
PROPERTIES OF SOME INTEGRAL TRANSFORMS ARISING IN

TOMOGRAPHY

A Dissertation

by

SUNGHWAN MOON

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Peter Kuchment
Committee Members, Bryan Applegate

Joe Pasciak
Joe Ward

Head of Department, Emil Straube

December 2013

Major Subject: Mathematics

Copyright 2013 Sunghwan Moon

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/79647622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

This dissertation deals with several types of imaging: radio tomography, sin-

gle scattering optical tomography, photoacoustic tomography, and Compton camera

imaging. Each of these tomographic techniques leads to a Radon-type transform: ra-

dio tomography brings about an elliptical Radon transform, single scattering optical

tomography reduces to the V-line Radon transform, and photoacoustic tomography

with line detectors boils down to a cylindrical Radon transform. We also introduce

a different Radon-type transform arising in photoacoustic tomography with circular

detectors, and study mathematically similar object, a toroidal Radon transform. We

also consider the cone transform arising in Compton camera imaging as well as the

windowed ray transform.

We provide inversion formulas for all these transforms. When given some Radon-

type transform, we are interested not only in inversion formulas, but also in range

conditions, and stability. We thus address range conditions, a stability estimate for

some of the Radon-type transforms above.
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1. INTRODUCTION

Tomography aims to find the internal information of a non-transparent object

by sending some signals through it. Electromagnetic waves of various frequencies

such as radio, microwaves, visual light, X-rays, γ-rays, as well as acoustic waves are

common. Computed tomography obtains an image by mathematical processing of

measured data. In the simplest cases, this amounts to reconstructing a function from

its line or plane integrals. Radon transform, an integral transform that maps a given

function into its integrals over hyperplanes, was introduced in 1917 by J. Radon. In

1938, the X-ray transform, defined by integrating over lines rather than hyperplanes,

was introduced by F. John [39]. This transform is very closely related to the Radon

transform.

Other types of tomography have been introduced that also lead to Radon-type

transforms. For example, thermoacoustic tomography or radar and sonar imaging

leads to a spherical Radon transform which maps a given function onto its integrals

over spheres.

In this dissertation, we consider several of these types of tomography and study

Radon-type transforms modeling them.

This dissertation is organized as follows. Before studying Radon-type transform,

we introduce some basic properties of the Radon transform in subsection 1.1, as we

will need them later. Section 2 is devoted to Radio tomography and an elliptical

Radon transform. We provide not only inversion formulas, but also local uniqueness

and a stability estimate.

In section 3, we study single scattering optical tomography and the V-line Radon

transform on a disk. An inversion formula is derived.
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Photoacoustic Tomography (PAT) with line and circular detectors is considered

in section 4. We obtain inversion formulas, support theorem, a stability estimate, and

range conditions for cylindrical Radon transforms arising in PAT with line detectors.

We suggest a Radon-type transform arising in PAT with circular detectors and study

it.

A toroidal Radon transform is studied in section 5.

Section 6 is devoted to Compton camera imaging and the cone transform arising

in it. Inversion formulas using full data for 2 and 3 dimensional cases are obtained.

We also study some properties of the cone transform with a fixed central axis.

Lastly, the windowed ray transform is studied in section 7.

1.1 Definitions and properties of some integral transforms

In this subsection, we introduce some transforms and study their basic properties

that will be needed later.

Let f(x) belong to the Schwartz class S(Rn), the function space of functions all

of whose derivatives are rapidly decreasing. The Fourier transform of f is defined

as

f̂(ξ) := Ff(ξ) :=
∫
Rn

f(x)e−ix·ξdx, ξ ∈ Rn,

the inverse Fourier transform is

f(x) = F−1f̂(x) :=
1

(2π)n

∫
Rn

f̂(ξ)eix·ξdξ.

The Plancherel theorem claims that for f, g ∈ L1(Rn) ∩ L2(Rn), one has

∫
Rn

f̂(ξ)ĝ(ξ)dξ = 2π

∫
Rn

f(x)g(x)dx. (1.1)
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The Fourier transform extends to a bijection from L2(Rn) to itself.

The Hankel transform of order k of a function f ∈ S(R) is given by

Hkf(η) =

∞∫
0

f(r)Jk(ηr)rdr,

where Jk is the Bessel function of the first kind of order k with k ≤ −1/2. The

inverse Hankel transform of Hkf(η) is defined as

f(r) =

∞∫
0

Hkf(η)Jk(ηr)ηdη.

The version of the Plancherel theorem for the Hankel transform states that

∞∫
0

f(r)g(r)rdr =

∞∫
0

Hkf(η)Hkg(η)ηdη. (1.2)

The Mellin transform M is an integral transform on (0,∞) which is defined

by

Mf(s) :=

∞∫
0

f(x)xs−1dx,

and the inverse Mellin transform M−1 is

M−1f(x) :=
1

2πi

c+i∞∫
c−i∞

x−sf(s)ds.

It is known [25, 70] that

M(xf)(s) = Mf(s+ 1) and M[

∞∫
x

f(t)dt](s) = Mf(s+ 1)/2. (1.3)

3



Also, we have M(f × g)(s) = Mf(s)Mg(s) where

f × g(s) :=

∞∫
0

f(r)g
(s
r

) dr
r
.

One of the most important for computed tomography integral transforms is the

Radon transform, which we denote by R. The Radon transform assigns to a given

function f ∈ S(Rn) its integrals over the hyperplanes, i.e.

Rf(θ, s) =
∫

x·θ=s

f(x)dx for (θ, s) ∈ Sn−1 × R.

The Radon transform has the following properties:

1. The function Rf(θ, s) is even, that is, Rf(θ, s) = Rf(−θ,−s).

2. The Fourier slice theorem states that R̂f(θ, σ) = f̂(σθ) for f ∈ S(Rn).

Here

R̂f(θ, σ) =
∫
R

Rf(θ, s)e−isσds.

3. The following statement is called the support theorem: Let f ∈ S(Rn) and

K be a convex compact set in Rn. If Rf(θ, s) = 0 for every plane x · θ = s not

meeting K, then f = 0 outside K.

4. Let Bn be the unit ball in Rn. For each α, there exist positive constants c(α, n)

and C(α, n) such that for any smooth function f with compact support in Bn,

c(α, n)||f ||α ≤ ||Rf ||α+(n−1)/2 ≤ C(α, n)||f ||α, (1.4)

4



where

||f ||2α =

∫
Rn

(1 + |ξ|2)α|f̂(ξ)|2dξ

and

||g||2α =

∫
Sn−1

∫
R

(1 + σ2)α|ĝ(θ, σ)|2dσdθ,

where ĝ is the Fourier transform of a function g on Sn−1 × R.

5. We have the following inversion formulas: For f ∈ S(Rn) and α < n,

f = 2−1(2π)1−nI−αR#Iα−n+1Rf,

where the Riesz potential Iα is defined by

Îαf(ξ) = |ξ|−αf̂(ξ)

and the backprojection, the dual operator to R, is given by

R#g(x) :=

∫
Sn−1

g(θ, x · θ)dθ.

Here g is a function on Sn−1 × R.

6. Let f ∈ S(Rn). We expanded f and g = Rf in spherical harmonics Ylk, i.e.,

f(x) =
∞∑
l=0

N(n,l)∑
k=0

flk(|x|)Ylk(x/|x|), g(θ, s) =
∞∑
l=0

N(n,l)∑
k=0

glk(s)Ylk(θ),

N(n, l) =
(2l + n− 2)(n+ l − 3)!

l!(n− 2)!
, N(n, 0) = 1.

5



Then we have for s > 0

glk(s) = |Sn−2|
∞∫
s

C
(n−2)/2
l

(s
r

)(
1− s2

r2

)(n−3)/2

flk(r)r
n−2dr,

where C
(n−2)/2
l is the (normalized) Gengenbauer polynomial of degree l and

|Sn| is an surface area of a unit sphere Sn.

From the above relation, one obtains the following inversion formula:

flk(r) = c(n)

∞∫
r

(s2 − r2)(n−3)/2C
(n−2)/2
l

(s
r

)
g
(n−1)
lk (s)ds,

c(n) =
(−1)n−1

2πn/2
Γ((n− 2)/2)

Γ(n− 2)

(1.5)

(for n = 2 one has to take the limit n→ 2, i.e. c(2) = −1/π).

Lastly, the X-ray and divergent beam transforms are defined by

Pf(u, θ) =

∫
R

f(u+ tθ)dt, (u, θ) ∈ Rn × Sn−1,

Df(u, θ) =

∞∫
0

f(u+ tθ)dt, (u, θ) ∈ Rn × Sn−1.

That is, Pf(u, θ) is the integral of f along the line through u ∈ Rn in the direction

of θ ∈ Sn−1 and Df(u, θ) is the integral of f along the half line starting at the point

u ∈ Rn in the direction of θ ∈ Sn−1.
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2. RADIO TOMOGRAPHY AND AN ELLIPTICAL RADON TRANSFORM*

Radon-type transforms that integrate functions over various sets of ellipses/ellipsoids

have been arising in recent decade, due to studies in synthetic aperture radar (SAR)

[4, 14, 44, 45], ultrasound reflection tomography [3, 30], and radio tomography

[75, 76, 77]. In particular, radio tomography is a new imaging method, which uses

a wireless network of radio transmitters and receivers to image the distribution of

attenuation within the network. The usage of radio frequencies brings in significant

non-line-of-sight propagation, since waves propagate along many paths from a trans-

mitter to a receiver. Given a transmitter and a receiver, wave paths observed for

a given duration are all contained in an ellipsoid with foci at these two devices. It

was thus suggested in [75, 76, 77] to approximate the obtained signal by the volume

integral of the attenuation over this ellipsoid, which is the model we study in this

section.

Due to these applications, there have been several papers devoted to such “ellip-

tical Radon transforms.” The family of ellipses with one focus fixed at the origin

and the other one moving along a given line was considered in [45]. In the same pa-

per, the family of ellipses with a fixed focal distance was also studied. The authors

of [3, 30] dealt with the case of circular acquisition, when the two foci of ellipses with

a given focal distance are located on a given circle. A family of ellipses with two

moving foci was also handled in [14].

In all these works, however, the ellipses have varying eccentricity. Also, their

data were the line integrals of the function over ellipses rather than area integrals.

The radio tomography application makes it interesting to consider integrals over solid

*This section is reprinted with permission from “On the determination of a function from an
elliptical Radon transform” by S. Moon, 2013, ArXiv e-prints:1302.4396, Copyright by ArXiv.
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ellipsoids. In this article, we consider the volume integrals of an unknown attenuation

function over the family of ellipsoids of rotation in Rn with a fixed eccentricity and

two foci located in a given hyperplane. We thus reserve the name elliptical Radon

transform REf for the volume integral of a function f over this family of ellipsoids.

The volume integral of a function f(x) over an ellipsoid of the described type is

equal to zero if the function is odd with respect to the chosen hyperplane. If the

hyperplane is given by xn = 0, we thus assume the function f(x) : Rn → R to be

even with respect to xn: f(x
′, xn) = f(x′,−xn) where x = (x′, xn) ∈ Rn−1 × R.

Given a Radon-type transform, one is usually interested, among others, in the

following questions: uniqueness of reconstruction, inversion formulas and algorithms,

and a stability estimate [54, 55]. These are the issues we address below.

This section is organized as follows. The problem is stated precisely in subsec-

tion 2.1. Two inversion formulas are presented in subsections 2.2 and 2.3. An analog

of the Fourier slice theorem is obtained in subsection 2.2 by taking the Fourier trans-

form with respect to the center and a radial Fourier transform with respect to the

half distance between two foci. This theorem plays a critical role in getting a stability

estimate and necessary range conditions. The formula discussed in subsection 2.3

is obtained by taking a Fourier type transform and needs less integration than the

previous one in subsection 2.2. A stability estimate is handled in subsections 2.4.

Subsection 2.5 is devoted to uniqueness for a local data problem. In subsection 2.6,

we provide the result of a 2-dimensional numerical simulation.

2.1 Formulation of the problem

We consider all solid ellipsoids of rotation in Rn with a fixed eccentricity 1/λ,

where λ > 1 and foci located in the hyperplane xn = 0. We will identify this

hyperplane with Rn−1. The set of such ellipsoids depends upon 2n − 2 parameters,

8



which is n − 2 too many. To reduce the overdeterminacy, we require that the focal

axis is parallel to a given line, for instance, the x1 coordinate axis.

Let u ∈ Rn−1 be the center of such an ellipsoid and let t > 0 be the half of the

focal distance. We denote this ellipsoid by Eu,t. Then, the foci are

c1 = (u1 + t, u2, · · · , un−1, 0) and c2 = (u1 − t, u2, · · · , un−1, 0)

and the points x ∈ Eu,t are described as follows:

(x1 − u1)
2

λ2
+

(x2 − u2)
2

λ2 − 1
+ · · ·+ x2n

λ2 − 1
≤ t2.

To shorten the formulas, we are going to use the following notation:

ν :=
√
λ2 − 1.

The elliptical Radon transform RE maps a locally integrable function f(x) into its

integrals over the solid ellipsoids Eu,t for all u ∈ Rn−1 and t > 0:

REf(u, t) =

∫
Eu,t

f(x)dx.

Our goals are to reconstruct f from REf and to study properties of this transform.

2.2 Inversion of the elliptical Radon transform

In this subsection, we assume f ∈ C∞
c (Rn), i.e., f is a smooth function with a

compact support. Here is our strategy. First of all, we change the ellipsoid volume

integral to the ellipsoid surface integral, differentiating with respect to t. Second, we

take the Fourier transform of this derivative of REf with respect to u. Next, taking

9



a radial Fourier transform with respect to t, we obtain an analog of the Fourier slice

theorem.

We introduce a back projection operator R∗
E for g(u, t) ∈ C∞

c (Rn−1 × R+) as

R∗
Eg(x) =

∫
Rn−1

g

(
u,

√
|u1 − x1|2

λ2
+

|ũ− x̃|2
ν2

+
x2n
ν2

)
du. (2.1)

In fact, R∗
Eg(x) is the dual transform not to REf(u, t), but rather to ∂

∂t
REf(u, t),

i.e.,
∞∫
0

∫
Rn−1

∂

∂t
REf(u, t)g(u, t)dudt = C(λ)

∫
Rn

f(x)R∗
Eg(x)dx. (2.2)

Let χS denote the characteristic function of a set S ⊂ Rn:

χS(x) =

 1, if x ∈ S,

0, otherwise.

Then the elliptical Radon transform can be written as

REf(u, t) =

∫
Rn

χEu,tf(x)dx = C(λ)

∫
Rn

χ|x|<tf(λx1 + u1, νx̃+ ũ, νxn)dx

= C(λ)

t∫
0

rn−1

∫
Sn−1

f(λry1 + u1, νrỹ + ũ, rνyn)dσ(y)dr,

(2.3)

where u = (u1, ũ) ∈ Rn−1, x = (x1, x̃, xn) ∈ Rn, C(λ) = λνn−1 is the Jacobian factor,

and σ(y) is the surface measure on Sn−1.

Formula (2.3) can be simplified by differentiation with respect to t and division

10



by tn−1, which yield

1

tn−1

∂

∂t
REf(u, t) = C(λ)

∫
|y|=1

f(λty1 + u1, νtỹ + ũ, tνyn)dσ(y)

= 2C(λ)

∫
|y′|≤1

f(u+ (tλy1, tνỹ), tν
√

1− |y′|2) dy′√
1− |y′|2

,
(2.4)

where y′ = (y1, ỹ) ∈ Rn−1.

It is easy to check that RE is invariant under the shift with respect to the first

n− 1 variables. That is, if fa(x) := f(x′ + a, xn) for x = (x′, xn) ∈ Rn and a ∈ Rn−1,

we have

(REfa)(u, t) = (REf)(u+ a, t).

Thus, application of the (n − 1)-dimensional Fourier transform with respect to the

center u seems reasonable. Doing this and changing the variable y′ ∈ Rn−1 to the

polar coordinates (θ, s) ∈ Sn−1 × [0,∞), we get

1

tn−1

∂

∂t
R̂Ef(ξ

′, t) = 2C(λ)

1∫
0

sn−2

√
1− s2

f̂(ξ′, tν
√
1− s2)

∫
Sn−2

eits(λθ1,νθ̃)·ξ
′
dθds,

where f̂ and R̂Ef are the Fourier transforms of f and REf with respect to the first

n− 1 coordinates x′ of x and u of (u, t), respectively, and θ = (θ1, θ̃) ∈ Sn−2.

To compute the inner integral, we use the identity [7, 21]

∫
Sn−1

eiξ·θdθ = (2π)n/2|ξ|(2−n)/2J(n−2)/2(|ξ|). (2.5)

11



We thus get

1

tn−1

∂

∂t
R̂Ef

(
ξ1
λ
,
ξ̃

ν
, t

)

= ωn

1∫
0

sn−2

√
1− s2

f̂

(
ξ1
λ
,
ξ̃

ν
, tν

√
1− s2

)
(ts|ξ′|)(3−n)/2J(n−3)/2(ts|ξ′|)ds,

where ωn = 2(2π)(n−1)/2C(λ).

This enables us to get an analog of the Fourier slice Theorem.

Theorem 2.2.1. For a function f ∈ C∞
c (Rn) that is even with respect to xn, the

following formula holds:

f̂(ξ) =
|(λξ1, νξ̃, νξn)|n−2|νξn|

2n+1πnC(λ)2
F
(
R∗
E

1

tn−1

∂

∂t
REf

)
(ξ), (2.6)

where Ff is the n-dimensional Fourier transform of f .

Proof. Let us denote the radial Fourier transform by Fnf(ρ), i.e.,

Fnf(ρ) := ρ1−n/2
∞∫
0

tn/2J(n−2)/2(tρ)f(t)dt. (2.7)

We recall that if f is a radial function on Rn, then the Fourier transform f̂ of f is also

radial and f̂ = (2π)n/2Fnf0 where f0(|x|) = f(x) (cf. [68]). Taking this transform of

1
tn−1

∂
∂t
R̂Ef as a function of t, we have for ξ = (ξ1, ξ̃) = ξ′ ∈ Rn−1,

Fn

(
1

tn−1

∂

∂t
R̂Ef

)(
ξ1
λ
,
ξ̃

ν
, ρ

)

= ωnρ
1−n/2

∞∫
0

1∫
0

t
n
2 Jn−2

2
(tρ)(s|ξ′|)

3−n
2 Jn−3

2
(ts|ξ′|)f̂

(
ξ1
λ
,
ξ̃

ν
, tν

√
1− s2

)
sn−2dsdt√
1− s2

.

(2.8)
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It is known [20, p. 59 (18) vol.2 or for n = 2, p.55 (35) vol.1] that for a > 0, β > 0,

and, µ > ν > −1,

∞∫
0

xν+1/2(x2 + β2)−1/2µJµ(a(x
2 + β2)1/2)Jν(xy)(xy)

1/2dx

=

 a−µyν+1/2β−µ+ν+1(a2 − y2)1/2µ−1/2ν−1/2Jµ−ν−1(β(a
2 − y2)1/2) if 0 < y < a,

0 if a < y <∞.

(2.9)

To use the above identity, we make the change of variables (s, t) → (x, β), where

t =
√
x2 + β2 and s = x/

√
x2 + β2 in (2.8), which gives

Fn

(
1

tn−1

∂

∂t
R̂Ef

)(
ξ1
λ
,
ξ̃

ν
, ρ

)

= ωnρ
2−n
2 |ξ′| 3−n

2

∞∫
0

∞∫
0

|x|Jn−2
2
(ρ(x2 + β2)

1
2 )(x2 + β2)−

n−2
4 Jn−3

2
(x|ξ′|)f̂

(
ξ1
λ
,
ξ̃

ν
, νβ

)
dxdβ

=


C(λ)

2n/2+1πn/2ρ2−n√
ρ2 − |ξ′|2

∞∫
0

f̂

(
ξ1
λ
,
ξ̃

ν
, βν

)
cos(β

√
ρ2 − |ξ′|2)dβ if |ξ′| < ρ,

0 otherwise.

(2.10)

Substituting ρ = |ξ| yields

Fn

(
1

tn−1

∂

∂t
R̂Ef

)(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
= C(λ)

2n/2+1πn/2|ξ|2−n

|ξn|

∞∫
0

f̂

(
ξ1
λ
,
ξ̃

ν
, βν

)
cos(ξnβ)dβ.

Since f is even in xn, the last integral is the Fourier transform of f with respect to

x− n, so we get

Fn

(
1

tn−1

∂

∂t
R̂Ef

)(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
=

2n/2+1πn/2|ξ|2−n

|ξn|
λνn−2f̂

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)
. (2.11)
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Taking the Fourier transform of R∗
Eg with respect to x yields

R̂∗
Eg

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)
=

∫
Rn

e
−ix·

(
ξ1
λ
, ξ̃
ν
, ξn
ν

)
R∗
Eg(x)dx

=

∫
Rn

e
−ix·

(
ξ1
λ
, ξ̃
ν
, ξn
ν

) ∫
Rn−1

g

(
u,

√
|u1 − x1|2

λ2
+

|ũ− x̃|2
ν2

+
x2n
ν2

)
dudx

=

∫
Rn−1

e
−iu·

(
ξ1
λ
, ξ̃
ν

) ∫
Rn

e
−i(x′−u,xn)·

(
ξ1
λ
, ξ̃
ν
, ξn
ν

)
g

(
u,

√
|u1 − x1|2

λ2
+

|ũ− x̃|2
ν2

+
x2n
ν2

)
dxdu

= C(λ)

∫
Rn−1

e
−iu·

(
ξ1
λ
, ξ̃
ν

) ∫
Rn

e−ix·ξg(u, |x|)dxdu

= (2π)n/2C(λ)

∫
Rn−1

e
−iu·

(
ξ1
λ
, ξ̃
ν

)
(Fng(u, ·))(|ξ|)du

= (2π)n/2C(λ)Fnĝ

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
,

(2.12)

where x = (x′, xn) = (x1, x̃, xn) ∈ Rn, u = (u1, x̃) ∈ Rn−1 and ξ = (ξ′, ξn) =

(ξ1, ξ̃, ξn) ∈ Rn. Combining (2.11) and (2.12), we get (2.6).

Remark 2.2.1. Theorem 2.2.1 leads naturally to a Fourier type inversion formula

for even functions, if one supplements (2.6) with the inverse Fourier transform.

