + P2P3γ12γ13)+

2(n− 1)2

n5
(P1P2γ13 + P1P2γ23 + P2P3γ12 + P2P3γ13 + P1P3γ12 + P1P3γ23)+

4(n− 1)(n− 2)

n5
(P1γ13γ23 + P1γ12γ23 + P2γ13γ23 + P2γ12γ13 + P3γ12γ23 + P3γ12γ13)+

(n− 1)(n2 − 9n+ 12)

n5
(P 2

1 γ
2
23 + P 2

2 γ
2
13 + P 2

3 γ
2
12)+

(n− 1)(4n2 + 6n− 16)

n5
(P1γ23 + P2γ13 + P3γ12)γ+

3(n− 1)(n− 2)

n5
(P1γ

2
23 + P2γ

2
13 + P3γ

2
12) +

(n− 1)

n5
(P1γ23 + P2γ13 + P3γ12)+

8(n− 1)(n− 2)

n5
γ12γ13γ23 +

2(n− 1)

n5
(γ12γ13 + γ12γ23 + γ13γ23)−

2(n− 1)(n2 − 2)

n5
(γ12 + γ13 + γ23)γ − (n− 1)(n3 + n2 − n− 4)

n5
γ2+

(n− 1)2(n+ 1)2

n5
γ.

(B.6)

Note that, when P1P2P3 + γ = 1
2
, the CoD is not differentiable, and thus the

asymptotic approximation cannot be made as mentioned in the paper. However, in

this case we could obtain CoDAND3 = 2p − 1, which then gives ĈoD
ML

= 2p̂ − 1.
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Hence, it produces in this case, the exact bias with Bias
[
ĈoD

ML

AND3

]
= 0, for all n,

and the exact variance with Var
[
ĈoD

ML

AND3

]
= 4

n
p(1− p).
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APPENDIX C

ASYMPTOTIC EXPRESSIONS OF BIAS AND VARIANCE OF THE ML COD

ESTIMATOR FOR 10 2-PREDICTOR LOGICS

Table C.1: Formulas for ML CoD estimator and its bias asymptotic approximations
for the five representative two-predictor logic models.

Logic ML CoD Estimator Bias

AND 1− 1−p̂
F [Â+(1−2Â)p̂]

(211−2A>0−1)(1−p)(1−2p)γ

n[1−A+(1−2A)p−11−2A<0]2

Â = P̂1P̂2 + γ̂ A = P1P2 + γ

XOR 1− 1−p̂
F [Â+(1−2Â)p̂]

2(1−211−2A>0(1−p)(1−2p)γ)

n[1−A+(1−2A)p−11−2A<0]2

Â = P̂1 + P̂2 − 2P̂1P̂2 − 2γ̂ A = P1 + P2 − 2P1P2 − 2γ

OR 1− 1−p̂
F [Â+(1−2Â)p̂]

(1−211−2A>0)(1−p)(1−2p)γ

n[1−A+(1−2A)p−11−2A<0]2

Â = P̂1 + P̂2 − P̂1P̂2 − γ̂ A = P1 + P2 − P1P2 − γ
X1X̄2 1− 1−p̂

F [Â+(1−2Â)p̂]

(1−211−2A>0)(1−p)(1−2p)γ

n[1−A+(1−2A)p−11−2A<0]2

Â = P̂1 − P̂1P̂2 − γ̂ A = P1 − P1P2 − γ
X̄1X2 1− 1−p̂

F [Â+(1−2Â)p̂]

(1−211−2A>0)(1−p)(1−2p)γ

n[1−A+(1−2A)p−11−2A<0]2

Â = P̂2 − P̂1P̂2 − γ̂ A = P2 − P1P2 − γ
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APPENDIX D

PROOF OF PROPOSITION 2

Proof of Proposition 2. Using Proposition 1, we know that to test H0 : CoD =

0 vs. H1 : CoD > 0, is equivalent to test

H0 : p = 1/2 or ξ ∈ {0, 1} vs.

H1 : p 6= 1/2 and ξ 6= 0 and ξ 6= 1 ,

(D.1)

where ξ = P (f(X) = 1).

