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ABSTRACT

Recent years there has been a growing interest in the study of distributed control mech-

anisms for use in communication networks. A fundamental assumption in these models is

that the participants in the network are willing to cooperate with the system. However,

there are many instances where the incentives to cooperate is missing. Then, the agents

may seek to achieve their own private interests by behaving strategically. Often, such

selfish choices lead to inefficient equilibrium state of the system, commonly known as the

tragedy of commons in Economics terminology. Now, one may ask the following question:

how can the system be led to the socially optimal state in spite of selfish behaviors of its

participants? The traditional control design framework fails to provide an answer as it

does not take into account of selfish and strategic behavior of the agents. The use of game

theoretical methods to achieve coordination in such network systems is appealing, as it

naturally captures the idea of rational agents taking locally optimal decisions.

In this thesis, we explore several instances of coordination problems in communication

networks that can be analyzed using game theoretical methods. We study one coordina-

tion problem each, from each layer of TCP/IP reference model - the network model used

in the current Internet architecture. First, we consider societal agents taking decisions

on whether to obtain content legally or illegally, and tie their behavior to questions of

performance of content distribution networks. We show that revenue sharing with peers

promote performance and revenue extraction from content distribution networks. Next,

we consider a transport layer problem where applications compete against each other to

meet their performance objectives by selfishly picking congestion controllers. We establish

that tolling schemes that incentivize applications to choose one of several different virtual

networks catering to particular needs yields higher system value. Hence, we propose the

adoption of such virtual networks. We address a network layer question in third problem.

How do the sources in a wireless network split their traffic over the available set of paths to
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attain the lowest possible number of transmissions per unit time? We develop a two level

distributed controller that attains the optimal traffic split. Finally, we study mobile appli-

cations competing for channel access in a cellular network. We show that the mechanism

where base station conducting sequence of second price auctions and providing channel

access to the winner achieves the benefits of the state of art solution, Largest Queue First

policy.
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1. INTRODUCTION

In recent years there has been a growing interest in the study of distributed control

mechanisms for use in communication networks. A fundamental assumption in these mod-

els is that the participants in the network are willing to cooperate with the system in that

their actions conform to the protocols stipulated by the system designer. However, there

are many instances where the incentive to cooperate is missing. Consider, for example,

routing between autonomous systems in the Internet. Ideally, the routing tables must be

configured with shortest paths. However, ISPs who own these autonomous systems are

profit driven and they prefer cheaper (profitable) routes to shorter ones (e.g Hot Potato

routing). Such selfish behaviors of ISPs result in inefficient operation of the system. Often,

as in the above example, it is true that selfish choices of the agents lead to bad equilibrium

states of the system [23, 60, 61], which is known as the tragedy of commons in Economics.

Now, one may ask the following question: how can the system be led to the socially op-

timal state in spite of selfish behaviors of its participants? The traditional control design

framework fails to provide an answer as it does not take into account of selfish and strate-

gic behavior of the agents. The use of game theoretical methods to achieve coordination

in such network systems is appealing, as it naturally captures the idea of rational agents

taking locally optimal decisions. In this thesis, we explore four instances of coordination

problems in communication networks, choosing one problem from each layer of the Open

Systems Interconnection (OSI) model. Below, we provide a summary of the work thus far,

and present details in the sections following.

In Section 2, we consider a societal problem of ownership of content. We analyze

the revenue loss incurring to a legitimate content distribution network that employs a

centralized client-server model to sell content, while duplicate copies of the same content

are freely available in the system. We ask the question: Can the content provider recover

lost revenue through a more innovative approach to distribution? We evaluate the benefits
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of a hybrid revenue-sharing system that combines a legitimate Peer-to-Peer (P2P) swarm

and a centralized client-server approach. In the hybrid revenue-sharing scheme, we develop

reward schemes that incentivize legals, those clients who legally obtained the content, to

act as agents of legal P2P swarm.

In Section 3, we study a resource allocation game in the Internet. A large number of

congestion control protocols have been proposed in the last few years with all having the

same purpose to divide available bandwidth among different flows in a fair manner. We

study the interaction among numerous congestion control protocols in the Internet. We ask

the question: Suppose that each flow has a number of congestion control protocols to choose

from, which one (or combination) should it choose? We study both the socially optimal, as

well as the selfish cases to determine the loss of system-wide value incurred through selfish

decision making, so characterizing the price of heterogeneity. We also propose tolling

schemes that incentivize flows to choose one of several different virtual networks catering

to particular needs, and show that the total system value is greater, hence making a case

for the adoption of such virtual networks.

In Section 4, we consider a problem of multipath routing in a wireless network. Here,

each source makes a choice of traffic split among all of its available paths, to attain the

lowest possible number of transmissions per unit time to support a given traffic matrix.

Traffic bound in opposite directions over two wireless hops can utilize the “reverse carpool-

ing” advantage of network coding in order to decrease the number of transmissions used.

We call such coded hops as hyper-links. However, there is a dilemma among sources—the

network coding advantage is realized only if there is traffic in both directions of a shared

path. We develop a two level distributed control scheme that decouples user choices from

each other by declaring a hyper-link capacity, allowing sources to split their traffic selfishly

in a distributed fashion, and then changing the hyper-link capacity based on user actions.

Finally, in Section 5, we study an auction-theoretic mechanism for scheduling channel

resources in cellular networks. In our setting, the players are smart phone apps that

generate service requests, have costs associated with waiting, and bid against each other
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for service from base stations. We show that in a system in which we conduct a second-

price auction at each base station and schedule the winner at each time, there exists a

mean field equilibrium (MFE) that will schedule the user with highest value at each time.

We further show that the scheme can be interpreted as a weighted longest queue first type

policy. The result suggests that auctions can implicitly attain the same quality of service

as queue-length based scheduling. In Section 6, we conclude the thesis and discuss future

work.
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2. APPLICATION LAYER : INCENTIVES FOR P2P ASSISTED CONTENT

DISTRIBUTION∗

The past decade has seen the rapid increase of content distribution using the Internet as

the medium of delivery [31]. Users and applications expect a low cost for content, but at the

same time require high levels of quality of service. However, providing content distribution

at a low cost is challenging. The major costs associated with meeting demand at a good

quality of service are (i) the high cost of hosting services on the managed infrastructure

of CDNs such as Akamai [50, 76], and (ii) the lost revenue associated with the fact that

digital content is easily duplicable, and hence can be shared in an illicit peer-to-peer (P2P)

manner that generates no revenue for the content provider. Together, these factors have

led content distributors to search for methods of defraying costs.

One technique that is often suggested for defraying distribution costs is to use legal peer-

to-peer (P2P) networks to supplement provider distribution [52,59]. It is well documented

that the efficient use of P2P methods can result in significant cost reductions from the

perspective of ISPs [24,50]; however there are substantial drawbacks as well. Probably the

most troublesome is that providers fear losing control of content ownership, in the sense

that they are no longer in control of the distribution of the content and worry about feeding

illegal P2P activity.

Thus, a key question that must be answered before we can expect mainstream utilization

of P2P approaches is: How can users that have obtained content legally be encouraged

to reshare it legally? Said in a different way, can mechanisms be designed that ensure

legitimate P2P swarms will dominate the illicit P2P swarms?

In this paper, we investigate a “revenue sharing” approach to this issue. We suggest

that users can be motivated to reshare the content legally by allowing them to share the

∗Part of the data reported in this chapter is reprinted with permission from “Incentives for P2P-assisted
content distribution: If you can’t beat ’em, join ’em” by V. Ramaswamy, S. Adlakha, S. Shakkottai and
A. Wierman. 50th Annual Allerton Conference on Communication, Control and Computing, 2012, Copy-
right@2012 IEEE.
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revenue associated with future sales. This can be accomplished through either a lottery

scheme or by simply sharing a fraction of the sale price. Recent work on using lotteries to

promote societally beneficial conduct [42] suggests that such schemes could potentially see

wide spread adoption.

Such an approach has two key benefits: First, obviously, this mechanism ensures that

users are incentivized to join the legitimate P2P network since they can profit from joining.

Second, less obviously, this approach actually damages the illicit P2P network. Specifically,

despite the fact that content is free in the illicit P2P network, since most users expect a

reasonable quality of service, if the delay in the illegitimate swarm is large they may be

willing to use the legitimate P2P network instead. Thus, by encouraging users to reshare

legitimately, we are averting them from joining the illicit P2P network, reducing its capacity

and performance; thus making it less likely for others to use it.

The natural concern about a revenue sharing approach is that by sharing profits with

users, the provider is losing revenue. However, the key insight provided by the results in

this paper is that by discouraging users from joining illicit P2P network, the increased

share (possibly exponentially more) of legitimate copies makes up for the cost of sharing

revenue with end-users.

More specifically, the contribution of this paper is to develop and analyze a model to

explore the revenue sharing approach described above. Our model (see Section 2.1) is a fluid

model that builds on work studying the capacity of P2P content distribution systems. The

key novel component of the model is the competition for users among an illicit P2P system

and a legal content distribution network (CDN), which may make use of a supplementary

P2P network with revenue sharing. The main results of the paper (see Section 2.2) are

Theorems 1-4, which highlight the order-of-magnitude gains in revenue extracted by the

provider as a result of participating in revenue sharing. Further, In addition to the analytic

results, to validate the insights provided by our asymptotic analysis of the fluid model we

also perform numerical experiments of the underlying finite stochastic model. Tables 2.1

and 2.2 summarize these experiments, which highlight both that the results obtained in
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the fluid model are quite predictive for the finite setting and that there are significant

beneficial effects of revenue sharing.

There is a significant body of prior work modeling and analyzing P2P systems. Per-

haps the most related work from this literature is the work that focuses on server-assisted

P2P content distribution networks [12, 36, 53, 65, 66, 77] in which a central server is used

to “boost” P2P systems. This boost is important since pure P2P systems suffer poor

performance during initial stages of content distribution. In fact, it is this initially poor

performance that our revenue sharing mechanism exploits to ensure that the legitimate

P2P network dominates.

Two key differentiating factors of the current work compared to this work are: (i) We

model the impact of competition between legal and illegal swarms on the revenue extraction

of a content provider. (ii) Unlike most previous works on P2P systems, we consider a time

varying viral demand model for the evolution of demand in a piece of content based on the

Bass diffusion model (see Section 2.1). Thus, we model the fact that interest in content

grows as interested users contact others and make them interested.

With respect to (i), there has been prior work that focuses on identifying the relative

value of content and resources for different users [5,44]. For instance, [5] deals with creating

a content exchange that goes beyond traditional P2P barter schemes, while [44] attempts

to characterize the relative value of peers in terms of their impact on system performance

as a function of time. However, to the best of our knowledge, ours is the first work that

considers the question of economics and incentives in hybrid P2P content distribution

networks.

With respect to (ii), there has been prior work that considers fluid models of P2P

systems such as [41,57,80]. However, these all focus on the performance evaluation of a P2P

system with constant demand rate. As mentioned above, a unique facet of our approach is

that we explicitly make use the transient nature of demand in our modeling. In the sense of

explicitly accounting for transient demand, the closest work to ours is [66]. However, [66]

focuses only on jointly optimizing server and P2P usage in the case of transient demand
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in order to obtain a target delay guarantee at the lowest possible server cost.

The remainder of the paper is organized as follows. We first introduce the details of our

model in Section 2.1. Then, Section 2.2 summarizes analytic and numeric results. Finally,

Section 2.4 provides concluding remarks.

2.1 Model overview

Our goal is to model the competition between illicit peer-to-peer (P2P) distribution

and a legitimate content distribution network (CDN), which may make use of its own P2P

network. Our model is a fluid model, and there are four main components:

1. The evolution of the demand for content. A key feature of this paper is that we

consider a realistic model for the evolution of demand, specifically, the Bass diffusion

model.

2. The model of user behavior, which allows the user to strategically choose between

attaining content legally or illegally based on the price and performance of the two

options.

3. The model of the illicit P2P system.

4. The model of the legal CDN and its possibility to use “revenue sharing”.

We discuss these each in turn in the following.

2.1.1 The evolution of demand

The simplest possible model of demand is that the entire population gets interested in

the content simultaneously at time t = 0. We call this the “Flash crowd model” due to the

instantaneous appearance of all the demand. While the model is simplistic, it can serve

as a foundation for developing performance results, and we will utilize it as our base case.

More complex models of demand can be considered as well. Indeed, models of the dynamics

of demand growth for innovations dates to the work of Griliches [19] and Bass [6]. The

most widely used model for dynamics of demand growth is the Bass diffusion model which
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describes how new products get adopted as potential users interact with users that have

already adopted the product. Such word of mouth interaction between users and potential

users is very common in the Internet and we use a version of Bass diffusion model that

only has word of mouth spreading. We describe both models formally below.

We define N to be the total size of the population and I(t) to be the number of users

that are interested in the content at time t. In the Flash Crowd Model,

I(t) = N, (2.1)

since all users are interested from the very beginning. In the Bass diffusion model, each

interested user “attempts” to cause a randomly selected user to become interested in the

content.1 At any time t, there are N − I(t) users that could potentially be interested in

the content. Thus, the probability of finding such a users is (N − I(t))/N . Assuming that

an interested user can interact with other users at rate 1 per unit time, we get that the

rate at which interested users increase is given by the following differential equation:

dI(t)

dt
=

(
N − I(t)

N

)
I(t). (2.2)

The above differential equation can be easily solved and yields the so-called logistic function

as its solution.

I(t) =
I(0)et

1− (1− et) I(0)N

, (2.3)

where I(0) is the number of user that are interested in the content at time t = 0.

Though the Bass model is quite simple, it is a useful qualitative summary of the spread

of content. To highlight this, Figure 2.1 (taken from [66]) highlights a similar behavior in

a data trace from CoralCDN [17], a CDN hosted at different university sites. The figure

shows the cumulative demand for a home video of the Asian Tsunami seen over a month

in December 2005. For comparision, the figure on the right shows the model in equation

1Note that these “attempts” should not be interpreted literally, but rather as the natural diffusion of
interest in the new content through the population.
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(2.3). The qualitative usefulness of the Bass model has been verified empirically in many

settings, and hence the Bass model is often considered as canonical [47].
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(a) Single-file cumulative demand
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(b) Cumulative demand in Bass model

Figure 2.1: (a) shows the cumulative demand for a file over one month on Coral CDN (Dec
2005–Jan 2006). (b) shows the cumulative demand seen in a Bass diffusion.

2.1.2 The progression of a user

In order to capture the strategic behavior of users in the face of competition between

a legitimate CDN using P2P and an illicit P2P network our model is necessarily complex.

Figure 2.2 provides a broad overview of the user behavior in the system, which we explain

in detail in the following.

Let us explain the model through tracking the progression of a user. We term an initial

user that wants, but has not yet attained, the content a Wanter (W). When a Wanter

arrives to the system, it has two options: get content from the illicit P2P system for free

or get content from the legitimate system for a price p. We assume that the Wanter wishes

to obtain content as quickly and cheaply as possible, and so she first approaches the illicit

P2P swarm and then only attains the content from the legitimate system if the content is

not attained a reasonable time interval (one infinitesimal clock tick in our model) from the

9



illicit P2P. This cycle repeats, if necessary, until the content is attained. In some sense,

this is the worst-case for the legitimate provider since the illicit source is tried first.

Once the Wanter has attained the content (legally or illegally), it could stay in the

system and assist in content dissemination. We denote the probability of this event by

κ < 1. Otherwise, it could simply Quit (Q) and leave the system with probability 1 − κ.

Now, if a Wanter obtains the content legally and decides to assist in dissemination, it has

two options: (i) It might decide to use the content to assist the illicit P2P swarm, i.e., go

Rogue (R). We denote the probability this happens by ρ < 1. (ii) It might decide to assist

the legitimate P2P swarm (if one exists) as a Booster (B). We denote the probability of

this event by β < 1. Note that β = 0 if no legal P2P is used. Clearly ρ+ β = κ. However,

if a Wanter obtains content illegally and chooses to stay in the system, it can only aid the

illicit swarm as a Fraudster (F). The probability of this event is simply κ.

Note that the goal of revenue sharing is to incentivize Wanters to become Boosters after

attaining content legally, rather than going Rogue. The hope is that the revenue invested

toward reducing the number of “early adopters” that go Rogue keeps the illicit P2P swarm

from growing enough to provide good enough quality of service to dominate the legitimate

swarm.

To model this system more formally, we introduce the following notation. Let Nw(t) be

the number of Wanters at time t, i.e., the number of users who have not yet attained the

content, and assume Nw(0) = 0. Further, let Nl(t) and Ni(t) be the number of users with

legal and illegal copies of the content at time t. Note that the total number of interested

users at any time t satisfies the following equation

I(t) = Nw(t) +Nl(t) +Ni(t) (2.4)

We can break this down further by noting that the number of Rogues, Fraudsters, and
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Figure 2.2: An overview of the progression of a user through the systems. The labels are
defined as follows: W - Wanter, F - Fraudster, R - Rogue, B - Booster, and Q - Quit.

Boosters in the system at time t (denoted by Nr(t), Nf (t), and Nb(t) respectively) is:

Nr(t) = ρNl(t) (2.5)

Nf (t) = κNi(t) (2.6)

Nb(t) = βNl(t), (2.7)

with ρ+ β < 1. The rest of legal and illegal users leave the system.

The key remaining piece of the model is to formally define the transition of Wanters

to holders of illegal/legal content, i.e., the evolution of Ni(t) and Nl(t). However, this

evolution depends critically on the model of the two systems, and so we describe it in the

next section.

2.1.3 System models

We discuss in detail the illicit and legitimate system models below. The factors in these

models are key determinants of the choice of a Wanter to get the content legally or illegally.

When modeling the two systems, we consider a fluid model, and so the performance is

determined primarily by the capacity of each system, i.e., the combination of the initial

seeds and the Fraudsters/Boosters that choose to join (and add capacity). However, other

factors also play a role, as we describe below. Throughout, we model the upload capacity

of a user as being one.
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2.1.3.1 The illicit P2P system

There are two components to the model of the illicit P2P network: (i) the efficiency

of the network in terms of finding content, and (ii) the initial size of the network and its

growth.

Let us start with (i). To capture the efficiency of the P2P system, we take a simple

qualitative model. When attaining the content illegally, a Wanter must contact either a

Rogue or a Fraudster. We let η(t) capture the probability of a Wanter finding a Rogue

or a Fraudster when looking for one instantaneous time slot. We consider two cases: an

efficient P2P and an inefficient P2P. In an efficient P2P , we model

η(t) = 1,

with the understanding the the P2P allows easy lookup of content and all content is truth-

fully represented. In contrast, for an inefficient P2P , we model

η(t) = (Nr(t) +Nf (t))/N,

where recall that N is the total population size. This corresponds to looking randomly

within the user population for a Rogue or Fraudster. Neither of these models is completely

realistic, but they provide lower and upper bounds to the true efficiency of an illicit P2P

system.

Next, with respect to (ii), we model the initial condition for the illicit network with

Ni(0) = 0, since the assumption is that the content has not yet been released, and therefore

is not yet available in the illicit P2P swarm. From this initial condition, Ni(0) evolves as

follows:

dNi(t)

dt
= min

{
η(t)

(
Nw(t) +

dI(t)

dt

)
, Nr(t) +Nf (t)

}
, (2.8)

The interpretation of the above is that Nr(t) +Nf (t) is the current capacity of the illicit

12



P2P and η(t)
(
Nw(t) +

dI(t)
dt

)
is the fraction of the Wanters (newly arriving and remaining

in the system) that find the content in the illicit P2P network. The min operator then

ensures that no more than the capacity is used.

2.1.3.2 The legitimate CDN

As discussed in the introduction, our goal in this work is to contrast the revenue attained

by a CDN that uses P2P and revenue sharing with one that does not use P2P. Thus, there

are two key factors in modeling the legitimate CDN: (i) the rate at which users that possess

content copies become fraudsters or boosters, and (ii) the initial size of the CDN and its

growth, which depends on the presence/absence of the legal P2P.

Let us start with (i). From a performance standpoint, the most important parameter

is κ, since it determines what fraction of users stay in the system and act as servers. These

users could either support the legal system as boosters, or the illegal one as fraudsters.

The question that we wish to answer is that of how much of an impact the division of those

who stay into fraudsters and boosters would have on revenue obtained. As we saw earlier,

ρ+ β = κ,

and our key result will be on their relative impact on obtainable revenue. How we might at-

tempt to control the booster factor β through different amounts of revenue sharing requires

further modeling of user motivation, which we will consider in greater detail in Section 2.3.

But initially we are more concerned with the impact of ρ and β, rather than how to socially

engineer their values.

Next, with respect to (ii), unlike for the illicit P2P swarm, the legitimate network does

not start empty. This is because it has a set of dedicated servers at the beginning which

are then (possibly) supplemented using a P2P network. We denote by CN be the capacity

of the dedicated CDN servers when the total population size is N . Note that this capacity

must scale with the total population size to ensure that the average wait time for the users

is small. As shown in [66], a natural scaling that ensures no more that O(ln lnN) delay is
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to have the capacity CN = Θ(N/ lnN). Based on this, we adopt

CN =
N

lnN

in this work. Additionally, we assume Nl(0) = 0 in the case of Flash Crowd model and

Nl(0) = I(0) in the case of Bass model.

Given these initial conditions, Nl(t) evolves as follows:

dNl(t)

dt
=

 CN + βNl(t), Nw(t) > 0,

min
{
CN + βNl(t),

dI(t)
dt − dNi(t)

dt

}
Nw(t) = 0.

(2.9)

The interpretation for the above is that if there are a positive number of Wanters remaining

in the system, then the full current capacity of the CDN can be used to serve them, i.e.,

CN + βNl(t). However, if there are no “leftover” Wanters, arriving Wanters that are not

served by the illicit P2P (dI(t)dt − dNi(t)
dt ) are served up to the capacity of the CDN.

2.2 Results

To characterize the performance of the CDN against the illicit P2P distribution, we use

fractional legitimate copies, which is defined as follows:

Definition 1. The fractional legitimate copies, L, is defined as

L =
Nl(T∞)

N
, (2.10)

where T∞ is defined as the time after which only Ω(lnN) users are left in the system

without a copy of the content

Using this metric, we look at the performance of the CDN in two settings: when the

CDN competes against inefficient illicit P2P sharing and when it competes against efficient

illicit P2P sharing. Recall, that our models for these two cases are meant to serve as upper

and lower bounds on the true efficiency of an illicit P2P system. We start by considering
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the case of an inefficient, illicit P2P. Note that the theorems stated below characterize only

the asymptotic growth of the fractional legitimate copies.

2.2.1 Inefficient illicit P2P

As discussed before, we look at the performance of CDN, under two simple models of

demand evolutions, namely Flash Crowd Model (2.1) and Bass model (2.3).

First, we state the result for Flash Crowd model.