One can also obtain a useful relation with convolution.

Proposition 2.2.1. Let ϕ ∈ C∞
c (Rn−1 × [0,∞)) and f ∈ C∞

c (Rn) be even in xn. If

ψ = R∗
Eϕ and g = 1

tn−1
∂
∂t
REf . Then we have

g ∗ ϕ =
(2π)n/2

C(λ)tn−1

∂

∂t
RE(f ∗ ψ),

where

g ∗ ϕ(u, |ω|) =
∫
Rn

∫
Rn−1

g(u− u′, |ω − ω′|)ϕ(u′, |ω′|)du′dω′.
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Proof. Note that since (2π)n/2Fnf0 = f̂ for a radial function f on Rn and f0(|x|) =

f(x), we get Fn(f ∗ g) = (2π)n/2FnfFng. Taking the Fourier transform of g ∗ ϕ with

respect to u and Fn with respect to t, we get

Fnĝ ∗ ϕ

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
= (2π)n/2Fnĝ

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
Fnϕ̂

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)

=
(2π)n

C(λ)
Fnĝ

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
ψ̂

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)
.

In the last line we used (2.12). Equation (2.11) implies

Fnĝ ∗ ϕ

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
=

23n/2+1π3n/2|ξ|2−nνn−2λ

C(λ)|ξn|
f̂

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)
ψ̂

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)

=
23n/2+1π3n/2|ξ|2−nνn−2λ

C(λ)|ξn|
f̂ ∗ ϕ

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)

=
(2π)n

C(λ)
Fn

(
1

tn−1

∂

∂t
RE f̂ ∗ ϕ

)(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
,

which proves our assertion.

2.3 A different inversion method

In this subsection, we provide a different inversion formula for the elliptical Radon

transform. To obtain this formula, we start to take a transform, which is like the

Fourier transform, but with kernel eiωt
2
instead of eiωt, of the derivative of REf in t.

To get the Fourier transform of f from this transform, we change variables.
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We start from (2.4). Let us define

G(u,w) :=

∞∫
0

∂

∂t
REf(u, t)e

iwt2dt

= C(λ)

∞∫
0

tn−1

∫
|y|=1

f(λty1 + u1, νtỹ + ũ, tνyn)e
iwt2dσ(y)dt

= C(λ)

∫
Rn−1

f(λy1 + u1, νỹ + ũ, νyn)e
iw|y|2dy,

where in the last equality we switched from polar to Cartesian coordinates.

Theorem 2.3.1. Let f ∈ C∞
c (Rn) with f(x′, xn) = f(x′,−xn). Then we have

f(x) =
xn

(2π)nC(λ)2

∫
Rn

e−i
|α|2
4γ eiα·(

x1
λ
, x̃
ν )e

−iγ
(

x21
λ2

+
|x̃|2

ν2
+

x2n
ν2

)
G

(
α1λ

2γ
,
α′ν

2γ
, γ

)
dαdγ,

for xn > 0, where C(λ) = λνn−1, as before.

Proof. Making the change of variables x1 = λty1+u1, x̃ = νtỹ+ ũ, xn = tνyn, we get

G(u,w) =

∫
Rn

f(x)e
iw

(
(x1−u)2

λ2
+

|x̃−ũ|2

ν2
+

x2n
ν2

)
dx

= eiw
u2

λ2 eiw
|ũ|2

ν2

∫
Rn

f(x)e
iw

(
x21
λ2

+
|x̃|2

ν2
+

x2n
ν2

)
e−2iwu1

x1
λ2 e−2iw ũ·x̃

ν2 dx,

where x = (x1, x̃, xn) and u = (u1, ũ) ∈ Rn−1. Next, make the change of variables

x1 =
x1
λ
, x̃ =

x̃

ν
, and r =

x2

λ2
+

|x̃|2

ν2
+
x2n
ν2
,

so that

x1 = x1λ, x̃ = x̃ν, and xn = ν
√
r − x21 − |x̃|2.
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The Jacobian of this transformation is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 · · · 0

0 ν · · · 0

...
...

. . .
...

−x1ν

2
√
r−x21−x̃2

−x̃ν

2
√
r−x21−|x̃|2

· · · ν

2
√
r−x21−|x̃|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

C(λ)

2
√
r − x21 − |x̃|2

so that

dx =
C(λ)

2
√
r − x21 − |x̃|2

dx1dx̃dr.

Let the function k(x, x̃, r) be defined by

k(x, x̃, r) =


f(λx1, νx̃, ν

√
r − x21 − |x̃|2)

2
√
r − x21 − |x̃|2

0 < |x1|2 + |x̃|2 < r,

0 otherwise.

Since f is even in xn, it is sufficient to consider the positive root of
√
r − x21 − |x̃|2.

Then we can rewrite G(u,w) as

G(u,w) = C(λ)eiw
u21
λ2 eiw

|ũ|2

ν2

∫
Rn

k(x1, x̃, r)e
iwre−2i

wx1u
λ e−2iwx̃·ũ

ν dx1dx̃dr

= C(λ)eiw
u21
λ2 eiw

|ũ|2

ν2 K

(
2
wu1
λ
, 2
wũ

ν
,−w

)
,

where for α = (α1, α
′) ∈ R× Rn−2,

K(α, γ) =

∫
Rn

e−iα·(x1,x̃)e−iγrk(x1, x̃, r)dx1dx̃dr

=
1

C(λ)
ei

|α|2
4γ G

(
−α1λ

2γ
,
−α′ν

2γ
,−γ

)
.

17



Since k(x, x̃, r) is

1

(2π)n

∫
Rn

eiα1x1eiα
′·x̃eiγrK(α, γ)dαdγ,

we get for xn > 0,

f(x) =
xn
C(λ)

k

(
x1
λ
,
x̃

ν
,
x21
λ2

+
|x̃|2

ν2
+
x2n
ν2

)
=

xn
(2π)nC(λ)

∫
Rn

eiα1
x1
λ eiα

′· x̃
ν e

iγ

(
x21
λ2

+
|x̃|2

ν2
+

x2n
ν2

)
K(α, γ)dαdγ

=
xn

(2π)nC(λ)2

∫
Rn

e−i
|α|2
4γ eiα·(

x1
λ
, x̃
ν )e

−iγ
(

x21
λ2

+
|x̃|2

ν2
+

x2n
ν2

)
G

(
α1λ

2γ
,
α′ν

2γ
, γ

)
dαdγ.

(2.13)

2.4 A stability estimate

In this subsection, we obtain a stability estimate for the elliptical Radon trans-

form. Let Hγ(Rn) be the regular Sobolev space with a norm

||f ||2γ :=
∫
Rn

|f̂(ξ)|2(1 + |ξ|2)γdξ.

Let us define Hγ
e (Rn) = {f ∈ Hγ(Rn) : f is even in xn} and let L2

n−1(Rn−1 × [0,∞))

be the set of a function g on Rn−1 × [0,∞) with

||g||2 :=
∫

Rn−1

∞∫
0

|g(u, t)|2tn−1dtdu <∞.
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Then L2
n−1(Rn−1 × [0,∞)) is the Hilbert space. Also, by the Plancherel formula, we

have ||g|| = (2π)2n−1||g̃||, where

g̃(ξ, |ζ|) =
∫

Rn−1

∫
Rn

g(u, |w|)e−i(u,w)·(ξ,ζ)dpdw.

Let Hγ(Rn−1× [0,∞)) be the set of a function g ∈ L2
n−1(Rn−1× [0,∞)) with ||g||γ <

∞, where

||g||2γ :=
∫

Rn−1

∞∫
0

|g̃(ξ′, η)|2(1 + |ξ′|2 + |η|2)γηn−1dηdξ′.

Theorem 2.4.1. For γ ≥ 0, there is a constant Cn such that f ∈ Hγ
e (Rn),

||f ||γ ≤ Cn||t1−n∂tREf ||γ+(n−1)/2.

Proof. Let g = t1−n∂tREf . Note that from (2.12), we have

R̂∗
Eg

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)
= C(λ)

∫
Rn−1

e
−iu·

(
ξ1
λ
, ξ̃
ν

) ∫
Rn

e−ix·ξg(u, |x|)dxdu = C(λ)g̃

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
.

(2.14)

Combining this equation and Theorem 2.2.1, we have

f̂(ξ) =
|(λξ1, νξ̃, νξn)|n−2|νξn|

2n+1πnC(λ)
g̃
(
ξ1, ξ̃, |(λξ1, νξ̃, νξn)|

)
.
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Hence, we have

||f ||2γ =
∫
Rn

(1 + |ξ|2)γ|f̂(ξ)|2dξ

=
1

22n+2π2nC(λ)2

∫
Rn

|(λξ1, νξ̃, νξn)|2n−4|νξn|2(1 + |ξ|2)γ|g̃(ξ1, ξ̃, |(λξ1, νξ̃, νξn)|)|2dξ

≤ Cn

∫
Rn

|(λξ1, νξ̃, νξn)|2n−4|νξn|2(1 + |(λξ1, νξ̃, νξn)|2)γ|g̃(ξ1, ξ̃, |(λξ1, νξ̃, νξn)|)|2dξ

≤ Cn

∫
Rn−2

∫
R

∞∫
0

(η2 − λ2ξ21 − ν2|ξ̃|2)
1
2η2n−3(1 + η2)γ|g̃(ξ1, ξ̃, η)|2dηdξ1dξ̃.

In the last line, we change the variable ξn to η = |(λξ1, νξ̃, νξn)|.

2.5 Uniqueness for the local problem

Theorem 2.2.1 implies that an even function f ∈ C∞
c (Rn) is uniquely determined

by REf . The question arises if f is uniquely determined by some partial information.

Theorem 2.5.1. Let u0 ∈ Rn−1, ϵ > 0, and T > 0 be arbitrary. Let f ∈ C∞
c (Rn) be

even in xn and suppose g = REf is equal to zero on the open set

UT,ϵ = {(u, t) ∈ Rn−1 × [0,∞) : |u− u0| < ϵ, 0 ≤ t < T} (cf. Figure 2.1).

Then f equals zero on the open set

VT =

{
x ∈ Rn :

(x1 − u01)
2

λ2
+

(x̃− ũ0)2

ν2
+
x2n
ν2

< T 2

}
.

Here x = (x1, x̃, xn) ∈ Rn and u0 = (u01, ũ
0) ∈ Rn−1. Also, g is equal to zero on the

open cone

WT = {(u, t) ∈ Rn−1 × [0, T ) : |u− u0|+ t < T}.
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u0

,T

Eu,tEu’,t’

x1

x2

Eu0

Figure 2.1: Ellipses Eu0,T , Eu,t, Eu′,t′ when n = 2

Proof. Without loss of generality, we may assume u0 = 0. Let f ∈ C∞(Rn). Clearly,

g is also differentiable. Differentiating REf(u, t) with respect to ui yields

∂

∂ui
REf(u, t) = C(λ)

∫
Rn

χ|x|<t
∂

∂ui
f(λx1 + u1, νx̃+ ũ, νxn)dx

= C(λ)
1

t

∫
|x|=t

xi
∂

∂xi
f(λx1 + u1, νx̃+ ũ, νxn)dx.

Here we used (2.3) and the divergence theorem. Using (2.4), we get

∂

∂t
RE(xif)(u, t) = C(λ)

∫
|x|=t

(νxi + ui)f(λx1 + u1, νx̃+ ũ, νxn)dσ(x)

= C(λ)

(
tν

∂

∂ui
g(u, t) + ui

∂

∂t
g(u, t)

)
.

Let the linear operator Di be defined by Dig(u, t) = C(λ)(tν∂uig(u, t) + ui∂tg(u, t)).

Then ∂
∂t
RE(xif)(u, t) is Dig(u, t). By iteration, we obtain ∂

∂t
RE(p(x

′)f) = p(D)g

where p is an n− 1-variable polynomial. If g is zero in UT,ϵ, then p(D)g is also zero
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in UT,ϵ. Then we have for any point (u, t) ∈ UT,ϵ,

∂

∂t
RE(p(x

′)f)(u, t) = C(λ)

∫
|x|=t

p(λx1 + u1, νx̃+ ũ)f(λx1 + u1, νx̃+ ũ, νxn)dσ(x)

= C(λ)

∫
|y|<t

p(u+ (λy1, νỹ))f(u+ (λy1, νỹ), ν
√
t2 − |y|2) dy√

t2 − |y|

= 0.

For fixed u and t, choose a sequence of polynomials such that pi(u + (λy1, νỹ))

converge to f(u+(λy1, νỹ, ν
√
t2 − |y|2)) uniformly for |y| ≤ t and y = (y1, ỹ) ∈ Rn−1.

It follows that f = 0 in VT and that g = 0 in WT .

2.6 Two dimensional numerical implementation

In this subsection, we illustrate our inversion procedure with numerical example.

From (2.6), we have the following reconstruction formula:

f(x) =
1

2πλ2ν

∫
R2

|ξ2|F
(
R∗
E

1

t

∂

∂t
REf

)
(ξ)eiξ·xdξ.

Our algorithm results from the straightforward discretization of the above formula.

We set an eccentricity 1/λ = 10/11, i.e., λ = 1.1. In figure 2.2, there are the 28 × 28

images. The formula (2.4) is approximated by the forward Euler method

∂

∂t
REf(u, t) ≈

REf(u, t+∆t)−REf(u, t)

∆t
,

where ∆t is the discretization step. Our phantom function, supported within the

square with side length 2, is the sum of characteristic functions of six disks. Since it

has to be even in x2 and there are three characteristic functions of disks with radii

0.2, 0.25 and 0.3 above the x1-axis, we also include their reflection below the x1-axis.
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Figure 2.2: Two dimensional numerical implementation: (a) the phantom and (b)
reconstruction (λ = 1.1)

We compute REf(u, t) for u ranging from −128 to 128, and t ranging from 0 to 2571

with the discretization step ∆t = 257/N , where N is 211 as the number of taken

samples. These measurements were used to produce the reconstruction in figure 2.2

(b).

1To implement a back projection (2.1) properly, the range of t should have a little wider than
that of u.

23



3. SINGLE SCATTERING OPTICAL TOMOGRAPHY AND THE V-LINE

RADON TRANSFORM∗

Optical tomography uses measurements of light transmitted and scattered in

the body to produce images of its interior. Under certain reasonable assumptions

(e.g. when the optical thickness of the body part is small), one can assume that the

light photons scatter at most once inside the body [26, 27, 28]. Hence they travel

along piecewise-linear trajectories (broken rays) on their paths from the emitters

to the receivers. Using angularly focused emitters and receivers in the plane, one

can measure the change of light intensity along various broken rays, and then utilize

this information to recover the spatially variable coefficients of light absorption and

scattering. The latter functions are then used to create images of 2D slices of the

body, which are then stacked together to generate a full 3D image of the interior. This

technique is called single-scattering optical tomography (SSOT). Mathematically,

the image reconstruction problem in SSOT requires inversion of the V-line Radon

transform (VRT) integrating a function of two variables along broken rays, which

look like V-shaped piecewise linear trajectories (hence the name) [26, 27, 28].

Subsection 3.1 is devoted to definition of V-line Radon transform. Inversion

formula is presented in subsection 3.2. Also, we provide some remarks and comments

in subsection 3.3.

3.1 V-line Radon transform

Let the function f(x, y) be defined inside the disc D(0, R) of radius R centered at

the origin and let θ ∈ (0, π/2) be a fixed angle. Denote by BR(β, t) the broken ray

*This section is reprinted with permission from “A series formula for inversion of the V-line
Radon transform in a disc” by G. Ambartsoumain and S. Moon, to appear in Computers and
Mathematics with Application, Copyright by Elsevier Inc.
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that emanates from the point A(β) = (R cos β, R sin β) on the boundary of D(0, R),

travels the distance d = R− t along the diameter (i.e. normally to the boundary) to

point B(β, t), then breaks into another ray under the obtuse angle π − θ arriving at

point C(β, t) (see Figures 3.1, 3.2).

The V-line Radon transform of function f is the integral

V Rf(β, t) =

∫
BR(β,t)

f ds, β ∈ [0, 2π], t ∈ [0, R],

of f(x, y) along the broken ray BR(β, t) with respect to linear measure ds.

In the circular setup of SSOT the point A(β) corresponds to the location of the

light source, the points Cj = C(β, tj) correspond to the locations of (an array of)

receivers, and Bj = B(β, tj) are the scattering points. After making the measure-

ments for all possible angles β ∈ [0, 2π] of the emitter of normally incident beams

and all scattering distances t ∈ [0, R], one obtains a two-dimensional family of V Rf

data. The problem of image reconstruction in SSOT then requires inverting V Rf ,

i.e. finding f(x, y) from the measured data V Rf(β, t).

3.2 Inversion of the VRT

In a remark in [2] an approach to inverting the VRT was mentioned that utilizes

the fact that our transform integrates along a rotationally invariant family of broken

rays. Such strategy has been successfully used in the past for inversion of other

generalized Radon transforms (e.g. see [5, 54, 55]). The main idea of this approach

is based on the fact that the rotational invariance should allow one to diagonalize the

VRT when passing to the “basis of exponentials”. In other words, when the unknown

function f is presented in polar coordinates and then expanded to a Fourier series

with respect to the polar angle, its n-th Fourier coefficient should depend only on the
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Figure 3.1: A sketch of the SSOT setup in circular geometry. A(β) corresponds to
the location of the light source, the points Cj = C(β, tj) correspond to the locations
of (an array of) receivers, and Bj = B(β, tj) are the scattering points, where tj is
the distance from the breaking point to the origin. Our method uses data only from
the rays that scatter before they reach the center of the disc.
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Figure 3.2: A sketch of the domain and the notations. Here R is the fixed radius of
the circular trajectory of the emitter and receivers, θ is the fixed scattering angle, β
is the polar angle of the emitter, d is the distance traveled by the ray before breaking
(scattering), t = R − d, and the broken-rays are parameterized using the ordered
pair (β, t).
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n-th Fourier coefficient of V Rf expanded into Fourier series with respect to its own

angular variable. As a result, the problem should reduce to an Abel-type integral

equation with a special function kernel, which can be either solved explicitly, or

through an iterative procedure. In this subsection we present a detailed exposition

of this strategy and state the main results.

For brevity let us denote g(β, t) := V Rf(β, t), and let f(ϕ, ρ) be the image

function in polar coordinates. Then the Fourier series of f(ϕ, ρ) and g(β, t) with

respect to their angular variables can be written as follows

f(ϕ, ρ) =
∞∑

n=−∞

fn(ρ) e
inϕ, g(β, t) =

∞∑
n=−∞

gn(t) e
inβ,

where the Fourier coefficients are given by

fn(ρ) =
1

2π

2π∫
0

f(ϕ, ρ) e−inϕdϕ, gn(t) =
1

2π

2π∫
0

g(β, t) e−inβdβ.

Using the rotation invariance of V Rf (see Figure 3.2), we get

g(β, t) =

∫
BR(β,t)

f(ϕ, ρ)ds =

∫
BR(0,t)

f(ϕ+ β, ρ)ds =
∞∑

n=−∞

∫
BR(0,t)

fn(ρ)e
in(ϕ+β)ds.

Hence, we obtain the following relation between the Fourier coefficients of two func-

tions:

gn(t) =

∫
BR(0,t)

fn(ρ) e
inϕds =

R∫
t

fn(ρ) dρ+

∫
L

fn(ρ) e
inϕdl (3.1)

where dl is the length measure along the line interval L := {(x, y) : y = (x −

t) tan θ, y < 0, x2 + y2 < R2}.
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Theorem 3.2.1. Let f be supported in the disk D(0, R). Then we have

Mfn(s) =
Mgn(s− 1)

1/(s− 1) +Mhn(s− 1)
, ℜ(s) > 1 (3.2)

where MF denotes the Mellin transform of function F and the function hn is defined

piecewise as

hn(t) = (−1)n+1einψ(t)
1 + t cos[ψ(t)] + t2 sin[ψ(t)] sin θ√

1−t2 sin2 θ√
1 + t2 + 2t cos(ψ(t))

+ein[2θ−ψ(t)]
1− t cos[2θ − ψ(t)] + t2 sin[2θ − ψ(t)] sin θ√

1−t2 sin2 θ√
1 + t2 − 2t cos[2θ − ψ(t)]

, if 1 < t <
1

sin θ
,

hn(t) = (−1)n+1einψ(t)
1 + t cos[ψ(t)] + t2 sin[ψ(t)] sin θ√

1−t2 sin2 θ√
1 + t2 + 2t cos[ψ(t)]

, if 0 < t ≤ 1,

and

hn(t) ≡ 0, for all t >
1

sin θ
.

Here ψ(t) = arcsin(t sin θ) + θ.

Proof. Consider two subintervals L1 and L2 of interval L (see Figure 3.2). L1 :=

{(x, y) : y = (x − t) tan θ, t sin2 θ ≤ x ≤ t} and L2 := {(x, y) : y = (x −

t) tan θ, −∞ < x < t sin2 θ}. Let us find explicit formulas of the dependence

ϕ(ρ) of polar angle from polar radius for a point (x, y) moving along L1 and L2. For

that consider the law of sines inside the triangle having vertices at the origin, (t, 0),

and (x, y) (see Figure 3.2 for all notations used here and below).

If (x, y) is located in L1, then the angle at that point ψ0 = π − arcsin
(
t
ρ
sin θ

)
since ψ0 is obtuse. Thus, on L1 the polar angle is ϕ = 2θ − ψ(t/ρ).
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Similarly, for (x, y) ∈ L2 we have ψ0 = arcsin
(
t
ρ
sin θ

)
since ψ0 is acute, and

therefore, the polar angle is ϕ = π + ψ(t/ρ).

In order to find the length measure dl on L, we get the length l between (x, y)

and (t, 0) using the law of cosines. Then l =
√
ρ2 + t2 − 2ρt cosϕ, and

dl =
ρ− t cosϕ+ tρdϕ

dρ
sinϕ√

ρ2 + t2 − 2ρt cosϕ
dρ.

Hence we get

dl =



ρ− t cos
[
2θ − ψ

(
t
ρ

)]
+ t2

ρ
sin
[
2θ − ψ

(
t
ρ

)]
sin θ√

1− t2

ρ2
sin2 θ√

ρ2 + t2 − 2ρt cos
[
2θ − ψ

(
t
ρ

)] dρ if (x, y) ∈ L1

ρ− t cos
[
π + ψ

(
t
ρ

)]
− t2

ρ
sin
[
π + ψ

(
t
ρ

)]
sin θ√

1− t2

ρ2
sin2 θ√

ρ2 + t2 − 2ρt cos
[
π + ψ

(
t
ρ

)] dρ if (x, y) ∈ L2.