The IUT method is applied here. First we derive a LRT of H01 : p = 1/2 vs. H11 :

p > 1/2. Assuming a stochastic logic model in eq. (1), a level α LRT of H0 : p = 1/2

versus H1 : p > 1/2 can be based on the test statistic

λ(sn) =


[

(1− zn)zn

2(1− zn)zznn

]n
=: g(zn) sn ∈ R2

1, otherwise

(D.2)

where zn =
∑n

i=1 1(f(xi = yi)). When sn ∈ R2, g(zn) is decreasing in zn ∈ [0, 1],

and so that λ(sn) ≤ c is equivalent to zn ≥ k. Since
∑n

i=1 1(f(Xi = Yi)) follows

a Binomial(n,p) distribution, k is the 100(1 − α)% percentile of a Binomial(n,1/2)

distribution, i.e., k is the smallest integer such that
∑

l>k

(
n
l

)
(1/2)n ≤ α.

Secondly, we need to test H02 : ξ = 0 vs. H12 : ξ 6= 0. Note that ξ is a function of

P1, . . . , Pd and γ’s to the order d. The maximum-likelihood estimator of ξ, denoted

as ξ̂, is the function ξ with P1 . . . , Pd and γ’s to the order d replaced by their corre-

sponding ML estimators as given in [20]. We denote ξ̂ =
∑

f(x)=1 P̂ (X = x), where

P̂ (X = x) is also the sample proportion of samples of (X = x). Furthermore, we can
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prove the equivalence between ξ̂ = 0 and f(xi) = 0 for all i ∈ {1, . . . , n} as shown

by:

(a) ξ̂ = 0 =⇒
∑

f(x)=1 P̂ (X = x) = 0 =⇒ f(xi) = 0 for all i ∈ {1, . . . , n};

(b) f(xi) = 0 for all i =⇒ P̂ (X = x) = 0 for any xi satisfying f(xi) = 1 =⇒

ξ̂ = 0.

Thus, we have the LRT statistic formed by

λ(sn) =
supξ=0 L(θ|sn)

supL(θ|sn)

=

 v < 1, f(xi) = 1 for some i

1, f(xi) = 0 for all i
,

(D.3)

Let us choose c = v, the rejection region R2 = {λ(sn) ≤ c} is equivalent to R2 =

{sn|f(xi) = 1 for some i}. The type-I error can be computed by:

βξ=0(φ) = Pξ=0(f(xi) = 1 for some i)

= 1− (1− ξ)n|ξ=0 = 0 < α.

(D.4)

Therefore, the test function φ = 1Sn∈R2 is a level α test here.

Thirdly, we could prove that the test function φ = 1Sn∈R3 is a level α test to test

H03 : ξ = 1 vs. H13 : ξ 6= 1, where R3 = {sn|f(xi) = 0 for some i}.

Lastly, we get the rejection region R of testing H0 : CoD = 0 vs. H1 : CoD > 0

as formed by R = R1 ∩ R2 ∩ R3 according to the IUT theorem, where R2 ∩ R3 is

equivalent to {
sn

∣∣∣∣ ∃ 1 ≤ i, j ≤ n s.t. f(xi) 6= f(xj)

}
. Q.E.D.
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APPENDIX E

PROOF OF PROPOSITION 4

Proof of Proposition 4. We are concerned with testing H0 : IMP = 0 against H1 :

IMP > 0. The null hypothesis can furthermore be written into the equivalent state-

ment via definition of IMP, that is, εY (X) = minZ$X εY (Z). Since predictor X is

the perfect predictor of target Y , εY (Z) ≥ εY (X), for any Z $ X. Suppose the

predictive power of X over Y is p, and then we have εY (X) = 1− p. Hence, for some

T $ X, if εY (T) = εY (X) = 1 − p, then εY (X(2)) is clearly the minimum of εY (Z)

for all Z $ X. Therefore, H0 : IMP = 0 is equivalent to

H0 : εY (X) = εY (V1) or εY(X) = εY(V2) . . . or εY(X) = εY(V2d−2), (E.1)

where V(X) := {V1,V2, . . . ,V2d−2} = P(X)\{{∅}, {X}}, that is, the power set of

X excluding empty set and set X.

Let X(2) be an element in V(X) and X(1) = X\X(2). Assume P (X(2) = x(2)) > 0

for any x(2), and we have

p ≥ P (Y = 1 |X(2) = x(2)) =∑
x(1)∈{0,1}|x(1)| P (X = x) [p · 1(f(x) = 1) + (1− p) · 1(f(x) = 0)]

P (X(2) = x(2))
≥ 1− p.