Theorem 1. Suppose I(t) satisfies (2.1). The fractional legitimate copies attained by the

content provider in the presence an inefficient, illicit P2P is

L ∈ Ω

(
ln lnN + (lnN)

β
κ

lnN

)
. (2.11)

Further, when β = 0,

L ∈ Θ

(
ln lnN

lnN

)
. (2.12)

Proof. To prove theorem we analyze two processes N̄l(t) and N̄i(t) which bounds the

actual evolutions Nl(t) and Ni(t). Importantly, the bounding processes are equivalent to

the original processes when β = 0.

Before stating the results, we introduce a few notation. Let

θ1 =
κ

2
+
κ

2

√
1 +

4

κ lnN
, θ2 =

κ

2
− κ

2

√
1 +

4

κ lnN
,

b = −θ1
θ2
, ∆θ = θ1 − θ2, (2.13)

τ̄ =
2

∆θ
ln


√

1 + 4
κ lnN + 1√

1 + 4
κ lnN − 1

 , (2.14)

N̄l =
κCN
βθ1

(
1

1 + b

)β
κ
(
1− e

(
−βθ1τ̄

2κ

))
e

(
βθ1
κ
τ̄
)

− κCN
βθ2

(
1

1 + b

)β
κ

e(
τ̄β
2
)
(
1− e

βθ2τ̄
2κ

)
. (2.15)
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Finally, we are ready to define the bounding processes used in the proof, N̄l(t) and

N̄i(t). Let N̄i(0) = Ni(0). Furthermore, let

dN̄i(t)

dt
=
ρN̄l(t) + κN̄i(t)

N
(N − (N̄l(t) + N̄i(t))). (2.16)

Similarly, let N̄l(0) = Nl(0) and

dN̄l(t)

dt
=

 CN + βN̄l(t)
N−(N̄l(t)+N̄i(t))

N , N̄w(t) > 0,

0, N̄w(t) = 0.
(2.17)

where N̄w(t) = N − (N̄i(t) + N̄l(t)).

We can now state our result characterizing the number of legal and illegal copies.

Lemma 1. In the presence of an inefficient, illicit P2P, the number of illegal and legal

copies at the end of evolution is

Nl(T∞) ≥ N̄l,

where equality holds when β = 0.

Proof. Recall that the efficiency factor of an inefficient illicit P2P, η(t), is given by

η(t) =
Nr(t) +Nf (t)

N
=
ρNl(t) + κNi(t)

N
. (2.18)

The second equality follows from (2.5) and (2.6). From (2.8), the illegal growth rate is

dNi(t)

dt

(a)
= η(t)Nw(t) (2.19)

(b)
= (ρNl(t)+κNi(t))(N−(Nl(t)+Ni(t)))

N . (2.20)

(a) follows from the definition of η(t) and the fact that Nw(t) ≤ N . (b) follows from (2.18)

16



and (2.4). From equation (2.9), the growth rate of legal copies is given by

dNl(t)

dt
=

 CN + βNl(t), Nw(t) > 0,

0, Nw(t) = 0.
(2.21)

Let U(t) be the total copies of the content in the system. Then, U(t) = Nl(t) +Ni(t).

Now, we claim that,

Nl(T∞) ≥ N̄l(T∞), (2.22)

and the equality holds when β = 0.

The proof is as follows: First, we define, Ū(t) = N̄l(t) + N̄i(t). We can obtain dNi
dU and

dN̄i

dŪ
from the pair of equations (2.19), (2.21) and (2.16), (2.17) respectively. Then, it can

be shown that

dNi

dU
|Ni=x,U=y ≤

dN̄i

dŪ
|N̄i=x,Ū=y, (2.23)

and the equality holds when β = 0. Note that the range space of functions U(t) and Ū(t)

are identical. Since, the initial values Ni(0) and N̄i(0) are equal by definition, we get the

result in (2.22).

Now, we derive N̄l(t). Let τ̄ be the time at which the number of wanters in the system

vanishes to zero. Then, N̄w(t) = 0 and Ū(t) = N for t ∈ [τ̄ , T∞]. Adding (2.17) and (2.16),

for t ∈ (0, τ̄ ], we get,

dŪ

dt
=
(
(β + ρ)N̄l(t) + κN̄i(t)

) (N − (N̄l(t) + N̄i(t)))

N
(f)
= κŪ(t)

N − Ū(t)

N
.

(f) follows from the fact that ρ+ β = κ and the definition of Ū(t).

The above differential equation is in the form of a standard Riccatti equation, and it’s
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solution can be written as

Ū(t) =
Nθ2
κ

+
N∆θ/κ

1 + be−∆θt
, (2.24)

where ∆θ = θ1−θ2. θ1, θ2 and b are given by equation (2.13). From the relation, Ū(τ̄) = N ,

we get (2.14).

Now, from (2.17), for t ∈ (0, τ̄ ], we get

dN̄l(t)

dt
= CN + βN̄l(t)

N − (N̄l(t) + N̄i(t))

N
.

A lower bound on the solution of the above differential equation is provided by Lemma 8

in Section 2.5. From the defintions of b and τ̄ , given by (2.13) and (2.14), it is clear that

b > 1 and τ̄ > ln b/∆θ. Then, by evaluating (2.147) at t = τ̄ with N̄l(0) = I(0), we get N̄l

in (2.15). Also, when β = 0, the lemma yields an exact solution of the above differential

equation. Hence proved.

As mentioned in the statement of Lemma 1, the inequality is exact in the case of β = 0.

Additionally, in this case, the form of Nl(T∞) simplifies.

Corollary 1. Let β = 0. In the presence of an inefficient, illicit P2P, the number of illegal

and legal copies is given by

Nl(T∞) =
2CN
∆θ

ln


√

1 + 4
κ lnN + 1√

1 + 4
κ lnN − 1

 . (2.25)

Now that we have characterized the number of legal and illegal copies precisely, at-

taining the statement in the theorem is accomplished by studying the asymptotics of the

results in Lemma 1 and Corollary 1.

To begin, recall from (2.10) that,

L =
Nl(T∞)

N
≥ N̄l

N
, (2.26)
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where N̄l is defined by (2.15). Following a few algebraic steps, from the above equation,

we get that

L ∈ Ω

(
ln lnN + (lnN)

β
κ

lnN

)
(2.27)

and L ∈ Θ
(
ln lnN
lnN

)
if β = 0, which completes the proof.

The interpretation of this theorem is striking. When booster factor, β, is zero, the

fractional legitimate copies is exponentially small, Θ
(
ln lnN
lnN

)
. However, as β increases, the

fractional legitimate copies grows by orders of magnitude.

Now, we consider the second model for demand evolution, Bass model. For analytic

reasons, we are not able to work with the exact Bass model. Thus, we approximate the

logistic curve, (2.3), as follows:

I(t) =



NI(0)et

N−I(0)+I(0)et 0 ≤ t ≤ T1 : Phase 1

I2 = N/ lnN T1 < t ≤ T2 : Phase 2

I3 =
N
2 T2 < t ≤ T3 : Phase 3

I4 = N T3 < t < T4 : Phase 4,

(2.28)

where we have T1 = ln(N/(I(0) lnN)), T2 = ln(N/I(0)), T3 = 2 ln(N/I(0)) and T4 =

3 ln(N/I(0)).2 Notice that the first stage is the exact Bass diffusion, while the other stages

are order sense approximations of the actual expression. Though this model is approximate,

it yields the same qualitative insight as the original model. Now, we are ready to state the

result.

Theorem 2. Suppose I(t) satisfies (2.28). The fractional legitimate copies attained by the

content provider in the presence an inefficient, illicit P2P is

L ∈ Ω

(
ln lnN + (lnN)

β
κ

lnN

)
(2.29)

2Note that the value of T1 has been chosen such that limN→∞ I(T1) = N/ lnN.
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Further, when β = 0,

L ∈ Θ

(
ln lnN

lnN

)
. (2.30)

Proof. To prove the theorem, we will go through a sequence of intermediate results charac-

terizing the number of legal/illegal copies at the transition points of the approximate Bass

model.

We start by characterizing the number of legal and illegal copies at the end of Phase 1.

Lemma 2. In the presence of an inefficient, illicit P2P, the number of illegal and legal

copies at the end of Phase 1 of the approximate Bass model are given by

Ni(T1) =

(
ρI(0)

κ− ρ
+

Nρ

(κ− ρ)2

)
exp (BN )

− I(T1)ρ

κ− ρ
− Nρ

(κ− ρ)2
(2.31)

Nl(T1) = I(T1)−Ni(T1), (2.32)

where

I(T1) =
N

lnN

N

N − I(0) + (N/ lnN)

BN =

(
(κ− ρ)

N
(I(T1)− I(0))

)
.

Note that in the above, we have allowed κ, ρ, and β to be arbitrary. In fact, in this case,

β is inconsequential since the full amount of interested copies can be served by the dedicated

capacity of the CDN. Note that in the case when ρ = κ, things simplify considerably.

Corollary 2. Let ρ = κ. In the presence of an inefficient, illicit P2P, the number of illegal

and legal copies at the end of Phase 1 of the approximate Bass model are given by

Ni(T1) =
κ(I2(T1)− I2(0))

2N
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Nl(T1) = I(T1)−Ni(T1),

where I(T1) =
N

lnN
N

N−I(0)+(N/ lnN) .

We now prove the lemma.

Proof of Lemma 2. From equation (2.28), the population of interested copies in phase I is

given by

I(t) =
NI(0)et

N − I(0) + I(0)et
. (2.33)

From the above equation, it is easy to verify that the rate of growth of interested copies is

less than the server capacity CN , i.e., dI(t)/dt ≤ CN . Thus, any interested user is served

instantaneously either by a legal or illegal mechanism. Hence, the number of Wanters

in the system is zero, i.e, Nw(t) = 0. Therefore, it follows from equation (2.4) that

Nl(t) +Ni(t) = I(t).

Next, from equation (2.8), we get that

dNi(t)

dt
= min

{
η(t)

dI(t)

dt
,Nr(t) +Nf (t)

}
(a)
= η(t)

dI(t)

dt
, (2.34)

where the equality (a) follows from the definition of η(t) and the fact that dI(t)/dt ≤ CN <

N .

Because we are considering an inefficient P2P, we have

η(t) =
Nr(t) +Nf (t)

N
,

(b)
=
ρNl(t) + κNi(t)

N
,

(c)
=
ρ(I(t)−Ni(t))

N
+
κNi(t)

N
,

=
ρI(t)

N
+

(κ− ρ)Ni(t)

N
.
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where equality (b) follows from (2.5), (2.6) and the equality (c) follows from the fact that

Nl(t) = I(t)−Ni(t). Substituting the above result in equation (2.34), we get

dNi(t)

dt
=
dI(t)

dt

ρI(t)

N
+
dI(t)

dt

(κ− ρ)Ni(t)

N
.

The solution of the above differential equation is given by

Ni(t) = K exp

(
I(t)(κ− ρ)

N

)
− ρI(t)

κ− ρ
− Nρ

(κ− ρ)2
,

where the constant K can be obtained from the fact that Ni(0) = 0. Thus, the evolution

of illegal copies is given by

Ni(t) =

(
ρI(0)

κ− ρ
+

Nρ

(κ− ρ)2

)
exp

(
(κ− ρ)

N
(I(t)− I(0))

)
− ρI(t)

κ− ρ
− Nρ

(κ− ρ)2
.

The number of illegal copies at the end of Phase 1 can be obtained by evaluating the above

expression at t = T1. The remaining population get the content legally, i.e, Nl(T1) =

I(T1)−Ni(T1).

Now that we have characterized the number of legal and illegal copies at the end of

Phase 1, we can move to Phases 2-4. Unfortunately, the resulting number of legal and

illegal copies at the end of these phases is much more complicated. However, much of this

complicated form is only necessary to specify the exact analytic values. Once we focus on

the asymptotic form (as in Theorem 1), it simplifies considerably.

Before stating the result, we need to introduce a considerable amount of notation.

This notation stems from the fact that we do not analyze the exact process of Nl(t) and

Ni(t). Instead, we define a processes N̄l(t) and N̄i(t) which bounds Nl(t) and Ni(t) and

analyze these processes. Importantly, the bounding processes are equivalent to the original
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processes when β = 0, i.e., the case of no revenue sharing. Before defining N̄l and N̄i, Let

∆τ̄2 =
1

κ lnNZ1
ln

Z1 + 1− 2I(T1)
(N/ lnN)

Z1 − 1 + 2I(T1)
(N/ lnN)


+

1

κ lnNZ1
ln

(
Z1 + 1

Z1 − 1

)
, (2.35)

∆τ̄3 =
2

κZ2
ln

(
Z2 + 1− 4

lnN

Z2 − 1 + 4
lnN

)

+
2

κZ2
ln

(
Z2 + 1

Z2 − 1

)
, (2.36)

∆τ̄4 =
1

κZ3
ln

(
Z3 + 1

Z3 − 1

)
, (2.37)

where Z1 =
√

1 + 4 lnN
κ , Z2 =

√
1 + 16

κ lnN , Z3 =
√

1 + 4
κ lnN and I(T1) =

N
lnN

N
N−I(0)+(N/ lnN) .

In addition, let

θj1 = κ
Ij
2N

+
1

2

√(
κIj
N

)2

+
4κ

lnN
, (2.38)

θj2 = κ
Ij
2N

− 1

2

√(
κIj
N

)2

+
4κ

lnN
, (2.39)

∆θj = θj1 − θj2 and

bj =
Nθ1,j − κI(Tj−1)

κI(Tj−1)−Nθ2,j
. (2.40)

Note that, in the above definition, in fact I(Tj−1) = Ij−1 for j = 3 and 4.

Furthermore, for j = 2, 3 and 4, let

dj = (bj + exp(∆θj∆τ̄j)) (2.41)

qj1 =

(
βθj2
κ

− βIj
N

)
(2.42)

qj2 =
βθj1
κ

− βIj
N

(2.43)
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Finally, we are ready to define the bounding processes used in the proof, N̄l(t) and

N̄i(t). Let N̄i(T1) = Ni(T1). Furthermore, during Phase j, let

dN̄i(t)

dt
=
ρN̄l(t) + κN̄i(t)

N
(Ij − (N̄l(t) + N̄i(t))). (2.44)

Similarly, let N̄l(T1) = Nl(T1) and, during Phase j,

dN̄l(t)

dt
=

 CN + βN̄l(t)
Ij−(N̄l(t)+N̄i(t))

N , N̄w(t) > 0,

0, N̄w(t) = 0.
(2.45)

where N̄w(t) = Ij − (N̄i(t) + N̄l(t)). Finally, let

Ū(t) = N̄l(t) + N̄i(t).

To state the result, we use a bit more notation about these processes. Let N̄1
l = Nl(T1)

and for j = 2, 3, and 4 define N̄l(Tj) recursively as follows:

N̄ j
l = N̄ j−1

l

(
1 + bj
dj

)β
κ

e(−q
j
1∆τ̄j)+

+ CN

(
bj
dj

)β
κ

e(−q
j
1∆τ̄j)

e
(
qj1

ln bj
∆θj

)
qj1

− 1

qj1

1b≥1

+ CN

(
1

dj

)β
κ

e(−q
j
1∆τ̄j)

e(q
j
2∆τ̄j)

qj2
− e

(
q
j
2 ln bj
∆θj

)
1b≥1

qj2


− CN

(
1

dj

)β
κ

e(−q
j
1∆τ̄j) 1

qj2
(1− 1b≥1), (2.46)
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where 1b≥1 is given by

1b≥1 =

 1 b ≥ 1,

0 b < 1.
(2.47)

We can now state our result characterizing the number of legal and illegal copies at the

end of Phases 2-4.

Lemma 3. In the presence of an inefficient, illicit P2P, the number of illegal and legal

copies at the end of Phase j, j ∈ {2, 3, 4} of the approximate Bass model are given by

Nl(Tj) ≥ N̄ j
l ,

where equality holds when β = 0.

From the approximate Bass model (2.28), the evolution of demand in Phase j, for

j = 2, 3 and 4, is given by,

I(t) = Ij , where t ∈ [Tj−1, Tj).

Note that in these three phases, a change in the number of interested copies occurs only

at the beginning of the phase and then, it remains constant throughout the phase. That

means, the dynamics of evolutions of Nl(t) and Ni(t) in these phases are similar to that

of Flash Crowd model discussed in Lemma 1. Also, it can be shown that each of these

phases is long enough so that every interested user appearing at the beginning of a phase

is being served by the end of that phase. Therefore, we can analyaze each of these phases

independently. Now, by recursively applying the analysis of Lemma 1 for each of the three

phases, we get Lemma 3. A detailed proof of the above lemma is given below.

Proof. From the approximate Bass model (2.28), the evolution of demand in Phase j is,

I(t) = Ij , where t ∈ (Tj−1, Tj ],
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and the number of Wanters in Phase j is Nw(t) = Ij − (Nl(t) +Ni(t)).

Recall that the efficiency factor of an inefficient illicit P2P, η(t), is given by

η(t) =
Nr(t) +Nf (t)

N
=
ρNl(t) + κNi(t)

N
. (2.48)

The second equality follows from (2.5) and (2.6).

From equation (2.8), the illegal growth rate in Phase j is

dNi(t)

dt

(a)
= min {η(t)Nw(t), Nr(t) +Nf (t)} ,

(b)
= η(t)Nw(t) (2.49)

(c)
=
ρNl(t) + κNi(t)

N
(Ij − (Nl(t) +Ni(t))). (2.50)

Here (a) follows from the fact that I(t) is constant in the last three phases. (b) follows

from the definition of η(t) and the fact that Nw(t) ≤ N . (c) follows from (2.48).

From equation (2.9), the growth rate of legal copies in Phase j is given by

dNl(t)

dt
=

 CN + βNl(t), Nw(t) > 0,

0, Nw(t) = 0.
(2.51)

The second equality follows from the fact that dNi
dt = 0 when there are no Wanters in the

system (from (2.49)) and I(t) is constant.

Let U(t) be the total copies of the content in the system. Then,

U(t) = Nl(t) +Ni(t).

Note that the growth rate Nl(t) is at least equal to CN when Nw(t) > 0. In that case,

it can be shown that

CN × (Tj − Tj−1) > (I(Tj)− I(Tj−1)).

since I(0) << CN , by assumption. This means that every interested user generated in any

26



one of the last three phases can be served within that phase itself. Furthermore, Lemma 2

shows that no Wanters are left unserved after Phase 1. Therefore, we can conclude that

Nl(Tj) +Ni(Tj) = U(Tj) = I(Tj) = Ij . (2.52)

The same arguments hold true in the case of N̄l(t), i.e,

N̄l(Tj) + N̄i(Tj) = Ū(Tj) = I(Tj) = Ij . (2.53)

Now, we claim that,

Nl(Tj) ≥ N̄l(Tj), (2.54)

and the equality holds when β = 0.

We can derive dNi
dU and dN̄i

dŪ
from the pair of equations (2.49), (2.51) and (2.44), (2.45)

respectively. Then, it can be shown that

dNi

dU
|Ni=x,U=y ≤

dN̄i

dŪ
|N̄i=x,Ū=y, (2.55)

and the equality holds when β = 0. Note that the range space of functions U(t) and Ū(t)

are identical; in fact they are equal to [I(Tj−1), I(Tj)] in Phase j which follows from (2.52)

and (2.53). Furthermore, recall that the initial values of Ni(T1) and N̄i(T1) are equal by

definition. Hence, the conclusion is

Ni(Tj) ≤ N̄i(Tj).

Then, the claim in (2.54) is true from the facts that Nl(Tj) = I(Tj)−Ni(Tj) and N̄l(Tj) =

I(Tj)− N̄i(Tj).

Our objective is to derive an expression of N̄l(t). Then, evaluate the expression at

t = Tj in order to obtain a lower bound on the number of legal copies at the end of each
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Phase j.

Let τ̄j be the time such that Ū(τ̄j) = Ij . This event happens within Phase j itself (from

(2.53)). i.e, τ̄j ∈ (Tj−1, Tj ]. In addition,

N̄w(t) = 0 when t ∈ (τ̄j , Tj ].

Adding (2.45) and (2.44), for t ∈ (Tj−1, τ̄j ], we get,

dŪ

dt
=
(
(β + ρ)N̄l(t) + κN̄i(t)

) (Ij − (N̄l(t) + N̄i(t)))

N
(e)
=
(
κN̄l(t) + κN̄i(t)

) (Ij − (N̄l(t) + N̄i(t)))

N
(f)
= κŪ(t)

Ij − Ū(t)

N
.

(e) follows from the fact that ρ+ β = κ. (f) follows from the definition of Ū(t) in Phase j.

The differential equation given above is a standard Riccatti equation. Its solution is

given by

Ū(t) =
Nθ2,j
κ

+
N∆θj/κ

1 + bje−∆θj(t−Tj−1)
, (2.56)

where ∆θj = θ1,j − θ2,j . θ1,j , θ2,j and bj are given by equations (2.38), (2.39) and (2.40)

respectively.

Let ∆τ̄j = τ̄j − Tj−1. Recall that τ̄j is the solution of the equation Ū(τ̄j) = Ij . Hence,

from the above result, we get,

τ̄j − Tj−1 =
1

∆θj
ln


√

1 + 4
κ lnN j + 1− 2I(Tj−1)

I(Tj)√
1 + 4

κ lnN j − 1 +
2I(Tj−1)
I(Tj)


+

1

∆θj
ln


√

1 + 4
κ lnN j + 1√

1 + 4
κ lnN j − 1

 . (2.57)

The above expression yields (2.35), (2.36) and (2.37) respectively, when I(Tj) is substituted
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by actual values from the bass model.

Now, applying the above expression in (2.45), for t ∈ (Tj−1, τ̄j ], we get

dN̄l(t)

dt
= CN + βN̄l(t)

Ij − (N̄l(t) + N̄i(t))

N
.

A lower bound on the solution of the above differential equation is provided by Lemma 8

in Section 2.5. It can be shown that b exp(−∆θj∆τ̄j) << 1. Then τ̄j satisfies the condition

stipulated by that lemma and a lower bound on the number of legal at the end of Phase j

can be obtained by evaluating (2.147) at t = τ̄j , which yields N̄ j
l in (2.46). In case β = 0,

(2.147) is an exact solution of the above differential equation.

As mentioned in the statement of Lemma 3, the inequality is exact in the case of β = 0.

Additionally, in this case, the form of Nl(T4) simplifies.

Corollary 3. Let β = 0. In the presence of an inefficient, illicit P2P, the number of illegal

and legal copies at the end of Phase 4 of the approximate Bass model is given by

Nl(T4) = Nl(T1) + CN

4∑
j=2

∆τ̄j (2.58)

where Nl(T1) is given by Corollary 2.

Now that we have characterized the number of legal and illegal copies at the end of

Phase 4 precisely, attaining the statement in theorem is accomplished by taking studying

the asymptotics of the results in Lemma 3 and Corollary 3. Throughout, we use AN ∼ BN

to denote limN→∞
AN
BN

= 1.