Substituting the obtained expressions for ϕ and dl into (3.1), we get

gn(t) =

R∫
t

fn(ρ) dρ

−
t sin θ∫
t

fn(ρ)e
in[2θ−ψ( t

ρ
)]

ρ− t cos[2θ − ψ( t
ρ
)] + t2

ρ
sin[2θ − ψ( t

ρ
)] sin θ√

1− t2

ρ2
sin2 θ√

ρ2 + t2 − 2ρt cos[2θ − ψ( t
ρ
)]

dρ

−
∞∫

t sin θ

fn(ρ)e
in[π+ψ( t

ρ
)]

ρ− t cos[π + ψ( t
ρ
)]− t2

ρ
sin[π + ψ( t

ρ
)] sin θ√

1− t2

ρ2
sin2 θ√

ρ2 + t2 − 2ρt cos[π + ψ( t
ρ
)]

dρ
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Continuing the computation yields

gn(t) =

R∫
t

fn(ρ) dρ

+

t∫
t sin θ

fn(ρ)e
in[2θ−ψ( t

ρ
)]

1− t
ρ
cos[2θ − ψ( t

ρ
)] + t2

ρ2
sin[2θ − ψ( t

ρ
)] sin θ√

1− t2

ρ2
sin2 θ√

1 + t2

ρ2
− 2 t

ρ
cos[2θ − ψ( t

ρ
)]

dρ

+(−1)n+1

∞∫
t sin θ

fn(ρ)e
inψ( t

ρ
)

1 + t
ρ
cos[ψ( t

ρ
)] + t2

ρ2
sin[ψ( t

ρ
)] sin θ√

1− t2

ρ2
sin2 θ√

1 + t2

ρ2
+ 2 t

ρ
cos[ψ( t

ρ
)]

dρ

=

R∫
t

fn(ρ) dρ+ {[ρfn(ρ)]× hn} (t),

(3.3)

Where

{f × g} (s) =
∞∫
0

f(ρ) g

(
s

ρ

)
dρ

ρ
.

Secon term of last line in (3.3) is a convolution for Mellin transform. Also, since

fn, gn and hn have compact support, their Mellin transform is well defined. Doing it

on gn, we get

Mgn(s) =
1

s
Mfn(s+ 1) +Mfn(s+ 1)Mhn(s).

Here we use some properties of the Mellin transform, namely: M[ρf(ρ)](s) =

Mf(s + 1) and M[
∫∞
t
f(x) dx](s) = Mf(s + 1)/s, which are easily verified us-

ing the fact that fn(ρ) = 0 for ρ > R (see (1.3)). Now a simple computation gives

us the claimed formula.

Corollary 3.2.1. Let fn(ρ) be the n-th Fourier coefficient of the 2nd differentiable
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function f supported in the disk D(0, R). Then for any t > 1 we have

fn(ρ) = lim
T→∞

1

2πi

t+Ti∫
t−Ti

ρ−s
Mgn(s− 1)

1/(s− 1) +Mhn(s− 1)
ds. (3.4)

Proof. For a > 1 and b ∈ R, |Mfn(a+ bi)| is finite because

∫ ∞

0

ra+bi−1|fn(r)|dr ≤ C

∫ R

0

ra−1|eib ln r|dr

where C is the upper bound of |fn|. Thus, Mfn(s) is analytic on {z ∈ C : ℜz > 1}.

Using integral by part twice, we get

Mfn(s) =

∫ ∞

0

f ′′(ρ)
ρs+1

s(s+ 1)
dρ,

which implies Mfn(s) = O(s2). Hence Mfn(t+si) is integrable and we can applying

inverse Mellin transform [25, 70]. Applying it to formula (3.2) gives our claimed

formula (3.4).

3.3 Some general remarks and comments

1. The numerical implementation of the inversion formula described above is an

elaborate task in its own right, and we plan to address it in the future.

2. Our inversion formula uses only data from V Rf(β, t) for t ∈ [0, R] and β ∈

[0, 2π) to recover f whose support is in the whole disk D(0, R). The previ-

ously known formula provided in [2] is using twice more data (t ∈ [0, 2R] and

β ∈ [0, 2π)) and works for a more restrictive class of functions (supported in

D(0, R sin θ)).

3. Despite the fact that we are not using a full set of data in our inversion,
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the remaining set is still microlocally complete. In other words our data set

includes integrals along broken rays passing through any given point in the

disc and (with one of its two parts) normal to any given direction. This means

that theoretically we have enough data for a numerically stable reconstruction.

For more details on microlocal properties of Radon-type transforms see, for

example [60, 80] and the references there.
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4. PHOTOACOUSTIC TOMOGRAPHY AND RELATED RADON-TYPE

TRANSFORMS

Photoacoustic Tomography (PAT) is the best-known example of a hybrid

imaging method. It has applications to functional brain imaging of animals, early

cancer diagnostics, and imaging of vasculature [32]. In 1880, A.G. Bell discovered

the photo-acoustic effect [9]. This effect enabled one to combine advantages of pure

optical and ultrasound imaging, providing both high optical contrast and ultrasonic

resolution. Nevertheless, PAT has rather low cost.

In PAT, one induces an acoustic pressure wave inside of an object of interest by

delivering optical energy [47, 79]. The acoustic wave on a surface is measured outside

of the object. Mathematically, in the model we study, the problem boils down to

recovering the initial data of the three dimensional wave equation from the values of

the solution observed at all times on the surface. This initial pressure field contains

diagnostic information.

Various types of detectors have been considered for measuring the acoustic data:

point-like detectors, line detectors, planar detectors, cylindrical detectors, and cir-

cular detectors. While point-like detectors approximately measure the pressure at a

given point, other types of detectors are integrating. In this section, we study line

detectors and circular detectors.

4.1 Line detectors

In this subsection, we consider PAT with line detectors. The line detector renders

the integral of the pressure along its length. We obtain this integration value at

different moments of time. This data is equivalent to measuring the surface integral

over the cylinders with central axis corresponding to a detector line and whose radii
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are arbitrary.

Various configurations of line detectors were considered in [12, 13, 32, 33]. In this

subsection, we deal with two basic geometries: the line detectors are tangent to a

cylinder, and the line detectors are located on a plane. We call these the cylindrical

version and the planar version, respectively. Some inversion formulas for the first

version were found in [33]. In this subsection, we address other issues of importance

in tomography [54, 55]: a support theorem, a stability estimate, and necessary range

conditions. We also consider an n-dimensional case of this model. In the planar

version, Haltmeier [32] provided a two-step procedure of image reconstruction. In

this subsection, we define a cylindrical Radon transform and present an analog of the

Fourier slice theorem as well as a stability estimate, and necessary range conditions.

4.1.1 Cylindrical geometry

We explain first the mathematical model arising in PAT with line detectors as

introduced in [33]. Let Bk
R be the ball in Rk centered at the origin with radius R > 0.

Then B2
R × R is the cylinder in R3 with radius R. For fixed p ∈ R and θ ∈ S1, let

LC(θ, p) = {(x, y, z) ∈ R3 : (x, y) · θ = R, z = p}

be the line occupied by a detector. Detector lines LC(θ, p) are tangent to the cylinder

B2
R × R (see Figure 4.1).

Definition 4.1.1. The cylindrical Radon transform RC maps a function f ∈ C∞
c (B2

R×

R) to

RCf(θ, p, r) =
1

2πr

∫∫
d(LC(θ,p),(x,y,z))=r

f(x, y, z)dϖ,
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(a) (b)

Figure 4.1: (a) the integral area cylinder and the cylinder B2
R × R in which f has

compact support and (b) the restriction to the {(tθ, z) : t ∈ R, z ∈ R} plane

for (θ, p, r) ∈ S1 × R× [0,∞). Here dϖ is the area measure on the cylinder

{(x, y, z) ∈ R3 : d(LC(θ, p), (x, y, z)) = r}

and

d(LC(θ, p), (x, y, z)) :=
√
(R− (x, y) · θ)2 + (p− z)2

denotes the Euclidean distance between the line LC(θ, p) and the point (x, y, z).

Remark 4.1.1. When one fixes θ and restricts the cylindrical Radon transform RCf

to the plane {(tθ, z) : t ∈ R, z ∈ R}, RCf turns into the 2-dimensional circular Radon

transform whose centers are located at (Rθ, p) (see Figure 4.1 (b)).
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By definition, we have

RCf(θ, p, r) =
1

2π

∫
R

π∫
−π

f(tθ⊥ + (R− r cosψ)θ, p+ r sinψ)dψdt,

where p and r are the height and radius, θ is the direction from the z-axis to the

central axis of the cylinder, t is a parameter along the central axis of the cylinder,

and ψ is the polar angle of the circle that is the intersection of plane {(tθ, z) : t ∈

R, z ∈ R} and the cylinder.

4.1.1.1 Inversion formulas

We have two integrals in the definition formula of RCf . For fixed θ, the inner

integral is a circular Radon transform with centers at the space {(Rθ, z) : z ∈ R} (see

Figure 4.1 (b)). Also, the outer integral can be though of as the 2-dimensional regular

Radon transform for a fixed z variable [33]. We start by applying the inversion of

the circular Radon transform for fixed θ.

To obtain inversion formulas, we define the operator R∗
C for g ∈ C∞

c (S1 × R ×

[0,∞)) by

R∗
Cg(θ, z, ρ) =

∫
R

g(θ, p,
√

(z − p)2 + ρ2)dp,

for z ∈ R and ρ ∈ R.

We have an analogue of the Fourier slice theorem.

Theorem 4.1.1. Let f ∈ C∞
c (B2

R × R). If g = RCf , then we have for (θ, σ, ξ) ∈

S1 × R× R,

f̂(σθ, ξ) = π−1R̂∗
Cg(θ, ξ, σ)e

iRσ|σ|, (4.1)

where f̂ is the 3-dimensional Fourier transform of f and R̂∗
Cg is the 2-dimensional

Fourier transform of R∗
Cg with respect to (z, ρ).
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Remark 4.1.2. We remind readers the Fourier slice theorems for the circular and

regular Radon transforms.

When Rf(θ, s) =
∫
θ·x=s f(x)dx for (θ, s) ∈ S1×R is the regular Radon transform,

we have R̂f(θ, σ) = f̂(σθ). Also, when Mf(u, r) =
∫
S1 f((u, 0) + rα)dα for (u, r) ∈

R × [0,∞) is the circular Radon transform, we have f̂(ξ) = M̂∗Mf(ξ)|ξ2|, where

M∗g(x, y) =
∫
R g(u,

√
(u− x)2 + y2)du for a function g on R × [0,∞) [55, 57].

Equation (4.1) can be thought of as the combination of two Fourier slice theorems:

for the circular and regular Radon transforms.

Proof of the theorem. Taking the Fourier transform of RCf with respect to p yields

R̂Cf(θ, ξ, r) =
1

2π

∫
R

1∫
−1

f̂(tθ⊥ + (R− r
√
1− s2)θ, ξ)eirsξ

ds√
1− s2

dt,

where f̂ and R̂Cf are the 1-dimensional Fourier transforms of f and RCf with

respect to z and p, respectively. Taking the Hankel transform of order zero of R̂Cf

with respect to r, we have

H0R̂Cf(θ, ξ, η) =
1

2π

∞∫
0

∫
R

1∫
−1

f̂(tθ⊥ + (R− r
√
1− s2)θ, ξ)eirsξ

ds√
1− s2

dtJ0(rη)rdr

=
1

2π

∞∫
0

∫
R

1∫
−1

f̂(tθ⊥ + (R− r
√
1− s2)θ, ξ) cos(rsξ)

ds√
1− s2

J0(rη)rdtdr

=
1

2π

∫
R

∞∫
0

∞∫
0

f̂(tθ⊥ + (R− b)θ, ξ) cos(ρξ)J0(η
√
ρ2 + b2)dρdbdt,

(4.2)

where in the last line, we made a change of variables (r, s) → (ρ, b) where r =
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√
ρ2 + b2 and s = ρ/

√
ρ2 + b2. We will use the following identity: for a, b > 0

∞∫
0

J0(a
√
ρ2 + b2) cos(ρξ)dρ =


1√

a2 − ξ2
cos(b

√
a2 − ξ2) if 0 < ξ < a,

0 otherwise

(4.3)

[20, p.55 (35) vol.1]. Applying this identity to (4.2), we conclude that H0R̂Cf(θ, ξ, η)

is equal to


1

2π

∫
R

∞∫
0

f̂(tθ⊥ + (R− b)θ, ξ)
1√

η2 − ξ2
cos(b

√
η2 − ξ2)dbdt if 0 < ξ < η,

0 otherwise.

Substituting η =
√
ξ2 + σ2 yields

H0R̂Cf(θ, ξ, |(ξ, σ)|) =
1

2π

∫
R

∞∫
0

f̂(tθ⊥ + (R− b)θ, ξ)
cos(bσ)

σ
dbdt.

The inner integral in the right hand side is the Fourier cosine transform with respect

to b, so taking the inverse Fourier cosine transform of the above formula, we get

∫
R

f̂(tθ⊥ + (R− s)θ, ξ)dt = 4

∞∫
0

H0R̂Cf(θ, ξ, |(ξ, σ)|) cos(sσ)σdσ, (4.4)

where f̂ is the 1-dimensional Fourier transform of f with respect to the last variable

z. For a fixed ξ, one recognizes the Radon transform in the left hand side. We, thus,

can apply an inversion of the Radon transform.

Before doing that, we change the right hand side of (4.4) into a term containing

the backprojection operator R∗
C . Taking the Fourier transform of R∗

Cg on S1 × R2
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with respect to the last two variables (z, ρ) yields

R̂∗
Cg(θ, ξ, σ) =

∫
R

∫
R

e−i(z,ρ)·(ξ,σ)R∗
Cg(θ, z, ρ)dzdρ

=

∫
R

∫
R

e−i(z,ρ)·(ξ,σ)
∫
R

g(θ, p,
√
(z − p)2 + ρ2)dpdzdρ

=

∫
R

e−iξp
∫
R

∫
R

e−i(z−p,ρ)·(ξ,σ)g(θ, p,
√
(z − p)2 + ρ2)dzdρdp

=

∫
R

e−iξp
∫
R

∫
R

e−i(z,ρ)·(ξ,σ)g(θ, p, |(z, ρ)|)dzdρdp

= 2π

∫
R

e−iξ·pH0g(θ, p, |(ξ, σ)|)dp

= 2πH0ĝ(θ, ξ, |(ξ, σ)|),

(4.5)

where R̂∗
Cg is the 2-dimensional Fourier transform of g in (z, ρ). Combining this (4.5)

with (4.4), we have for g = RCf ,

∫
R

f̂(tθ⊥ + sθ, ξ)dt =
2

π

∞∫
0

R̂∗
Cg(θ, ξ, σ) cos((R− s)σ)σdσ

=
1

π

∫
R

R̂∗
Cg(θ, ξ, σ)e

i(R−s)σ|σ|dσ,
(4.6)

since R̂∗
Cg is even in σ by the evenness in ρ of R∗

Cg. Taking the Fourier transform of

(4.6) with respect to s completes the proof.

Theorem 4.1.2. Let f ∈ C∞
c (B2

R × R). If g = RCf , then we have

f(x, y, z) =
1

4π2

∫
S1

I−2
2 R∗

Cg(θ, z, ρ)
∣∣
ρ=(x,y)·θ−R dθ, (4.7)

where we use the Riesz potential Î−2
2 h(θ, ξ, σ) = |σ|2ĥ(θ, ξ, σ) for a function h(θ, z, ρ)

on S1 × R2 with its 2-dimensional Fourier transform ĥ(θ, ξ, σ) with respect to real
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variables.

Proof. Using Theorem 4.1.1, we have

f(x, y, z) =
1

(2π)3

∞∫
0

∫
S1

∫
R

f̂(σθ, ξ)|σ|ei(σ(x,y)·θ+zξ)dσdθdξ

=
1

(2π)3π

∞∫
0

∫
S1

∫
R

R̂∗
Cg(θ, ξ, σ)e

iRσ|σ|2ei(σ(x,y)·θ+zξ)dσdθdξ

=
1

(2π)4

∫
R

∫
S1

∫
R

R̂∗
Cg(θ, ξ, σ)e

iRσ|σ|2ei(σ(x,y)·θ+zξ)dξdθdσ.

Remark 4.1.3. Inversion formula (4.9) is the same as that of [33]. There M. Halt-

meier obtained it combining two inversion formulas for the circular Radon transform

and the Radon transform. We obtain it instead through an analog of the Fourier slice

theorem.

The equation (4.6) hints that it is natural to try to use another inversion of

the Radon transform, the one using circular harmonics. Let f(t, φ, z) be the im-

age function in cylindrical coordinates. Then the Fourier series of f(t, φ, z) and

g(θ, p, r) := RCf(θ, p, r) with respect to their angular variables φ and θ can be

written as follows:

f(t, φ, z) =
∞∑

l=−∞

fl(ρ, z) e
ilφ and g(θ, p, r) =

∞∑
l=−∞

gl(p, r) e
ilϑ,

where θ = (cosϑ, sinϑ) and the Fourier coefficients are given by

fl(t, z) =
1

2π

2π∫
0

f(t, φ, z) e−ilφdφ and gl(p, r) =
1

2π

∫
S1

g(θ, p, r) e−ilϑdθ,
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where θ = (cosϑ, sinϑ). Consider the l-th Fourier coefficient of the right hand side

of (4.6). Then we have

∫
S1

∫
R

R̂∗
Cg(θ, ξ, σ)e

iR(u−s)σ|σ|e−ilϑdσdθ =
∫
R

R̂∗
Cgl(ξ, σ)e

iR(u−s)σ|σ|dσ, (4.8)

where R̂∗
Cgl is the 2-dimensional Fourier transform of R∗

Cgl with respect to (z, ρ) and

R∗
Cgl(z, ρ) =

∫
R

gl(p,
√

(z − p)2 + ρ2)dp.

Theorem 4.1.3. Let f ∈ C∞
c (B2

R × R). Then we have for t > 0

fl(t, z) = −4i

∞∫
t

cosh
(
l arccosh

s

t

)
I−2
2 R∗

Cgl(z, u− s)
ds√
s2 − t2

.

Proof. Applying (1.5) to (4.8) gives

f̂l(ρ, ξ1) = − i

π2

∞∫
t

cosh
(
l arccosh

s

t

)∫
R

R̂∗
Cgl(ξ)e

i(u−s)σ|σ|2dσ ds√
s2 − t2

,

where f̂l is the Fourier transform of fl with respect to z.

The regular Radon transform can be obtained from the cylindrical Radon trans-

form.

Theorem 4.1.4. Let f ∈ C∞
c (B2

R × R). Then we have

∫
R

f(tθ⊥ + (R− s)θ, z)dt =
2

π

∫
R2

∞∫
0

srRCf(θ,−η, r)e−ir
2ξe−i(2zη+(z2+s2)+η2)ξξdrdηdξ.

We notice that the expression in the left hand side is the standard 2-dimensional
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Radon transform for a fixed z variable. Hence, applying any Radon transform inver-

sion, one gets an inversion of the cylindrical Radon transform RC .

Proof. Let G be defined by

G(θ, p, ξ) :=

∞∫
0

rRCf(θ, p, r)e
−ir2ξdr.

Then we have

G(θ, p, ξ) =
1

2π

∞∫
0

∫
R

π∫
−π

rf(tθ⊥ + (R− r cosψ)θ, p+ r sinψ)e−ir
2ξdψdtdr

=
1

2π

∫
R3

f(tθ⊥ + (R− y)θ, p+ z)e−i(y
2+z2)ξdydzdt

=
1

2π

∫
R3

f(tθ⊥ + (R− y)θ, z)e−i(y
2+(z−p)2)ξdydzdt

=
e−ip

2ξ

2π

∫
R3

f(tθ⊥ + (R− y)θ, z)e−i(y
2+z2)ξe2ipzξdydzdt,

where in the second line, we switched from the polar coordinates (r, ψ) to Cartesian

coordinates (y, z). Making the change of variable r = y2 + z2 yields

G(θ, p, ξ) =
e−ip

2ξ

2π

∞∫
0

∫
R2

f(tθ⊥ + (R−
√
r − z2)θ, z)

e−irξe2ipzξ

2
√
r − z2

drdzdt,

where we do not need to care about f(tθ⊥+(R+
√
r − z2)θ, z) because f is compactly

support on B2
R × R. Let us define the function

kθ(t, z, r) :=

 f(tθ⊥ + (R−
√
r − z2)θ, z)/

√
r − z2 if 0 < z2 < r,

0 otherwise.
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Then we have

G(θ, p, ξ) =
e−ip

2ξ

4π

∫
R3

kθ(t, z, r)e
−irξe2ipzξdrdzdt =

e−ip
2ξ

4π

∫
R

k̂θ(t,−2pξ, ξ)dt,

where k̂θ is the 2-dimensional Fourier transform of kθ with respect to the last two

variables (z, r). Also, we have

∫
R

f(tθ⊥ + (R− s)θ, z)dt =

∫
R

skθ(t, z, z
2 + s2)dt

=
1

4π2

∫
R

∫
R

∫
R

sk̂θ(t, η, ξ)e
−i(zη+(z2+s2)ξ)dtdηdξ

=
1

π

∫
R

∫
R

sei
η2

4ξG

(
θ,− η

2ξ
, ξ

)
e−i(zη+(z2+s2)ξ)dηdξ

=
2

π

∫
R

∫
R

sG(θ,−η, ξ)e−i(2zη+(z2+s2)+η2)ξξdηdξ,

where in the last line, we changed variables η → 2ξη.

4.1.1.2 Support theorem

By a support theorem, we mean a statement that claims that if integrals of f

over all surfaces not intersecting a set A are equal to zero, then f is equal to zero

outside A. This statement cannot hold for arbitrary A, but under some geometry

restrictions of convexity type.

Lemma 4.1.1. Let p0 ∈ R, ϵ > 0, B > 0, and θ ∈ S1 be given. Let f ∈ C∞(B2
R×R)

and suppose that g = RCf is equal to zero on the open set UB,ϵ = {(p, r) : |p− p0| <

ϵ, 0 ≤ r < B}. Then Rθf(p, s) is equal to zero on the open set VB = {(p, s) :
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|p− p0|2 + (R− s)2 < B2, s > R} where

Rθf(p, s) =

∫
R

f(tθ⊥ + sθ, p)dt.