(E.2)

Since F (x) = min(x, 1− x) is strictly increasing in x ∈ [1− p, 1/2] and decreasing in

x ∈ [1/2, p],

F
[
P (Y = 1 |X(2) = x(2))

]
∈ [1− p, 1/2] (E.3)

.
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Now consider εY (X) = εY (X(2)), for any X(2) ∈ V , and we have

1− p =
∑

X(2)=x(2)

F
[
P (Y = 1 |X(2) = x(2))

]
P (X(2) = x(2))

⇔
∑

X(2)=x(2)

(
F
[
P (Y = 1 |X(2) = x(2))

]
− (1− p)

)
P (X(2) = x(2)) = 0

⇔ F
[
P (Y = 1 |X(2) = x(2))

]
= 1− p, for all x(2) ∈ {0, 1}|x(2)|

⇔ P (Y = 1 |X(2) = x(2)) = 1− p, or P (Y = 1 |X(2) = x(2)) = p,

for all x(2) ∈ {0, 1}|x(2)|

⇔ p = 1/2, or
∑

x(1)∈{0,1}|x(1)|

P (X(1) = x(1),X(2) = x(2))1(f(x) = 1) = 0, or

∑
x(1)∈{0,1}|x(1)|

P (X(1) = x(1),X(2) = x(2))1(f(x) = 0) = 0 ,

for all x(2) ∈ {0, 1}|x(2)| .

(E.4)

Note that the last third expression is derived using eq. (E.3). It is easy to check this

includes results with P (X(2) = x(2)) = 0 for some x(2). Hence, the proposition holds.

Q.E.D.
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APPENDIX F

PROOF OF PROPOSITION 5

Proof of Proposition 5. Using Proposition 1, we know that to test H0 : IMP =

0 vs. H1 : IMP > 0, is equivalent to test

H0 : p = 1/2 or P (X ∈ D1) = 0, . . . , or P (X ∈ Dd∗) = 0 or

P (X ∈ D1) = 1, . . . , or P (X ∈ Dd∗) = 1

vs. H1 : 1 ≥ p > 1/2 and 1 > P (X ∈ D1) > 0, . . . , and 1 > P (X ∈ Dd∗) > 0 .

(F.1)

The IUT method is applied here.

First we derive a LRT of H01 : p = 1/2 vs. H11 : p > 1/2. Assuming a stochastic

logic model in eq. (1), a level α LRT of H0 : p = 1/2 versus H1 : p > 1/2 can be

based on the test statistic

λ(sn) =


[

(1− zn)zn

2(1− zn)zznn

]n
=: g(zn) sn ∈ R2

1, otherwise

(F.2)

where zn =
∑n

i=1 1(f(xi = yi)). When sn ∈ R2, g(zn) is decreasing in zn ∈ [0, 1],

and so that λ(sn) ≤ c is equivalent to zn ≥ K.

Secondly, we need to test H0j : P (X ∈ Dj) = 0 vs. H1j : P(X ∈ Dj) > 0, for any

j ∈ {1, . . . , d∗}. Note that P (X ∈ Dj) is a function of P1, . . . , Pd and γ’s to the order

d. The maximum-likelihood estimator of P (X ∈ Dj), denoted as P̂Dj , is the function

P (X ∈ Dj) with P1 . . . , Pd and γ’s to the order d replaced by their corresponding

ML estimators (that is, frequency estimators for probabilities), and thus we have
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P̂Dj = 1/n
∑n

i=1 1(xi ∈ Dj). Thus, we have the LRT statistic formed by

λ(sn) =
supP (X∈Dj)=0 L(θ|sn)

supL(θ|sn)
=

 0 < 1, xi ∈ Dj for some i

1, xi /∈ Dj for all i
, (F.3)

where λ(sn) = 1 under xi /∈ Dj for all i holds since P̂Dj = 0 ⇔ xi /∈ Dj for all i.

Let us choose c = 1/2, the rejection region R2j = {λ(Sn) ≤ c} is equivalent to

R2j = {sn|xi ∈ Dj for some i}. The type-I error can be computed by:

βP (X∈Dj)=0(φ) = PP (X∈Dj)=0(Xi ∈ Dj for some i)

= 1− (1− P (X ∈ Dj))n|P (X∈Dj)=0 = 0 < α.

(F.4)

Therefore, the test function φj(sn) = 1(sn ∈ Rj) is a level α test here.

Next, similarly we can obtain the rejection regionR3j = {sn|xi ∈ Dj for some i}(j =

1, . . . , d∗) for testing H0j : P (X ∈ Dj) = 0 vs. H1j : P(X ∈ Dj) > 0.

Lastly, we obtain the rejection regionR of testing H0 : IMP = 0 vs. H1 : IMP > 0

as formed by R = R1 ∩ R21 ∩ · · · ∩ R2d∗ ∩ R31 ∩ · · · ∩ R3d∗ . And the test function

φ = 1sn∈R is also a level α test by the IUT theorem. Q.E.D.
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