To begin, recall from (2.10) that,

L =
Nl(T∞)

N
=
Nl(T∞)

N
(2.59)

≥
N̄4
l

N
, (2.60)

where N̄4
l is recursively defined by (2.46) in terms of N̄1

l , N̄
2
l and N̄3

l . As N goes larger,
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from the above equation, we get that

L ∈ Ω

(
ln lnN + (lnN)

β
κ

lnN

)
(2.61)

and L ∈ Θ
(
ln lnN
lnN

)
if β = 0, which completes the proof.

Note that the results of the above theorem match with that of Theorem 1. That means,

the fractional legitimate copies attained by the CDN under Bass model of evolution is no

different from that of Flash Crowd model in asymptotic sense.

Next, let us consider the case of an efficient, illicit P2P system.

2.2.2 Efficient illicit P2P

As before, we first consider the case of Flash Crowd model.

Theorem 3. Suppose I(t) satisfies (2.1). Let κ ∈ (0, 1−I(0)/N). The fractional legitimate

copies attained by the content provider in the presence an efficient, illicit P2P is

L ∈ Ω

 1

lnN

(lnN)
β
κ − 1(
β
κ

)
 . (2.62)

Further, when β = 0,

L ∈ Θ

(
ln lnN

lnN

)
. (2.63)

Proof. The proof parallels to that of Theorem 1.We mimick the approach of the proof

of Theorem 3 and define two processes N̄l(t) and N̄i(t) that bound Nl(t) and Ni(t) and

analyze these processes. Importantly, the bounding processes are equivalent to the original

processes when β = 0.
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(b) κ = 0.75, β = 0.52

Figure 2.3: Evolution of usage in the presence of inefficient illicit P2P sharing.
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(a) κ = 0.4, β = 0
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(b) κ = 0.4, β = 0.38

Figure 2.4: Evolution of usage in the presence of efficient illicit P2P sharing.

Let Ū(t) = N̄l(t) + N̄i(t). Further, let N̄l(0) = Nl(0) = 0 and

dN̄l(t)

dt
= =

 CN + βN̄l(t) N̄w(t) > 0,

0 N̄w(t) = 0.
(2.64)
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where N̄w(t) = N − Ū(t). Furthermore, we define N̄i(0) = Ni(0) = 0 and

dN̄i(t)

dt
=

 ρN̄l(t) + κN̄i(t) 0 ≤ Ū(t) ≤ N
1+ρ ,

N − N̄l(t)− N̄i(t)
N
1+ρ ≤ Ū(t) ≤ N.

(2.65)

Finally, let N̄i(0) = Ni(0) = 0. To state the results, we may need a bit more notation. Let

N̄l =
N

lnNβ

(
eβτ̄ − 1

)
. (2.66)

Furthermore, τ̄ = 1
1+β ln

(
1 + lnN(1+β)H

−β
κ

1+ρ

)
+ 1

κ ln (H) , where H = 1 + κ lnN
(1+ρ) . Now, we

characterize the number of legal copies and illegal copies in the following lemma.

Lemma 4. In the presence of an efficient, illicit P2P, the number of illegal copies is given

by

Nl(T∞) ≥ N̄l, (2.67)

and the equality holds when β = 0.

Proof. From equation (2.8), the growth rate of illegal copies is given by

dNi

dt

a
= min {Nw(t), ρNl(t) + κNi(t))} (2.68)

b
= min{I(t)− U(t), ρNl(t) + κNi(t))} (2.69)

where (a) follows from equations (2.5), (2.6) along with the facts that η = 1 and I(t) is

constant. (b) follows from the definition of the number of wanters in the system.

From equation (2.9), the growth rate of legal copies in Phase j is given by

dNl(t)

dt

c
= CN + βNl(t) if Nw(t) > 0,

d
= 0 if Nw(t) = 0. (2.70)
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(d) follows from the facts that dNi
dt = 0 when there are no wanters in the system (from

(2.68)) and I(t) is constant.

As defined before, let U(t) be the total copies of the content in the system. Then,

U(t) = Nl(t) +Ni(t).

Now, we claim that,

Nl(Tj) ≥ N̄l(Tj). (2.71)

and the equality holds when β = 0.

Note that

dN̄l(t)

dt
|Ū=x,N̄i=y

e
=
dNl(t)

dt
|U=x,Ni=y, (2.72)

dN̄i(t)

dt
|Ū=x,N̄i=y

f
≥ dNi(t)

dt
|U=x,Ni=y. (2.73)

and (f) is an equality when β = 0. (e) follows from (2.64) and (2.70). And (f) is due to

(2.68) and (2.65). From the above equations, we can deduce that

dN̄l

dŪ
|Ū=x,N̄i=y

≤ dNl

dU
|U=x,Ni=y. (2.74)

Note that the range of functions U(t) and Ū(t) are identical, [I(0), N ]. Since Nl(0) = N̄l(0),

from the above equation, we get that Nl(Tj) ≥ N̄i(Tj), Also, equality holds when β = 0.

Let τ̄ be the instant at which N̄w(τ̄) = 0. Then, the number of legal copies, Nl(t), is

given by

N̄l(t) =


(
CN
β

)
eβt − CN

β t ∈ (0, τ̄ ],

N̄l(τ̄) t > τ̄ .
(2.75)

The above result follows from (2.64) and the initial condition Nl(0) = 0. Now, we resort

to find τ̄ . Note that, N̄w(τ̄) = 0 implies Ū(τ̄) = N . Therefore, first we derive Ū(t) and

then, finds the time at which Ū(t) reaches N .
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Note that Ū(0) < N
1+ρ , by assumption. Then, from (2.64) and (2.65), we get that

dŪ(t)

dt
= ρŪ(t) + CN , if t ∈ [0, ν],

where ν is defined as Ū(ν) = N
1+ρ . Solving the above equation with the initial condition

Ū(0) = 0 yields

Ū(t) =
CN
κ
eκt − CN

κ
, if t ∈ [0, ν]. (2.76)

Then, from the above result ν can shown to be ν = 1
κ ln(H), where H = 1 + κ lnN

1+ρ .

Now, consider the case t ∈ [ν, τ̄ ]. Then, N
1+ρ ≤ Ū(t) ≤ N and hence, from (2.65),

dNi

dt
= N − N̄l(t)− N̄i(t), if t ∈ [ν, τ̄ ].

Solving the above equation, we get

N̄i(t) = N −
(
N̄l(ν) +

CN
β

)
eβ(t−ν)

1 + β
+
CN
β

+

(
N̄i(ν) +

N̄l(ν)

1 + β
− CN

1 + β
−N

)
e−(t−ν),

= N − CN
β

eβ(t)

1 + β
+
CN
β

−
(
Nρ

1 + ρ
+
CNe

βν

1 + β

)
e−(t−ν),

for t ∈ [ν, τ̄ ]. Here, the second equality is obtained by replacing N̄i(ν) with Ū(ν) − N̄l(ν)

and by substituting N̄l(ν) from (2.75). Then, Ū(t), which is eqaul to N̄l(t)+ N̄i(t), is given

by

Ū(t) = N +
CNe

βt

1 + β
−
(
Nρ

1 + ρ
+
CNe

βν

1 + β

)
e−(t−ν).
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Now, solving for t, from Ū(t) = N , we get that

τ̄ = ν +
1

1 + β
ln

(
1 +

lnN(1 + β)e−βν

1 + ρ

)
(2.77)

=
1

κ
lnH +

1

1 + β
ln

(
1 +

lnN(1 + β)H
−β
κ

1 + ρ

)
. (2.78)

The second result follows by susbtituting ν = 1
κ lnH, where H = 1 + κ lnN

1+ρ .

Finally, substituting τ̄ in (2.75) yields N̄l, which completes the proof.

As mentioned in the statement of Lemma 4, the inequality is exact in the case of β = 0.

Additionally, in this case, the form of Nl(T∞) simplifies.

Corollary 4. Let β = 0. Then, the number of legal copies at the end of Phase 4 is given

by Nl(T∞) = CN τ̄ ,

Now that we have characterized the number of legal and illegal copies precisely, attain-

ing the statement in theorem is accomplished by studying the asymptotics of the results

in Lemma 4 and Corollary 4. From (2.10), Lemma 4, Corollary 4 and equation (2.66), we

can show that

L ∈ Ω

 1

lnN

(lnN)
β
κ − 1(
β
κ

)
 , (2.79)

and L ∈ Θ
(
ln lnN
lnN

)
if β = 0, which completes the proof.

Again, the fractional legitimate copies rises by an order of magnitude as the booster

factor, β, increases. Interestingly, the efficiency of the illicit P2P does not impact the

asymptotic order of the fractional revenue when β = 0, since in both the efficient and

inefficient case it is Θ
(
ln lnN
lnN

)
. However, the efficiency of the illicit P2P does affect the

fractional legitimate copies attained for positive values of booster factor. In particular, it

causes a (1− β
κ ) factor change in the fractional legitimate copies attained; however this has
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almost no effect on the asymptotic growth.

Now, we consider the second case, Bass model of evolution.

Theorem 4. Suppose I(t) satisfies (2.3). Let κ ∈ (0, 1−I(0)/N). The fractional legitimate

copies attained by the content provider in the presence an efficient, illicit P2P is

L ∈ Ω

 1

lnN

(lnN)
β
κ − 1(
β
κ

)
 . (2.80)

Further, when β = 0,

L ∈ Θ

(
ln lnN

lnN

)
. (2.81)

Proof. In our model, an efficient illicit P2P is characterized by efficiency parameter, η(t),

equal to one. Then, from (2.8), the evolution of illegal copies of content in the system,

Ni(t), is given by

dNi(t)

dt
= min

{
Nw(t) +

dI(t)

dt
, ρNl(t) + κNi(t)

}
. (2.82)

And, the evolution of legal copies of the content in the system, Ni(t), is given by,

dNl(t)

dt
=

 CN + βNl(t) Nw(t) > 0,

min{CN + βNl(t),
dI
dt −

dNi
dt } Nw(t) = 0.

(2.83)

As the interest for the content evolves according to the Bass demand model, the evolution

of Nl(t) and Ni(t) traverses along multiple stages of dynamics as shown in Figure 2.5.

Below, we discuss these stages of evolution in detail.

Stage 1: By assumption, Nl(0) = I(0), Ni(0) = 0 and Nw(0) = 0 where I(0) is the

initial demand in the system. Then,

Nw(0) +
dI(t)

dt
|t=0 > ρNl(0) + κNi(0).
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Figure 2.5: Evolutionary phases of the growth of legal and illegal copies of content in the
presence of an efficient illicit P2P

The above result follows from our assumption that κ < 1− I(0)
N . Therefore, at t = 0, from

(2.82),

dNi(t)

dt
= ρNl(t) + κNi(t). (2.84)

From (2.83), the evolution of Nl(t) at time t = 0 is,

dNl(t)

dt
=

dI(t)

dt
− dNi(t)

dt
, (2.85)

=
dI(t)

dt
− (ρNl(t) + κNi(t)). (2.86)
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The first equality follows from the facts that Nw(0) = 0 and dI(t)
dt |t=0 < CN . Also, from

the above equations, we get that Nl(t) +Ni(t) = I(t).

The evolution exits Stage 1 when any one of the following conditions is attained,

C1 :
dI

dt
(t)− dNi

dt
≥ CN + βNl(t), (2.87)

C2 :
dI

dt
(t) ≤ ρNl(t) + κNi(t). (2.88)

Here, C1 occurs when the number of wanters approaching the legitimate CDN exceeds

its current capacity, Then, from (2.83), the dynamics of evolution of Nl(t) changes. C2

happens when the number of users attempting to download from the illicit P2P reduces

below the current capacity of the illicit P2P. Then, from (2.82), the dynamics of evolution

of Ni(t) changes. Next, we show if κ < 1 − 2√
lnN

, C1 occurs before C2 and the evolution

proceeds to Stage 2. Otherwise, Stage 1 is followed by Stage 7.

Now, let T2, be the time at which C1 is attained, i.e,

dI(t)

dt
|t=T2 − dNi(t)

dt
|t=T2 = CN + βNl(T2), (2.89)

⇒ dI(t)

dt
|t=T2 − κI(T2) = CN (2.90)

⇒ I(T2) =
N(1− κ)

2

[
1−

√
1− 4

lnN(1− κ)2

]
(2.91)

The second equality follows from (2.84) along with the facts that κ = ρ + β and Nl(t) +

Ni(t) = I(t). Equation (2.91) follows from the definition of I(t). In the above equation,

T2 has a real positive solution iff κ < 1 − 2√
lnN

. Also, let T7 be the time at which C2 is

attained, i.e,

dI(t)
dt |t=T7 = ρNl(T7) + κNi(T7)

⇒ dI(t)
dt |t=T7 − κI(T7) = −βNl(T7). (2.92)

The second equality follows from the facts that κ = ρ+ β and Nl(t) +Ni(t) = I(t). From
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(2.90), (2.92) and the definition of I(t), it can be shown that, if T2 has a real valued

solution, then T2 < T7. Therefore, Stage 1 is followed by Stage 2 if κ < 1 − 2√
lnN

and,

Stage 7 otherwise.

Stage 2 : The evolution enters Stage 2 from Stage 1 due to the condition C1 given by

(2.87). Then, the dynamics of Ni(t) does not change from that of Stage 1,

dNi

dt
= ρNl(t) + κNi(t), (2.93)

but the dynamics of Nl(t) changes to,

dNl

dt
= CN + βNl(t). (2.94)

Also, from the above equations and (2.87), Nl(t) +Ni(t) ≤ I(t).

A transition from this stage occurs when any one of the following conditions is satisfied,

C3 : CN + βNl(t) ≥
dI(t)

dt
− dNi(t)

dt
,

Nw(t) = 0, (2.95)

C4 :
dI(t)

dt
+Nw(t) ≤ ρNl(t) + κNi(t). (2.96)

Here, C3 occurs when the number of wanters in the system goes to zero and the rate at

which newly generated population approaching the legitimate CDN falls below its current

capacity. Then, from (2.83), the dynamics of evolution of Nl(t) changes. C2 happens when

the number of users attempting to download from the illicit P2P reduces below the current

capacity of the illicit P2P. Then, from (2.82), the dynamics of evolution of Ni(t) changes.

The evolution enters Stage 3, if C3 is attained before C4. Otherwise, it proceeds to Stage 4.

Let T3 mark the time at which the evolution enters Stage 3. Then, from C3 and (2.93),

CN + βNl(T3) ≥
dI(t)

dt
|t=T3 − (ρNi(T3) + κNl(T3)), (2.97)

and Nw(T3) = 0. (2.98)
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Also, let Stage 4 start at time t = T4. Then, from C4,

dI(t)

dt
|t=T4 +Nw(T4) = ρNl(T4) + κNi(T4). (2.99)

Stage 3: The evolution enters Stage 3 from Stage 2 due to the condition C3 given by

(2.95). Then, the dynamics Ni(t) does not change from that of Stage 2,

dNi(t)

dt
= ρNl(t) + κNi(t), (2.100)

but, the evolution of Nl(t) changes to,

dNl(t)

dt
=

dI(t)

dt
− dNi(t)

dt
, (2.101)

=
dI(t)

dt
− (ρNl(t) + κNi(t)). (2.102)

This stage starts at t = T3, which is defined by (2.97) and (2.98). From the above dynamics

equations and (2.98), we get Nl(t) +Ni(t) = I(t).

We show that the evolution of Nl(t), given by (2.101), does not change as long as the

evolution of Ni(t) does not deviate from (2.100). This claim holds true if

CN + βNl(t) ≥ dI(t)

dt
− (ρNl(t) + κNi(t)),

⇒ dI(t)

dt
− κI(t) ≤ CN , (2.103)

for all t ≥ T3. The second inequality follows from the facts κ = ρ+ β and Nl(t) +Ni(t) =

I(t). At t = T3 the above requirement is met, which follows from (2.97). Then, we get

I(T3) ≥
N(1− κ)

2
, (2.104)

from the definition of I(t) and (2.103). The function dI(t)
dt −κI(t) is monotonically decreas-

ing if I(t) > N(1−κ)
2 . Then, (2.103) holds for all t > T3 and that proves our claim.
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The above discussion implies that a transition from this stage happens only when the

dynamics of evolution of Ni(t) changes. From (2.82) and (2.100), the dynamics of Ni(t)

changes, when the number of users downloading from the illicit P2P reduces below the

current capacity of illicit P2P,

C5 :
dI(t)

dt
≤ ρNl(t) + κNi(t). (2.105)

When C5 occurs, evolution enters Stage 5. Let this occurs at t = T5. Then,

dI(t)

dt
|t=T5 = ρNl(T5) + κNi(T5). (2.106)

Stage 4: The evolution enters Stage 3 from Stage 2 due to the condition C4 given by

(2.96). Then, the dynamics of Nl(t) does not change from that of Stage 2,

dNl(t)

dt
= CN + βNl(t), (2.107)

but the evolution of Ni(t) changes to,

dNi(t)

dt
= Nw(t) +

dI(t)

dt
, (2.108)

This stage starts at time t = T4 defined by (2.99).

We claim that the evolution of Ni(t) follows (2.108) for all t ≥ T4. This claim holds

true if (
Nw(t) +

dI(t)

dt

)
≤ ρNl(t) + κNi(t), (2.109)

for all t ≥ T4. Note that Equation (2.109) holds true at t = T4. Since, Nw(t) = I(t) −

(Nl(t) + Ni(t)) by definition, from Equation (2.108), we get that dNw(t)
dt < 0. Also, using

the definition of Nw(t) in (2.99), we can show that

dI(t)

dt
|t=T4 − κI(T4) = −(1 + κ)Nw(T4)− βNl(T4) < 0.
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Then, from the definition of I(t), the above result holds for all t ≥ T4. Then, we get

d

dt

(
Nw(t) +

dI

dt

)
<

d

dt
(ρNl(t) + κNi(t)),

which along with (2.99) proves (2.109).

The above discussion implies that a transition from this stage occurs when the evolution

of Nl(t) changes. From (2.107) and (2.83), the evolution of Nl(t) changes when the number

of wanters goes to zero. Then,

Nw(T6) = 0. (2.110)

where T6 marks the beginning of Stage 6.

Stage 5,6,7:

These are the final stages of evolution. Stage 5 is preceded by Stage 3, Stage 6 is preceded

by Stage 4, and Stage 7 is preceded by Stage 1. The dynamics of all these stages are

identical,

dNl(t)

dt
= 0, (2.111)

dNi(t)

dt
=

dI(t)

dt
. (2.112)

It is easy to see that the evolutions of Nl(t) and Nl(t) stay in these stages forever once

they reach here.

In summary, if κ ≥ 1 − 2√
lnN

, the evolution of Ni(t) and Nl(t) traverse along the

sequence of phases, Stage 1 →Stage 7. Otherwise, they proceed along the sequence of

phases, Stage 1 → Stage 2 →Stage 3(Stage 4) →Stage 5(Stage 6). In the next section, we

analyze these two cases separately and obtain a lower bound on number of legal copies of

the content in the system at the end of evolution.
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2.2.3 Analysis

We first consider the case, κ ≥ 1− 2√
lnN

. Let us introduce a few notation before stating

the result. We define

Φ(x) =

(
I(0)

N

)β
N
[
(1− κ)ψ

(
β,

x

N

)
− κψ

(
β − 1,

x

N

)]
, (2.113)

and ψ(β, x) =
∫ x
I(0)/N

(
1−u
u

)β
du. Also, let

T̄ = ln

[
N(1− κ)G

I(0) (2− (1− κ)G)

]
, (2.114)

where G = 1 +
√
1 + 4βD

N(1−κ)2 and D = Φ(N(1 − κ))
(
N(1−κ)
I(0)κ

)β
. Now, we are ready to

provide the result.

Lemma 5. Assume κ ≥ 1− 2√
lnN

. Then, a lower bound on the number of legal copies of

the content in the system at t = T∞ is given by,

Nl(T∞) ≥ (Φ(I(T̄ )) + I(0))eβT̄ . (2.115)

where I(t) is given by (2.3).

Proof. Recall that, when κ ≥ 1− 2√
lnN

, the evolution of Nl(t) and Ni(t) takes place in two

stages, namely Stage 1 and Stage 7. Solving the dynamics of evolution in Stage 1, given

by (2.85) and (2.84), we get

Nl(t) = (Φ(I(t))− Φ(I(0))eβt + I(0)eβt,

= (Φ(I(t)) + I(0))eβt, (2.116)

where Φ(x) is defined by (2.113). The second equality follows since Φ(I(0)) = 0.
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Stage 7 starts at t = T7. Recall from (2.92) that T7 is a solution to the equation,

dI(t)

dt
− κI(t) = −βNl(t)

. It is not easy to solve the above equation exactly . Hence, here, we obtain a lower bound

on T7. Let r = ln(N(1−κ)
I(0)κ ). Note that, at t = r,

dI

dt
(t)− κI(t) = 0.

Also, the function dI
dt (t)− κI(t) is positive for t < r and, it is monotonically decreasing for

t ≥ r. Then, r ≤ T7. Then, Nl(r) ≤ Nl(T7). That implies the solution of the equation,

dI

dt
− κI(t) = −βNl(r),

must be less than or equal to T7. Now, substituting Nl(r) from Equation (2.116) in the

above equation, and then, solving for t yields T̄ , which is defined by (2.114), as the unique

solution. Since no legals are generated in Stage 7 according to (2.111), and T7 ≥ T̄ , we

have

Nl(T∞) = Nl(T7) ≥ Nl(T̄ ).

Now, obtain Nl(T̄ ) from (2.116) and substitute in the above inequality to prove the lemma.

Now, we consider the second case where κ < 1 − 2√
lnN

. We introduce a few notation

before stating the result. Let

I2 = N(1−κ)
2

[
1−

√
1− 4

lnN(1−κ)2

]
, (2.117)

T2 = ln
[

NI2
I(0)(N−I2)

]
, (2.118)

I3 = I2e∆T1

1− I2
N

+
I2
N
e∆T1

, (2.119)

∆T1 = 1
κ ln

[
c
κ
+

N(1−κ)
2

[1+H]
c
κ
+

N(1−κ)
2

[1−H]

]
, (2.120)
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∆T2 = 1
κ ln

[ c
κ
+I3

c
κ
+I2

]
, (2.121)

T̄3 = T2 +∆T2 (2.122)

L3 = C
β (e

β∆T2 − 1) + (Φ(I2) + I(0))eβT̄3 ,

where H =
√
1− 4

lnN(1−κ)2 .

Also, let

I4 = I(T̄3) =
I(0)eT̄3

1− I(0)
N

+
I(0)
N
eT̄3
, (2.123)

I5 = N(1−κ)
2

[
1 +

√
1 + 4βL3

N(1−κ)2

]
, (2.124)

T̄5 = ln
[

NI5
I(0)(N−I5)

]
, (2.125)

L4 = (Φ(I5)− Φ(I4))e
βT̄5 + L3e

β(T̄5−T̄3),

where I(t) is the Bass demand function.