We will follow the idea suggested in [7] to prove this lemma.

Proof. Without loss of generality, we may assume p0 = 0. Let G(θ, p, r) be defined

by

G(θ, p, r) =

r∫
0

g(θ, p, s)sds =
1

2π

∫
|η|≤r

∫
R

f(tθ⊥ + (R− η1)θ, p+ η2)dtdη,

where η = (η1, η2) ∈ R2. Differentiating G with respect to p yields

∂

∂p
G(θ, p, r) =

1

2π

∫
|η|≤r

∫
R

∂

∂p
f(tθ⊥ + (R− η1)θ, p+ η2)dtdη

=
1

2π

∫
|η|≤r

∫
R

∂

∂η2
f(tθ⊥ + (R− η1)θ, p+ η2)dtdη

=
1

2πr

∫
|η|=r

∫
R

f(tθ⊥ + (R− η1)θ, p+ η2)η2dtdη,

where in the last line, we used the divergence theorem. Now we have

RC(pf)(θ, p, r) =
1

2πr

∫
R

∫
|η|=r

(p+ η2)f(tθ
⊥ + (R− η1)θ, p+ η2)dηdt

= pg(θ, p, r) +
1

2π

∂

∂p
G(θ, p, r) = pg(θ, p, r) +

∂

∂p

r∫
0

g(θ, p, s)sds.

Let the linear operator D be defined by Dg(θ, p, r) := pg(θ, p, r)+ ∂
∂p

∫ r
0
g(θ, p, s)sds.

Then RC(pf) is equal to Dg. By iteration, we have RC(P(p)f) = P(D)g where P

is any polynomial. If g = 0 in UB,ϵ, then P(D)g = 0 in UB,ϵ. Also, we have for any
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point (p, r) ∈ UB,ϵ,

RC(P(p)f)(θ, p, r) =
1

2πr

∫
|η|=r

∫
R

P(p+ η2)f(tθ
⊥ + (R− η1)θ, p+ η2)dtdη

=
1

2π

r∫
−r

∫
R

P(p+ η2)f(tθ
⊥ + (R−

√
r2 − η22)θ, p+ η2)

dtdη2√
r2 − η22

= 0.

For fixed θ ∈ S1, r > 0, and p ∈ R, we can choose a sequence of polynomials Pi

such that Pi(p + η2) converges to
∫
R f(tθ

⊥ + (R −
√
r2 − η22)θ, p + η2)dt uniformly

for |η2| < r, using The Stone-Weierstrass theorem. It follows that Rθf(p, s) = 0 in

VB.

Theorem 4.1.5. Let p0 ∈ R and B > 0. Let f ∈ C∞(B2
R × R) and suppose that

g = RCf is equal to zero on the open set UB = {(θ, p0, r) : 0 ≤ θ < 2π, 0 ≤ r < B}.

Then f is equal to zero on the set {(x, y, z) : |(x, y)| > R−
√
B2 − (p− p0)2, z = p}.

Proof. Let ϵ > 0 be arbitrary. Then g vanishes on the open set UB−ϵ,ϵ and by

Lemma 4.1.1, Rθf vanishes on the open set VB−ϵ. Let p ∈ R be arbitrary. Then by

the support theorem of the regular Radon transform [36, 54], f is equal to zero on

the set {(x, y, z) ∈ R3 : |(x, y)| > R−
√

(B − ϵ)2 − (p− p0)2, z = p}.

Corollary 4.1.1. Let A ⊂ B2
R × R be a closed set invariant under rotation around

z-axis and let f ∈ C∞(B2
R×R). Suppose that for any point (x, y, z) ∈ R3\A, there are

(p(x,y,z), r(x,y,z)) ∈ R×(0,∞) such that a sphere centered at (Rx/|(x, y)|, Ry/|(x, y)|, p(x,y,z))

with radius r(x,y,z) separates the point (x, y, z) and A. If g = RCf vanishes on

{(θ, p, r) : p = p(x,y,z), 0 ≤ r < r(x,y,z), for any (x, y, z) ∈ R3 \A}, then f vanishes on

R3 \ A.
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4.1.1.3 A stability estimate

Here we discuss the stability estimate of the cylindrical Radon transform RCf .

For next subsection, we define spaces we need as n-dimension. For γ ≥ 0, let Hγ(Rn)

be the regular Sobolev space with the norm || · ||γ. Let L2
n−k(S

k−1 × Rn−k × [0,∞))

be the set of a function g on Sk−1 × Rn−k × [0,∞) with

||g||2 :=
∫

Sk−1

∫
Rn−k

∞∫
0

|g(θ, p, r)|2rn−kdrdpdθ <∞.

Then L2
n−k(S

k−1×Rn−k× [0,∞)) is a Hilbert space. Also, by the Plancherel formula,

we have ||g|| = (2π)2k−2n−1||g̃||, where

g̃(θ, ξ, |ζ|) :=
∫

Rn−k

∫
Rn−k+1

g(θ, p, |w|)e−i(p,w)·(ξ,ζ)dpdw.

Let Hγ(Sk−1×Rn−k× [0,∞)) be the set of a function g ∈ L2
n−k(S

k−1×Rn−k× [0,∞))

with ||g||γ <∞, where

||g||2γ :=
∫

Sk−1

∫
Rn−k

∞∫
0

|g̃(θ, ξ, η)|2(1 + |ξ|2 + |η|2)γ|η|n−kdηdξdθ.

Theorem 4.1.6. For γ ≥ 0, we have

||f ||γ ≤ 4π−1 ||RCf ||γ+1,

for f ∈ Hγ(R3) supported in B2
R × R (i.e., n = 3 and k = 2).

Remark 4.1.4. As mentioned before, RC can be though of as the composition of

the circular Radon transform and the regular Radon transform. We know that the
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regular Radon transform maps Hγ(R2) into Hγ+1/2(S1 × R) and a circular Radon

transform maps Hγ(R2) into Hγ+1/2(R× [0,∞)) which is defined by the norm

∫
R

∞∫
0

|ϕ̃(ξ, ρ)|2(1 + |ξ|2 + ρ2)γ+1/2ρdρdξ <∞

in [7, 54]. Hence, in this view, the estimate in Theorem 4.1.6 looks reasonable.

Proof of theorem. Let g = RCf . Note that from (4.5), we have

R̂∗
Cg(θ, ξ, σ) =

∫
R

e−iξp
∫
R

∫
R

e−i(z,ρ)·(ξ,σ)g(θ, p, |(z, ρ)|)dzdρdp = g̃(θ, ξ, |(ξ, σ)|).

Combining this equation and (4.1), we have

f̂(σθ, ξ) = 4π−1g̃(θ, ξ, |(ξ, σ)|)eiRσ|σ|.

Hence, we have

||f ||2γ =

∫
R3

(1 + |ι|2 + |ξ|2)γ|f̂(ι, ξ)|2dιdξ

=

∫
R

∫
S1

∞∫
0

|σ|(1 + |σ|2 + |ξ|2)γ|f̂(σθ, ξ)|2dσdθdξ

=
16

π2

∫
S1

∫
R

∞∫
0

|σ|3(1 + |(ξ, σ)|2)γ|g̃(θ, ξ, |(ξ, σ)|)|2dσdξdθ

≤ 16

π2

∫
S1

∫
R

∞∫
0

(1 + |(ξ, σ)|2)γ|(ξ, σ)|2|g̃(θ, ξ, |(ξ, σ)|)|2|σ|dσdξdθ

=
16

π2

∫
S1

∫
R

∞∫
|ξ|

(1 + |η|2)γ|η|2|g̃(θ, ξ, η)|2ηdηdξdθ,

where in the last line, we changed the variable |(ξ, σ)| to η.
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4.1.1.4 Range conditions

Here we describe the necessary range conditions of the cylindrical Radon trans-

form RCf .

Theorem 4.1.7. If g = RCf for f ∈ C∞(B2
R × R), then we have that

1.

∫
R

g(θ, p,
√

(p− z)2 + (ρ−R)2)dp =

∫
R

g(−θ, p,
√

(p− z)2 + (ρ+R)2)dp

and

2. for m = 0, 1, 2, · · · , Pz(θ) is a homogeneous polynomial of degree m in θ, where

Pz(θ) =
∫
R

I−1
2 R∗

Cg(θ, z, R− s)smds.

Proof.

1. From (4.1), I−1
2 R∗

Cg(θ, z, R− ρ) should be equal to I−1
2 R∗

Cg(−θ, z, R + ρ).

2. This follows from (4.6) and the range condition of the regular Radon transform.

4.1.2 An n-dimensional case of RC

In this subsubsection, we consider the cylindrical Radon transform RC of a func-

tion f ∈ C∞
c (Bk

R × Rn−k) where n ≥ 3 is arbitrary. As mentioned before (see also

[33]), 3-dimensional RCf can be decomposed into the circular Radon transform and

the usual 2-dimensional Radon transform. A natural n-dimensional analog of the

cylindrical Radon transform would split into composition of the n − 1-dimensional

spherical Radon transform and the 2-dimensional Radon transform. We consider
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a more general possibility. Namely, RCn,k
f of a function f ∈ C∞

c (Bk
R × Rn−k)

decomposes into the n − k + 1-dimensional spherical Radon transform and the

usual k-dimensional Radon transform. We define RCn,k
f for 1 < k ≤ n − 1 and

(θ, p, r) ∈ Sk−1 × Rn−k × [0,∞) as follows:

RCn,k
f(θ, p, r) =

1

|Sn−k|

∫
θ⊥

∫
Sn−k

f(τ + (R− rα1)θ, p+ rα′)dαdτ,

where α = (α1, α
′) ∈ Sn−k and θ⊥ refers to θ⊥ ∩ {(x, z) ∈ Rn−k × Rk : z = p}. Then

we have an analogue of the Fourier slice theorem, similar to theorem 4.1.1.

Theorem 4.1.8. Let f ∈ C∞
c (Bk

R×Rn−k). If g = RCn,k
f , then we have for (θ, ξ, σ) ∈

Sk−1 × Rn−k × R,

f̂(σθ, ξ) = 2|Sn−k|(2π)−n+k−1R̂∗
Cn,k

g(θ, ξ, σ)eiRσ|(ξ, σ)|n−k−1|σ|,

where f̂ is the n-dimensional Fourier transform of f and R̂∗
Cn,k

g is the n − k + 1-

dimensional Fourier transform of g in (z, ρ). Here

R∗
Cn,k

g(θ, z, ρ) =

∫
Rn−k

g(θ, p,
√

|z − p|2 + ρ2)dp,

for g ∈ C∞
c (Sk × Rn−k × [0,∞)) and (z, ρ) ∈ Rn−k × R.

The proof of this theorem is the almost same as that of theorem 4.1.1. Instead

of taking the Hankel transform in r, one take the radial Fourier transform (2.7).

Also, we need the identity (2.5). The other steps are the same as in the proof of

theorem 4.1.1.
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For γ < n− k + 1, we define the linear operators Iγ and Iγ2 by

Îγh(θ, ξ, σ) = |(ξ, σ)|−γĥ(θ, ξ, σ) and Îγ2 h(θ, ξ, σ) = |σ|−γĥ(θ, ξ, σ),

for a function h(θ, z, ρ) on Sk−1×Rn−k+1 with its n−k+1-dimensional Fourier trans-

form ĥ with respect to (z, ρ). Then we have the inversion similar to Theorem 4.1.2.

Theorem 4.1.9. Let f ∈ C∞
c (Bk

R ×Rn−k). If g = RCn,k
f , then we have for (x, z) ∈

Rk × Rn−k,

f(x, z) =
|Sn−k|
(2π)n

∫
Sk−1

I−k2 I1−n+kR∗
Cn,k

g(θ, z, ρ)
∣∣∣
ρ=x·θ−R

dθ. (4.9)

To obtain inversion formula similar to Theorem 4.1.3, let f(t, φ, z) be the image

function in cylindrical coordinates where t = |x| and φ = x/|x| ∈ Sk−1. Then the

Fourier series of f(ρ, ϕ, z) and g(θ, p, r) with respect to their angular variables can

be written as follows:

f(t, φ, z) =
∞∑
l=0

N(k,l)∑
j=0

flj(t, z)Ylj(φ) and g(θ, p, r) =
∞∑
l=0

N(k,l)∑
j=0

glj(p, r)Ylj(θ),

where Ylj is a spherical harmonic and

N(k, l) =
(2l + k − 2)(k + l − 3)!

l!(k − 2)!
, N(k, 0) = 1.

From Theorem 4.1.8, we have

∫
θ⊥

f̂(τ + sθ, ξ)dτ =
2|Sn−k|

(2π)n−k+1

∫
R

R̂∗
Cn,k

g(θ, ξ, σ)ei(R−s)σ|σ||(ξ, σ)|n−k−1dσ. (4.10)
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Consider the lj-th Fourier coefficient of the right hand side of (4.10). Then we have

∫
Sk−1

∫
R

R̂∗
Cn,k

g(θ, ξ, σ)ei(R−s)σ|σ||(ξ, σ)|n−k−1Ylj(θ)dσdθ

=

∞∫
0

R̂∗
Cn,k

glj(ξ, σ)e
i(R−s)σ|σ||(ξ, σ)|n−k−1dσ,

(4.11)

Theorem 4.1.10. Let f ∈ C∞
c (Bk

R × Rn−k). Then we have for ρ > 0

flj(t, z) =
ck

(2π)n−k
t2−k

∞∫
t

(s2 − t2)(k−3)/2C
(k−2)/2
l

(s
t

)
I−k2 I1+k−nR∗

Cn,k
glj(z, R− s)ds,

where

ck =
ik−12

k
2 |Sn−k|

2π
n+k+1

2

Γ((k − 2)/2)

Γ(k − 2)
.

Proof. Applying (4.11) to (1.5) implies that the n−k-dimensional Fourier transform

f̂lj of flj with respect to z is equal to

ckt
2−k

∞∫
t

(s2 − t2)(k−3)/2C
(k−2)/2
l

(s
t

) ∞∫
0

R̂∗
Cn,k

glj(ξ, σ)e
i(R−s)σ|σ|k|(ξ, σ)|n−k−1dσds.

Also, we can get the following theorem similar to Theorem 4.1.4.

Theorem 4.1.11. Let f ∈ C∞
c (Bk

R × Rn−k). Then we have

∫
θ⊥

f(τ + sθ, z)dτ =

4|Sn−k|
(2π)n−k+1

∫
R

∫
Rn−k

∞∫
0

(R− s)rRCn,k
f(θ,−p, r)e−ir2ξe−i(2z·p+(z2+(R−s)2)+|p|2)ξξdrdpdξ.
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As in subsubsection 4.1.1, we can obtain a stability estimate and necessary range

conditions for RCn,k
.

Theorem 4.1.12. For any f ∈ Hγ(Rn) supported in Bk
R × Rn−k, we have

||f ||γ ≤ 2|Sn−k|(2π)−n+k−1||RCn,k
f ||γ+(n−1)/2.

Also, we have a similar support theorem to Theorem 4.1.5.

Theorem 4.1.13. Let p0 ∈ Rn−k and B > 0. Let f ∈ C∞(Bk
R × Rn−k) and suppose

that g = RCn,k
f is equal to zero on the open set UB = {(θ, p0, r) : 0 ≤ θ < 2π, 0 ≤

r < B}. Then f is equal to zero on the set {(x, z) ∈ Rk × Rn−k : |x| > R −√
B2 − |p− p0|2, z = p}.

Remark 4.1.5. We can obtain the same result as Theorem 4.1.7 for an n-dimensional

case using Theorem 4.1.8 instead of Theorem 4.1.1.

4.1.3 Planar geometry

Let us first explain the mathematical model arising in PAT with line detectors

introduced in [32]. Let LP (θ, p) = {(0, y, z) ∈ R3 : (y, z) ·θ = p} for p > 0 and θ ∈ S1

be a line detector. Then we have LP (θ, p) = LP (−θ,−p) and a detector line LP (θ, p)

is located on yz-plane.

Definition 4.1.2. Let a function f be even in x. The cylindrical Radon transform

RP maps f ∈ C∞
c (R3) into

RPf(θ, p, r) =
1

2πr

∫∫
d(LP (θ,p),(x,y,z))=r

f(x, y, z)dϖ,

for (θ, p, r) ∈ S1 × R× [0,∞) (see Figure 4.2 (a)). Here dϖ is the area measure on
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the cylinder

{(x, y, z) ∈ R3 : d(LP (θ, p), (x, y, z)) = r}

and

d(LP (θ, p), (x, y, z)) :=
√
x2 + (p− (y, z) · θ)2

denotes the Euclidean distance between the line LP (θ, p) and the point (x, y, z).

Remark 4.1.6. We have RPf(θ, p, r) = RPf(−θ,−p, r).

If f is odd in x, then RPf is equal to zero. This is the reason why we assume

that f is even in x. By definition, we have

(a) (b)

Figure 4.2: (a) the integral area cylinder and (b) the restriction to the {(x, tθ) : x ∈
R, t ∈ R} plane

RPf(θ, p, r) =
1

2π

∫
R

π∫
−π

f(r cosψ, tθ⊥ + (p− r sinψ)θ)dψdt,
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where r is the radius, p and θ are the distance and the direction from the origin

to the central axis of the cylinder, t is a parameter along the central axis of the

cylinder, and ψ is the polar angle of the circle that is the intersection of plane

{(x, tθ) : t ∈ R, x ∈ R} and the cylinder (see Figure 4.2 (b)).

4.1.3.1 Inversion formulas

We have two integrals in the definition formula of RPf . Like RCf , the inner

integral is a circular Radon transform with centers on the line for fixed θ and the

outer integral can be thought of as the 2-dimensional regular Radon transform for a

fixed x-coordinate [32]. Similarly to the case RCf , we start to apply the inversion of

the circular Radon transform for a fixed θ.

We have an analog of the Fourier slice theorem.

Theorem 4.1.14. Let f ∈ C∞
c (R3) be even in x. If g = RPf , then we have

f̂(ξ, σθ) = 4|ξ|R̂∗
Pg(θ, σ, ξ), (4.12)

where f̂ and R̂∗
Pg are the Fourier transforms of f and R∗

Pg := R∗
Cg with respect to

(x, y, z) ∈ R3 and (z, ρ) ∈ R2.

Remark 4.1.7. The evenness of g in (θ, p) implies the evenness of R̂∗
Pg in (θ, σ).

Remark 4.1.8. Equation (4.12) can be thought of as the combination of two Fourier

slice theorems: for the circular and regular Radon transforms, too.

Proof. Taking the Fourier transform of RPf with respect to p yields

R̂Pf(θ, σ, r) =
1

π

1∫
−1

f̂(r
√
1− s2, σθ)eirsσ

ds√
1− s2

,
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where f̂ and R̂Pf are the Fourier transforms of f and RPf with respect to (y, z) ∈ R2

and p ∈ R, respectively. Taking the Hankel transform H0 of R̂Pf with respect to r,

we have

H0R̂Pf(θ, σ, η) =
1

π

∞∫
0

1∫
−1

f̂(r
√
1− s2, σθ)eirsσ

ds√
1− s2

J0(rη)rdr

=
2

π

∞∫
0

1∫
−1

f̂(r
√
1− s2, σθ)J0(rη)r cos(rsσ)

ds√
1− s2

dr

=
1

2π

∞∫
0

∞∫
0

f̂(b, σθ) cos(ρσ)J0(η
√
ρ2 + b2)dρdb,

(4.13)

where in the last line, we made a change of variables (r, s) → (ρ, b) where r =√
ρ2 + b2 and s = ρ/

√
ρ2 + b2. Applying the identity (4.3) to (4.13), we get

H0R̂Pf(θ, σ, η) =


2

π

∞∫
0

f̂(b, σθ)
1√

η2 − σ2
cos(b

√
η2 − σ2)db if 0 < σ < η,

0 otherwise.

Substituting η =
√
ξ2 + σ2 yields

H0R̂Pf(θ, σ, |(σ, ξ)|) =
2

π

∞∫
0

f̂(b, σθ)
cos(bξ)

ξ
db =

1

π
f̂(ξ, σθ)|ξ|−1. (4.14)

As in the proof of theorem 4.1.1, we change the right hand side of (4.14) into a

term containing the backprojection operatorR∗
P . We have R̂∗

Pg(θ, σ, ξ) = 2πH0ĝ(θ, σ, |(σ, ξ)|),

so we get (4.12).

Let the linear operator Ii for h ∈ C∞
c (S1 × R2) be defined by Î−1

i h(θ, ξ) =

|ξi|ĥ(θ, ξ) where ĥ is the 2-dimensional Fourier transform of h in the last two dimen-

sional variable. Then we have the following inversion formula.
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Theorem 4.1.15. Let f ∈ C∞
c (R3) be even in x. If g = RPf , then we have

f(x, y, z) = 4π−1

∫
S1

I−1
1 I−1

2 R∗
Pg(θ, θ · (y, z), x)dθ.

From (4.12), we have

∫
R

f(x, tθ⊥ + sθ)dt = 4I−1
2 R∗

Pg(θ, s, x). (4.15)

As in below Remark 4.1.9, let f(x, t, φ) be the image function in cylindrical coordi-

nates where (y, z) = t(cosφ, sinφ). Consider the l-th Fourier coefficient of the right

hand side of (4.15). Then we have

∫
S1

I−1
2 R∗

Pg(θ, s, x)e
−ilϑdθdθ = I−1

2 R∗
Pgl(s, x), (4.16)

where θ = (cosϑ, sinϑ). Similarly to Theorem 4.1.3, we have the following theorem:

Theorem 4.1.16. Let f ∈ C∞
c (R3) be even in x. Then we have for t > 0

fl(x, t) = − 2

π

∞∫
t

(s2 − t2)−1/2 cos
(
l arccos

(s
t

)) ∂

∂s
I−1
2 R∗

Pgl(s, x)ds.

Also, we have the following relation between the Radon transform and RP similar

to Theorem 4.1.4.

Theorem 4.1.17. Let f ∈ C∞
c (R3) be even in x. Then we have

∫
R

f(x, tθ⊥ + zθ)dt =
2

π

∫
R

∫
R

∞∫
0

zrRPf(θ,−p, r)e−ir
2σe−i(2xp+(z2+x2)+p2)σσdrdpdσ.

We can prove this in a way similar to Theorem 4.1.4.
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4.1.3.2 A stability estimate

Here we discuss the stability estimate of the cylindrical Radon transform RP .

For γ ≥ 0, we already define the spaces Hγ
e (Rn), L2

1(S
1 × R × [0,∞)), and

Hγ(S1 × R× [0,∞)) in subsection 2.4 and subsubsection 4.1.1.3.

Theorem 4.1.18. For γ ≥ 0, there exists a constant c such that for f ∈ Hγ
e (R3),

||f ||γ ≤ c||RPf ||γ+1.

Proof. Let g = RPf . Similarly to (4.5), we have

R̂∗
Pg(θ, σ, ξ) =

∫
R

e−iσp
∫
R

∫
R

e−i(ζ,ρ)·(σ,ξ)g(θ, p, |(z, ρ)|)dzdρdp = g̃(θ, σ, |(σ, ξ)|).

(4.17)

Combining this equation and (4.12), we have

f̂(ξ, σθ) = 4|ξ|g̃(θ, σ, |(σ, ξ)|).

Hence, we have

||f ||2γ =

∫
R3

(1 + |ι|2 + |ξ|2)γ|f̂(ξ, ι)|2dιdξ

= 2−1

∫
S1

∫
R

∫
R

|σ|(1 + |σ|2 + |ξ|2)γ|f̂(ξ, σθ)|2dξdσdθ

= 8

∫
S1

∫
R

∫
R

|σ|(1 + |(σ, ξ)|2)γ|ξ|2|g̃(θ, σ, |(σ, ξ)|)|2dξdσdθ

= 16

∫
S1

∫
R

∞∫
0

|σ|(1 + |(σ, ξ)|2)γ|ξ|2|g̃(θ, σ, |(σ, ξ)|)|2dξdσdθ

= 16

∫
S1

∫
R

∞∫
|σ|

√
η2 − σ2|σ|(1 + η2)γ|g̃(θ, σ, η)|2ηdηdσdθ,
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where in the last line, we changed the variable |(σ, ξ)| to η. Continuing the compu-

tation yields

||f ||2γ ≤ c

∫
S1

∫
R

∞∫
0

(1 + σ2 + η2)γ+1|g̃(θ, σ, η)|2ηdηdσdθ.

4.1.3.3 Range conditions

From Theorem 4.1.14, we have necessary range conditions for Rp as follows:

Theorem 4.1.19. If g = RPf for a even function f ∈ C∞(R3), then we have

1. g(θ, p, r) = g(−θ,−p, r) and

2. For m = 0, 1, 2, · · · , Px(θ) is a homogeneous polynomial of degree m in θ, where

Px(θ) =
∫
R

g(θ, p,
√
(s− p)2 + x2)smds.

Proof.

2. From (4.12) and the range description of the regular Radon transform, we have

that for fixed x, the polynomial
∫
R I

−1
2 R∗

Pg(θ, s, x)s
mds is homogeneous of degree m

in θ, which implies that Px(θ) is a homogeneous polynomial of degree m in θ.

4.1.4 An n-dimensional case of RP

As in subsubsection 4.1.2, we consider the cylindrical Radon transform RP of a

function f ∈ C∞
c (Rn). Assume n ≥ 3. We define RPn of a function f ∈ C∞

c (Rn)
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even in x ∈ R by

RPnf(θ, p, r) =
1

2π

∫
θ⊥

2π∫
0

f(r cosψ, τ + (p− r sinψ)θ)dψdτ,

for (θ, p, r) ∈ Sn−2 × R× [0,∞). Here θ⊥ refers to θ⊥ ∩ {(0, z) : z ∈ Rn−1}. We still

have RPnf(θ, p, r) = RPnf(−θ,−p, r).

Theorem 4.1.20. Let f ∈ C∞
c (Rn) be even in x ∈ R. If g = RPnf , then we have

f̂(ξ, σθ) = 4|ξ|R̂∗
Pn
g(θ, σ, ξ), (4.18)

where f̂ and R̂∗
Pn
g are the Fourier transforms of f and R∗

Pn
g with respect to (x, z) ∈

R× Rn−1 and (ζ, ρ) ∈ R2. Here for a function g on Sn−2 × R× [0,∞),

R∗
Pn
g(θ, ζ, ρ) =

∫
R

g(θ, p,
√
(ζ − p)2 + ρ2)dp.

This proof is similar to that of Theorem 4.1.14. The only difference is that one

takes the radial Fourier transform (2.7) and use (2.9) instead of (4.3) as in the proof

of Theorem 4.1.8.

Theorem 4.1.21. Let f ∈ C∞
c (Rn) be even in x. If g = RPnf , then we have for

(x, z) ∈ R× Rn−1,

f(x, z) = 2(2π)2−n
∫
Sn−2

I2−n1 I−1
2 R∗

Pn
g(θ, θ · z, x)dθ.

Let f(x, t, ϕ) be the image function in cylindrical coordinates where t = |z| and

φ = z/|z| ∈ Sn−2. Then the Fourier series of f(x, t, φ) and g(θ, p, r) with respect to

59



their angular variables can be written as follows:

f(x, t, φ) =
∞∑
l=0

N(n−1,l)∑
j=0

flj(x, t)Ylj(φ) and g(θ, p, r) =
∞∑
l=0

N(n−1,l)∑
j=0

glj(p, r)Ylj(θ).

From (4.18), we have

∫
θ⊥

f(x, τ + sθ)dτ = 4I−1
2 R∗

Pn
(θ, s, x). (4.19)

Consider the lj-th Fourier coefficient of the right hand side of (4.19). Then we have

∫
Sn−2

I−1
2 R∗

Pn
g(θ, s, x)Ylj(θ)dθ = I−1

2 R∗
Pn
glj(s, x). (4.20)

Applying (4.20) to (1.5), we have the following theorem.

Theorem 4.1.22. Let f ∈ C∞
c (Rn) be even in x. Then we have for t > 0

flj(x, t) = 4cn−1t
3−n

∞∫
t

(s2 − t2)(n−4)/2C
(n−3)/2
l

(s
t

) ∂n−2

∂sn−2
I−1
2 R∗

Pn
glj(s, x)ds,

where

cn =
(−1)n−1

2π
n
2

Γ((n− 2)/2)

Γ(n− 2)

and

R∗
Pn
glj(ζ, ρ) =

∫
R

glj(p,
√
(ζ − p)2 + ρ2)dp.

Also, as in subsubsection 4.1.2, we have the following theorem.
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Theorem 4.1.23. Let f ∈ C∞
c (Rn) be even in x. Then we have

∫
θ⊥

f(x, τ + sθ)dτ =
2

π

∫
R

∫
R

∞∫
0

srRPnf(θ,−p, r)e−ir
2σe−i(2xp+(s2+x2)+p2)σσdrdpdσ.

As in subsubsection 4.1.3, we can obtain a stability estimate and necessary range

conditions for RPn .

Theorem 4.1.24. For γ ≥ 0, there exists a constant cn such that for f ∈ Hγ
e (Rn),

||f ||γ ≤ cn||RPnf ||γ+n−2.

Proof. Let g = RPnf . As in the proof of Theorem 4.1.18, using (4.18), we have

f̂(ξ, σθ) = 4|ξ|g̃(θ, σ, |(σ, ξ)|),

so

||f ||2γ = 16

∫
Sn−2

∫
R

∞∫
|σ|

√
ρ2 − σ2|σ|n−2(1 + ρ2)γ|g̃(θ, σ, ρ)|2ρdρdσdθ.

Here, we changed the variable |(σ, ξ)| to ρ. Hence, we have

||f ||2γ ≤ cn

∫
Sn−2

∫
R

∞∫
|σ|

|σ|n−2(ρ2 − σ2)(n−2)/2(1 + ρ2)γ|g̃(θ, σ, ρ)|2ρdρdσdθ

≤ cn

∫
Sn−2

∫
R

∞∫
0

(1 + σ2 + ρ2)γ+n−2|g̃(θ, σ, ρ)|2ρdρdσdθ.

Remark 4.1.9. Theorem 4.1.19 holds for RPn for n ≥ 3.
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4.2 Circular detectors

Some works [83, 84, 85] dealt with PAT with the circular detectors. They showed

that the data from PAT with circular detectors is a solution of an initial value problem

and used this to reduce this problem to inverting a circular Radon transform. Also,

they assume that the circle detectors are centered on a cylinder. In our approach,

we define a new Radon-type transform arising in this version of PAT, and consider

two situations when the set of the centers of detector circles is a cylinder or a plane.

In the next section, we will also study a mathematically similar object, a toroidal

Radon transform.

Subsubsection 4.2.1 is devoted to the definition of a Radon-type transform arising

in PAT with circular detectors. We reduce this Radon-type transform to the Radon

transform on circles with a fixed radius in subsubsection 4.2.2.

4.2.1 A Radon-type transfom

In PAT, the acoustic pressure p(x, t) satisfies the following initial value problem:

∂2t p(x, t) = △xp(x, t) (x, t) ∈ R3 × (0,∞),

p(x, 0) = f(x) x ∈ R3,

∂tp(x, 0) = 0 x ∈ R3.

(4.21)

(We assume that the sound speed in the interior of the object is equal to one.) The

goal of PAT is to recover the initial pressure f from measurements of p outside the

support of f .

Throughout this subsection, it is assumed that an initial pressure field f is

smooth. As mentioned before, we will consider two geometries: the centers of detec-

tor circles are located on a cylinder or a plane. In other words, it is assumed that

the acoustic signals are measured by a stack of parallel circle detectors where these
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circles are centered on a cylinder B2
R×R, or on the x1 = 0 plane, and their radii are

a constant rdet.

Let A ⊂ R2 be the set of x1 and x2 coordinates of elements in the set of the centers

of the detector circles. Then A becomes a circle in the cylinder case and a line in the

plane case (see Figure 4.3). The measured data P (µ, z, t) for (µ, z, t) ∈ A×R×(0,∞)

detector circles

A

(a)

A

detector circles

(b)

Figure 4.3: Detector circles and a set A (a) A is a circle and (b) A is a line

can be written as

P (µ, z, t) =
1

2π

2π∫
0

p(µ+ rdetα⃗, z, t)dα,

where α⃗ = (cosα, sinα). Also, it is a well-known fact that

p(x, t) = ∂t

 1

4πt

∫
∂B3(x,t)

fdS

 ,

is a solution of PDE system (4.21). Here Bk
t (x) = Bk(x, t) is a ball in Rk centered

63



at x ∈ Rk with radius t. Hence P (µ, z, t) becomes

P (µ, z, t) =
1

2π

2π∫
0

∂t

 1

4πt

∫
∂B3(µ+rdetα⃗,z,t)

fdS

 dα

=
1

8π2
∂t

1

t

2π∫
0

π∫
0

2π∫
0

f(µ+ rdetα⃗+ t sin β2β⃗1, z + t cos β2) sin β2dβ1dβ2dα

 .

Let us define

RPf(µ, z, t) =

2π∫
0

2π∫
0

π∫
0

f(µ+ rdetα⃗+ t sin β2β⃗1, z + t cos β2) sin β2dβ2dβ1dα.

We will demonstrate a relation between the Radon transform on circles with fixed

radius-a well studied problem-and RPf . This allows us to recover f from P .

4.2.2 Reconstruction

Consider the definition of RPf . The inner integral with respect to β1 in the

definition formula of RPf can be thought of as the circular Radon transform with

weight sin β2 and centers at the (β⃗, z) with radius t. We will first remove this integral

by applying a similar method which is used in obtaining an inversion formula for the

circular Radon transform.

Let us define the operator R#
P for g ∈ C∞

c (A× R× [0,∞)) by

R#
P g(µ, x3, ρ) =

∫
R

g(µ, z,
√

(z − x3)2 + ρ2)|(z − x3, ρ)|dz.

Let us define the linear operator I−1
2 by Î−1

2 h(µ, ξ) = |ξ2|ĥ(µ, ξ), where ĥ is the

Fourier transform of a function h on A×R2 with respect to the last two-dimensional

variable.
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Lemma 4.2.1. Let f ∈ C∞
c (B2

R(0)× R). Then we have

2π∫
0

2π∫
0

f(µ+ rdetα⃗+ tβ⃗1, x3)dβ1dα = − 1

π2t
I−1
2 R#

PRPf(µ, x3, t).

Proof. By definition, RPf(µ, z, t) can be written as

−
2π∫
0

2π∫
0

1∫
−1

f(µ+ rdetα⃗+ t
√
1− s2β⃗1, z + ts)dsdβ1dα

Taking the Fourier transform of RPf with respect to z yields

R̂Pf(µ, ξ1, t) = −
2π∫
0

2π∫
0

1∫
−1

f̂(µ+ rdetα⃗+ t
√
1− s2β⃗1, ξ1)e

itsξ1dsdβ1dα,

where f̂ and R̂Pf are the 1-dimensional Fourier transforms of f and RPf with

respect to x3 and z, respectively. Taking the Hankel transform of order zero of tR̂Pf

with respect to t, we conclude that H0(tR̂Pf)(µ, ξ1, η) is equal to

−
∞∫
0

2π∫
0

2π∫
0

1∫
−1

f̂(µ+ rdetα⃗+ t
√
1− s2β⃗1, ξ1)e

itsξ1dsdβ1dα t
2J0(tη)dt

= −2

∞∫
0

2π∫
0

2π∫
0

1∫
0

f̂(µ+ rdetα⃗+ t
√
1− s2β⃗1, ξ1)t

2J0(tη) cos(tsξ1)dsdβ1dαdt

= −2

2π∫
0

2π∫
0

∞∫
0

∞∫
0

f̂(µ+ rdetα⃗+ bβ⃗1, ξ1)b cos(ρξ1)J0(η
√
ρ2 + b2)dρdbdβ1dα,

where in the last line, we changed variables (t, s) → (ρ, b) where t =
√
ρ2 + b2 and
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s = ρ/
√
ρ2 + b2. Using the identity (4.3), we get

H0(tR̂Pf)(µ, ξ1, η) = −2



2π∫
0

2π∫
0

∞∫
0

f̂(µ+ rdetα⃗+ bβ⃗1, ξ1)b
cos(b

√
η2 − ξ21)√

η2 − ξ21
dbdβ1dα

if 0 < ξ1 < η,

0 otherwise.

Substituting η =
√
ξ21 + ξ22 yields

H0(tR̂Pf)(µ, ξ1, |ξ|) = −2

2π∫
0

2π∫
0

∞∫
0

f̂(µ+ rdetα⃗+ bβ⃗1, ξ1)
b

ξ2
cos(bξ2)dbdβ1dα. (4.22)

The inner integral in the right hand side of the last equation is the Fourier cosine

transform with respect to b, so taking the Fourier cosine transform of (4.22), we get

2π∫
0

2π∫
0

f̂(µ+ rdetα⃗+ sβ⃗1, ξ1)sdβ1dα = −π−1

∞∫
0

H0(tR̂Pf)(µ, ξ1, |ξ|) cos(sξ2)ξ2dξ2,

(4.23)

where f̂ is the Fourier transform of f with respect to x3.

As in the proof of Theorem 4.1.1, we get R̂#
P g(µ, ξ) = 2πH0(tĝ)(µ, ξ1, |ξ|) where

R̂#
P g is the Fourier transform with respect to the last variable (x3, ρ). Combining

this with (4.23), we have for g = RPf ,

2π∫
0

2π∫
0

f̂(µ+ rdetα⃗+ sβ⃗1, ξ1)dβ1dα = − 1

2π2s

∞∫
0

R̂#
P g(µ, ξ) cos(sξ2)ξ2dξ2

= − 1

π2s

∫
R

R̂#
P g(µ, ξ)e

isξ2 |ξ2|dξ2.
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Let a Radon-type transform Mrdetf be defined by

Mrdetf(x) :=

2π∫
0

f(rdetα⃗+ (x1, x2), x3)dα,

where x = (x1, x2, x3) ∈ R3. We will show that Mrdetf can be obtained from RPf

when A is a line or circle.

Remark 4.2.1. When we have two circular detectors with different radii, say r1, r2,

we have two different values Mr1f,Mr2f for each x, i.e., two Radon transforms on

circles with two different fixed radii. Some works [11, 69, 81] show how f can be

reconstructed from Mr1f,Mr2f under a certain assumption.

The following theorem describes an inversion for the Radon transform Mrdet over

all circles with a fixed radius.

Theorem 4.2.1. Let f ∈ C∞
c (R3). Then we have

f̂(ρ, θ, x3) =
rndet
2π

∞∑
n=0

ρ−n
ρ∫

0

ρn−1

ρn−1∫
0

ρn−2 · · ·
ρ1∫
0

ρ0M̂rdetf(ρ0, θ, x3)dρ0 · · · dρn−2dρn−1.

Proof. Let us take the Fourier transform of Mrdetf with respect to (x1, x2). Then we

have M̂rdetf(ξ, x3) = 2πf̂(ξ, x3)J0(rdet|ξ|) or M̂rdetf(ρ, θ, x3) = 2πf̂(ρ, θ, x3)J0(rdetρ)

where ρ = |ξ|, θ = ξ/|ξ|, and f̂ and M̂rdetf are the 2-dimensional Fourier transforms

of f and Mrdetf with respect to (x1, x2). We used the following identities:

ρ∫
0

rnJn−1(r)dr = ρnJn(ρ), and
∞∑
n=0

Jn(ρ) = 1 for any ρ (4.24)
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(see e.g. [29]). Integrating M̂rdetf(ρ, θ, x3)rdetρ with respect to ρ yields

ρ−1

ρ∫
0

rdetρ0M̂rdetf(ρ0, θ, x3)ρ0dρ0 = 2πf̂(ρ, θ, x3)J1(rdetρ).

Inductively, we get

2πf̂(ρ, θ, x3)Jn(rdetρ)

= ρ−n
ρ∫

0

rdetρn−1

ρn−1∫
0

rdetρn−2 · · ·
ρ1∫
0

rdetρ0M̂rdetf(ρ0, θ, x3)dρ0 · · · dρn−2dρn−1.

Equation (4.24) completes this proof.

4.2.2.1 Cylindrical geometry

Let B2
R(0) × R be the solid cylinder {x = (x1, x2, x3) ∈ R3 : x21 + x22 ≤ R}. Let

the centers of the detector circles be located on the cylinder ∂B2
R(0) × R = A × R.

Then A is a circle centered at the origin with radius R. Also, µ can be represented

as Rθ⃗ for θ ∈ [0, 2π). Then Lemma 4.2.1 implies that

2π∫
0

2π∫
0

f(Rθ⃗ + rdetα⃗+ tβ1, x3)dβ1dα = − 1

π2t
I−1
2 R#

p Rpf(µ, x3, t). (4.25)

Again, the inner integral with respect to β1 in the left hand side of (4.25) is the

circular Radon transform with centers on ∂B2
R(0) and radius t. Hence, if applying

an inversion formula of the circular Radon transform, we get Mrdetf(x).

Theorem 4.2.2. Let f be a smooth function supported in B2
R(0)×R. Then for any
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x ∈ R3, Mrdetf(x) is equal to

− 1

2π2R
△x1,x2

2π∫
0

2(R+rdet)∫
0

I−1
2 R#

PRPf(Rθ, x3, t) log
∣∣∣t2 − |(x1, x2)−Rθ⃗|2

∣∣∣ dtdθ.
To prove this theorem, we follow the method discussed in [23].

Proof. It is computed in [23] that

2π∫
0

log
∣∣∣|(x1, x2)−Rθ⃗|2 − |(y1, y2)−Rθ⃗|2

∣∣∣ dθ = 2πR log |(x1, x2)−(y1, y2)|+2πR logR.

For any measurable function g on R, it is easily shown that

2(R+rdet)∫
0

t

2π∫
0

2π∫
0

f(Rθ⃗+rdetα⃗+tβ⃗1, x3)dβ1dα q(t)dt =

2π∫
0

∫
R2

f(Rθ⃗+rdetα⃗+w, x3)q(|w|)dwdα.

Applying this with q(t) = log
∣∣∣t2 − |(x1, x2)−Rθ⃗|2

∣∣∣ and making the change of vari-

ables (y1, y2) = Rθ⃗ + tβ⃗1 ∈ R2 give

2π∫
0

2(R+rdet)∫
0

2π∫
0

2π∫
0

tf(Rθ⃗ + rdetα⃗+ tβ⃗1, x3) log
∣∣∣t2 − |(x1, x2)−Rθ⃗|2

∣∣∣ dβ1dαdtdθ
=

2π∫
0

2π∫
0

∫
R2

f(rdetα⃗+ (y1, y2), x3) log
∣∣∣|(x1, x2)−Rθ⃗|2 − |(y1, y2)−Rθ⃗|2

∣∣∣ dydαdθ
Hence, we have

= 2πR

2π∫
0

∫
R2

f(rdetα⃗+ (y1, y2), x3)(log |(x1, x2)− (y1, y2)|+ logR)dydα,

where in the last line, we used the Fubini-Tonelli theorem. Since log |(x1, x2) −
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(y1, y2)|+ logR is a fundamental solution of the Laplacian in R2, we have

2π∫
0

f((x1, x2) + rdetα⃗, x3)dα =

1

2R
△x1,x2

2π∫
0

2(R+rdet)∫
0

2π∫
0

2π∫
0

tf(Rθ⃗ + rdetα⃗+ tβ⃗1, x3) log
∣∣∣t2 − |(x1, x2)−Rθ⃗|2

∣∣∣ dβ1dαdtdθ.
Lemma 4.2.1 completes this proof.

When A is a circle, we can recontruct f from RPf by applying Theorems 4.2.1

and 4.2.2.

4.2.2.2 Planar geometry

Let the centers of detector circles be located on the x1 = 0 plane. Then A ⊂ R2

is the x1 = 0 line. Also, RPf is equal to zero if f is an odd function in x1. We thus

assume the function is even in x1. We will denote µ ∈ A by (0, µ) ∈ R2 (notation

abuse). Then Lemma 4.2.1 implies that

2π∫
0

2π∫
0

f((0, µ) + rdetα⃗+ tβ1, x3)dβ1dα = − 1

π2t
I−1
2 R#

p Rpf(µ, x3, t). (4.26)

Again, the inner integral with respect to β1 in the left hand side of (4.26) is the

circular Radon transform with centers on the line (0, µ). Hence, by applying an

inversion formula of the circular Radon transform, we get Mrdetf(x) and radius t.