Lemma 6. Assume κ < 1− 2√
lnN

. Then, a lower bound on the number of legals at t = T∞

is given by,

Nl(T∞) ≥

 L3 if T̄5 ≤ T̄3

L4, else.
(2.126)

Proof. When κ < 1− 2√
lnN

, the evolution of of Nl(t) and Ni(t) takes place along a sequence

of stages, which is given by, ‘Stage 1 → Stage 2 →Stage 3(or Stage 4)→Stage 5(or Stage 6)’.

An exact characterization of Nl(t) and Ni(t) might be quite difficult as the analysis involves

solving many complex differential equations. Therefore, we define two processes N̄l(t) and

N̄i(t); N̄l(t) bounds Nl(t) from below and N̄i(t) bounds Ni(t) from above. We analyze

these bounding processes instead of the actual processes.

We go through a sequence of intermediate steps to prove this lemma.

Step 1: Define N̄l(t) and N̄i(t)
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First of all, let N̄l(0) = Nl(0) and N̄i(0) = Ni(0). Let N̄l(t) evolves as follows,

dN̄l(t)

dt
=



dI
dt − (ρN̄l(t) + κN̄i(t)), [0, T2],

CN + βN̄l(t), [T2, T̄3],

dI
dt − (ρN̄l(t) + κN̄i(t)), [T̄3,max{T̄3, T̄5}],

0, [max{T̄3, T̄5}, T∞].

(2.127)

Also, let

dN̄i(t)

dt
=



(ρN̄l(t) + κN̄i(t)), [0, T2],

(ρN̄l(t) + κN̄i(t))

+Rδ(t− T̄3), [T2, T̄3],

(ρN̄l(t) + κN̄i(t)), (T̄3,max{T̄3, T̄5}],
dI
dt [max{T̄3, T̄5}, T∞].

(2.128)

where T2 is given by (2.118), T̄3 is defined by (2.122), T̄5 is defined by (2.125), R =

I(T̄3) − (Nl(T̄3) + Ni(T̄3)) and δ(t) is Kronecker delta function. It can be verified that

T̄3 > T2. Also, the following equations can be verified:

dI(t)
dt

∣∣
t=T̄3 − κI(T̄3) ≤ CN , (2.129)

N̄l(t) + N̄i(t) < I(t)for T2 < t < T̄3, (2.130)

dI(t)
dt

∣∣
t=T̄5 − κI(T̄5) = βN̄l(T̄3). (2.131)

Also, we define N̄w(t) = I(t)−(N̄l(t)+N̄i(t)). In the next step, we show that N̄l(t) ≤ Nl(t)

for all t.

Step 2: We claim that N̄l(t) ≤ Nl(t):

Recall that, the actual processes may pass through either Stages 3 and 5 or Stages 4 and

6. We analyze these two cases separately.

Case 1: The evolution of Nl(t) and Ni(t) takes place along Stages 3 and 5

First of all, we have Nl(0) = N̄l(0) and Ni(0) = N̄i(0) from the definition of the
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bounding processes. Now, suppose T̄3 ≤ T3. Then, comparing Stage 1 dynamics, (2.85,

2.84), and Stage 2 dynamics (2.94, 2.93) with the bounding process dynamics (2.127, 2.128),

we get that, for t ∈ [0, T̄3],

dN̄l(t)

dt
=
dNl(t)

dt
and

dN̄i(t)

dt
≥ dNi(t)

dt
.

Then,

N̄l(t) = Nl(t) if t ∈ [0, T̄3]. (2.132)

Also, suppose T̄5 ≤ T5. Then, comparing Stage 2 dynamics, (2.94, 2.93), Stage 3

dynamics (2.101, 2.100) and Stage 5 dynamics (2.111, 2.112) with the bounding process

dynamics (2.127, 2.128), we get that, for t ∈ [T̄3, T∞],

dN̄l(t)

dt
≤ dNl(t)

dt
and

dN̄i(t)

dt
≥ dNi(t)

dt
.

Then, N̄l(t) ≤ Nl(t) for t > T̄3. To complete the proof, we must show that T̄3 ≤ T3 and

T̄5 ≤ T5.

Show that T̄3 ≤ T3: Recall that Stage 3 begins at T3 in the evolution of the original

processes. From the definition of T3, given by (2.97),

dI(t)
dt |t=T3 − (ρNl(T3) + κNi(T3)) ≤ CN + βNl(T3),

⇒ dI(t)
dt |t=T3 − κI(T3) ≤ CN . (2.133)

The second inequality follows from the facts that κ = ρ+ β and Ni(T3) +Nl(T3) = I(T3)

(since Nw(T3) = 0 from (2.98)).

First, we guess a lower bound for T3. Suppose, at time t = r,

I(r) =
N(1− κ)

2

[
1 +

√
1 +

4

lnN(1− κ)2

]
,
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is satisfied. Note that I(r) > I(T2) and hence, r > T2. It can be shown that if t ∈ [T2, r],

dI

dt
(t)− κI(t) ≥ CN ,

with equality at t = T2 and t = r. Also, the function, dI
dt (t) − κI(t) strictly decreasing if

t ≥ r. Then, from (2.133) and the fact that T3 > T2, we conclude that r ≤ T3.

Now, obtain a better lower bound for T3. Let us define U(t) = Nl(t) + Ni(t). From

(2.98), we have Nw(T3) = 0, which implies that U(T3) = I(T3). We know that U(r) ≤ I(r).

Find t′ such that U(t′) = I(r). Then, U(t′) ≤ I(t′). Then, get s such that U(s) = I(t′).

Since U(t) and I(t) are monotonically increasing, we have r ≤ t′ ≤ s ≤ T3.

From the dynamics of evolution of Stage 2, given by (2.93) and (2.94), we can show

that during the interval [T2, T3],

U(t) =

(
C

κ
+ I2

)
eκ(t−T2) − C

κ
.

Then, it can be shown that t′ = T2 +∆T1, I3 = I(t′) and s = T̄3. Hence, T̄3 ≤ T3.

Show that T̄5 ≤ T5: Recall that Stage 5 begins at T5. From (2.106),

dI(t)

dt
|t=T5 − κI(T5) = −βNl(T5).

The above result is due to the facts that κ = ρ+β and Ni(t)+Nl(t) = I(t) in Stage 3 and

5.

We guess a lower bound for T5. From, (2.131),

dI(t)

dt

∣∣
t=T̄5 − κI(T̄5) = −βN̄l(T̄3).

is satisfied. If T̄5 ≤ T̄3, then T̄5 ≤ T3 ≤ T5. Suppose T̄5 > T̄3. Recall that T̄3 ≤ T3 ≤ T5 and

N̄l(T̄3) = Nl(T̄3) (from (2.132)). Then, N̄l(T̄3) ≤ Nl(T5). Also, dI(t)dt −κI(t) is a decreasing

function of t when its value is negative. Combining these facts with the definitions of T5
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and T̄5, we can assert that T̄5 ≤ T5.

Case 2: The evolution of Nl(t) and Ni(t) takes place along Stage 4 and Stage 6.

We have to consider two cases, T4 < T̄3 and T4 ≥ T̄3 respectively.

Suppose T4 < T̄3: First, we show that,

N̄l(T̄3) = Nl(T̄3). (2.134)

Note that the dynamics of actual and the bounding processes are identical untill t = T4.

Then, Nw(T4) = N̄w(T4). Also, during T4 < t ≤ min{T6, T̄3}, N̄i(t) grows faster than

Ni(t), while N̄l(t) grows at the same rate as that of Nl(t). Therefore, to prove (2.134)

holds true, we just need to show that T6 ≥ T̄3, which is done as follows: Note that, when

t ∈ [T4,min{T6, T̄3}], the growth rate of Nl(t)+Ni(t) is less than that of N̄l(t)+ N̄i(t), and

hence N̄w(t) ≤ Nw(t). Then, from (2.130) and the definition of N̄w(t), we get Nw(t) > 0

when T4 < t < T̄3 (since T4 > T2 by definition). Then, from (2.110), we get that T6 cannot

be less than T̄3.

Now, suppose T̄5 ≤ T̄3. Then, from (2.134) and (2.127),

N̄l(T∞) = N̄l(T̄3) = Nl(T̄3) ≤ N(T∞),

which proves our claim. Now, we show that T̄5 ≤ T̄3 as follows: For all t > T4, (2.109) is

satisfied. Then, we get

dI(t)

dt

∣∣
t=T̄3 − κI(T̄3) ≤ −βNl(T̄3).

due to the assumption, T4 < T̄3 and the definition of Nw(t). But, from (2.131) and (2.134),

dI(t)

dt

∣∣
t=T̄5 − κI(T̄5) = −βNl(T̄3).

Therefore, T̄5 ≤ T̄3 since dI
dt − κI(t) is decreasing in t once it goes negative.
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Suppose T4 ≥ T̄3: Note that the dynamics of actual and the bounding processes are

identical untill t = T̄3. To prove the claim, we show that

dNl(t)

dt
≥ dN̄l(t)

dt
when t ≥ T̄3. (2.135)

At t = T̄3, from (2.129), the dynamics of actual and the bounding processes, the above

expression holds true. Also, during t ∈ [T̄3, T6],
dNl(t)
dt and dN̄l(t)

dt are increasing and de-

creasing functions respectively. Hence, (2.135) holds true until t ≤ T6. Now, we show that

T̄5 < T6, and hence the growth rate of N̄l(t) is zero for t ≥ T6. This asserts that (2.135)

holds for t ≥ T6. The proof is as follows: From (2.99) and the definition of Nw(t), we get

dI(t)

dt
|t=T4 − κI(T4) = −βNl(T4)− (1 + κ)Nw(T4). (2.136)

Then, T̄5 ≤ T4 due to these reasons: 1) T̄5 satisfies (2.131), 2) βN̄l(T̄3) = βNl(T̄3 <

βNl(T4) + (1 + κ)Nw(T4) since T̄3 < T4 by assumption, 3) dI(t)
dt − κI(t) is decreasing once

its value goes negative. Now, since T4 < T6, we have T̄5 < T6, and hence (2.135) is attained.

Having shown that N̄l(t) bounds Nl(t) from below, we evaluate N̄l(T∞) in the next

step.

Step 5: Evaluate the bounding process, N̄l(T∞):

Find N̄l(T2): The evolution of the bounding processes during [0, T2] are given by (2.127)

and (2.128). Solving them, we get

N̄l(t) = (Φ(I(t))− Φ(I(0))eβt + I(0)eβt,

= (Φ(I(t)) + I(0))eβt,

where Φ(x) is defined by (2.113). The second equality holds true since Φ(I(0)) = 0.

Substituting T2 from (2.118) in the above result,

N̄l(T2) = (Φ(I2) + I(0))eβT2 ,
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where I2 = I(T2).

Find N̄l(T̄3): Solving the growth equations given by (2.127) and (2.128), for the interval

[T2, T̄3], we get

N̄l(t) =

(
C

β
+ N̄l(T2)

)
eβ(t−T2) − C

β
.

Substituting, T̄3 from (2.122), and N̄l(T2) in the above expression, we get

Nl(T̄3) =
C

β
(eβ∆T2 − 1) + (Φ(I2) + I(0))eβT̄3 = L3.

where L3 is given by (2.123).

Let T̄3 < T̄5. Find N̄l(T̄5): Solving the growth equations given by (2.127) and (2.128),

for the interval [T̄3, T̄5], we get

N̄l(t) = (Φ(I(t))− Φ(I(T̄3))e
βt + N̄l(T̄3)e

β(t−T̄3),

Substituting T̄3, T̄5 and N̄l(T̄3) in the above equation, we get

N̄l(t) = (Φ(I5)− Φ(I4))e
βt + L3e

β(T̄5−T̄3) = L4,

where I5, I4, L3 and L4 are given by (2.124), (2.123), (2.123) and (2.126) respectively.

Find N̄l(T∞): From (2.127), we have dN̄l(t)
dt = 0, for t ≥ max{T̄3, T̄5}. Therefore, we

have N̄l(T∞) = N̄l(max{T̄3, T̄5}). Then,

Nl(T∞) ≥ N̄l(T∞) =

 N̄l(T̄3) = L3 if T̄5 ≤ T̄3

N̄l(T̄5) = L4, else.

We have characterized the number of legal copies generated in the system in the presence

of an efficient illicit P2P in the previous two lemmas. Attaining the statement in the
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theorem is accomplished by studying the asymptotics of the results in Lemma 5 and 6. We

start by introducing a few notation.

∆T3 =
1

κ
ln [κ(1− κ) lnN + (1− κ)] ,

T̃3 = T2 +∆T3, (2.137)

∆T4 =
1

κ
ln

[
κ(1− κ)

1 + κ
lnN + (1− κ)

]
, (2.138)

T̃4 = T2 +∆T4. (2.139)

Also, we say, AN ∼ BN , if limN→∞
AN
BN

= 1, AN ≼ BN , if limN→∞
AN
BN

≤ 1. and, AN ≽ BN ,

if limN→∞
AN
BN

≥ 1. Now, we are ready to prove the theorem.

As N goes large, for any given κ, the assumption of Lemma 6 that κ < 1 − 2√
lnN

is

attained. Therefore, in the asymptotic case, we use the result of Lemma 6. That lemma

says,

Nl(T∞) ≥

 L3, if T̄5 ≤ T̄3

L4, else.
(2.140)

where T̄3, L3, T̄5 and L4 are given by (2.122), (2.123), (2.125) and (2.126) respectively. The

proof is done in two steps. First, we evaluate L3. Next, we show that T̄3 ≽ T̄5. Then, from

the above equation, we get that Nl(T∞) ≽ L3.

Evaluate L3: As N goes larger, it can be shown that,

I2 ∼
N

lnN(1− κ)
, ∆T2 ∼

1

κ
ln (κ(1− κ) logN) ,

T2 ∼ ln

(
N

I(0)(1− κ) lnN

)
,

T̄3 ∼ ln

[
N(κ(1− κ) lnN)

1
κ

I(0)(1− κ) lnN

]
.

Φ(I2) ∼
(
I(0)

N

)β
N

(1− κ)

(1− β)

(
1

(1− κ) lnN

)1−β
.

The above results follows from (2.117), (2.121), (2.118), (2.122) and (2.113) respectively.
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Substituting the above results in (2.123), we get that

L3 ∼
N

lnNβ

(
(lnNκ(1− κ))

β
κ

(1− β)
− 1

)
. (2.141)

Show that T̄3 ≽ T̄5: First of all, from (2.125) and (2.124), note that, I(T̄5) = I5 and

I5 ≤ N . Also, for large values of N , from (2.122) and the definition of I(t), we can show

that, I(T̄3) ∼ N . Combining these two results, we get I(T̄5) ≼ I(T̄3) This result in turn

implies that T̄5 ≼ T̄3, since I(t) is monotonically increasing.

Hence, from (2.140),

Nl(T∞) ≽ L3.

From (2.141), the above equation, and (2.10), we get (2.62), which completes the first part

of theorem.

The second part of the theorem deals with the case β = 0. From, (2.62), we have,

L ∈ Ω

(
ln lnN

lnN

)
. (2.142)

Now, to complete the proof, it suffices to prove the following lemma.

Lemma 7. When β = 0,

L ∈ o

(
ln lnN

lnN

)
.

Proof. Recall that when κ < 1− 2√
lnN

, which holds for any κ when N is large, the evolution

of Nl(t) and Ni(t) takes place along the sequence of phases,‘Stage 1 → Stage 2 →Stage 3 (

or Stage 4)→Stage 5 ( or Stage 6)’. We analyze each of these phases and obtain an upper

bound on Nl(T∞) as follows.

Stage 1: An upper bound on the number of legal copies at the end of this stage is given

by,

Nl(T2) ≼
N

lnN(1− κ)
. (2.143)
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which follows from the facts that Nl(t) ≤ I(t) for all t and I(T2) ∼ N
lnN(1−κ) . Stage 2:

First we show that as N goes large, T4 ≼ T3 and hence, in the asymptotic case Stage 2 is

followed by Stage 4. The proof of this claim proceeds as follows. Let, U(t) = Nl(t)+Ni(t).

From the dynamics of evolution of Stage 2, given by (2.93) and (2.94),

U(t) =

(
C

κ
+ I2

)
eκ(t−T2) − C

κ
, (2.144)

where I2 is given (2.117) and T2 is given by (2.118). Now, substituting T̃3 from (2.137) in

the above equation, we get

U(T̃3) ∼ I(T̃3).

Also, it is easy to verify that T̄3 satisfies (2.97). These results along with the definition of

T3, given by (2.97-2.98), implies that T̃3 ∼ T3. Similarly, substituting T̃4 in (2.144), we can

show that

U(T̃4) ∼
1

1 + κ

(
I(T̃4) +

dI

dt
(T̃4)

)
.

This result along with the definition of T4, given by (2.99), implies that T̃4 ∼ T4.

We have, T̃4 ≼ T̃3, since

U(T̃4) =
N

1 + κ
< N = U(T̃3),

and U(t) is monotonically increasing. Therefore, we conclude that T4 ≼ T3. And hence,

this stage is always followed by Stage 4.

Then, from the dynamics of Nl(t), given by (2.94),

Nl(T4) = Nl(T2) + CN (T4 − T2).

Now, from (2.143) and the definitions of T̃4 and T2, we get

Nl(T4) ≼
N

lnN(1− κ)
+

N

κ lnN
ln

(
lnN

κ(1− κ)

1 + κ
+ 1− κ

)
. (2.145)

54



Stage 4: This stage starts at time t = T4. From the discussion given above (in Stage 3

analysis), T4 ∼ T̃4. Then, from (2.139), I(T4) ∼ I(T̃4) ∼ N and dI
dt (T4) ∼

dI
dt (T̃4) ∼ 0. Also,

Nw(T4) = I(T̃4)− U(T̃4) ∼ Nκ
1+κ . Recall that U(t) = Nl(t) +Ni(t). And U(T̃4) is obtained

from (2.144) and (2.139).

Using these facts and the dynamics of Ni(t) and Nl(t) given by (2.108) and (2.107)

respectively, we show that,

U(t) = (CN +N)(1− e−t) + U(T̃4)e
−(t−T̃4).

This stage terminates, when no Wanters are left to be served, i.e U(t) ∼ N . Let T̃6

marks this event. Then,

T̃6 ∼ ln

(
lnN

1 + κ

)
.

The legal copies of content generated in this phase is CN × (T̃6− T̃4) from the dynamics of

Nl(t) given by (2.107). Then, from the above result and (2.145), we get

Nl(T∞) ≼ N

lnN
ln

[
(lnN)(

1
κ
+1)

1 + κ

(
(1− κ)κ

(1 + κ)

) 1
κ

]
,

which completes the proof.

The above theorem along with Theorem 3 asserts that the fractional legitimate copies

attained by the CDN under Bass model of evolution is no different from that of Flash

Crowd model in asymptotic order.

Since Theorems 1 and 3 rely on a fluid model, and characterize only the asymptotic

growth rate of the fractional legitimate copies produced in the system, we present numerical

simulations to verify the qualitative insights in discrete systems with finite N .

To simulate the underlying discrete stochastic system, we assume time is discrete and

that there are N = 100, 000 users in the system. A Bass model based interest evolution
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is assumed. That means, at each time slot, each user picks a Poisson distributed number

(with mean 1) of other users to spread interest to. The server has a FIFO policy with

service rate C = 8000 ≈ N/ lnN .

Figure 2.3 illustrates the evolution of legal and illegal copies of the content in the case

of an inefficient illicit P2P system with κ = 0.75. In Figure 2.3(a), where β = 0, the

final number of legal copies produced in the system is 63, 000. When the booster factor

increases, as shown in Figure 2.3(b) where β = 0.52, the number of legal copies increases

to 88, 888; In fact, the fractional legitimate copies increases by more than 25%.

Table 2.1: Fractional revenue ratio of inefficient illicit P2P

β
κ

κ = 0.75 κ = 0.5
Simulation Analytical Simulation Analytical

0 0.64 0.60 0.69 0.67

0.10 0.71 0.71 0.77 0.75

0.24 0.77 0.72 0.82 0.77

0.41 0.81 0.75 0.86 0.79

0.63 0.87 0.79 0.92 0.80

0.92 0.97 0.85 0.98 0.82

In Table 2.1, we compare the simulation results against our analytical results from

Lemma 3 and Corollary 3, for various combinations of κ and β. As expected from Corol-

lary 3, our analytical predictions closely match with the simulation results in the case,

β = 0. In the case, β > 0, the predicted values are less than those obtained using simula-

tion, which agrees with Lemma 3; nevertheless, the differences are quite small. Also observe

that, as β increases, the fractional legitimate copies improves significantly. Especially, in

the case, κ = 0.75, as booster factor increases from β = 0 to β = 0.92κ, the fractional

legitimate copies increases by 150%.

Next, we move to the case of an efficient illicit P2P. Figure 2.4 illustrates the case of

an efficient illicit P2P system. In Figure 2.4(a), where β = 0, the final number of legal
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copies produced in the system is 45, 920. When the booster factor increases, as shown in

Figure 2.4(b) where β = 0.38, the number of legal copies increases to 96, 380; In fact, the

fractional legitimate copies increases by more than 100%.

Table 2.2: Fractional revenue ratio of efficient illicit P2P

β
κ

κ = 0.75 κ = 0.5 κ = 0.25
Simulation Analytical Simulation Analytical Simulation Analytical

0 0.03 0.03 0.15 0.15 0.42 0.37

0.48 0.07 0.07 0.28 0.26 0.56 0.50

0.69 0.18 0.14 0.40 0.38 0.67 0.59

0.84 0.30 0.24 0.54 0.52 0.77 0.68

0.95 0.55 0.41 0.78 0.69 0.9 0.78

In Table 2.2, we tabulate the simulation results and the analytical results. The ana-

lytical results are obtained from Lemma 5 and Lemma 6. The simulation results are in

agreement with our analytical predictions. Also note that, the improvement attained in

the fractional legitimate copies, as β increase, is phenomenal. For example, in the case,

κ = 0.75, as booster factor increases from β = 0 to β = 0.95κ, the fractional legitimate

copies increases by 1833%.

2.3 Revenue sharing model

In the previous sections, we studied the impact of the three parameters ρ, β and κ on

the eventual number of legal content copies in the system. We made the assumption that

ρ + β = κ, following the intuition that κ is the fixed probability of a user who has the

content being willing to redistribute it, and which P2P swarm is joined affects the number

of legal copies. We now consider the motivation behind the users’ decisions on which swarm

to join.

Suppose that the purchase price of a copy of the content is p. Hence, a user that wishes

to obtain a legal copy of the content must pay the content generator the sum p through

some kind of online banking system. Suppose that the content owner utilizes a simple
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model for revenue sharing, where a user receives ϵp for each piece of content it distributes

when taking part in the legitimate network as a Booster. Thus, ϵ = 0 corresponds to no

revenue sharing. Note that this could potentially be implemented on a system such as

BitTorrent by simply keeping track of amount uploaded by each peer3. The value ϵ can be

viewed either as a share of the revenue from each download or as the expected payoff of a

lottery scheme operated by the CDN.