Theorem 4.2.3. Let f ∈ C∞
c (R2× [0,∞)) be an even function in x1. Then we have

Mrdetf(x) =
1

2π4

∫
R

∫
R

I−1
2 R#

PRPf(µ, x3,
√
s2 + (x2 − µ)2)

dµds√
s2 + (x2 − µ)2|x1 − s|2

.

Remark 4.2.2. The pressure is measured outside of the object and the circular
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detectors are located on the xy-plane. We thus assume f ∈ C∞
c (R2 × [0,∞)).

To prove this theorem, we follow the method in [7, 21, 55, 57].

Proof. In this proof, we fix x3. Let us define Mf as

Mf(µ, t) =

2π∫
0

2π∫
0

f((0, µ) + rdetα⃗+ tβ⃗1, x3)dβ1dα.

Then the inner integration with respect to β1 is the circular Radon transform with

centers at the line (0, µ) for fixed x3 and α. Also, Lemma 4.2.1 implies Mf(µ, t) =

−(π2s)−1I12R
#
PRPf(µ, x3, s). By definition, Mf(µ, t) can be written as

2

2π∫
0

1∫
−1

f((0, µ) + rdetα⃗+ t(
√
1− s2, s), x3)

ds√
1− s2

dα

Taking the Fourier transform of Mf with respect to µ yields

M̂f(ξ1, t) = 2

2π∫
0

1∫
−1

f̂(rdet cosα + t
√
1− s2, ξ1, x3)e

i(ts+rdet sinα)ξ1
ds√
1− s2

dα,

where f̂ and M̂f are the 1-dimensional Fourier transforms of f andMf with respect

to x2 and µ, respectively. Taking the Hankel transform of order zero of M̂f with

respect to t, we conclude that H0(Mf)(µ, ξ1, |ξ|) is equal to

2

∞∫
0

2π∫
0

2π∫
0

1∫
−1

f̂(rdet cosα + t
√
1− s2, ξ1, x3)e

i(ts+rdet sinα)ξ1
ds√
1− s2

dα tJ0(t|ξ|)dt

4

2π∫
0

∞∫
0

∞∫
0

f̂(rdetα⃗+ b, ξ1, x3) cos(ρξ1)J0(|ξ|
√
ρ2 + b2)eiξ1rdet sinαdρdbdα,

where in the last line, we made a change of variables (t, s) → (ρ, b) where t =
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√
ρ2 + b2 and s = ρ/

√
ρ2 + b2.

Using the identity (4.3), we get

H0M̂f(ξ1, |ξ|) = 4

2π∫
0

∞∫
0

f̂(rdet cosα + b, ξ1, x3)
cos(bξ2)

ξ2
eiξ1rdet sinαdbdα. (4.27)

Again, the inner integral in the right hand side of the last equation is the Fourier

cosine transform with respect to b, so taking the Fourier cosine transform of (4.27),

we get

2π∫
0

f̂(rdet cosα+ s, ξ1, x3)e
iξ1rdet sinαdα = 2π−1

∞∫
0

H0M̂f(ξ1, |ξ|) cos(sξ2)ξ2dξ2, (4.28)

where f̂ is the Fourier transform of f with respect to the variable x2.

Let us define the operator M∗ for g ∈ C∞
c (R× [0,∞)) by

M∗g(x2, x1) =

∫
R

g(µ,
√
x21 + (x2 − µ)2)dµ.

We can changeH0M̂f(ξ1, |ξ|) into M̂∗g(ξ) similarly to (4.5), where M̂∗g is the Fourier

transform of M∗g with respect to the variables (x2, x1).

2π∫
0

f̂(rdet cosα + s, ξ1, x3)e
iξ1rdet sinαdα =

1

2π2

∫
R

M∗g(ξ)eisξ2 |ξ2|dξ2,
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Thus, we have

2π∫
0

f(rdetα⃗+ (x1, x2), x3)dα =
1

4π3

∫
R

∫
R

M∗g(x2, s)e
i(x1−s)ξ2 |ξ2|dsdξ2

= − 1

2π2

∫
R

M∗g(x2, s)|x1 − s|−2ds.

When A is a line, we can determine f from RPf applying Theorems 4.2.1

and 4.2.3.
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5. THE TOROIDAL RADON TRANSFORM

As mentioned before, circular detectors as well as line detectors have been used

to measure the acoustic data in PAT. PAT with line detectors reduces to the cylin-

drical Radon transform [32, 33]. The detector line corresponds to the central axis

of a cylindrical and the propagation distance of the acoustic wave gives the radius

of a cylinder. PAT with circular detectors suggests to consider a toroidal Radon

transform, which assigns a given locally integrable function to its integrals over a

set of tori. If we think that the detector circle corresponds to the central circle of a

torus and the propagation distance of the acoustic wave gives the radius of the tube

of this torus, then it looks reasonable that PAT with circular detectors brings about

the toroidal Radon transform. Unfortunately, we have not been able to establish

the direct link between PAT with circular detectors and the toroidal Radon trans-

form. Nevertheless, studying the toroidal Radon transform seems to be an interesting

geometric object in its own right.

In this section, we study the toroidal Radon transform with the centers of tori

located on a cylinder or on a plane. Our goal is to present inversion formulas for

these cases.

Subsubection 5.1 is devoted to the definition of the toroidal Radon transform.

Various inversion formulas are provided in subsection 5.2.

5.1 Definition of the toroidal Radon transform

Definition 5.1.1. Let u > 0 be a radius of the central circles of tori. Let A× R ⊂

R2 × R be the set of the centers of tori. The toroidal Radon transform RT maps
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f ∈ C∞
c (R3) into

RTf(µ, p, r) =
1

2π

∫
S1

2π∫
0

f(µ+ (u− r cos β)α⃗, p+ r sin β)dβdα⃗, (5.1)

for (µ, p, r) ∈ A × R × (0,∞). Here α⃗ = (cosα, sinα), α is the angular parameter

along the central circle, (µ, p) is the center of the torus, and β and r are the polar

angle and radius of the tube of the torus, respectively.

A

central circles

(a)

A

central circles

(b)

Figure 5.1: Central circles and a set A (a) A is a circle and (b) A is a line

We consider the two situations when A is a circle or a line and thus the set of

the centers of tori is a cylinder or a plane (see Figure 5.1). We then present the

relation between the circular Radon transform and the toroidal Radon transform.

This relation leads naturally to an inversion formula, if one uses an inversion formula

for the circular Radon transform (already discussed in [23, 48] or [7, 21, 55, 57, 61]).

Definition 5.1.2. Let f be a compactly supported function in R3. The circular
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Radon transform M maps a function f into

Mf(µ, x3, r) =

∫
S1

f(µ+ rα⃗, x3)dα⃗ for (µ, x3, r) ∈ A× R× (0,∞).

5.2 Inversion of the toroidal Radon transform

The inner integral with respect to β in (5.1) can be thought of as the circular

Radon transform with centers at (µ + uα⃗, p) and radius r. As in subsection 4.1, we

will first invert this transform.

Let us define the operator R∗
T for g ∈ C∞

c (A× R× [0,∞)) by

R∗
Tg(µ, z, ρ) =

∫
R

g(µ, p,
√

(z − p)2 + ρ2)dp,

where (µ, z, ρ) ∈ A × R2. The following theorem shows the relation between the

circular and toroidal Radon transforms.

Lemma 5.2.1. Let f ∈ C∞
c (R3). Then we have

1

2
I−1
2 R∗

TRTf(µ, x3, r) =

 Mf(µ, x3, u− r) +Mf(µ, x3, u+ r) if u > r,

Mf(µ, x3, r − u) +Mf(µ, x3, u+ r) otherwise .

(5.2)

Proof. By definition, we have

RTf(µ, p, r) =
1

2π

2∑
j=1

∫
S1

1∫
−1

f(µ+ (u+ (−1)jr
√
1− s2)α⃗, p+ rs)

ds√
1− s2

dα⃗.

We take the Fourier transform of RTf with respect to p and the Hankel transform
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of order zero of R̂Tf with respect to r. Then we have

H0R̂Tf(µ, ξ1, η) =

1

2π

2∑
j=1

∫
S1

∞∫
0

∞∫
0

f̂(µ+ (u+ (−1)jb)α⃗, ξ1) cos(ρξ1)J0(η
√
ρ2 + b2)dρdbdα⃗,

(5.3)

where f̂ and R̂Tf are correspondingly the 1-dimensional Fourier transforms of f and

RTf with respect to z and p. Lastly, we change variables (r, s) → (ρ, b), where

r =
√
ρ2 + b2 and s = ρ/

√
ρ2 + b2. Applying (4.3) to (5.3), we get

H0R̂Tf(µ, ξ1, |ξ|) =
1

2π

2∑
j=1

∫
S1

∞∫
0

f̂(µ+ (u+ (−1)jb)α⃗, ξ1)
cos(bξ2)

ξ2
dbdα⃗.

The inner integral in the right side of the last equation is the Fourier cosine transform

with respect to b, so taking the inverse Fourier cosine transform of the above formula,

we get

2∑
j=1

∫
S1

f̂(µ+ (u+ (−1)js)α⃗, ξ1)dα⃗ = 4

∞∫
0

H0R̂Tf(µ, ξ1, |ξ|) cos(sξ2)ξ2dξ2. (5.4)

For a fixed ξ1, one recognizes the sum of two circular Radon transforms on the left.

Similarly to (4.5), we can change the right hand side of (5.4) into a term con-

taining operator R∗
T , i.e.,

R̂∗
Tg(µ, ξ) = 2πH0ĝ(µ, ξ1, |ξ|). (5.5)

Here R̂∗
Tg is the Fourier transform with respect to the variables (z, ρ). Combining
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this with (5.4), we have for g = RTf ,

2∑
j=1

∫
S1

f̂(µ+ (u+ (−1)js)α⃗, ξ1)dα⃗ =
2

π

∞∫
0

R̂∗
Tg(µ, ξ) cos(sξ2)ξ2dξ2

=
1

π

∫
R

R̂∗
Tg(µ, ξ)e

isξ2 |ξ2|dξ2,

since R̂∗
Tg is even in ξ2.

The following lemma describes another relation between the toroidal and circular

Radon transforms.

Lemma 5.2.2. Let f ∈ C∞
c (R3). Then we have

2

π

∫
R

∫
R

∞∫
0

rsRTf(µ,−η, s)e−i(s
2+2x3η+x23−η2+r2)ξξdsdηdξ

=

 Mf(µ, x3, u− r) +Mf(µ, x3, u+ r) if u > r,

Mf(µ, x3, r − u) +Mf(µ, x3, u+ r) otherwise .

Proof. Let G be defined by

G(µ, p, ξ) :=

∞∫
0

rRTf(µ, p, r)e
−ir2ξdr.

Then we have

G(µ, p, ξ) =
1

2π

∞∫
0

∫
S1

π∫
−π

rf(µ+ (u− r cos β)α⃗, p+ r sin β)e−ir
2ξdβdα⃗dr

=
1

2π

∫
S1

∫
R

∫
R

f(µ+ (u− y)α⃗, p+ z)e−i(y
2+z2)ξdydzdα⃗,

where we switched from the polar coordinates (r, β) to the Cartesian coordinates
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(y, z) ∈ R2. Continuing the computation yields

G(µ, p, ξ) =
1

2π

∫
S1

∫
R

∫
R

f(µ+ (u− y)α⃗, z)e−i(y
2+(z−p)2)ξdydzdα⃗

=
e−ip

2ξ

2π

∫
S1

∫
R

∫
R

f(µ+ (u− y)α⃗, z)e−i(y
2+z2)ξe2ipzξdydzdα⃗,

Making the change of variables r = y2 + z2 yields

G(µ, p, ξ) =
e−ip

2ξ

2π

2∑
j=1

∫
S1

∫
R

∫
R

f(µ+ (u+ (−1)j
√
r − z2)α⃗, z)

e−irξe2ipzξ

2
√
r − z2

drdzdα⃗.

Let us define the function

kµ(α, z, r) :=


2∑
j=1

f(µ+ (u+ (−1)j
√
r − z2)α⃗, z)/

√
r − z2 if 0 < z2 < r,

0 otherwise.

Then we have

G(µ, p, ξ) =
e−ip

2ξ

4π

∫
S1

∫
R

∫
R

kµ(α, z, r)e
−irξe2ipzξdrdzdα⃗ =

e−ip
2ξ

4π

∫
S1

k̂µ(α,−2pξ, ξ)dα⃗,

(5.6)

where k̂µ is the 2-dimensional Fourier transform of kµ with respect to the variables

(z, r). Also, we have

2∑
j=1

∫
S1

f(µ+ (u+ (−1)js)α, x3)dα =

∫
S1

skµ(α, x3, x
2
3 + s2)dα

=
1

4π2

∫
R2

∫
S1

sk̂µ(α, η, ξ)e
−i(x3η+(x23+s

2)ξ)dαdηdξ

=
1

π

∫
R

∫
R

sei
η2

4ξG(µ,− η

2ξ
, ξ)e−i(x3η+(x23+s

2)ξ)dηdξ
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Changed the variable η to 2ξη gives

2∑
j=1

∫
S1

f(µ+ (u+ (−1)js)α, x3)dα =
2

π

∫
R

∫
R

sG(µ,−η, ξ)e−i(2x3η+(x23+s
2)−η2)ξξdηdξ.

5.2.1 Cylindrical geometry

Let the centers of the central circles be located on the a cylinder ∂B2
R(0)× R =

A × R. That is, A is the circle centered at the origin with radius R. The next two

results show that the circular Radon transform can be recovered from the toroidal

Radon transform. Both theorems are easily obtained using Lemma 5.2.1.

Theorem 5.2.1. If R/2 < u < R and f ∈ C∞
c (B2

R−u(0)× R), then we have

Mf(µ, x3, r) =

 2−1I−1
2 R∗

TRTf(µ, x3, r − u) if r > u,

0 otherwise.

Theorem 5.2.2. Let f ∈ C∞
c (B2

R(0)× R). Then we have

Mf(µ, x3, r) =


1

2

[R
u
+ 1

2
]∑

j=0

(−1)jI−1
2 R∗

TRTf(µ, x3, (2j + 1)u− r) if r ≤ u,

1

2

[R/u]∑
j=0

(−1)jI−1
2 R∗

TRTf(µ, x3, (2j + 1)u+ r) otherwise.

The proofs of Theorems 5.2.1 and 5.2.2 need routine computation.

Remark 5.2.1. One can obtain other relations similar to Theorems 5.2.1 and 5.2.2,

by using Lemma 5.2.2 instead of Lemma 5.2.1.

Remark 5.2.2. When the set of centers of the detector circles lie on a cylinder (i.e.,

A is a circle,) one can recover f from its toroidal transform RTf by applying inversion
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formulas (see e.g. [23, 48]) to the left hand sides of equations in Theorems 5.2.1 and

5.2.2.

Remark 5.2.3. If u > 2R (i.e., the radius of central circles is bigger than the

diameter of domain cylinder), then

Mf(µ, x3, r) =

 2−1I−1
2 R∗

TRTf(µ, x3, u− r) if r < u,

2−1I−1
2 R∗

TRTf(µ, x3, u+ r) otherwise.

.

5.2.2 Planar geometry

Let A ⊂ R2 be the line x1 = 0. (i.e., the centers of tori are located on the x1 = 0

plane in R3.) Then RTf(µ, x3, r) is equal to zero if f is an odd function in x1. We

thus assume the function f is to be even in x1.

Theorem 5.2.3. Let f ∈ C∞
c (B3

R(0)) be even in x1.Then

Mf(µ, x3, r) =


1

2

[R+u
2u

]∑
j=0

(−1)jI−1
2 R∗

TRTf(µ, x3, (2j + 1)u− r) if r ≤ u,

1

2

[R/2u]∑
j=0

(−1)jI−1
2 R∗

TRTf(µ, x3, (2j + 1)u+ r) otherwise.

(5.7)

Remark 5.2.4. When A is a line, we can determine f from RTf by applying inver-

sion formulas of [7, 21, 55, 57, 61] to the left hand side of (5.7).

Remark 5.2.5. If u > R (i.e., the radius of detector is bigger than the radius of the

ball containing supp f), then

Mf(µ, x3, r) =

 2−1I−1
2 R∗

TRTf(µ, x3, u− r) if r < u,

2−1I−1
2 R∗

TRTf(µ, x3, u+ r) otherwise.

81



6. COMPTON CAMERAS AND CONE TRANSFORMS

Single Photon Emission Computed Tomography (SPECT) is considered a very

useful medical diagnostics tool. In particular, it can provide physiological informa-

tion, while common types of tomography deliver only structural information. A

Compton camera, also called electronically collimated γ-camera, was first

introduced in [63, 71] for use in SPECT because of the low efficiency of a conven-

tional gamma camera. The reason for this low efficiency is the use of collimation

which reduces significantly the signal-to-noise ratio. Since then, Compton cameras

have attracted a lot of interest and applications in many areas including astronomy

and monitoring nuclear power plants. Additionally, the Department of Homeland

Security has interest in Compton cameras imaging in order to prevent smuggling of

weapons-grade nuclear materials.

A typical Compton camera consists of two planar detectors: a scatter detector

and an absorption detector, positioned one behind the other. A photon emitted in

the direction of the camera undergoes Compton scattering in the scatter detector

positioned ahead, and is absorbed in the absorption detector (see Figure 6.1(a)). In

scatter plane

absorption plane

ψ

β

(a)

ψ

u

β

(b)

Figure 6.1: Schematic representation of a Compton camera
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each detector, the position of the hit and energy of the photon are measured. The

scattering angle ψ can be computed by

cosψ = 1− mc2∆E

(E −∆E)E
,

where m is the mass of the electron, c is the speed of light, E is the initial gamma-ray

energy, and ∆E is the energy transferred to the electron in the scattering process [1,

50]. Also, the direction β is given by difference vector between two device positions.

For convenience, we assume β is normalized, i.e., an unit vector. Therefore, we get

the integral of the distribution of the radiation source over cone with a central axis

β, a vertex u at the position of a scatter detector and scattering angle ψ. We thus

reserve the name cone transform for the surface integral of a source distribution

over this family of cones.

This section is organized as follows. Definition of the cone transform and previous

results are introduced in subsection 6.1. In subsection 6.2, we present an inversion

formula using complete Compton data for 3 and 2 dimensional cases. Subsection 6.3

is devoted to properties of the cone transform with a fixed central axis.

6.1 The cone transform

Let f(x, y, z) be the distribution of radioactivity sources and let the scatter de-

tectors u be located in xy-plane. We assume that f(x, y, z) is supported on one side

of the Compton camera, which means that support of f is contained in the half space

{(x, y, z) ∈ R3 : z > 0}. As before, let β ∈ S2 be a central axis and ψ ∈ [0, π] be an

opening angle.

The data measured by a Compton camera is the integral of the source distribution

over cones which are parameterized by a position vector u, a central axis β, and an
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opening angle ψ. Hence, Compton data can be represented as

Cf(u, β, ψ) = K(ψ)

∫
β·α=cosψ,α∈S2

∞∫
0

f((u, 0) + rα(ϕ))r sinψ drdϕ,

where K(ψ) is the (known) Klein-Nishina coefficient. Since this factor is known, it

can be easily handled, and we do not take it into account in the further analysis.

One considers a more general form of a cone transform Ckf , which is

Ckf(u, β, ψ) =

∫
β·α=cosψ,α∈S2

∞∫
0

f((u, 0) + rα(ϕ))rk sinψdrdϕ,

where k ∈ R. Notice that C1f = Cf .

There are some previous works containing inversion formulas of this cone trans-

form. While f has 3-dimensional domain, the cone transform Ckf(u, β, ψ) depends

on 5 variables, so the problem of inverting the cone transform Ckf(u, β, ψ) is two

dimensions overdetermined. There are many ways of reducing the dimensions of the

data, e.g., by fixing a central axis [17, 56, 74] or using 1-dimensional detectors [8, 65].

Some works use the complete set of data for the reconstruction (e.g. [50]). In 2-

dimensional case, the problem of inverting the cone transform Ckf(u, β, ψ) also is

one dimension overdetermined. Various inversions of the 2-dimensional cone trans-

form from the complete set of data are introduced in [1]. All existed works including

above works and [37, 59, 72] deal with the cone transform when k = 0 or 1.

6.2 Reconstruction

Analogously to [8], we use spherical harmonics to get an inversion formula. How-

ever, while the relation between the cone transform and the Radon transform was

the focus in the work [8], the relation between the cone transform and the weighted
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fan beam transform is used in this subsection. Our inversion also uses full data, but

we provide different inverse formulas than the ones in [1, 8, 50].

6.2.1 3-dimensional case

It is easily verified that the cone transform is shift-invariant, i.e.,

Ck(Taf)(u, β, ψ) = TaC
kf(u, β, ψ)

for a = (a1, a2) ∈ R2, where Taf(x, y, z) = f(x+ a1, y + a2, z) and TaC
kf(u, β, ψ) =

Ckf(u+ a, β, ψ).

Let Tuf(α, ρ) be a function Tnf(x, y, z) in spherical coordinate. Let us express

(Tuf)(α, ρ) and gk(u, β, ψ) := Ckf(u, β, ψ) in terms of an expansion in spherical

harmonics as follows:

(Tuf)(α, ρ) =
∞∑
l=0

2l+1∑
n=0

(Tuf)ln(ρ)Yln(α), gk(u, β, ψ) =
∞∑
l=0

2l+1∑
n=0

gkln(u, ψ)Yln(β).

Here Yln(ω) for ω ∈ S2 and n = 0, 1, 2, · · · , 2l + 1, l = 0, 1, · · · , are spherical har-

monics and the coefficients are

(Tuf)ln(ρ) =
(2l + 1)(l − |n|)!

4π(l + |n|)!

∫
S2

Tuf(α, ρ)Yln(α)dS(α),

gkln(u, ψ) =
(2l + 1)(l − |n|)!

4π(l + |n|)!

∫
S2

gk(u, β, ψ)Yln(β)dS(β),

where dS is the surface measure on the unit sphere S2 in R3. The following theorem

describes a relation between two coefficients (Tuf)ln and gkln.
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Theorem 6.2.1. Let f ∈ S(R3). Then we have

∞∫
0

(Tuf)ln(ρ)ρ
kdρ =

(2l + 1)

4π

π∫
0

gkln(u, ψ)Pl(cosψ)dψ,

where Pl(t) is the Legendre polynomial of degree l.

Proof. By definition, we have

Ck(Tuf)(0, β, ψ) =

∞∫
0

∫
α·β=cosψ

(Tuf)(α, ρ)ρ
k sinψdρdα

=
∞∑
l=0

2l+1∑
n=0

∞∫
0

∫
α·β=cosψ

(Tuf)ln(ρ)Yln(α)ρ
k sinψdρdα

=
∞∑
l=0

2l+1∑
n=0

∞∫
0

(Tuf)ln(ρ)ρ
k sinψdρ

∫
α·β=cosψ

Yln(α)dα.

(6.1)

The Funk-Hecke theorem [54, 62] is

∫
S2

h(θ · ω)Yln(ω)dω = c(l)Yln(θ), c(l) = 2π

1∫
−1

h(t)Pl(t)dt,

for θ ∈ S2 and a function h is on [-1,1]. Using this theorem, we get

∫
cosψ=α·β

Yln(α)dα =

∫
cosψ=t,−1≤t≤1

Pl(t)dt Yln(β) = 2πPl(cosψ)Yln(β).

Substituting the above equation into (6.1), we get

gk(u, β, ψ) = TuC
kf(0, β, ψ) = Ck(Tuf)(0, β, ψ)

= 2π
∞∑
l=0

2l+1∑
n=0

Pl(cosψ) sinψ

∞∫
0

(Tuf)ln(ρ)ρ
kdρ Yln(β),
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which implies

gkln(u, ψ) = 2πPl(cosψ) sinψ

∞∫
0

(Tuf)ln(ρ)ρ
kdρ. (6.2)

The known relation
∫ π
0
|Pl(cosψ)|2 sinψdψ = 2/(2l + 1) yields the assertion.

Remark 6.2.1. Relation (6.2) was mentioned in [8] for k = 1 in a different manner.

Remark 6.2.2. When we need to use the Klein-Nishina formula, we can multiply

(6.2) by K(ψ) and integrate it with respect to ψ. Since
∫ π
0
|Pl(cosψ)K(ψ)|2 sinψdψ

is positive, we have

∞∫
0

(Tuf)ln(ρ)ρ
kdρ =

1

2π

 π∫
0

|Pl(cosψ)K(ψ)|2 sinψdψ

−1 π∫
0

gkln(u, ψ)Pl(cosψ)dψ.

Theorem 6.2.2. Let f ∈ S(R3). Then

Dkf(u, α) :=

∞∫
0

f((u, 0) + rα)rkdr, for (u, α) ∈ R2 × S2

can be obtained through

∞∑
l=0

2l+1∑
n=0

(2l + 1)

4π

π∫
0

gkln(u, ψ)Pl(cosψ)dψ Yln(α).

Remark 6.2.3. When k is equal to zero, we obtain a relation between the fan beam

transform and the cone transform:

D0f(u, α) =
∞∑
l=0

2l+1∑
n=0

(2l + 1)

4π

π∫
0

g0ln(u, ψ)Pl(cosψ)dψ Yln(α).

In fact, we have not used the condition that u is located on the xy-plane. Hence we

can apply the theory of the fan beam transform. In particular, Finch [22] showed when
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f ∈ C2
0(U), where U ⊂ R3 is open and bounded, and C is a connected curve lying

in R3\Ū , f can be determined from D0f(u, α), i.e., C0f(u, β, ψ), if Eθ(suppf) ⊂

Eθ(convex hull C) for each θ ∈ S2 in a nonempty open cone Γ where Eθ denotes

orthogonal projection on θ⊥. In other words, if the position u of a scatter detector is

located on a curve C satisfying Eθ(suppf) ⊂ Eθ(convex hull C), we can find f from

C0f(u, β, ψ).

To find an inversion formula for the cone transform Ckf , we need an inversion

formula of Dkf(u, α) where u ∈ R2.

Theorem 6.2.3. For any k ∈ R and for f(x, y, z) ∈ S(R3) compactly supported in

an upper half plane {(x, y, z) ∈ R3 : z > 0}, the following formula holds:

f̂(ξ, z) = −z1−k
∞∫
0

π∫
−π

F(△uD
kf)(ξ, θ, arctan s)J0(zs|ξ|)

s

(1 + s2)(k+1)/2
dθds,

where △u is the Laplace operator in the variable u and f̂ and F(Dkf)(or D̂kf) are

the Fourier transforms of f and Dkf with respect to the 2-dimensional variables

(x, y) and u, respectively.

Proof. Let θ and ϕ be the azimuthal and polar angles of α, respectively. Taking the

Fourier transform of Dkf(u, α) with respect to u, we obtain

D̂kf(ξ, θ, ϕ) =

∞∫
0

f̂(ξ, r cosϕ)eirξ·(cos θ,sin θ) sinϕrkdr,

where f̂ is the 2-dimensional Fourier transform of f with respect to the first two
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variables (x, y). Integrating D̂kf(ξ, θ, ϕ) with respect to θ gives

π∫
−π

D̂kf(ξ, θ, ϕ)dθ =

∞∫
0

f̂(ξ, r cosϕ)rk
π∫

−π

eirξ·(cos θ,sin θ) sinϕdθdr

=

∞∫
0

f̂(ξ, r cosϕ)rk
π∫

−π

eir|ξ| cos(θ+φ) sinϕdθdr

=

∞∫
0

f̂(ξ, r)rkJ0(r tanϕ|ξ|)dr cos−k−1 ϕ,

for a fixed ξ = |ξ|(cosφ, sinφ). In the last line, we changed variables r → r/ cosϕ.

If we consider f̂(ξ, r) as a function of the variable r for a fixed ξ, then the above

integral is the Hankel transform of zero order of f̂(ξ, r)rk−1. Hence applying the

Hankel transform of zero order and changing variables, we get

f̂(ξ, r) = r1−k
∞∫
0

π∫
−π

D̂kf(ξ, θ, ϕ)J0(r tanϕ|ξ|)|ξ|2 tanϕ cosk+1 ϕdθ(d tanϕ)

= −r1−k
∞∫
0

π∫
−π

F(△uD
kf)(ξ, θ, arctan s)J0(rs|ξ|)

s

(1 + s2)(k+1)/2
dθds.

Therefore, we obtain the following inversion formula by combining Theorems 6.2.2

and 6.2.3.

Theorem 6.2.4. If f(x, y, z) ∈ S(R3) has compact support in {(x, y, z) ∈ R3 : z >

0}, then f can be obtained from Ckf = gk as follows:

∞∑
l=0

2(2l + 1)π2

|u|

∫
R2

π∫
0

△ug
k
l0((x, y)− u, ψ)

Pl(cosψ)

(z2 + |u|2) k+1
2

Pl

(
z√

z2 + |u|2

)
dψdu.
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Proof. We know Yln(α) = P
|n|
l (cosϕ)e−inθ, where P n

l (x) is the associated Legendre

function. Hence, we can write f̂(ξ, z) as

−
∞∑
l=0

2l+1∑
n=0

(2l + 1)z1−k

4π

∞∫
0

π∫
−π

π∫
0


F(△ug

k
ln)(ξ, ψ)Pl(cosψ)e

−inθ

×P |n|
l

(
1√

1 + s2

)
J0(zs|ξ|)

s

(1 + s2)(k+1)/2

 dψdθds.

Here summation commutes with integration because the integrand is absolutely in-

tegrable with respect to s and ψ. Since

π∫
−π

e−inθdθ =

 2π if n = 0,

0 otherwise,

we have that f(x, y, z) is equal to

−
∞∑
l=0

(2l + 1)z1−k

2

∫
R2

π∫
0

∞∫
0


F(△ug

k
l0)(ξ, ψ)

s

(1 + s2)
k+1
2

×Pl(cosψ)Pl
(

1√
1 + s2

)
J0(zs|ξ|)eiξ·(x,y)

 dsdψdξ.

Consider the inner integral with respect to dξ:

∫
R2

F(△ug
k
l0)(ξ, ψ)J0(zs|ξ|)eiξ·(x,y)dξ.

Since the Fourier transform of J0(zs|ξ|) in ξ is 2πδ(|(x, y)| − zs)(zs)−1, where δ is

the Dirac delta function, we have

∫
R2

F(△ug
k
l0)(ξ, ψ)J0(zs|ξ|)eiξ·(x,y)dξ = (2π)3

∫
R2

△ug
k
l0((x, y)− u, ψ)δ(|u| − zs)

du

zs
.
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6.2.2 2-dimensional case

0 (u,o)

β

ψ

x

y

Figure 6.2: A sketch of a V -line transform

In two dimensions, the cone transform becomes the integral of f over a “broken

line” (or a V -line) (see Figure 6.2). These V-lines have a common vertex u and

two directions (cos(β ± ψ), sin(β ± ψ)). In this case, the scatter position becomes

1-dimensional and is assumed to be located on the x-axis. Hence, one consider a

V-line transform of the form

V kf(u, β, ψ)

=

∞∫
0

[f((u, 0) + r(cos(β − ψ), sin(β − ψ))− f((u, 0) + r(cos(β + ψ), sin(β + ψ))]rkdr,

where β ∈ [0, 2π). It is also clear that our V-line transform has shift invariance with

respect to u ∈ R.

Let us consider the Fourier series of (Tuf)(α, ρ) and g
k(u, β, ψ) := V kf(u, β, ψ)
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with respect to the angular variables α and β. Then we get

(Tuf)(α, ρ) =
∞∑

n=−∞

(Tuf)n(ρ)e
inα, gk(u, β, ψ) =

∞∑
n=−∞

gkn(u, ψ)e
inβ

where the Fourier coefficients are

(Tuf)n(ρ) =
1

2π

2π∫
0

Tuf(α, ρ)e
inαdα and gkn(u) =

1

2π

2π∫
0

gk(u, β)einβdβ.

A relation between two Fourier coefficients (Tuf)n and g
k
n can be described as follows:

Theorem 6.2.5. For f ∈ S(R2), we have

∞∫
0

(Tuf)n(ρ)ρ
kdρ =

1

π

π∫
0

gkn(u, ψ) cos(nψ)dψ.

Proof. We can write V k(Tuf)(0, β, ψ) as

∞∫
0

[(Tuf)(β − ψ, ρ) + (Tuf)(β + ψ, ρ)]ρkdρ

=
∞∑

n=−∞

∞∫
0

(Tuf)n(ρ)(e
in(β−ψ) + ein(β+ψ))ρkdρ

= 2
∞∑

n=−∞

∞∫
0

(Tuf)n(ρ)ρ
kdρ cos(nψ)einβ.

Therefore, we get

gk(u, β, ψ) = Tug
k(0, β, ψ) = V k(Tuf)(0, β, ψ) = 2

∞∑
n=−∞

∞∫
0

(Tuf)n(ρ)ρ
kdρ cos(nψ)einβ,
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which implies our assertion, using the identity

π∫
0

cos2(nψ)dψ =
π

2
.

Theorem 6.2.6. Let Dk
2f(u, α) for f ∈ S(R2) be defined as

Dk
2f(u, α) :=

∞∫
0

f((u, 0) + r(cosα, sinα))rkdr, for (u, α) ∈ R× [0, 2π).

Then

Dk
2f(u, α) =

1

π

∞∑
n=−∞

π∫
0

gkn(u, ψ) cos(nψ)dψ e
inα.

As in the 3-dimensional case, an inversion formula of Dk
2 is required.

Theorem 6.2.7. Let f(x, y) ∈ S(R2) have support in {(x, y) ∈ R2 : y > 0}. Then

f(x, y) = −
√
2πiy−k

π∫
0

∂

∂u
Dk

2f(x− y cotα, α) sink−1 αdα.

Proof. Taking the Fourier transform of Dk
2f(u, β) with respect to u, we obtain

D̂k
2f(ξ, α) =

∞∫
0

f̂(ξ, r sinα)eir cosαξrkdr =
1

sink+1 α

∞∫
0

f̂(ξ, r)eirξ cotαrkdr,

where f̂ is the Fourier transform of f with respect to the first variable x. Here we

changed the variable r to r/ sinα. Multiplying e−iaξ cotα sink−1 α by D̂k
2f(ξ, α) for
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any a > 0 and integrating with respect to θ give

π∫
0

D̂k
2f(ξ, α)e

−iaξ cotα sink−1 αdα =

π∫
0

∞∫
0

f̂(ξ, r)eirξ cotα−iaξ cotαrkdr sin−2 αdα

=

∫
R

∞∫
0

f̂(ξ, r)ei(r−a)ξtrkdrdt

=
√
2π

∞∫
0

f̂(ξ, r)δ((r − a)ξ)rkdr

=
√
2πξ−1f̂(ξ, a)ak,

where in the second line, we changed variables cotα→ t. Thus, we have

f̂(ξ, y) = −
√
2πy−k

π∫
0

i(iξ)D̂k
2f(ξ, α) e

−iyξ cotα sink−1 αdα.

Combining Theorems 6.2.6 and 6.2.7, we get the following theorem:

Theorem 6.2.8. Let f(x, y) ∈ S(R2) have support in {(x, y) ∈ R2 : y > 0}. Then

f(x, y) = −i
√

2

π

∞∑
n=−∞

π∫
0

π∫
0

y−k
∂

∂u
gkn(x− y cotα, ψ) cos(nψ)einα sink−1 αdψdα.

Remark 6.2.4. Similarly to 3-dimensional case, when k is equal to zero, we obtain

a relation between the fan beam transform and a V-line transform:

D0
2f(u, α) =

1

π

∞∑
n=−∞

π∫
0

g0n(u, ψ) cos(nψ)dψ e
inα. (6.3)

To get (6.3), we does not need the condition that the detector position variable u is

located on the x-axis. We thus can apply any inversion formulas for the fan beam
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transform.

When f ∈ C2
0(U), where U ⊂ R2 is open and bounded, and C is a connected

curve lying in R2\Ū , f can be determined from D0
2f(u, α), i.e., V 0f(u, β, ψ), if

Eθ(suppf) ⊂ Eθ(convexhullC) for each θ in a nonempty open cone Γ where Eθ

denotes orthogonal projection on θ⊥.

6.3 The cone transform with a fixed central axis

As we already know, the inverting problem of Ckf is two dimensions overdeter-

mined. Like in [17, 56], we will fixed a central axis β parallel to z-axis. Then the

(reduced) cone transform becomes

Ckf(u, (0, 0, 1), ψ) =

∞∫
0

π∫
−π

f(u1 + z tanψ cos θ, u2 + z tanψ sin θ, z)z tank ψdθdz.

Let us change notation. We let s = tanψ and denote

Ck
fixf(u, s) := s

√
1 + s2

∞∫
0

π∫
−π

f(u1 + zs cos θ, u2 + zs sin θ, z)zkdθdz,

where k ∈ R and (u, s) ∈ R2 × [0,∞).

Our goal is to find inversion formulas for Ck
fixf(u, s) and study their properties.

6.3.1 Inversion formulas

We have an analogue of the Fourier slice theorem.

Theorem 6.3.1. Let f ∈ C∞
c (R2 × (0,∞)). Then we have

f̂(ξ, z) =
z1−k

2π

∞∫
0

Ĉk
fixf(ξ, s)√
1 + s2

J0(zs|ξ|)|ξ|2ds.
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Proof. It is easy to check that the cone transform with a fixed central axis is shift-

invariant: Ck
fix(T(a,b)f)(u, s) = Ck

fixf(u1+a, u2+b, s) for a, b ∈ R, where T(a,b)f(x, y, z) =

f(x + a, y + b, z). It, thus, is reasonable to take the Fourier transform with respect

to u. Doing this, we obtain

Ĉk
fixf(ξ, s) = s

√
1 + s2

∞∫
0

π∫
−π

f̂(ξ, z)eizsξ·(cos θ,sin θ)zkdθdz

= s
√
1 + s2

∞∫
0

f̂(ξ, z)

π∫
−π

eizs|ξ| cos(θ−ϕ)zkdθdz

= 2πs
√
1 + s2

∞∫
0

f̂(ξ, z)J0(zs|ξ|)zkdz,

(6.4)

where ξ = |ξ|(cosϕ, sinϕ) and f̂ and Ĉk
fixf are the 2-dimensional Fourier transforms

of f and Ck
fixf with respect to (x, y) and u, correspondingly. For a fixed ξ, we

can think of f̂(ξ, z) as a one variable function of z. The last integral in (6.4) is,

up to the factor s
√
1 + s2, the Hankel transform of order zero of zk−1f̂(ξ, z). Since

f(x, y, z) has support in {(x, y, z) : z > 0}, applying the Hankel transform yields our

assertion.

Theorem 6.3.2. Let f ∈ C∞
c (R2 × (0,∞)). Then we have for z > 0,

f(x, y, z) = −z
1−k

2π

∫
R2

△uC
k
fixf (x

′, y′, |(x− x′, y − y′)|/z)
|(x− x′, y − y′)|

√
|(x− x′, y − y′)|2 + z2

dx′dy′,

where △u is the Laplace operator with respect to the variable u.

Proof. From Theorem 6.3.1, we have

f̂(ξ, z) = −z
1−k

2π

∞∫
0

F(△uC
k
fixf)(ξ, s)J0(zs|ξ|)

ds√
1 + s2

, (6.5)
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where F(Ck
fixf) is the Fourier transform of Ck

fixf . Hence we have

f(x, y, z) = − 1

(2π)3
z1−k

∫
R2

∞∫
0

F(△uC
k
fixf)(ξ, s)J0(zs|ξ|)

ds√
1 + s2

eiξ·(x,y)dξ. (6.6)

Consider
∫
R2 J0(zs|ξ|)eiξ·(x,y)dξ. Switching the Cartesian coordinate ξ to polar coor-

dinates (ρ, ϕ) yields

∫
R2

J0(zs|ξ|)eiξ·(x,y)dξ =

π∫
−π

∞∫
0

J0(zsρ)e
iρ(cosϕ,sinϕ)·(x,y)ρdρdϕ

=

∞∫
0

J0(zsρ)ρ

π∫
−π

eiρ|(x,y)| cos(ϕ−θ)dϕdρ

= 2π

∞∫
0

J0(zsρ)J0(ρ|(x, y)|)ρdρ = 2π(zs)−1δ(zs− |(x, y)|),

where (x, y) = |(x, y)|(cos θ, sin θ). Hence, we can simplify (6.6) as follows:

f(x, y, z) = − 1

(2π)3
z1−k

∫
R2

∞∫
0

△̂uCk
fixf(ξ, s)J0(zs|ξ|)

ds√
1 + s2

eiξ·(x,y)dξ

= −z
1−k

2π

∫
R2

∞∫
0

△uC
k
fixf(x

′, y′, s)(zs)−1δ(zs− |(x− x′, y − y′)|) ds√
1 + s2

dx′dy′

= −z
1−k

2π

∫
R2

△uC
k
fixf (x

′, y′, |(x− x′, y − y′)|/z)
|(x− x′, y − y′)|

√
|(x− x′, y − y′)|2 + z2

dx′dy′.

Remark 6.3.1. When k = 1, (6.6) was obtained in [17].

Let f̂(ϱ, φ, z) and ĝk(ρ, ϕ, s) be the functions f̂(ξ, z) and Ĉk
fixf(η, s) in the polar

coordinates (ϱ, φ) ∈ [0,∞) × S1 and (ρ, ϕ) ∈ [0,∞) × S1, where ϱ = |ξ|, φ = ξ/|ξ|

and ρ = |η|, ϕ = η/|η|. Then the Fourier series of f̂(ϱ, φ, z) and ĝk(ρ, ϕ, s) and with
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respect to the polar angles φ and ϕ can be written as follows:

f̂(ϱ, φ, z) =
∞∑

n=−∞

Ffn(ϱ, z)e
inφ, ĝk(ρ, ϕ, s) =

∞∑
n=−∞

Fgkn(ρ, s)e
inϕ,

where

Ffn(ϱ, z) =
1

2π

2π∫
0

f̂(ϱ, φ, z)e−inφdφ, Fgkn(ρ, s) =
1

2π

2π∫
0

ĝk(ρ, ϕ)e−inϕdϕ.

The following theorem describes the relation between Fgkn and Ffn.

Theorem 6.3.3. For f ∈ C∞
c (R2 × (0,∞)), we have

Fgkn(ρ, s) = 2πs
√
1 + s2

∞∫
0

Ffn(ρ, z)J0(zsρ)z
kdz. (6.7)

Proof. From (6.4), we have

Fgkn(ρ, s) =
1

2π

2π∫
0

ĝk(ρ, ϕ)e−inϕdϕ = s
√
1 + s2

2π∫
0

∞∫
0

f̂(ρ, ϕ, z)J0(zsρ)z
ke−inϕdzdϕ

= 2πs
√
1 + s2

∞∫
0

Ffn(ρ, z)J0(zsρ)z
kdz.

The right hand side of (6.7) can be viewed as the Hankel transform of zero order

of Ffn(ρ, z). Hence we have the following corollary.

Corollary 6.3.1. For f ∈ C∞
c (R2 × (0,∞)), we have

Ffn(ϱ, z) =
ϱ2

2πzk−1

∞∫
0

Fgkn(ϱ, s)J0(sϱz)
ds√
1 + s2

.
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Consider now Fgkn(ρ, s):

Fgkn(ρ, s) =
1

2π

2π∫
0

ĝk(ρ, ϕ, s)e−inϕdϕ

=
1

2π

2π∫
0

2π∫
0

∞∫
0

gk(r, θ, s)e−irρ(cos θ,sin θ)·(cosϕ,sinϕ)−inϕrdrdθdϕ

=
1

2π

2π∫
0

∞∫
0

2π∫
0

gk(r, θ, s)e−irρ cos(θ−ϕ)−inϕrdϕdrdθ

=
1

2π

2π∫
0

∞∫
0

2π∫
0

gk(r, θ, s)e−irρ cosϕ−in(ϕ+θ)rdϕdrdθ,

where in the third line, we used the Fubini-Tonelli theorem and in the last line, we

changed the variable ϕ − θ to ϕ. Let gkn be the n-th Fourier coefficient of gk with

respect to the polar angle. Continuing the computation of Fgkn gives

Fgkn(ρ, s) =

2π∫
0

∞∫
0

gkn(r, s)e
−irρ cosϕ−inϕrdrdϕ = 2π(−i)n

∞∫
0

gkn(r, s)Jn(rρ)rdr.