While it is difficult to exactly predict the effect of revenue sharing, it seems reasonable

that increased revenue sharing should limit the likelihood of a Wanter going rogue after

attaining the content legally. To qualitatively capture this effect, we model ρ as a decreasing

function of ϵ. A specific form could be

ρ = κϕ(ϵ),

where ϕ(.) is a decreasing function with ϕ(0) = 1 and ϕ(1) = 0.

Recall that we defined the parameter R as the fractional revenue, also the fraction of

legitimate copies in the system at T∞. It is clear that the profit obtained by the content

owner also depends on the amount of revenue shared with the boosters, which in turn

depends on the exact form of ϕ(ϵ). Hence, the content owner would have to determine the

optimal amount of revenue sharing in order to maximize profit. For illustration, let us

choose

ϕ(ϵ) = N−ϵ,

in our simulations. The results are shown in Figure 2.6, which illustrates the impact of

the amount of revenue sharing on the fractional revenue ratio of the CDN in the cases of

inefficient and efficient illicit P2Ps. We use κ = 0.75 in the simulation. The key point

to observe in the figure is that there is a clear optimal amount of revenue sharing for the

provider. In both cases, this amount is fairly small, however, it is clearly desirable to share

more revenue in the presence of an efficient illicit P2P than in the presence of an inefficient

3BitTorrent Trackers already collect such information in order to gather performance statistics.
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Figure 2.6: Impact of the amount of revenue sharing on the fractional revenue attained by
the CDN.

illicit P2P. In fact, sharing nearly zero percent of the revenue still provides fairly close to

the optimal fractional revenue in the inefficient case, while one must share more than 10%

of the revenue to be near-optimal in the case of an efficient, illicit P2P.

2.4 Conclusion

Our goal in this work is to quantify the ramifications of coopting legal P2P content

sharing, not only as a means of reducing costs of content distribution, but, more impor-

tantly, as a way of hurting the performance of illegal P2P file sharing. The model that we

propose internalizes the idea that demand for any content is transient, and that all content

will eventually be available for free through illegal file sharing. The objective then is not

to cling to ownership rights, but to extract as much revenue from legal copies as possible

within the available time. We develop a revenue sharing scheme that recognizes the impor-

tance of early adopters in extending the duration of time that revenue may be extracted.

In particular, keeping users from “going rogue” (becoming seeds in illegal networks) by
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allowing them to extract some revenue for themselves (and so defray part of their expense

in purchasing the content in the first place), provides order sense improvements in the ex-

tractable revenue. We realize that our paradigm is contrary to the “conventional wisdom”

of charging more rather than less to early adopters, and also to discourage file sharing

using legal threats. However, as many recent studies have demonstrated, incentives work

better than threats in human society, and adoption of our revenue sharing approach might

result in a cooperative equilibrium between content owners, distributors and end-users.

Future work includes a characterization of the exact value of users based on their times of

joining the system, as well as considering content streaming, which requires strict quality

of service guarantees.

In the next chapter, we study a transport layer control problem. Recently a number

of congestion control protocols has been proposed for use in the Internet. These proto-

cols differ in the way they indicate congestion to the sources. For example, TCP Reno

uses packet loss as the congestion indicator, while TCP Vegas uses end to end delay to

mark congestion. However, the relative value of one protocol against another is not well

understood. For instance, when flows choose distinct protocols, they may not receive the

same throughput. We study a scenario where a group of applications compete for network

resources to achieve their service requirement ( may be a function of delay, throughput

or both) by strategically choosing protocols. Then, we ask the following questions: How

should applications choose protocols? Should a delay sensitive application pick a delay

based congestion controller? Does the selfish interaction among these applications lead to

an equilibrium ? If so, what is the efficiency of the equilibrium relative to the socially

optimal case? We try to answer these questions in the following chapter.

2.5 Supplemental

Lemma 8. Consider a differential equation given

dy

dt
= CN +

βy

N
(I − U(t)) (2.146)

60



where

U(t) =
Nθ2
κ

+
N∆θ/κ

1 + be−∆θ(t−T ) .

Then for all t−T > ln b
∆θ , the solution to the above differential equation satisfies the inequality

y(t) ≥ y(T )
(
1+b
d

)β
κ e(−q1(t−T ))

+CN
(
b
d

)β
κ e(−q1(t−T ))

(
e(q1

ln b
∆θ )
q1

− 1
q1

)
1b≥1

+CN
(
1
d

)β
κ e(−q1(t−T ))

(
e(q2∆τj)

q2
− e(q2

ln b
∆θ )
q2

1b≥1

)
−CN

(
1
d

)β
κ e(−q1(t−T )) 1

q2
(1− 1b≥1), (2.147)

where d = (b + exp(∆θ(t − T ))), q1 =
(
βθ2
κ − βI

N

)
and q2 = βθ1

κ − βI
N . Furthermore, for

β = 0, equality holds.

Proof. A general solution to the above differential equation is

y(t) =

∫
CN exp(

∫
Pdt) +M∫

Pdt
(2.148)

where P (t) = − β
N (I − U(t)). We have

∫
Pdt = −βIt

N
+
βθ2t

κ
+
β

κ
ln (1 + (1/b) exp(∆θ(t− T ))) .

Then,

CNe
∫
Pdt = CNB(t) exp

(
βθ2
κ

− βIt

N

)
t,

where

B(t) = (1 + (1/b) exp(∆θ(t− T )))
β
κ .
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For b ≥ 1, we can lower bound B(t) as

B(t) ≥

 1 t ≤ ln b
∆θ + T(

1
b

)β
κ exp

(
β
κ∆θ(t− T )

)
t > ln b

∆θ + T.
(2.149)

On the other hand, if b < 1,

B(t) ≥
(
1

b

)β
κ

exp

(
β

κ
∆θ(t− T )

)
, ∀t. (2.150)

Let us now evaluate A(t). We have

A(t) =

∫
CNe

∫
Pdtdt.

Initially consider the case b ≥ 1. For t < ln b
∆θ + T , it is easy to verify that

A(t) ≥ CN
exp

((
βθ2
κ − βI

N

)
t
)

βθ2
κ − βI

N

(2.151)

where the inequality follows from (2.149). For t > ln b
∆θ + T , we have

A(t) ≥ A(
ln b

∆θ
+ T ) +

∫ t

ln b
∆θ

+T
CNe

∫
Pdt (2.152)

≥ CN exp (q1T ) exp

(
q1
ln b

∆θ

)
1

q1

+ CN exp (q1t)

(
1

b

)β
κ exp

(
β∆θ
κ (t− T )

)
q2

− CN exp (q1T )

(
1

b

)β
κ exp

(
q2

ln b
∆θ

)
q2

.

where q1 =
(
βθ2
κ − βI

N

)
and q2 =

βθ1
κ − βI

N .

In the second case, in which b < 1, for all values of t, we have,

A(t) ≥ CN exp (q1t)

(
1

b

)β
κ exp

(
β∆θ
κ (t− T )

)
q2

.

62



where the inequality follows from (2.150).

Then, combining the expressions of A(t) in both cases, for t > ln b
∆θ + T , we have,

A(t) ≥ CN exp (q1T ) exp

(
q1
ln b

∆θ

)
1

q1
1b≥1 (2.153)

+ CN exp (q1t)

(
1

b

)β
κ exp

(
β∆θ
κ (t− T )

)
q2

− CN exp (q1T )

(
1

b

)β
κ exp

(
q2

ln b
∆θ

)
q2

1b≥1.

where 1b≥1 is the indicator function defined by (2.47).

Using the above result in equation (2.148), we get that for t > ln b
∆θ + T ,

y(t) =
M

exp(
∫
Pdt)

+
A(t)

exp(
∫
Pdt)

(2.154)

≥M

(
b

d

)β
κ

exp (−q1t)

+ CN

(
b

d

)β
κ

exp (−q1(t− T )) exp

(
q1
ln b

∆θ

)
1

q1
1b≥1

+ CN

(
1

d

)β
κ exp

(
β∆θ
κ (t− T )

)
q2

− CN

(
1

d

)β
κ

exp (−q1(t− T ))
exp

(
q2

ln b
∆θ

)
q2

1b≥1. (2.155)

where d = (b+ exp(∆θ(t− T ))). Using boundary conditions, we can show that

M =

(
1 + b

b

)β
κ

exp (q1T )

(
y(T )− CN

(
b

1 + b

)β
κ 1

q1
1b≥1

)

−
(
1 + b

b

)β
κ

(
CN

(
1

1 + b

)β
κ 1

q2
(1− 1b≥1)

)
.

Substituting the above equation in equation (2.155) and rearranging yields (2.147). For β =

0, the inequalities in equations (2.149) and (2.150) become equalities and we get the

lemma.
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3. TRANSPORT LAYER: MUTUAL INTERACTION OF HETEROGENEOUS

CONGESTION CONTROLLERS∗

Recent years have seen the design of a large number of congestion control protocols

for use on the Internet. Their designs all revolve around the idea that link congestion is

indicated by some notion of “price”, which the source can respond to. Different conges-

tion price metrics include packet loss, packet marks, packet delays or some combination

thereof. However, the relative value of one protocol versus another is not well understood.

For example, it might be conjectured that a delay sensitive application would consider

using a protocol that has a delay-based congestion metric, and a throughput maximizing

application might favor a loss-based metric. How should applications choose the protocol

to use?

An analytical framework for network resource allocation was developed in seminal work

by Kelly et al. [26]. If the flow i has a rate xi ≥ 0 and the utility associated with such a

flow is represented by a concave, increasing function Ui(xi), the objective is

max
∑
i∈N

Ui(xi) (3.1)

s.t. yl ≤ cl, ∀ l ∈ L (3.2)

where N is the set of sources, L the set of links, cl the capacity of link l ∈ L. Also let R be

the routing matrix with Rli = 1 if the route associated with source i uses link l. The load

on link l is yl =
∑

r∈N Rlrxr. The problem can be solved using ideas based on Primal-Dual

system dynamics [26,30,37,67,69] to yield a set of controllers. At the source we have

Source: ẋi(t) = κi

(
U ′
i(xi(t))−

∑
l:l∈L

Rlipl(t)

)+

xi

, (3.3)

∗Part of the data reported in this chapter is reprinted with permission from “Which protocol? Mutual
interaction of heterogeneous congestion controllers” by V. Ramaswamy, D. Choudhury and S. Shakkottai.
Proc. of IEEE INFOCOM, 2011, Copyright@2011 IEEE.
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where ki > 0,, and the notation (ϕ)+ξ is used to denote the function

(ϕ)+ξ =

 ϕ ξ > 0

max{ϕ, 0} ξ = 0.
(3.4)

(3.4) ensures that x is non-negative. The controller in (3.3) has an attractive interpretation

that the source rate of flow i responds to feedback in the form of link prices pl(t), with the

end-to-end price being calculated as the sum of prices on all links that the flow traverses—

something that is common to all congestion control protocols. Source rate is always non-

negative, which is enforced by the definition of the function in (3.4). The price pl(t) at link

l is calculated using

Link: ṗl(t) = ρ(pl(t))

∑
j∈N

Rljxj(t)− cl

+

pl(t)

. (3.5)

(3.5) ensures that the price is non-negative. Each link has a buffer in which packets are

queued. If the total load at a link l given by
∑

j∈N Rljxj(t) is greater than the capacity cl,

the queue length increases, while if it is less than cl, the queue length decreases as seen in

(3.5). The queue length is always non-negative, as enforced by the definition in (3.4). The

gain parameter ρ(pl) is any positive function. Thus, the link-price pl(t) can be identified

with the queue length at link l. It has been shown [26,30,37,67,69] that the above control

scheme converges to the optimal solution to the problem in (3.1).

While this framework indicates that the fundamental price of a link is proportional

to queue length, congestion control protocols use several different congestion metrics. For

example, TCP Reno [70] uses packet drops (or marks) as its price metric, while TCP Vegas

uses end-to-end delay [37]. Other protocols include Scalable TCP [27] (that uses loss-

feedback, and allows scaling of rate increases/decreases based on network characteristics),

FAST-TCP [78] (that uses delay-feedback, and is meant for high bandwidth environments),

and TCP-Illinois [35] (that uses loss and delay signals to attain high throughput). However,
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drops, marks, and delays are all functions of the queue length. Thus, a key difference

between protocols is their way of interpreting queue length information.

A fall out of different price-interpretations is that when flows choose distinct congestion

control protocols, they do not obtain the same throughput on shared links. For example,

studies such as [45, 71–73] study inter-protocol as well as intra-protocol fairness, while [4]

considers a game of choosing between protocols, assuming that a certain throughput would

be guaranteed per combination.

Throughput alone does not fully capture the performance of an application, since it

might also be impacted by queueing effects such as delay and packet loss. We consider

applications that might have different sensitivities to queueing. Indeed, a large fraction of

Internet traffic consists of file transfers (less delay sensitive) and buffered video streams

(more delay sensitive) from data centers or content distribution networks. We model these

flows as having (possibly different) utilities for throughput, and disutilities for the queueing

encountered on their respective paths.

We anticipate for a future Internet architecture where multiple congestion controlling

schemes are available to cater the needs of different service classes and the flows are allowed

choose the ones according to their service preferences. Hence, we assume that flows play

“fair” in that they choose to follow the constraints imposed by employing some form of

congestion control. Thus, the flows choose from a set of “reasonable” congestion control

mechanisms, for example variants of TCP, so as to maximize their payoff that is utility

minus disutility.

Our objective is similar to the proposal in [55], where a system design for virtual links

tailored for flows that are rate sensitive (R) and delay sensitive (D) is presented. The idea

is that an R-flow would pick the virtual link where it is guaranteed higher rate, whereas a

D-flow would pick one where it is guaranteed a lower delay. However, unlike that work, we

have two basic differences. First, we explicitly model utility (for throughput) and disutility

(for queuing) for all kinds of flows, rather than assume that D-type flows would be willing

to live with smaller rate. This enables us to explore the space of multiple classes of service
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with tolling, since it gives an objective measure on the choice made by the flow. Second,

we allow a choice between TCP flavors (i.e., interpretation of queue length by congestion

controllers) according to the application in question. However, in [55] the only way to

reduce delay is to have short buffers for the D service class, which might also result in

more losses.

Our finding is that if the number of flows in the system is large, the optimal strategy

of a flow is to choose a price interpretation from among the space of available ones that

is most similar to its disutility function. Using this finding, we can characterize the total

system value to all flows, and we show that the ratio of this value to the optimum value

can be arbitrarily small. Finally, we consider the situation in which we create multiple

virtual networks with tolling, with each flow having a choice between networks and between

protocols. We show that we can fix the tolls such that the overall system value can be

increased significantly, in-spite of the toll. We next present our model and summarize our

main results.

3.1 Model and main results

We consider a system in which each flow i ∈ N has a so-called α−fair utility function

[46],

Ui(xi) , wix
1−αi
i /(1− αi), (3.6)

with αi ≥ 1, and a disutility that depends on the vector of link prices p as

Ũi(xi, p) ,
∑
l∈L

Rli(pl/τi)
βxi, (3.7)

where β > 1 is a constant. The overall payoff is the difference of the two, given by

Fi(xi, p) , Ui(xi)− Ũi(p). (3.8)
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The α−fair utility function was proposed by Mo et. al [46] as a method of capturing a

large class of fairness measures based on the value of α used. For instance, they showed

that α→ 1 results in proportional fairness, while α→ ∞ results in max-min fairness. The

form of the disutility function is such that based on β, the disutility can be (almost) linear

in queue length (which in turn is proportional to delay, weighted by the parameter T ),

to gradually increasing convexity as β rises, to a sharp cutoff for large β. The threshold

parameter τi in (3.7) models the flow’s sensitivity to queue length, with a small value of τi

indicating high sensitivity (e.g., delay sensitive applications need short queue lengths) and

a large value indicating low sensitivity (e.g., loss sensitive applications are affected only by

buffer overflow).

We define a set of protocols T , with cardinality T = |T |. Each protocol z ∈ T is

associated with a price-interpretation function mz(pl) , (pl/Tz)
β. Note that these price-

interpretation functions take the same form as disutilities, and model the way in which a

particular protocol z ∈ T interprets link prices1. Again, a loss-based protocol would have

a high value of Tz, while a dealy-based protocol would have a low value. This corresponds

to the fact that in a protocol that is modulated by buffer over flows such as TCP Reno, the

queue length has no impact until a maximum threshold (buffer size) is reached, after which

the price is very high (Tz = buffer size here). Similarly, TCP Vegas (approximately) decides

on whether the achieved throughput is too high or too low as compared to a threshold,

which in turn can be related to a threshold on the per-packet delay seen by the flow (Tz

is less than the buffer size here). Now, while a flow i cannot change its disutility function

parameterized by τi it can choose to use a combination of protocols as it finds appropriate.

A particular flow i’s choice could take the form

qi(p) ,
∑
z∈T

ϵzi

L∑
l=1

Rlim
z(pl) (3.9)

where
∑

z∈T ϵ
z
i = 1, and ϵzi ≥ 0. The convex combination models the idea that a flow

1We will refer to “price-interpretation functions” and “protocols” interchangeably.
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sometimes measures price in one way (e.g., delay-based) and sometimes in another way

(e.g., loss-based). ϵzi can be thought of as the probability with which flow i uses protocol z.

For example, this situation might correspond to a flow using delay and loss measurements

simultaneously, and responding to congestion signals (loss or delay) probabilistically. We

refer to the choice [ϵ1i , ϵ
2
i , · · · ϵTi ], made by flow i as ϵi ∈ Ei , {ϵi :

∑
z∈T ϵ

z
i = 1, ϵzi ≥ 0}.

Further, we denote aggregate choices of all flows by ϵ ∈ E , Πi∈NEi, and will refer to ϵ ∈ E

as a protocol-profile.

We first show in Section 3.2 that for a given protocol-profile, the bandwidth allocations

(and hence the payoffs) are unique. Further, a primal-dual type control will converge to

this unique bandwidth allocation. The result is essentially a consistency check that allows

us to analytically determine the payoffs as a function of the protocol-profile chosen.

We show in Section 3.3 that all bandwidth allocations that are attainable by a protocol-

profile over T protocols with m1(p) ≥ m2(p) ≥ · · · ≥ mT (p) are attainable by a protocol-

profile over just the two protocols m1(p) and mT (p). The result has the appealing in-

terpretation that when mz(p) = (p/Tz)
β, it is sufficient to only consider the “strictest”

interpretation (smallest Tz, which can be thought of as delay-based feedback) and the

most “lenient” (largest Tz, associated with loss-based feedback). We next show that with

two protocols with Ts < Tl, the bandwidth allocation received by a flow i is decreasing in

the weight it places on the strict protocol. Although the proof is involved, the result is

intuitive since a strict protocol would always interpret p as a larger congestion than the

lenient protocol. However, since payoffs are the sum of utility and disutility, it does not

follow that all flows would choose the protocol with the higher threshold.

We show in Sections 3.4 and 3.5 that in many cases, the total system value is maximized

when all flows choose to use only m1(p) = (p/Ts)
β. On the one hand if flows have price-

insensitive payoffs, the protocol-profile used does not matter as long as all of them use the

same profile. On the other hand, if there is a mix of flows, some of which have a large

disutility function (price-sensitive) and others which do not (price-insensitive), using the

strict price-interpretation m1(p) = (p/Ts)
β, ensures that the price does not become too
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large for all flows, which maximizes system value.

In Sections 3.4 and 3.5, we also consider the case flows use selfish optimizations to choose

their protocol-profiles and study the Nash equilibrium. If all flows have price-insensitive

payoffs, then they all choose the lenient price-interpretationm2(p) = (p/Tl)
β. This case can

be mapped to throughput maximizing flows all choosing TCP Reno. If we have a mix of

flow types sharing a link, it turns out that the price-sensitive flows with disutility function

parametrized by τ ≤ Ts, choose the strict price-interpretation m1(p) = (p/Ts)
β, regardless

of the choice of others. Similarly, the price-sensitive flows with disutility threshold τ ≥ Tl,

choose the lenient price-interpretation m2(p) = (p/Tl)
β. While the other flows may employ

mixed strategies. When the number of flows in the system is large, a flow with disutility

threshold τ picks a mixed strategy that yields an effective price interpretation (p/τ)β. The

result is interesting since it suggests that a delay sensitive application cannot do any better

in terms of overall payoff even if it chooses a more lenient protocol. We also characterize

the ratio of system value in the game versus the social optimum for the single-link case to

determine an efficiency ratio, which can be quite high.

Finally, in Section 3.7 we introduce virtual networks, each of which is assigned a certain

fraction of the capacity, and chooses a toll. Flows can choose a network and protocols.

The idea is similar to Paris Metro Pricing (PMP) [11,51,68], and we show that the system

value at Nash equilibrium can be higher overall in spite of tolling. The result suggests

that the Internet might benefit by having separate tiers of service for delay-sensitive and

loss-sensitive flows.

3.2 Problem formulation

We assume that for each link, there exists at least one flow that uses only that link.

The assumption implies that all links have a non-zero price. We hypothesize from (3.3)

and (3.5) that the payoffs should be determined by the protocol-profile ϵ as

x∗i (p
∗, ϵi) = (U ′

i)
−1

(
T∑
z=1

ϵzi

L∑
l=1

Rlim
z(p∗l )

)
, (3.10)
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with ϵi ∈ Ei and for all l ∈ L.

N∑
i=1

Rlix
∗
i (p

∗, ϵi) = cl p∗l > 0, (3.11)

Note that although we have denoted x∗ as depending on both ϵ and p∗, the prices themselves

depend on ϵ through x∗, and the solution (x∗(ϵ), p∗(ϵ)) (if it exists) is solely a function of

ϵ. We show that the equilibrium exists, and can be reached using Primal-Dual dynamics.

We have the following proposition.

Proposition 1. Given any protocol-profile ϵ, Primal-Dual dynamics converge to the unique

solution (x∗, p∗) of the conditions (3.10) and (3.11).

Proof. For price-interpretation functions of the form (p/Tz)
β, the source dynamics in (3.3)

can be re-written as

ẋi(t) = κi

(
U ′
i(xi)−

(
T∑
z=1

ϵzi

(
T1
Tz

)β) L∑
l=1

Rlim
1(pl)

)+

xi

where m1(pl) = ( plT1 )
β. Let Ui(xi) = 1

ζi
Ui(xi) where ζi =

∑T
z=1 ϵ

z
i (
T1
Tz
)β, and let κi = ζi.

Then the above equation can be modified as

ẋi(t) = ζi

(
U ′
i(xi(t))−

L∑
l=1

Rlim
1(pl(t))

)+

xi

. (3.12)

Now, in (3.5) choose ρ(pl) =
1

m′1(pl)
, where m′1 is derivative of m1. Then the price-update

equation can be re-written as,

ṁ1(pl(t)) =

(
N∑
i=1

Rlixi(t)− cl

)+

pl

. (3.13)

Equations (3.12) and (3.13) correspond to the primal-dual dynamics of the following convex
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maximization problem

max
x>0

N∑
i=1

Ui(xi)

subject to

N∑
i=1

Rlixi ≤ cl, ∀l ∈ L.