(6.8)

Remark 6.3.2. When k = 1, Theorem 6.3.3 and Corollary 6.3.1 are already obtained

in [56]. Combining Corollary 6.3.1 and (6.8), Nguyen et al. obtained

f̂(ϱ, ϕ, z) = ϱ2
∞∫
0

∞∫
0

G(ϱ, ρ, ϕ, s)J0(sϱz)
ρdsdρ√
1 + s2

,

where

G(ϱ, ρ, ϕ, s) =
∞∑

n=−∞

ing1n(ρ, s)Jn(ρϱ)e
inϕ.
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Corollary 6.3.2. For f ∈ C∞
c (R2 × (0,∞)), we have

fn(r, z) =
1

2πzk−1

∞∫
0

∞∫
0

∞∫
0

ρ3√
1 + s2

νgkn(ν, s)Jn(ρν)J0(sρz)Jn(rρ)dνdsdρ.

Proof. Similarly to (6.8), we get

Ffn(r, z) = 2π(−i)n
∞∫
0

fn(ρ, z)Jn(rρ)ρdρ. (6.9)

Note that the right hand side of (6.9) is the Hankel transform of n-th order of fn, so

we have

fn(r, z) =
in

2π

∞∫
0

Ffn(ρ, z)Jn(rρ)ρdρ.

Using Corollary 6.3.1, we obtain the following equation:

fn(r, z) =
in

4π2

∞∫
0

ρ2

zk−1

∞∫
0

Fgkn(ρ, s)J0(sρz)Jn(rρ)ρ
ds√
1 + s2

dρ

=
1

2πzk−1

∞∫
0

∞∫
0

∞∫
0

ρ3√
1 + s2

νgkn(ν, s)Jn(ρν)J0(sρz)Jn(rρ)dνdsdρ.

6.3.2 A stability estimate

Let γ ≥ 0 and let L2
(s+s3)−1(R2 × [0,∞)) be the set of a measurable function g

with ∫
R2

∞∫
0

|g(u, s)|2(s+ s3)−1dsdu <∞.
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For f ∈ C∞
c (R2 × (0,∞)) and g ∈ L2

(s+s3)−1(R2 × [0,∞)) smooth in u, define ||f ||2γ

and ||g||2γ+1 by

∞∫
0

∫
R2

|f̂(ξ, z)|2(|ξ|2 + 1)γz2k−1dξdz and

∫
R2

∞∫
0

|ĝ(ξ, s)|2(|ξ|2 + 1)γ+1(s+ s3)−1dsdξ.

Theorem 6.3.4. Let B2
1 be the unit ball in R2. We have that for each γ ≥ 0 and

for f ∈ C∞
c (B2

1 × (0,∞)),

||f ||γ ≤ ||Ck
fixf ||γ+1.

Proof. By the Plancherel theorem for the Hankel transform (1.2), we have

∞∫
0

|zk−1f̂(ξ, z)|2zdz =
∞∫
0

|H0(z
k−1f̂)(ξ, s)|2sds.

Hence, we get

∫
R2

∞∫
0

|f̂(ξ, z)|2z2k−1dzdξ =

∫
R2

∞∫
0

|H0(z
k−1f̂)(ξ, s)|2sdsdξ

=

∫
R2

∞∫
0

(s+ s3|ξ|−2)−1|ξ|2|Ĉk
fixf(ξ, s|ξ|

−1)|2dsdξ

=

∫
R2

∞∫
0

|ξ|2|Ĉk
fixf(ξ, s)|

2(s+ s3)−1dsdξ.

(6.10)

In the first line, we used the identity Ĉk
fixf(ξ, s) = H0(z

k−1f̂)(ξ, s|ξ|)s
√
1 + s2 or

|ξ|(s
√
1 + (s/|ξ|)2)−1Ĉk

fixf(ξ, s|ξ|
−1) = H0(z

k−1f̂)(ξ, s)

101



obtained from (6.4). Substituting (|ξ|2 + 1)γ+1|ξ|−2dξ for dξ on (6.10) yields

∫
R2

∞∫
0

|f̂(ξ, z)|2z2k−1|ξ|−2(|ξ|2 + 1)γ+1dzdξ ≤ ||Ck
fixf ||γ+1.

Therefore, we have ||f ||γ ≤ ||Ck
fixf ||γ+1.
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7. INVERSION OF THE WINDOWED RAY TRANSFORM

The windowed ray transform was introduced in [43] by Kaiser and Streater. It

is a natural generalization of the “Analytic-Signal Transform” [42] arising from a

method for extending arbitrary functions from Rn to Cn in a semi-analytic way in

relativistic quantum theory. Namely, the Analytic-Signal Transform of f ∈ S(Rn) is

the function g : Cn → C defined by

g(u+ iv) =
1

2πi

∫
R

f(u+ τv)

τ − i
dτ.

Its generalization, the windowed ray transform, is defined as

Phf(u, v) =

∫
R

f(u+ tv)h(t)dt, for (u, v) ∈ Rn × Rn \ 0.

Here h is regarded as a window, which explains the terminology windowed ray

transform. When h = 1 and ||v|| = 1, it becomes the usual X-ray transform. In

order to minimize analytical subtleties, we assume that h is smooth with rapid decay,

i.e., h ∈ S(R).

In this section we present several inversion formulas for the transform. In fact,

one of our inversions is similar to an inversion formula Kaiser and Streater already

obtained in [43], but requires weaker conditions.

Theorem 7.0.5. Suppose h ̸= 0 on (−∞, 0]. Then f ∈ S(Rn) can be reconstructed

from Phf as follows:

f(x) = 2nπ
n−1
2 Γ(n/2)i

 ∞∫
0

|ĥ(−t)|2dt

−1 ∫
Rn

∫
R

Phf(x− vt, v)h′(−t)dtdv.
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Proof. Clearly, Ph is invariant under a shift with respect to the first n variables.

Hence taking the Fourier transform with respect to u looks reasonable. Doing this,

we get

P̂hf(ξ, v) = f̂(ξ)

∫
R

h(t)eitv·ξdt = f̂(ξ)ĥ(−ξ · v), (7.1)

where P̂hf is the n-dimensional Fourier transform of Phf with respect to first n

dimensional variable u.

Multiplying (7.1) by |v|−nĥ(−ξ · v)ξ · v and integrating with respect to v yield

∫
Rn

P̂hf(ξ, v)ĥ(−ξ · v)|v|−nξ · vdv = f̂(ξ)

∞∫
0

∫
Sn−1

|ĥ(−rξ · θ)|2ξ · θdθdr

= |Sn−2|f̂(ξ)
∞∫
0

|ξ|
1∫

−1

|ĥ(−r|ξ|t)|2(1− t2)(n−3)/2tdtdr

= |Sn−2|f̂(ξ)
∞∫
0

|ĥ(−r)|2dr
1∫

−1

(1− t2)(n−3)/2dt

= 2π(n+1)/2Γ(n/2)−1f̂(ξ)

∞∫
0

|ĥ(−t)|2dt.

(7.2)

where in the first line, we switched from the Cartesian coordinate v ∈ Rn to the polar

coordinates (r, θ) ∈ [0,∞) × Sn−1 and in the third line, we used the Fubini-Tonelli

theorem and changed the variable r to r/|ξ|t. We also use the known relation

∫
Sn−1

f(ω · θ)dθ = |Sn−2|
1∫

−1

f(t)(1− t2)(n−3)/2dt, (7.3)

for any integrable function f on R and ω ∈ Sn−1 [54].
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In the right hand side of (7.2),
∫∞
0

|ĥ(−t)|2dt is always positive. Thus we have

f̂(ξ) = 2−1π−(n+1)/2Γ(n/2)

 ∞∫
0

|ĥ(−t)|2dt

−1 ∫
Rn

P̂hf(ξ, v)ĥ(−ξ · v)|v|−nξ · vdv

= 2−1iπ−(n+1)/2Γ(n/2)

 ∞∫
0

|ĥ(−t)|2dt

−1 ∫
Rn

P̂hf(ξ, v)ĥ′(−ξ · v)|v|−ndv.

Remark 7.0.3. Suppose h ̸= 0 on [0,∞). Then similarly to (7.2), we have

∫
Rn

P̂hf(ξ,−v)ĥ(ξ · v)|v|−nξ · vdv = 2π(n+1)/2Γ(n/2)−1f̂(ξ)

∞∫
0

|ĥ(t)|2dt. (7.4)

Using (7.4) instead of (7.2), we get a similar inversion.

Remark 7.0.4. This inversion is similar to that of [43]. We, however, multiply (7.1)

by |v|−nĥ(−ξ · v)(ξ · v), unlike the factor |v|−nĥ(−ξ · v) in [43]. This makes it unnec-

essary to require that h is admissible (ĥ(0) = 0).

Now we present another inversion formula.

Theorem 7.0.6. If h ̸= 0 on (−∞, 0], then we have for f ∈ S(Rn)

f(x) = Cn

∫
Sn−1

∞∫
0

∫
θ⊥

∞∫
θ·x

Phf(u+ τθ, rθ)h(n)
(
θ · x− τ

r

)
r−n−1dτdudrdθ,

Cn = (2π)−n+1(−i)n
 ∞∫

0

|ĥ(−t)|2dt

−1

,

where h(n) is the n-th derivative of h.
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Proof. Let us consider Phf(u+ τv, v) for u · v = 0 and τ ∈ R. Then we have

Phf(u+ τv, v) =

∫
R

f(u+ τv + tv)h(t)dt =

∫
R

f(u+ tv)h(t− τ)dt.

Switching from the Cartesian coordinate v ∈ Rn to the polar coordinates (r, θ) ∈

[0,∞)× Sn−1, we get

Phf(u+ τrθ, rθ) =

∫
R

f(u+ trθ)h(t− τ)dt.

Then Ph is invariant under a shift with respect to τ . Taking the Fourier transform

with respect to τ looks reasonable. To get f̂(σθ), we take the Fourier transform with

respect to τ and integrate with respect to u ∈ θ⊥ so that

P̂hf(σ/rθ, rθ) = r

∫
θ⊥

∫
R

Phf(u+ τrθ, rθ)e−iστdτdu

= r

∫
θ⊥

∫
R

f(u+ trθ)e−iσtdtdu ĥ(−σ)

=

∫
θ⊥

f̂(u+ σ/rθ)du ĥ(−σ) = f̂(σ/rθ)ĥ(−σ),

or

P̂hf(−σθ, rθ) = f̂(σθ)ĥ(−rσ). (7.5)

Multiplying by ĥ(−rσ) and integrating (7.5) with respect to r yield

∞∫
0

P̂hf(σθ, rθ)ĥ(−rσ)dr = f̂(σθ)

∞∫
0

|ĥ(−rσ)|2dr = f̂(σθ)σ−1

∞∫
0

|ĥ(−r)|2dr. (7.6)
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Similarly to Theorem 7.0.5, we have

f̂(σθ) =

 ∞∫
0

|ĥ(−t)|2dt

−1

σ

∞∫
0

P̂hf(σθ, rθ)ĥ(rσ)dr,

or

f(x) = (2π)−n

 ∞∫
0

|ĥ(−t)|2dt

−1 ∫
Sn−1

∞∫
0

 ∞∫
0

P̂hf(σθ, rθ)ĥ(rσ)dr

 eiσθ·xσndσdθ.

(7.7)

Consider the inner integral in (7.7). Then we have

∞∫
0

∞∫
0

P̂hf(σθ, rθ)ĥ(rσ)e
iσθ·xσndrdσ

=

∞∫
0

∫
θ⊥

∫
R

Phf(u+ τθ, rθ)

∞∫
0

ĥ(rσ)eiσ(θ·x−τ)σndσdτdudr

= (−i)n
∞∫
0

∫
θ⊥

∫
R

Phf(u+ τθ, rθ)r−n−1

∞∫
0

ĥ(n)(σ)eiσ(θ·x−τ)/rdσdτdudr,

where in the last line, we changed variables σ → σ/r.

Remark 7.0.5. Similarly to (7.6), we have

∞∫
0

P̂hf(−σθ, rθ)ĥ(rσ)dr = f̂(−σθ)|σ|−1

∞∫
0

|ĥ(t)|2dt. (7.8)

If h ̸= 0 on [0,∞), we have a similar inversion as in remark 7.0.3.

Theorem 7.0.7. Let h be non-vanishing at a point a ∈ R. For f ∈ S(Rn), we have

for u = (u1, u
′) ∈ R× Rn−1

σP̂hf(σ, u
′, aσ, v′) = 2πf̂(σ, av′ + u′)h(a).
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Here f̂ is the 1-dimensional Fourier transform of f with respect to the first variable x1

and P̂hf is the 2-dimensional Fourier transform of Phf with respect to the variables

(u1, v1).

Proof. Taking the Fourier transform of Phf(u, v) with respect to u1 yields

∫
R

Phf(u, v)e
−iσu1du1 =

∫
R

f̂(σ, u′ + tv′)eitv1σh(t)dt.

To get f̂ , multiplying e−iav1σ and integrating with respect to v1 give

∫
R

∫
R

Phf(u, v)e
−i(av1+u1)σdu1dv1 =

∫
R

∫
R

f̂(σ, tv′ + u′)eitv1σh(t)e−iav1σdtdv1

=

∫
R

f̂(σ, tv′ + u′)h(t)

∫
R

ei(t−a)v1σdv1dt

= 2π

∫
R

f̂(σ, tv′ + u′)h(t)
δ(t− a)

σ
dt

= 2πf̂(σ, av′ + u′)h(a)σ−1.

Remark 7.0.6. Theorem 7.0.7 leads naturally to a Fourier type inversion formula,

supplementing the inverse Fourier transform.

Remark 7.0.7. Even if the domain of u is restricted to a line, say x1-axis, then we

get the analogue of Theorem 7.0.7, i.e., for a ∈ R with h(a) ̸= 0,

σP̂hf(σ, aσ, v
′) = 2πf̂(σ, av′)h(a),

so we can still reconstruct f from Phf .

When n = 2, we can get a series formula for an inversion of the windowed ray

transform, by using circular harmonics. Consider Phf(u, u
⊥) where u⊥ = (−u2, u1).
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Let g(ρ, θ) be the function Phf(u, u
⊥) where ρ = |u| and θ = u/|u|, and let f(r, ϕ)

be the image function in polar coordinates. Then the Fourier series of f and g with

respect to their angular variables can be written as

f(r, ϕ) =
∞∑

l=−∞

fl(r)e
ilϕ, g(ρ, θ) =

∞∑
l=−∞

gl(ρ)e
ilθ,

where the Fourier coefficients are given by

fl(r) =
1

2π

2π∫
0

f(r, ϕ)e−ilϕdϕ, gl(ρ) =
1

2π

2π∫
0

g(ρ, θ)e−ilθdθ.

Theorem 7.0.8. Let f ∈ C∞
c (R2). If h ∈ C∞

c (R) is not odd, then we have

Mgl(s) = Mfl(s+ 1)MH(s), (7.9)

where

H(r) =


[
h

(
1

r

√
1− 1

r2

)
+ h

(
−1

r

√
1− 1

r2

)]
eil arccos r√
1− r2

if r < 1,

0 otherwise.

Proof. We can write Phf(u, u
⊥) as

∫
R

f(u+ tu⊥)h(t)dt =

∫
R2

f(x)h

(
x · u⊥

|u|2

)
δ

(
|u| − x · u

|u|

)
dx.
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Then we have

gl(ρ) =
1

2π

2π∫
0

g(ρ, θ)e−ilθdθ

=
1

2π

2π∫
0

∫
R2

f(x)h

(
x · (− sin θ, cos θ)

ρ

)
δ(ρ− x · (cos θ, sin θ))dx e−ilθdθ.

Changing variables x→ (r, ϕ) ∈ [0,∞)× [0, 2π) gives that gl(ρ) is equal to

1

2π

2π∫
0

∞∫
0

2π∫
0

f(r(cosϕ, sinϕ))h

(
r sin(ϕ− θ)

ρ

)
δ(ρ− r cos(ϕ− θ))re−ilθdrdϕdθ

=
1

2π

2π∫
0

∞∫
0

2π∫
0

f(r(cosϕ, sinϕ))h

(
r sin(ϕ− θ)

ρ

)
δ(ρ− r cos(ϕ− θ))re−ilθdrdϕdθ

=
1

2π

2π∫
0

∞∫
0

2π∫
0

f(r(cosϕ, sinϕ))h

(
−r sin θ

ρ

)
δ(ρ− r cos θ)re−ilθ−ilϕdrdϕdθ,

where in the last line, we changed variables θ → θ + ϕ. Continuing to compute gl,

we get

gl(ρ) =

∞∫
0

2π∫
0

fl(r)h

(
r sin θ

ρ

)
δ(ρ− r cos θ)reilθdrdθ

=

∞∫
ρ

fl(r)

h
r

ρ

√
1−

(
r

ρ

)2
+ h

−r
ρ

√
1−

(
r

ρ

)2
 reil arccos ρ

r√
r2 − ρ2

dr

= (rfl(r))×H(ρ),

where

f ×H(r) =

∞∫
0

f(s)H
(r
s

) ds
s
.

Taking the Mellin transform M of gl and using property (1.3) complete the

proof.
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Corollary 7.0.3. Let fl(r) be the l-th Fourier coefficient of the twice differentiable

function f with compact support. Then for any t > 1 we have

fl(r) = lim
T→∞

1

2π

t+Ti∫
t−Ti

r−s
Mgl(s− 1)

MH(s− 1)
ds. (7.10)

Proof. For a > 1 and b ∈ R, |Mfl(a+ bi)| is finite because

∞∫
0

ra+bi−1|fl(r)|dr ≤ C

R∫
0

ra−1|eib ln r|dr,

where C is the upper bound of |fl| and R is radius of a ball containing supp f . Thus,

Mfl(s) is analytic on {z ∈ C : ℜz > 1}. Integrating by parts twice, we get

Mfl(s) =

∞∫
0

f ′′
l (r)

rs+1

s(s+ 1)
dρ,

which implies Mfl(s) = O(s2). Hence Mfl(t + si) is integrable and we can apply

the inverse Mellin transform [25, 70] which gives formula (7.10).
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8. CONCLUSION

In this work, we studied a variety of integral-geometric transforms arising in

various types of medical, industrial, and homeland security imaging: radio tomog-

raphy, single scatter optical tomography, thermo-/photo-acoustic tomography, and

Compton camera imaging.

New inversion formulas, stability estimates, and range conditions are established.
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Boston, 1999.

[37] M. Hirasawa and T. Tomitani. An analytical image reconstruction algorithm

to compensate for scattering angle broadening in Compton cameras. Physics in

Medicine and Biology, 48(8):1009–1026, 2003.

[38] J. Hong and S. Moon. A comparison of cryptanalytic tradeoff algorithms. Jour-

nal of Cryptology, 26(4):559–637, 2013.

[39] F. John. The ultrahyperbolic differential equation with four independent vari-

ables. Duke Mathematical Journal, 4:300–322, 1938.

[40] G.A. Kaiser. Quantized fields in complex spacetime. Annals of Physics,

173(2):338 – 354, 1987.

[41] G.A. Kaiser. Generalized wavelet transforms. Part I: The windowed X-ray trans-

form. Technical report, 1990.

[42] G.A. Kaiser. Quantum Physics, Relativity, and Complex Spacetime: Towards

a New Synthesis. ArXiv e-prints, October 2009.

[43] G.A. Kaiser and R.F. Streater. Wavelets: a tutorial in theory and applications.

chapter Windowed Radon transforms, analytic signals, and the wave equation,

pages 399–441. Academic Press, San Diego, CA, USA, 1992.

[44] V. Krishnan and E.T. Quinto. Microlocal aspects of common offset synthetic

aperture radar imaging. Inverse Problems and Imaging, 5:659–674, 2011.

[45] V.P. Krishnan, H. Levinson, and E.T. Quinto. Microlocal analysis of elliptical

Radon transforms with foci on a line. In Irene Sabadini and Daniele C Struppa,

editors, The mathematical legacy of Leon Ehrenpreis, volume 16 of Springer

Proceedings in Mathematics, pages 163–182. Springer Milan, 2012.

117



[46] P. Kuchment. Mathematics of hybrid imaging: A brief review. In Irene Sabadini

and Daniele C Struppa, editors, The Mathematical Legacy of Leon Ehrenpreis,

volume 16 of Springer Proceedings in Mathematics, pages 183–208. Springer

Milan, 2012.

[47] P. Kuchment and L. Kunyansky. Mathematics of thermoacoustic tomography.

European Journal of Applied Mathematics, 19:191–224, 2008.

[48] L.A. Kunyansky. Explicit inversion formulae for the spherical mean Radon

transform. Inverse Problems, 23(1):373, 2007.

[49] A.K. Louis and E.T. Quinto. Local tomographic methods in sonar. In D. Colton,

H.W. Engl, A.K. Louis, J.R. McLaughlin, and W. Rundell, editors, Surveys on

Solution Methods for Inverse Problems, pages 147–154. Springer Vienna, 2000.
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1. Sunghwan Moon. On the determination of a function from an elliptical Radon

transform, ArXiv e-prints:1302.4396

2. Gaik Ambartsoumian and Sunghwan Moon. A series formula for inversion of

the V-line Radon transform in a disc, to appear in Computers and Mathematics

with Applications.

It is planned to prepare the remaining parts for submission.

The following was not included into the dissertation.

• Jin Hong and Sunghwan Moon, A comparison of cryptanalytic tradeoff algo-

rithm, Journal of Cryptology, 26(4):559-637, 2013.
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1. Introduction to the Mathematics of Seismic Imaging, MSRI, Jul. 29-Aug. 9,

2013.

2. CBMS Conference ‘Mathematical Methods of Computed Tomography’, UT

Arlington, May 28-Jun. 2, 2012.

3. Geometric Analysis on Euclidean and Homogeneous Spaces, Tufts University,

Jan. 7-9, 2012.

4. Joint Mathematics Meetings, Boston, MA, Jan. 4-7, 2012.

5. Inverse Problems Conference, TAMU, Oct. 1, 2011.

6. Applied Inverse Problems Conference, TAMU, May 23-27,2011.

7. Group Actions on Measure Spaces, TAMU, Mar. 24-27, 2011.

8. Waves and Spectra, TAMU, Jan. 11-14, 2011.

9. Texas Geometry and Topology Conference, TAMU, Nov. 12-14, 2010.
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