The above is a convex optimization problem with a unique solution satisfying (3.10) and

(3.11). Thus, by the usual Lyapunov argument [30, 37, 67, 69] Primal-Dual dynamics con-

verge to this solution. Note that our choice of price interpretation makes it a special case

of the result in Appendix A Case-1 of [72].

We are now in a position to ask questions about what the flows’ payoffs would look

like at such an equilibrium, and how this would impact the choice of the protocol-profile.

Recall that the payoff obtained by a flow when the system state is at x∗(ϵ), p∗(ϵ) is given

by

Fi(ϵ) = Ui(x
∗
i (ϵ))− Ũi(p

∗(ϵ)). (3.14)

We define a system-value function V , which is equal to the sum of payoff functions of all

flows in the network,

V (ϵ) =
N∑
i=1

Fi(ϵ). (3.15)

Our first objective is to find an optimal protocol-profile that maximizes the system-value

function.

Opt: max
ϵ∈E

V (ϵ). (3.16)

Let ϵ∗S be an optimal profile vector for the above problem. Then we refer to VS = V (ϵ∗S)

as the value of the social optimum.
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An alternative would be for flows to individually maximize their own payoffs. However,

such a proceeding might not not lead to an optimal system state that maximizes the

value function (3.15). We characterize the equilibrium state of such a selfish behavior by

modeling it as a strategic game.

Let G =< N , E ,F > be a strategic game, where N is the set of flows (players), E is

the set of all protocol profiles (action sets) and F = {F1, F2, · · · , FN}, where Fi : E → R is

the payoff function of user i defined in (3.14). Define ϵ−i = [ϵ1, ϵ2, · · · , ϵi−1, ϵi+1, ϵN ], i.e.,

this represents the choices of all flows except i. Then ϵ = [ϵi, ϵ−i]. For any fixed ϵ−i, flow i

maximizes its payoff as shown below.

Game: max
ϵi∈Ei

Fi(ϵi, ϵ−i) ∀i ∈ N . (3.17)

The game is said to be at a Nash equilibrium when flows do not have any incentive to

unilaterally deviate from their current state. We define ϵ∗G as a Nash equilibrium of the

game G if

(ϵG)
∗
i = arg max

ϵi∈Ei

Fi(ϵi, (ϵG)
∗
−i), ∀i ∈ N

We refer to VG = V (ϵ∗G) as the value of the game. Finally, we define the “Efficiency

Ratio (η)” as

η =
VG
VS
. (3.18)

3.3 Basic results

We first show that a T -protocol network can be replaced with an equivalent 2-protocol

network. Consider a T -protocol network with price interpretation functions [m1,m2, · · · ,mT ].

Let ϵ ∈ ET be a profile state in the T -network. Then the equilibrium rate vector x∗(ϵ)

and price vector p∗(ϵ) satisfy the equilibrium conditions (3.10) and (3.11). Now, con-

sider a 2-protocol network with price interpretation functions m1 and mT . Note that

m1 ≥ mz ≥ mT , z = 2, · · · , T − 1. Let µ ∈ E2 be a profile state in the 2-protocol network.
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Proposition 2. For any equilibrium (x∗(ϵ), p∗(ϵ)) in a T -protocol network, ∃ a protocol-

profile µ s.t. (x∗(ϵ), p∗(ϵ)) is also an equilibrium for the 2-protocol network.

Proof. For any given ϵ ∈ ET , let (x∗(ϵ), p∗(ϵ)) be an equilibrium pair that satisfies the

equilibrium conditions (3.10) and (3.11), which are reproduced below for clarity.

x∗i (ϵ) = (U ′
i)

−1
(∑T

z=1 ϵiq
z∗
i

)
, ∀i ∈ N ,

Rx∗(ϵ) = c, p∗l > 0, ∀l ∈ L.

where qz∗i =
∑L

l=1Rlim
z(p∗l (ϵ)). The fact that mT ≤ mz ≤ m1, implies, qT∗i ≤ qz∗i ≤

q1∗i , ∀i ∈ N , Z ∈ T . Since both m1 and mT are strictly increasing functions, there exists

a unique µi ∈ [0, 1], such that,

T∑
z=1

ϵzi q
z∗
i = µiq

1∗
i + (1− µi)q

T∗
i .

Now, we have

x∗i (ϵ) = (U ′
i)

−1

(
T∑
z=1

ϵzi q
z∗
i

)
= (U ′

i)
−1
(
µiq

1∗
i + (1− µi)q

T∗
i

)
, ∀i ∈ N ,

Rx∗(ϵ) = c, p∗l > 0,∀l ∈ L.

The above equations correspond to the equilibrium conditions of a 2-protocol network

with price interpretation functions m1 and mT . Therefore, there exists a protocol-profile

µ = [µ1, · · · , µN ] such that (x∗(ϵ), p∗(ϵ)) is an equilibrium pair of 2-protocol network.

The above proposition shows that any equilibrium state of a T -protocol network can

be obtained with an equivalent 2-protocol network. Therefore we restrict our study to

2-protocol networks with a “strict” price interpretation ms = ( pTs )
β and a “lenient” price

interpretation ml = ( pTl )
β, i.e., Ts < Tl. Also, we redefine the protocol profile of flow i, ϵi,

as is ϵi = ϵ1i , where ϵ
1
i is the weight applied on the strict price interpretation. Finally, the
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equilibrium rate of flow i can be written in terms of ms and ml as follows:

x∗i (ϵ) = (U ′
i)

−1

(
L∑
l=1

Rli

(
ϵim

s(p∗l ) + (1− ϵi)m
l(p∗l )

))

= (U ′
i)

−1

(
(ϵi + (1− ϵi)(

Ts
Tl

)β)
L∑
l=1

Rlim
s(p∗l )

)
. (3.19)

where ϵ = [ϵ1, ϵ2, · · · , ϵN ] is the system protocol-profile. The above result follows from

(3.10).

We next show that the bandwidth allocation received by a flow i is decreasing in the

weight it places on the strict protocol ms(p) = (p/Ts)
β.

Proposition 3. Let x∗i (ϵ) be the equilibrium rate of flow i for any ϵ ∈ E2. Then,

∂x∗i
∂ϵi

≤ 0, ∀i ∈ N ,

Proof. From (3.19), we have

U ′
i(x

∗
i ) =

L∑
l=1

Rlim
s(p∗l )

(
ϵi + (1− ϵi)

(
Ts
Tl

)β)
.

Then, differentiating above equation with respect to ϵj , we get,

∂x∗i
∂ϵj

= Aij +

L∑
l=1

∂p∗l
∂ϵj

Bil, (3.20)

where

Aij =
(1− (TsTl )

β)
(∑L

l=1Rlim
s(p∗l )

)
U ′′
i (x

∗
i )

δij , and

Bil =
Rli(m

s)′(p∗l )(ϵi + (1− ϵi)(
Ts
Tl
)β)

U ′′
i (x

∗
i )

.

Also, δij = 1 if i = j, and zero otherwise. At equilibrium,
∑N

i=1Rlix
∗
i (ϵ) = cl, ∀l ∈ L. Now,
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differentiating this equation with respect to ϵj , we get

N∑
i=1

Rli
∂x∗i
∂ϵj

= 0, ∀l ∈ L. (3.21)

Replacing
∂x∗i
∂ϵj

with (3.20), we obtain

N∑
i=1

Rli
(ϵi + (1− ϵi)(

Ts
Tl
)β)

U ′′
i (x

∗
i )

L∑
k=1

Rki(m
s)′(p∗k)

∂p∗k
∂ϵj

+ Rlj
(1− (TsTl )

β)
(∑L

k=1Rkjm
s(p∗k)

)
U ′′
j (x

∗
j )

= 0.

Now, rearranging terms in the above expression, we get,

L∑
k=1

(ms)′(p∗k)
∂p∗k
∂ϵj

N∑
i=1

RliRki
(ϵi + (1− ϵi)(

Ts
Tl
)β)

−U ′′
i (x

∗
i )

= Rlj
(1− (TsTl )

β)
(∑L

k=1Rkjm
s(p∗k)

)
U ′′
j (x

∗
j )

.

We can represent the above in a matrix form as

RWRT ζ = r,

where

W = diag
(ϵi + (1− ϵi)(

Ts
Tl
)β)

−U ′′
i (x

∗
i )

ζ =

[
(ms)′(p∗1)

∂p∗1
∂ϵj

(ms)′(p∗2)
∂p∗2
∂ϵj

· · · (ms)′(pL)
∂p∗L
∂ϵj

]T

r =
(1− (TsTl )

β)
(∑L

k=1Rkjm
s(p∗k)

)
U ′′
j (x

∗
j )

[R1j · · · RLj ]
T .

Note that Ui is a strictly concave function and hence U ′′
i (x

∗
i ) < 0. Therefore, RWRT is a
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positive definite matrix. Now, we have

ζ = (RWRT )−1r. (3.22)

Let H = (RWRT )−1, where H is an L × L matrix. Let us represent its elements using

hlm. Thus, from (3.22), we have

∂p∗l
∂ϵj

=

∑L
k=1Rkjhlk
(ms)′(p∗l )

(1− (TsTl )
β)
(∑L

k=1Rkjm
s(p∗k)

)
U ′′
j (x

∗
j )

. (3.23)

Let V =WRT (RWRT )−1R. Then, from (3.20) and (3.23), we get

∂x∗j
∂ϵj

=
(1−(Ts

Tl
)β)(

∑L
l=1Rkjm

s(p∗k))
U ′′
j (x

∗
j )

(1− vjj) , (3.24)

∂x∗i
∂ϵj

= −
(1−(Ts

Tl
)β)(

∑L
k=1Rkjm

s(p∗k))
U ′′
j (x

∗
j )

vij , (3.25)

where vij represent elements of V .

Now, we show that
∂x∗j
∂ϵj

is negative given the assumption in the lemma. Note that V

is a projection matrix. The diagonal elements of a projection matrix are positive and less

than or equal to unity. i.e, vjj ≤ 1. Then, from (3.24), we conclude that
∂x∗j
∂ϵj

≤ 0 and hence

have proved the proposition.

The above proposition is intuitive in that a strict protocol would force the flow to cut

down its rate for the same price as a lenient protocol.

Corollary 5. In the single link case, the link-price p∗ and the rate vector x∗ satisfies,

∂p∗

∂ϵj
< 0 and

∂x∗i
∂ϵj

> 0 if i ̸= j, ∀i, j ∈ N .

Proof. From (3.23), (3.24) and (3.25), we have

∂p∗

∂ϵj
=

(1− (TsTl )
β)ms(p∗)

(ms)′(p∗)U ′′
j (x

∗
j )

1∑N
r=1 νr

, (3.26)
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∂x∗i
∂ϵj

=
(1− (TsTl )

β)ms(p∗)

U ′′
j (x

∗
j )

(
δij −

νj∑N
r=1 νr

)
, (3.27)

where

νi = −
ϵi + (1− ϵi)(

Ts
Tl
)β

U ′′
i (x

∗
i )

=
x∗i

αims(p∗)
.

The above result follows from (3.19) and the fact that U ′′
i (x

∗
i ) = −αi

x∗i
U ′
i(x

∗
i ). Note that

U ′′
i (x) < 0 since Ui is strictly concave. Now, the corollary is straightforward from the

above results.

Now, we now study different mixes of flow types in order to understand the system

value in each case.

3.4 Flows with price-insensitive payoff

We associate each flow i ∈ N to a class, based on its disutility function of the form∑
l∈LRli(pl/τi)

βxi. We begin by considering a system of flows that have a price-insensitive

payoff, i.e., τi = ∞ ∀i ∈ N . This means that payoff is solely a function of bandwidth, and

we have Fi(ϵ) = Ui(x
∗(ϵ)). However, even in this situation, flows must employ congestion

control, i.e., they must choose a protocol-profile. From Section (3.3), recall that since we

only have two protocols, the flow i’s choice of protocol profile is defined by a scalar value

ϵi. Also note that Tz ̸= ∞ for each protocol z = 1, 2. The system-value is equal to the sum

of user payoffs, V (ϵ) =
∑N

i=1 Ui(x
∗(ϵ)). We then have the following result.

Proposition 4. The system-value is maximized when the protocol choices made by all

users are the same. Thus, if ϵ∗S = argmaxϵ∈E V (ϵ), and (ϵ∗S)i is used to denote the protocol

choice made by-profile of user i, then (ϵ∗S)i = (ϵ∗S)j , ∀i, j ∈ N .

Proof. We first derive an upper bound for system-value V (ϵ) and then show that the upper

bound is achieved when all sources choose the same protocol. Suppose that X = {x|Rx =

c}. Let x̂ = argmaxRx=c
∑N

i=1 Ui(xi). Note that equilibrium rate x∗(ϵ) ∈ X , since Rx∗ = c.
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Then the value of
∑N

i=1 Ui(x) evaluated at x∗(ϵ) satisfies

V (ϵ) =

N∑
i=1

Ui(x
∗
i (ϵ)) ≤

N∑
i=1

Ui(x̂i).

We showed in Proposition 2 that the equilibrium rate x∗(ϵ), is the unique maximizer of

the convex problem maxx>0,Rx=c
∑N

i=1
1
ζi
Ui(xi), where ζi = ϵi + (1− ϵi)(

Ts
Tl
)β. Then, x∗(ϵ)

can be made equal to x̂, the optimal point in set X , by choosing ζi = ζj ∀i, j ∈ N . Such a

choice means that

ζi = ζj ⇒ ϵi + (1− ϵi)(
Ts
Tl

)β = ϵj + (1− ϵj)(
Ts
Tl

)β,

⇒ ϵi = ϵj .

Thus, if ϵ∗S = argmaxϵ∈E V (ϵ) ⇒ (ϵ∗S)i = (ϵ∗S)j , ∀i, j ∈ N . Therefore, the system value

is maximized when the protocol choices made by all the users are identical. Also, the

maximum value does not depend on the parameters of the selected protocol.

We next consider the game in which flows are allowed to choose their protocols selfishly.

Proposition 5. Let G =< N , E ,F > be a strategic game with payoff function of user i

is given as Fi(ϵ) = Ui(x
∗
i (ϵ)). Then there exists a Nash equilibrium for game G, and the

equilibrium profile for any user i ∈ N is (ϵ∗G)i = 0.

Proof. Differentiating Fi w.r.t ϵi, and using Proposition 3

∂Fi
∂ϵi

= U ′(x∗i (ϵ))
∂x∗i (ϵ)

∂ϵi
≤ 0

Hence, Fi(ϵ) is maximized when ϵi = 0. Therefore, (ϵ∗G)i = 0, ∀i ∈ N .

Efficiency Ratio: We showed in Proposition 4 that the value function is maximized

when all flows pick the same protocol-profile. In Proposition 5 we saw that when each

flow selfishly maximizes its own payoff, there exists a Nash equilibrium under which every
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source chooses the lowest priced protocol, i.e., the protocol with the higher value of T.

Such a profile is a special case of all flows choosing the same protocol-profile. Thus, value

of the social optimum and the value of the game are identical and Efficiency Ratio (η) is

unity.

Example-1: Consider the case in which a single link with capacity c = 10 is shared

by 2 price-insensitive flows. Users have α-fair utility functions with α = 2, w1 = 100 and

w2 = 100. We use price-interpretation functions (p2)
2 and (p5)

2. Note that the simulation

parameters α, β and threshold values are chosen arbitrarily. These parameters may not

correspond to any particular protocol used in practice. Nevertheless, the observations made

here hold true for any values of α ≥ 1, β > 1 and Ts, Tl, τi > 0.

In Figure (3.1) we show the system value for different choices of protocol profiles. The plot

illustrates that system value is maximized when both flows choose the same profile. Figure

(3.2) shows how the payoff function of a flow varies with its protocol profile. We find that

regardless of the value of the protocol profile chosen by the other flow, the payoff function

is maximized when it picks the lower price protocol.
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Figure 3.1: System Value with price-insensitive flows as a function of the protocol-profile.
We observe that the system value is maximized when both flows choose the same protocol-
profile.
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Figure 3.2: Payoff of a price-insensitive flow as a function of its protocol-profile. We observe
that payoff is maximized when the flow chooses the more lenient price interpretation,
regardless of the other flow.

3.5 Mixed environment

We now consider the case where a network is shared by flows with different disutilities.

We identify the optimal protocol profile that maximizes the system value, and compare it

with and the Nash equilibrium. We first study the case of a network consisting of a single

link.

3.5.1 Single link case

Consider a single link system with capacity c shared by N flows. The payoff of user

i ∈ N is Fi(ϵ) = Ui(x
∗
i (ϵ))−

(
p∗(ϵ)
τi

)β
x∗i (ϵ). Then, the system value is V (ϵ) =

∑N
i=1 Fi(ϵ).

Proposition 6. The system- value is maximized when all users pick the protocol with

lowest threshold, i.e., if ϵ∗S = argmaxϵ∈E V (ϵ), then (ϵ∗S)i = 1, ∀i ∈ N .

Proof. (Sketch) Recall that αi ≥ 1 by our assumption. Given this assumption, it can

be shown through straightforward differentiation that Ũi(ϵi) is a monotonically decreasing

function of ϵi. Now, the value function V is maximum when U(ϵ) is maximized and Ũ(ϵ)

is minimized. We already know from Proposition 4 that U(ϵ) is maximized when all flows

choose the same protocol-profile. Coupling this result with the fact that Ũi(ϵi) is decreasing

in ϵi, we see that system value is maximized when ϵi = 1, ∀i ∈ N .
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We now study the strategic game in which users individually maximize their payoff as in

(3.17). We show that there exists a Nash equilibrium and characterize the protocol-profile.

Proposition 7. Let G =< N , E ,F > be a strategic game with payoff of user i is Fi(ϵ) =

Ui(x
∗
i (ϵ))− (p

∗(ϵ)
τi

)βx∗i (ϵ). Then there exists a Nash equilibrium (NE) for Game G. At NE,

flows with greatest sensitivity to price choose the strict protocol, i.e., if τi = Ts, then ϵi = 1.

Proof. We will show that Fi(ϵ) is quasi-concave, and use the Theorem of Nash to show

existence of a NE. Differentiating Fi w.r.t ϵi,

∂Fi
∂ϵi

= (U ′
i(x

∗
i )− di(p

∗))
∂x∗i
∂ϵi

− d′i(p
∗)x∗i

∂p∗

∂ϵi
, (3.28)

where di(p
∗) = (p

∗

τi
)β and d′i(p

∗) is its derivative. Now, substituting the results from (3.26)

and (3.27), in the above equation, we get

∂Fi
∂ϵi

= B(U ′
i(x

∗
i )− di(p

∗))
(
1− νj∑N

r=1 νr

)
(3.29)

−B d′i(p
∗)x∗i

(ms)′(p∗)
∑N

r=1 νr
, (3.30)

where B =
(1−(Ts

Tl
)βms(p∗)

U ′′
i (x

∗
i )

and νi =
x∗i

αims(p∗) . Note that B < 0 since U ′′
i is a negative

function.

From (3.19) along with the definitions of νi and di(p
∗), the above expression can be

simplified as follows:

∂Fi

∂ϵi
=

Bms(p∗)
∑N

r=1,r ̸=i
x∗
r

αr∑N
r=1

x∗
r

αr

(
ϵi + (1− ϵi)

(
Ts
Tl

)β

−
(
Ts
τi

)β
)

−Bm
s(p∗)∑N

r=1
x∗
r

αr

(
Ts
τi

)β

x∗i . (3.31)

We show that if the above expression has a root, then it is unique. The roots are
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characterized by

ϵi + (1− ϵi)(
Ts
Tl

)β = (
Ts
τi
)β

(
1 +

x∗i∑N
r=1,r ̸=i

x∗r
αr

)
. (3.32)

First observe that the left side of the above expression is strictly increasing in ϵi (since

Ts < Tl). Since
∂x∗i
∂ϵi

< 0 and ∂x∗r
∂ϵi

> 0 if r ̸= i (from Proposition 3 and Corollary 5), the

right side of the above expression is strictly decreasing. Therefore, the set of roots of the

equation, ∂Fi
∂ϵi

(x) = 0 is a singleton or null set. Thus, Fi is unimodal or monotonic in ϵi for

any fixed ϵ−i and hence quasi concave.

Since ϵi ∈ [0, 1] is a non-empty compact convex set, by the theorem of Nash, the quasi

concavity of Fi(ϵi, ϵ−i) guarantees that there exists a ϵ∗G, such that for all i = 1, · · · , N ,

(ϵ∗G)i = arg max
ϵi∈[0,1]

Fi(ϵi, (ϵ
∗
G)−i).

Hence, the first part of the proof is complete.

Now, consider a flow with disutility (per unit rate) ( pτi )
β, where τ = Ts. Replacing

τi with Ts in (3.31), we observe that ∂Fi
∂ϵi

> 0 (Note that B < 0). Therefore, payoff is

maximized when ϵi = 1.

In the next section, we study the characteristics of the NE and show that it is unique.

3.5.2 Nash equilibrium characteristics

We have established the existence of NE of the strategic game (3.17) in the previous

section. We conduct further studies on the properties of NE in this section. First, we

derive conditions for the NE system protocol profile. Then, in Proposition 8, we show that

the game has a unique NE. Finally, in Proposition 9, we derive the NE strategies of flows

when there are large number of flows in the system.

Let ϵ̂ be a Nash equilibrium system protocol profile (action profile). Then, by definition,
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it must satisfy the condition that

ϵ̂i = arg max
ϵi∈[0,1]

Fi(ϵi, (ϵ̂i)−i), ∀i ∈ N .

Then, from the first order optimality condition, we have

∂Fi(ϵ̂)

∂ϵi
(ϵi − ϵ̂i) ≤ 0.

Consequently, from (3.31), we get that, ∀i ∈ N ,

γ(ϵ̂i) =

(
1

T βs
∧ 1

T βi

(
1 +

x∗i (ϵ̂)∑N
r=1,r ̸=i

x∗r(ϵ̂)
αr

))
∨ 1

T βl
. (3.33)

where a∧ b = min{a, b}, a∨ b = max{a, b} and γ(ϵi) = ϵi(
1
Ts
)β +(1− ϵi)(

1
Tl
)β. In addition,

the Nash equilibrium profile must also satisfy,

x∗i (ϵ̂) =

(
wi

γ(ϵ̂i)(p∗)β

) 1
αi

, (3.34)

N∑
i=1

x∗i (ϵ̂) = c . (3.35)

Here, (3.34) follows from (3.19) and the definition of Ui(x). Also, (3.35) follows from the

assumption that every link has one flow using that link alone. Now, we show that the set

of Nash equilibria, characterized by (3.33)-(3.35), is singleton.

Proposition 8. The strategic game, G =< N , E ,F >, has a unique Nash equilibrium.

Proof. To prove by contradiction, assume multiple Nash equilibria exist. Let two distinct

NE system protocol profiles be ϵ̂1 and ϵ̂2. Also, let x1i = x∗i (ϵ̂
1), x2i = x∗i (ϵ̂

2), p1 = p∗(ϵ̂1),

p2 = p∗(ϵ̂2), γ1i = γ(ϵ̂1) and γ2i = γ(ϵ̂2). Then, by reordering the flow indices, we get that,

for some k ∈ {0, 1, · · · , N},

γ1i > γ2i for i = 1, 2, · · · , k, (3.36)
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γ1i ≤ γ2i for i = k + 1, · · · , N. (3.37)

Also, if k = 0, there exist a flow i ∈ N such that γ1i < γ2i . We show that the above

condition are infeasible for all values of k, under the NE conditions given by (3.33-3.34).

Initially, consider the case when k = N . Then, from (3.33), for i = 1, 2, · · · , N , we have

x1i∑N
r=1,r ̸=i

x1r
αr

>
x2i∑N

r=1,r ̸=i
x2r
αr

⇒ x1i∑N
r=1

x1r
αr

>
x2i∑N
r=1

x2r
αr

(3.38)

⇒
∑N

r=1
x1r
αr∑N

r=1
x1r
αr

>

∑N
r=1

x2r
αr∑N

r=1
x2r
αr

(3.39)

which is a contradiction. Hence, this case is not feasible. Similarly, we can show that the

case when k = 0 is also not feasible.

Now, consider the case when 1 ≤ k < N . Also, suppose that p1 ≥ p2. Then, from

(3.34), we have

x1i < x2i , for i = 1, 2, · · · , k.

Let

i∗ = argmax
i

x1i
x2i
.

Note that i∗ > k and hence, γ1i∗ ≤ γ2i∗ . Also, from (3.35), note that x1i∗ > x2i∗ .

Observe that,

x1i
x1i∗

=
x1i
x2i

x2i∗

x1i∗

x2i
x2i∗

≤ x2i
x2i∗

,

and strict inequality holds if i ≤ k. It follows from the above result that,

x1i∗∑N
r=1

x1r
αr

>
x2i∗∑N
r=1

x2r
αr

⇒ x1i∗∑N
r=1,r ̸=i∗

x1r
αr

>
x2i∗∑N

r=1,r ̸=i∗
x2r
αr

.

Finally, from (3.33) and the above result, we get γ1i∗ ≥ γ2i∗ . But, from the definition of

i∗, we know that γ1i∗ ̸> γ2i∗ . In case γ1i∗ = γ2i∗ , then, from (3.34) and the assumption that

p1 ≥ p2, we get x1i∗ ≤ x2i∗ , which also raises a contradiction. Hence, this case is also not

85



feasible. In similar fashion, we can show that the case in which p1 < p2 is also not feasible.

Hence, our assumption that multiple NE exist is not true. Therefore, NE is unique.

Next, we characterize the NE in the asymptotic regime.

Proposition 9. When the number of flows in the system, N , is large, the protocol profile

of flow i at NE, ϵ̂i, satisfies

ϵ̂i

(
1

Ts

)β
+ (1− ϵ̂i)

(
1

Tl

)β
=

((
1

Ts

)β
∧
(
1

τi

)β)
∨
(

1

Tl

)β
.

Proof. Recall from (3.33) that, the NE protocol profile of flow i, satisfies,

γ(ϵ̂i) =

(
1

T βs
∧
(
1

τi

)β (
1 +

x∗i (ϵ̂)∑N
r=1,r ̸=i

x∗r(ϵ̂)
αr

))
∨ 1

Tl

β

.

In order to prove the proposition, we claim that,

lim
N→∞

x∗i (ϵ̂i)∑N
r=1,r ̸=i

x∗r(ϵ̂i)
αr

= 0, (3.40)

holds true. Before proving the above result, we introduce a few notations: Let αmax =

maxi αi, αmin = mini αi, wmax = maxiwi and wmin = miniwi.

Now, the proof of the claim (3.40) is as follows: From (3.35), we can show that,

x∗i (ϵ̂)∑N
r=1,r ̸=i

x∗r(ϵ̂)
αr

≤ αmax
c

x∗i (ϵ̂)
− 1

.

Also, from (3.34), we have,

x∗i (ϵ̂) =

(
wi

γ(ϵ̂i)(p∗(ϵ̂))β

) 1
αi

≤

(
wmaxT

β
l

(p∗(ϵ̂))β

) 1
αmin

. (3.41)

The above result follows from the fact that γ(ϵ̂i) ≥ ( 1
Tl
)β.

From Corollary 5, we observe that the link-price is a decreasing function of protocol

profile of each flow and hence, the system protocol profile ϵ. Therefore, the link price
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achieves the lowest value, when every flow adopts the strict protocol. Then, from (3.34)

and (3.35), it is easy to show that

(p∗(ϵ̂)))β ≥ wmin

(
Nαmin

cαmax

)
T βs . (3.42)

Finally, from (3.41) and (3.42), we have

x∗i∑N
r=1,r ̸=i

x∗r
αr

≤ αmax
c
x∗i

− 1
≤ αmax
NK − 1

where K is a constant. The upper bound in the above expression goes to zero for large

values ofN . Therefore, the claim in (3.40) holds true and hence, the proof is completed.

Example-2: We consider a link with capacity c = 10 shared by two flows with disu-

tilities (p2)
2 and (p5)

2, respectively, and w1 = w2 = 1. The other parameters are unchanged

from Example-1. We show the system value for different choices of protocol-profiles in Fig-

ure 3.3. The value is maximized when both flows choose the strict protocol. Figure (3.4)

shows how the payoff of each flow varies with its choice of protocol profile, given other’s

is fixed. We find that for the first (sensitive) flow, the payoff function is maximized when

it chooses the strict protocol, regardless of the other flow. But the payoff of the second

(less-sensitive) flow is maximized for some combination of protocols. The results validate

our findings.

Example-3: We consider a link with capacity c = 1000. There are 40 flows sharing

the link. The strict and lenient thresholds are Ts = 2 and Tl = 7 respectively. In our

simulations, we have set β = 2, α = 2 for half of users and α = 3 for the other half. There

are 10 classes of flows, with each class containing 4 flows. The disutility threshold of a

Class i flow, given by τi, is chosen according to the following relation: ( 1
τi
)β = ( 1

Tl
)β +

(( 1
Ts
)β − ( 1

Tl
)β)(i/10).

We choose a candidate flow that belongs to Class 4. We assume that every other flow

has chosen their NE protocol profile. That means, the effective price interpretation of a flow
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Figure 3.3: System value against protocol choices (ϵi): Two flows sharing a link.
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Figure 3.4: Payoff against protocol choice (ϵi): Two flows sharing a link.

belonging to Class i is ( pτi )
β. Figure (3.5) plots the payoff of the candidate flow as a function

of its effective protocol choice γ(ϵ4) = ϵ4(1/Ts)
β + (1− ϵ4)(1/Tl)

β, where ϵ4 is its protocol

profile. As claimed by Proposition 9, the payoff is maximized when γ(ϵ4) = ( 1
τ4
)β = 0.17.

3.5.3 Network case

We consider a system of flows with log utility functions, which is a special class of an

α-fair utility function with α → 1. The payoff of flow i ∈ N is Fi(ϵ) = wi log(x
∗
i (ϵ)) −∑L

l=1Rli(
p∗l (ϵ)
τi

)βx∗i (ϵ). Then the system-value is V (ϵ) =
∑N

i=1 Fi(ϵ).

Proposition 10. The System-Value function is maximized when all flows pick the higher
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Figure 3.5: Payoff of a Class 4 flow is maximized when γ(ϵ4) = ( 1
T4
)β = 0.17.

priced protocol, namely m1 =
(
p
Ts

)β
. Let ϵ∗S = argmaxϵ V (ϵ), then (ϵ∗S)i = 1, ∀i =

1, · · · , N ,

Proof. We can show through straightforward differentiation that, the disutility function,

Ũi(ϵi), is a monotonically decreasing function of ϵi. The rest of the proof is similar to that

of Proposition 6.

We now consider a game with two types of flows: price-insensitive flows with zero

disutilities, and price-sensitive flows with disutility (per unit rate) (
p∗l
Ts
)β. In this special

case, there exists a unique Nash equilibrium. In Proposition 5 we saw that price-insensitive

flows pick the lenient protocol at Nash equilibrium irrespective of the choices of the other

players. We will now show that price-sensitive flows pick the strict protocol at Nash

equilibrium.

Proposition 11. Any flow i with disutility (per rate) (p/Ts)
β (i.e. τi = Ts) picks ϵi = 1

is the Nash equilibrium.

Proof. It can be shown through straightforward differentiation that ∂Fi
∂ϵi

> 0 for any flow

i ∈ N with disutility (per rate) (p/Ts)
β, which completes the proof.
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3.6 Efficiency ratio

We now characterize the loss of system value at Nash equilibrium, as compared to the

value of the social optimum. We focus on the case of a single link with capacity c.

Proposition 12. Assume αi > 1, ∀i ∈ N . When the number of flows in the system is

large,

η =
VG
VS

< α̂(
Tl
Ts

)β.

where α̂ = maxi αi.

Proof. Let ϵ∗ = [ϵ∗1, ϵ
∗
2, · · · , ϵ∗N ] be the system protocol profile at social optimum. From

Proposition 6, every user chooses the strict protocol at social optimum, i.e ϵ∗i = 1, ∀i.

Hence, from (3.19), and the definition of Ui, we have

x∗i (ϵ
∗) =

(
wi

(
Ts

p∗(ϵ∗)

)β) 1
αi

,
∑
i

x∗i (ϵ
∗) = c. (3.43)

Interpreting
(
p∗(ϵ∗)
Ts

)β
as the dual variable, the above equations can be identified as the

KKT conditions of the optimization problem given below:

max
x

∑
i

wix
1−αi
i

1− αi
, subject to

∑
i

xi = c.

And, x∗(ϵ∗) is the unique maximizer of the above problem. The payoff of a flow at social

optimum, from (3.8) and the above results, is given by

Fi(ϵ
∗) = Ui(x

∗
i (ϵ̂

∗))
(
1 + 1i(αi − 1)(Tsτi )

β
)
. (3.44)

where 1i = 1 if flow i is a price sensitive flow and zero otherwise. The system value at

social optimum is VS =
∑

i Fi(ϵ
∗).

Now, let ϵ̂ = [ϵ̂1, ϵ̂2, · · · , ϵ̂N ] be the system protocol profile at Nash equilibrium. From
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Proposition 9, equation (3.19) and the definition of Ui, we have

x∗i (ϵ̂) =

(
wi

(
Tl ∧ (τi ∨ Ts)

p∗(ϵ̂)

)β) 1
αi

,
∑
i

x∗i (ϵ̂) = c. (3.45)

Recall that a∧b = min{a, b}, a∨b = max{a, b}. Interpreting
(
p∗(ϵ̂)
Ts

)β
as the dual variable,

the above equations can be identified as the KKT conditions of the optimization problem

given below:

max
x

∑
i

wi(
Tl∧(τi∨Ts)

Ts
)βx1−αi

i

1− αi
, subject to

∑
i

xi = c.

Also, x∗(ϵ̂) is the unique maximizer of the above problem. Finally, the payoff of a flow is

Fi(ϵ̂) = Ui(x
∗
i (ϵ̂))

(
1 + 1i(αi − 1)

(
Tl∧(τi∨Ts)

τi

)β)
. (3.46)

The system value at NE is VG =
∑

i Fi(ϵ̂).

Now, from the above results and the fact that Ui’s are negative, since αi > 1 by the

assumption of this proposition, we can show that

VG ≥ α̂
∑
i

(
T̃

Ts

)β
Ui(x

∗
i (ϵ̂)) ≥ α̂

∑
i

(
T̃

Ts

)β
Ui(x

∗
i (ϵ

∗
i ))

> α̂

(
Tl
Ts

)β∑
i

Ui(x
∗
i (ϵ

∗
i ))

(
1 + 1i(αi − 1)(

Ts
Ti

)β
)

(3.47)

= α̂(
Tl
Ts

)βVS ,

where α̂ = maxi αi and T̃ = Tl ∧ (τi ∨ Ts). Since VG and VS are negative, the efficiency

ratio η, can be bounded as

η =
VG
VS

< α̂

(
Tl
Ts

)β
,

which completes the proof.

Example-4: The exact expression for efficiency ratio is derived for the following special
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case: We assume that every flow has the same utility function, i.e, in (3.6), wi = w and

αi = α,∀i ∈ N . We associate the flows, having disutility functions of the form ( pτj )
βx

with Class-j. Assume that there are J − 1 such classes with τ1 < τ2 < .. < τJ−1 and

τj ∈ [Tl, Ts], ∀j. The flows having zero disutility function is classified as Class J . For

algebraic convenience, we define τj = ∞. Let Ni be the number of flows belonging to

Class i and ni = Ni/N . Then, the Value of social optimum (VS) and value of game

equilibrium (VG) are given by

VS =
N

1− α

( c
N

)1−α J∑
j=1

nj(1 + 1j(α− 1)

(
Ts
τj

)β
), (3.48)

and

VG =
N( cN )1−αS1

(1− α)S2
, (3.49)

respectively, where

S1 =

α J−1∑
j=1

ni

(
τj
Ts

)( β
α
)(1−α)

+ nJ

(
Tl
Ts

)( β
α
)(1−α)


and

S2 =

J−1∑
j=1

nj

(
τj
Ts

) β
α

+ nJ

(
Tl
Ts

) β
α

1−α

.

Also, 1j = 0 when j = J and one otherwise. The efficiency ratio, η, is given by

η =
S1

S2
∑J

j=1 nj(1 + 1j(α− 1)(Tsτj )
β)
. (3.50)

Now, we plot the efficiency ratio for the following case. Let two classes of flows, namely

Class 1 and Class 2, are sharing a link. Also, let their disutility thresholds be τ1 = Ts and

τ2 = Tl respectively. Letting α = 2 and β = 3, we plot the efficiency ratio (η), given by

(3.50), in Figure 3.6. The Figure 3.6 shows that η increases with ( TlTs ). Note that a higher
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Figure 3.6: Efficiency Ratio (η) in the single link case, plotted against the fraction of
Class-1 flows for different ratios of Tl/Ts. Since VS and VG were negative in this example,
a higher ratio is worse.

ratio is worse. Hence, the performance deteriorates with ( TlTs ).

3.7 Paris metro pricing

We have shown in the previous section that when the flows selfishly choose protocols to

maximize their own payoff, the system performance at the resulting equilibrium, compared

to the socially optimal case, can be much worse. This is due to the fact that, as shown by

Proposition 9, the flows with relatively lower disutility functions choose relatively lenient

protocols, and hence capture a larger fraction of channel bandwidth leaving not enough

for the ones with larger disutility functions who choose stricter protocols. As a solution

to the aforementioned problem, we propose a scheme in which the network is partitioned

into virtual subnetworks each having its own queuing buffer, independent price (queue-

length) dynamics and fixed entrance toll. A flow is free to choose a protocol along with a

subnetwork so as to maximize his own payoff. This scheme is similar to Paris Metro Pricing

(PMP) [51]. We show that the efficiency of this scheme is superior to the conventional,

untolled, single network scheme.

We characterize the performance of the proposed scheme in a single link case. The

single link, with capacity c (bits/sec), is partitioned into J virtual subnetworks. Let Sj

represent the jth sub-network. The bandwidth and toll associated with Sj are denoted by
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cj and λj respectively. Also, let c = [c1, · · · , cJ ] and λ = [λ1, · · · , λJ ]. We refer to c and λ

as bandwidth vector and toll vector respectively.

We assume that every flow has the same utility function, i.e, in (3.6), wi = w and

αi = α, ∀i ∈ N . We associate the flows having disutility functions of the form ( pτj )
βx

to Class-j. We assume that there are J − 1 such classes and τ1 < τ2 < .. < τJ−1 with

τj ∈ [Ts, Tl]. The price insensitive flows are classified as Class-J . For algebraic convenience,

we define τJ = ∞. We also assume that there are a large number of flows in each class.

Let Nj represent the number of flows in Class-j.

A flow that seeks to maximize its payoff picks a subnetwork that yields the maximum

payoff. Thus, if k̂ is the subnetwork chosen by flow i,

k̂ = arg max
k∈{1,··· ,J}

Fjk j = 1 · · · , J

where Fjk is the payoff of a Class-j flow in Sk. A Nash equilibrium (NE) here is a state from

which none of the flows has an incentive to deviate from its current choice of subnetwork.

Note that we already know the flow’s choices of protocols in each network so no deviations

in protocol are possible. The desired NE is one in which all Class-j flows select Sj , i.e

Fjj ≥ Fjk, ∀j, ∀k. (3.51)

Note that the payoffs received are uniquely determined by the PMP system parameters c

and λ. Now, we derive sufficient conditions on the pair, c and τ , so that (3.51) holds true.

Assume that the system is at the desired equilibrium, i.e, every Class-j flow is sending

its traffic over Sj . Let p∗k be the equilibrium price (per unit rate) in Sk. The throughput

received by a Class j flow (or anticipated by a Class j flow if it shifted to Sk) is given by,

x∗jk =

(
τj
p∗k

) β
α

and x∗Jk =

(
Tl
p∗k

) β
α

, ∀k. (3.52)

The above results are due to the fact that the entry of a Class-i flow into Sk may not
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significantly change its price, p∗k, since there are large number of flows in Sk. In (3.52), the

first result follows from Proposition 9, (3.34) and the assumption that Tj ∈ [Ts, Tl] when

j < J , while the second one follows from Proposition 5. The link price p∗k in Sk, follows

from the above results and the fact that rates of flows sharing a sub-network add up to its

bandwidth allocation, is given by

p∗k =

(
Nk

ck

)α
β

τk, if k < J, and p∗J =

(
NJ

cJ

)α
β

Tl (3.53)

The payoff of Class j flow in Sk, from (3.8), is given by

Fjk(c, λ) =
(x∗jk)

1−α

1−α −
(
p∗k
τj

)β
x∗jk − λk,

= Aik

(
ci
Ni

)1−α
− λi, ∀k, (3.54)

where Aik = α
1−α(

τi
τk
)(

β
α
)(1−α) for i, k < J , AiJ = α

1−α(
τi
Tl
)(

β
α
)(1−α), AJk = 1

1−α(
Tl
τk
)(

β
α
)(1−α),

k < J and AJJ = 1
1−α . Also, (3.54) follows from (3.52) and (3.53).

The following lemma derives conditions on the pair (c, λ) for (3.51) to hold true. Before

stating the lemma, we introduce some notation. Let

lik(c) = Aki(
ci
Ni

)1−α −Akk(
ck
Nk

)1−α. (3.55)

uik(c) = Aii(
ci
Ni

)1−α −Aik(
ck
Nk

)1−α, (3.56)

Lemma 9. Suppose the pair (c, λ) satisfy the following conditions: if 1 ≤ k < J ,

ck+1

ck
≤ Nk+1

Nk

(
τk+1

τk

) β
α
, (3.57)

cJ
cJ−1

≤ NJ
NJ−1

(
τl

τJ−1

) β
α
,
∑J

j=1 cj = c, (3.58)

lk(k+1)(c) ≤ λk − λ(k+1) ≤ uk(k+1)(c), (3.59)

Then, (3.51) hold true and the state where all the Class-j flows choosing Sj, ∀j, is a Nash

equilibrium.
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Proof. The Nash equilibrium conditions, (3.51), are equivalent to

lik(c) ≤ λi − λk ≤ uik(c), k > i, ∀i, (3.60)

which follows from the definition of Fik given by (3.54). Recall the definitions of, lik and

uik from (3.55) and (3.56) respectively. Therefore, we prove the lemma by showing that

(3.60) hold true when (3.57)-(3.59) are satisfied.

Suppose (3.57)-(3.59) are true. Then, it is easy to observe that lik ≤ uik,∀k > i. Also,

we have

m−1∑
t=k

lt(t+1) ≤ λk − λm,∀m > k, ∀k. (3.61)

From the definitions of lik’s and the fact that τi < τk if i < k, it is easy to show that

lk(k+j) − lk(k+j−1) ≤ l(k+j−1)(k+j), (3.62)

for k < J and 1 < j ≤ J − k. Then, we have,

lkm = lk(k+1) + (lk(k+2) − lk(k+1)) + · · ·+ (lkm − lk(m−1))

≤
m−1∑
t=k

lt(t+1) ≤ λk − λm. (3.63)

In similar fashion, we can show that ukm ≥ λk − λm. Then, (3.60) is proved and hence the

lemma.

The system-value is sum of payoffs of all the flows, which is given by,

VT (c, λ) =

J∑
i

NiFii =

J∑
i=0

Ni

(
Aii

(
ci
Ni

)1−α
− λi

)
. (3.64)

We must choose c and λ that maximize (3.64) satisfying the NE conditions, (3.57) -(3.59).

Let (ĉ, λ̂) be one such optimal pair. Note that (3.64) is a decreasing function of toll vector,
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λ. Hence, from (3.58) and (3.68), we get

λ̂J = 0, and λ̂k =

J∑
i=k

li(i+1). (3.65)

Substituting the optimal toll values in (3.64), we get

VT (c) =
N̄J

1− α

(
cJ
NJ

)1−α
+

N̄J−1α

1− α

(
cJ−1

NJ−1

)1−α
(
1− 1

α

(
Tl
τJ−1

) β
α
(1−α)

)
+

J−2∑
k=1

αN̄k

1− α

(
ck
Nk

)1−α
(
1−

(
τk+1

τk

) β
α
(1−α)

)
, (3.66)

where N̄k =
∑k

i=1Ni. Then, define,

VT = max
c
VT (c) subject to (3.57)− (3.58). (3.67)

We refer to VT as System value with tolling. Now, we have the following proposition, which

asserts that the system value achieved by the tolled multi-tier regime is superior to that of

the untolled single tier regime.

Proposition 13. The system value with tolling is no less than the value of single tier

network game. i.e, VT ≥ VG. Also, the strict inequality holds if there exists a k < J such

that

(
N̄JNk

NJN̄k
)

1
α ≤ (

Tl
τk

)
β
α

(
1−

(
τk+1

τk

) β
α
(1−α)

)
, (3.68)

Proof. Suppose c attains equality in (3.57)-(3.58), i.e a corner point of the constraint set.

Note that the elements of c, the bandwidths allocated to each subnetwork, that means to

each flow class, is equal to the total bandwidth received by the corresponding flow class

at the NE of the un-tolled single network game. Also, from (3.65) and (3.55), the optimal

entrance toll in each subnetwork drops to zero. Then, VT (c) = VG. Hence, we conclude

97



that VT ≥ VG.

Note that VT (c) is strictly concave and hence, (3.67) has a unique maximizer. When

(3.68) holds true, the unique maximizer lies in the interior of the constraint set of (3.67).

Then, VT > VG which completes the proof.

Next, we derive a bound on the efficiency of the multi-tier tolling scheme. Let

η̄ = 1 + α

J−1∑
k=1

k∑
i=1

ni. (3.69)

where ni =
Ni
N . Then, we claim that

ηT =
VT
VS

≤ min{ηG, η̄}. (3.70)

where ηG is the efficiency of single tier scheme without tolling. The claim can be proved

as follows: Let c̄j = Nj
c
N for all 1 ≤ j ≤ J . Then, c̄ = [c̄1, · · · , c̄J ] lies in the feasible set

of the optimization problem, (3.67). Then, VT (c̄) ≤ VT . It can be shown that VT (c̄)
VS

< η̄

where VS is given by (3.48). Therefore, ηT < η̄. Also, from Proposition 13, we get that

ηT ≤ ηG. Together, we get the claim.

Note that, η̄, does not depend on the ratio, Ts
Tl
; but it scales up with the number of

classes in the system. Nevertheless, ηT is no more than the efficiency of the single tier

networks without tolling. Therefore, we conclude that when the number of classes in the

system is not arbitrarily large, the efficiency of multi-tier tolling schemes are superior to

the single tier networks and, it does not scale up with the ratio, TsTl . Note that there might

be Nash equilibria other than the one stated by Lemma 9. Therefore, (3.70) may be better

than the efficiency of the worst Nash equilibrium. Now, we present a numerical example

to validate our analytical observations.

Example-6: Let two flow classes, namely Class 1 and Class 2, with disutility thresholds

τ1 = Ts and τ2 = Tl are sharing a link with capacity c units. The link is partitioned into
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Figure 3.7: Comparison of Efficiency Ratio (η) between PMP scheme and Game in a net-
work with price-insensitive flows and delay sensitive flows. Since VS and VG were negative
in this example, a higher ratio is worse.

two subnetworks, namely S1 and S2. Let Ni be the number of flows in Class i and define

ni = Ni/(N1+N2), for i = 1, 2. The optimal bandwidth allocation to subnetwork S1, that

maximizes the system value with tolling, is given by

ĉ1 =
c

1 + n2

n1n
1
α
2

(
1−

(
Tl
Ts

)( β
α
)(1−α)

)− 1
α

∨ c

1 + n2
n1
( TlTs )

β
α

.

Also, the optimal toll in S1 is given by λ̂1 =

[(
N2
c−ĉ1

)α−1
−
(
N1
ĉ1
(TsTl )

β
α

)α−1
]

α
α−1 . Note that

S2 has no entrance toll and the optimal allocation to S2 is ĉ2 = c− ĉ1. We define Efficiency

Ratio (ηT ) here as the ratio of System-Value with tolling (VT ) to Social optimum (VS).

From (3.64) and VS ,(from (3.48)), we can show that

ηT =
VT
VS

=

α

(
(n1 + n2)

(
ĉ1
cn1

)1−α
+ n1

(
ĉ1
cn1

)1−α
K

)
(
1 + (α− 1)(n1 + n2(

Ts
Tl
)β)
) ,

where K =

(
1−

(
Tl
Ts

)( β
α
)(1−α)

)
.

In Figure (3.7), we have compared η attained using the PMP scheme versus that of a

single-tier. We have used α = 2, β = 3 and ( TlTs ) = 4 in our simulation. We observe that

in-spite of tolling, the PMP scheme always performs better than the single-tier scheme.
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Also, note that, unlike the single tier scheme, the efficiency of the PMP scheme does not

scale with Tl
Ts
.

3.8 Conclusion

In this work we examined the consequences of the idea that a protocol is simply a way

of interpreting Lagrange multipliers. We showed that flows could choose the interpreta-

tions, based on criteria such as delay or loss sensitivity. We determined the socially optimal

protocol, as well as the choice that would result by flows taking their own selfish decisions.

We showed that the social good is maximized by using the strictest possible price inter-

pretation. However, based on different mixes of flow types a mix of interpretations could

be the Nash equilibrium state. We characterized the loss of efficiency for some specific

cases, and showed that a multi-tier network with tolling is capable of achieving superior

system value. The result suggests the consideration of multiple tolled virtual networks,

each geared towards a particular kind of flow. In the future we propose to explore the idea

of virtual, tolled subnetworks further.

Having studied a transport layer control problem, we move to a routing problem that

arises in wireless networks. We consider a scenario in which multiple paths are available

between each source and destination. How do the sources split their traffic over the available

set of paths so as to attain the lowest possible number of transmissions per unit time ? The

question becomes more difficult when certain routes can utilize the “reverse carpooling”

advantage of network coding to decrease the number of transmissions used. We call the

coded links as “Hyper-links”. Due to network coding longer paths may become cheaper.

However, the network coding advantage is realized only if there is traffic in both directions

of such routes. When the sources are allowed to choose their paths selfishly, they may not

prefer these paths as the first mover may see a disadvantage. Then, how do we incentivize

sources to use the routes with hyper-links ? Can we develop a distributed controller that

attains the lowest system cost in spite of the incentives provided to the sources ? We

answer these questions in the next chapter.
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4. NETWORK LAYER: A POTENTIAL GAME APPROACH TO MULTI-PATH

WIRELESS NETWORK CODING∗

There has recently been significant interest in multihop wireless networks, both as a

means for basic Internet access, as well as for building specialized sensor networks. How-

ever, limited wireless spectrum together with interference and fading pose significant chal-

lenges for network designers. The technique of network coding has the potential to improve

the throughput and reliability of multihop wireless networks by taking advantage of the

broadcast nature of wireless medium.

For example, consider a wireless network coding scheme depicted in Figure 4.1(a). In

this example, two wireless nodes need to exchange packets x1 and x2 through a relay node.

A simple store-and-forward approach needs four transmissions. However, the network

coding approach uses a store-code-and-forward technique in which the two packets from

the clients are combined by means of an XOR operation at the relay and broadcast to both

clients simultaneously. The clients can then decode this coded packet (using information

stored at clients) to obtain the packets they need.

Figure 4.1: (a) Wireless Network Coding (b) Reverse carpooling.

Katti et al. [25] presented a practical network coding architecture, referred to as COPE,

∗Part of the data reported in this chapter is reprinted with permission from “Multipath wireless network
coding: a population game perspective” by V. Reddy, S. Shakkottai, A. Sprintson and Gautam, N. Proc.
IEEE INFOCOM, 2010, Copyright@2010 IEEE.
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that implements the above idea while also making use of overheard packets to aid in

decoding. Experimental results shown in [25] indicate that the network coding technique

may result in a significant improvement in the network throughput.

Effros et al. [14] introduced the strategy of reverse carpooling that allows two infor-

mation flows traveling in opposite directions to share a path. Figure 4.1(b) shows an

example of two connections, from n1 to n4 and from n4 to n1 that share a common path

(n1, n2, n3, n4). The wireless network coding approach results in a significant (up to 50%)

reduction in the number of transmissions for two connections that use reverse carpooling.

In particular, once the first connection is established, the second connection (of the same

rate) can be established in the opposite direction with little additional cost.

The key challenge in the design of network coding schemes is to maximize the number

of coding opportunities, where a coding opportunity refers to an event in which at least

one transmission can be saved by transmitting a combination of the packets. Insufficient

number of coding opportunities may affect the performance of a network coding scheme

and is one of the major barriers in realizing the coding advantage. Accordingly, the goal

of this work is to design, analyze, and validate network mechanisms and protocols that

improve the performance of the network coding schemes through increasing the number of

coding opportunities.

Consider the scenario depicted in Figure 4.2. We have two sources with equal traffic,

each of which is aware of two paths leading to its destination. Each has one path that costs

6 units, while the other path costs 7 units. If both flows use their individually cheaper

paths, the total cost is 12 units. However, if both use the more expensive path, since

network coding is possible at the node n2, the total cost is reduced to 11 units. Thus,

we see that there is a dilemma here—savings can only be obtained if there is sufficient

bi-directional traffic on (n1, n2, n3).

A commonly used framework in the study of routing problems is that of potential games.

Here, there exits a so-called potential function—a scalar value that can be thought of as

representing the global utility or cost of the system. The potential function is such that the
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Figure 4.2: Each flow has two routes available, one of which permits network coding. The
challenge is to ensure that both sources are able to discover the low cost solution.

marginal difference in the payoff received by an agent following from a unilateral change

in action is equal to the marginal change in the potential function. Intuitively, it seems

that the coupling between an individual agent’s payoff and that of the whole system ought

to ensure that the system state should converge under myopic learning dynamics. Indeed

Sandholm et al. present results under which potential games converge to the optimal

solution when it is unique [63], or when the number of players is sufficiently large and

a probabilistic approach can be taken [7]. Extensions in the context of systems with

inertia [38], as well as finding near-potential games with boundable error [10] have been

studied more recently.

However, the problem that we consider presents the issue of a game with a finite number

of players that has multiple equilibria, some which have lower cost than others. We can

think of the system in Figure 4.2 as a potential game, with the potential function being

the total cost given the traffic splits. However, if each source attempts to learn its optimal

traffic split based on the marginal cost that it observes, it could easily choose the inefficient

solution. The first mover here is clearly at a disadvantage as it essentially creates the route

that the other can piggyback upon (in a reverse direction). Our challenge in this work

is to extend the potential game framework to eliminate the first-mover disadvantage. A

main contribution of this work is the development of the idea of state space augmentation

in potential games as a way of promoting optimal coordination in such situations.

Network coding was initiated by a seminal work by Ahlswede et al. [3] and since then has
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attracted a significant interest from the research community. The network coding technique

was utilized in a wireless system developed by Katabi et al. [25]. The proposed architecture,

referred to as COPE, contains a special network coding layer between the IP and MAC

layers. Sagduyu and Ephremides [62] focused on the applications of network coding in

simple path topologies (referred to in [62] as tandem networks) and formulated several

related cross-layer optimization problems. Similarly, [21] considered the problem of utility

maximization when network coding is possible. However, their focus is on opportunistic

coding as opposed to creating coding opportunities that we focus on. The practicality of

utilizing network coding over multiple paths for low latency applications was demonstrated

by Feng et al. [16].

Sengupta et al. [64] consider a very similar problem to ours, and present a general linear

programming formulation to solve it. However, their objective was to find a centralized

solution, as opposed to the distributed learning dynamics that we seek. Das et al. [13]

proposed a new framework called “context based routing” in multihop wireless networks

that enables sources to choose routes that increase coding opportunities. They proposed

a heuristic algorithm that measures the imbalance between flows in opposite directions,

and if this imbalance is greater than 25%, provides a discount of 25% to the smaller flow.

This has the effect of incentivizing equal bidirectional flows, resulting in multiple coding

opportunities. Our objective is similar, but we develop iterated distributed decision making

methods that trade off a potential increase in cost of longer paths, with the potential cost

reduction due to enhanced coding opportunities.

Marden et al. [39] considered a similar problem to ours, but unlike our focus on how

to align user incentives, their attention was largely on the efficiency loss of the Nash

equilibrium attained. Thus, they considered the system as a potential game, and considered

the worst case and best case equilibria that the system might converge to. They showed

that under the potential game framework, the best case Nash equilibrium can be optimal,

while the cost of the worst case Nash equilibrium can be unboundedly large. To the best

of our knowledge, the initial version of our work that was presented at a conference [58]
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was the first to propose a distributed algorithm that attains the optimal solution. The

underlying idea of state-space augmentation was presented in that work. In parallel with

our work, Marden et al. [40] described a “state-based game,” which also augments the

potential game framework with additional state, and later used the framework in the

context of consensus formation in networks [33]. Also in parallel work, ParandehGheibi et

al. [54] presented an optimal solution specific to the network coding problem using classical

Lagrange multiplier ideas. In contrast to their work, we present a new technique whereby

we modify the potential function seen by players in order to ensure that they take system-

wide optimal decisions. From a methodological standpoint, we believe that our approach

can find application in equilibrium selection in a wide range of coordination problems (eg.

in understanding how altruistic behavior can alter the set of achievable equilibria).

The key contribution of this research is a distributed two-level control scheme that

would iteratively lead the sources to discover the appropriate splits for their traffic among

multiple paths. In a traditional potential game approach, the matrix of traffic splits of

the different flows would be the state of the system. In our work, we introduce the idea

of augmenting the state space with additional variables that are controlled separately by

augmented agents. Unlike Lagrange multipliers, the additional state variables need not

correspond to a constraint set. Instead, these augmented variables are used to modify

the potential function seen by the original agents in such a way that they are directed

towards the optimal equilibrium. In this sense, the idea can be thought of as a generalized

Lagrange multiplier. We also illustrate that our approach can coexist with the usual

Lagrange multiplier approach to handle constraints.

We explore the idea of state space augmentation using the network coding problem.

Here, at one timescale we have sources that selfishly choose to split their traffic across

available multiple paths using marginal costs on each path to direct their actions. The

learning dynamics that they use are consistent with a potential game approach. However,

the costs that they see are set by augmented agents as well as Lagrange multipliers, both

of which operate at a different timescale from the source dynamics. The augmented agents
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in our problem are so-called hyper-links that consist of a node and two links over which

the node can broadcast using network coding, as exemplified by the node n2 in Figure 4.2.

These hyperlinks provide a rebate for usage of the coded path in order to incentivize flows

to explore their usage. The rebate takes the form of a hyper-link capacity, which simply

means that the the hyper-link does not charge the flows for usage up to its chosen capacity.

Besides the need to encourage flows to explore codable paths, we also impose a constraint

that each link has a maximum rate that it can support due to scheduling or spectrum

limitations. This constraint is realized via a Lagrange multiplier approach.

Hence, our approach consists of two control loops, with the inner employing well-studied

learning algorithms such as BNN dynamics [9] assuming a fixed rebate by hyperlinks, as

well as a price that corresponds to the Lagrange multiplier. The outer loop consists of

gradient-type controllers that modify the rebate and price, respectively. All controllers

only use local information for their decisions. The process of iteration continues until the

entire network has reached local minimum which, since our formulation is convex, is also

the socially optimal solution. We prove that this process is globally asymptotically stable.

Note, however, that our optimality result involves two nested asymptotic results, so we

cannot implement the idea directly. In practice, we have can only run each loop for a finite

number of steps before switching to the other.

We illustrate this approach using numerical experiments. For comparison, we numeri-

cally solve the problem as a linear program to find the optimal solution. The experiments

indicate that: the convergence of the augmented potential game is fast; the costs are re-

duced significantly upon using network coding; more expensive paths before network cod-

ing became cheaper and shortest paths were not necessarily optimal. Thus, the iterative

algorithm that we develop performs well in practice.

This work is organized as follows: Section-4.1 develops a system model and problem

formulation assuming no scheduling constraints on the maximum number of transmissions

at each node. In Section-4.2, we introduce the concept of hyper-links. In Section-4.3

we reformulate the problem with constraints on peak transmissions from each node and
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present a bi-level distributed controller - a combination of rate controller and hyper-link

controller- to solve the problem. The rate controller is presented Section-4.4 and the

hyper-link controller is presented in Section-4.5. Section-4.6 contains simulation results

and Section-4.7 concludes the work.

4.1 System overview

Our objective is to design a distributed multi-path network coding system for multiple

unicast flows traversing a shared wireless network. We model the communication network

as a graph G(N , E), where N is a set of network nodes and E is a set of wireless links.

For each link (ni, nj) ∈ E, where ni and nj are any two nodes, there exists a wireless

channel that allows the node ni to transmit information to the node nj . Each link (ni, nj)

is associated with a cost αij . The value of αij captures the cost (in expected number

of required transmissions) of sending a packet successfully from ni to nj . Due to the

broadcast nature of the wireless channels, the node ni can transmit to two neighbors nj

and nk simultaneously at a cost max{αij , αik}.

In wireless networks, even though broadcasting enables simultaneous transmission to

neighboring nodes, it also acts as interference at those nodes which are listening to some

node other than the broadcasting node. This type of interference in wireless networks,

called Co-Channel Interference, is handled by upper MAC protocols (for example CSMA)

which schedules transmission periods of links in the network such that interference is min-

imized. We assume that a perfect schedule of wireless links is given to us and, therefore,

there is no interference at the receivers. However, this imposes a constraint on the max-

imum number of transmissions per unit time on the nodes. In this section, we develop a

basic framework, while ignoring these scheduling constraints. We will include these con-

straints in Section 4.3.

We assume that the network supports flows {1, 2, . . . , }, where each flow is associated

with a source and destination node. Each flow i is also associated with several paths

{P 1
i , P

2
i , . . . } that connect its source and destination nodes. Our goal is to build a dis-

tributed traffic management scheme in which the source node of each flow i can split its
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traffic, xi (packets per unit time), among multiple different paths, so as to reduce the total

number of transmissions per unit time required to support given traffic demands. Note

that on some of these paths there might be a possibility of network coding.

We will first examine a simple network with coding opportunities and derive system

cost associated with the network, in terms of the total number of transmissions required.

Then we will study how the coding helps in reducing the system cost.

Example Consider the network depicted on Figure 4.2. The network supports three flows:

(i) flow 1 from n1 to n4, (ii) flow 2 from n4 to n6, and (iii) flow 3 from n5 to n1. We denote

by xi the traffic associated with flow i, 1 ≤ i ≤ 3. Suppose that the packets that belong to

flow 1 can be sent over two paths (n1, n2, n3, n4) and (n1, n2, n5, n4). We denote these paths

by P 1
1 and P 2

1 . The traffic split on paths P 1
1 and P 2

1 is given by x11 and x21, respectively,

such that x11 + x21 = x1. Similarly, flow 2 can be sent over two paths P 1
2 = (n4, n3, n2, n6)

and P 2
2 = (n4, n8, n6) at rates x12 and x22, such that x12 + x22 = x2. Finally, flow 3 can be

sent over two paths P 1
3 = (n5, n7, n1) and P

2
3 = (n5, n2, n1), at rates x

1
3 and x23, with sum

x3.

Note that path P 2
1 = (n1, n2, n5, n4) of flow 1 and path P 2

3 = (n5, n2, n1) of flow 3 share

two links (n1, n2) and (n2, n5) in the opposite directions. Thus, the packets sent along

these two paths can benefit from reverse carpooling. Specifically, the node n2 can combine

packets of flow 1 received from the node n1 and packets of flow 3 received from the node

n5. Similarly, the node n3 can combine packets of flow 1 received from the node n2 and

packets of flow 2 received from the node n4. Note that the cost saving at the node n2 is

proportional to min{x21, x23}, while the saving at the node n3 is proportional to min{x11, x12}.

Recall that we are ignoring scheduling constraints in this section.

The cost (transmissions per unit time) at the node n2 when coding is enabled is

Cn2(x
2
1, x

2
3) = max{α21, α25}min{x21, x23} (4.1)

+α25(x
2
1 −min{x21, x23})

+α21(x
2
3 −min{x21, x23}).
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Here, the first term on the right is the cost incurred due to coding at the node n2. This

is because a coded packet from n2 is broadcast to both destination nodes, n1 and n5, and

so the cost per packet is max{α21, α25}. The second and third term are “overflow” terms.

Since it is possible that x21 ̸= x23, the remaining flow of the larger (that cannot be encoded

because of the lack of flow in the opposite direction) is sent without coding at the regular

link cost.

The cost at the node n2, given by (4.1), can be re-written as shown below:

Cn2(x
2
1, x

2
3) = α25x

2
1 +α21x

2
3 +

{
max{α21, α25}

−(α21 + α25)
}
min{x21, x23}.

Using the fact that max{x1, x2}+min{x1, x2} = x1 + x2, we obtain

Cn2(x
2
1, x

2
3) = α25x

2
1 + α21x

2
3 (4.2)

− min{α21, α25}min{x21, x23}.

The above equation can be interpreted as the cost at the node n2 without coding minus

the savings obtained when coding is used. Thus, the cost saved at the node n2 due to

network coding is min{α21, α25}min{x21, x23} . Similarly, for the node n3 the cost saved is

min{α32, α34}min{x11, x12}.

The total system cost can be expressed as:

C(X) =

3∑
i=1

2∑
j=1

βji x
j
i − min{α21, α25}min{x21, x23} (4.3)

− min{α32, α34}min{x11, x12},

where X = {x11, x21, x12, x22, x13, x23} is the state of the system and βji is the uncoded path

cost (equal to the sum of the link costs on the path) j used by flow i. For example,

β11 = α12 + α23 + α34, for path P 1
1 = (n1, n2, n3, n4). Thus, the first term on the right in
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(4.3) is the total cost of the system without any coding, while the second and third terms

are the savings obtained by coding at nodes n2 and n3.

In the next subsection, we present a system model and derive a general expression for

system cost. Then we formulate an optimization problem which minimizes system cost by

finding an optimal traffic split of each flow, over the multiple paths available to them.

4.1.1 System model

Our system model consists of a set of nodes N = {n1, . . . , nN} and a set of flows

F = {1, . . . , F}. Each flow, f ∈ F is defined as a tuple (nsf , n
d
f , xf ), where n

s
f ∈ N is the

source node, ndf ∈ N is the destination node, and xf packets/sec is its traffic demand. A

flow may be associated with multiple paths connecting its source and destination nodes.

Let Pf be the number of such paths available to flow f and xsf be the traffic sent by the flow

over path s associated with it. Then,
∑Pf

s=1 x
s
f = xf . Let xf = {x1f , · · · , x

Tf
f } represent a

traffic split of flow f . Then, the state of the system X is defined as a set of traffic splits of

all flows in the system. i.e X = {x1, · · · ,xF }.

A node participating in more than one path may have the opportunity to combine traf-

fic and save on transmission if the paths traverse the node in reverse directions. Suppose

paths q and r, associated with flow i and j respectively, traverse the node nk in reverse di-

rections. Assume the node nk receives packets belonging to flow i which are sent over path

q and transmits those packets to the node ni. Similarly, it collects packets belonging to flow

j traversing over path r and forwards them to the node nj . Thus, the packets sent along

these paths can benefit from reverse carpooling and there exists a coding opportunity for

flows i and j at the node nk. We represent this coding opportunity at the node nk, which

is associated with two neighboring nodes and two flows, as h = nk[(i, q, ni), (j, r, nj)]
1. For

example, consider the network shown on Figure 4.2. In this network, the coding opportu-

nity available at the node n2 can be represented as n2[(1, P
2
1 , n3), (2, P

1
2 , n1)]. Finally, we

1In all the futute references of h, we may assume that it is associated with
nk(h)[(i(h), q(h), ni(h)), (j(h), r(h), nj(h))]. For notational convenience, we may drop the reference
to h in the previous representation and simply use nk[(i, q, ni), (j, r, nj)]
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assume that H such coding opportunities are present in the system.

From (4.2), the cost (transmissions per unit time) at the node nk after coding enabled

is given by

Cnk
(xqi , x

r
j) = αkix

q
i + αkjx

r
j (4.4)

− min{αki, αkj}min{xqi , x
r
j}.

The total system cost can be expressed as:

C(X) =
F∑
f=1

Pf∑
p=1

βpfx
p
f − (4.5)

H∑
h=1

min{αki, αkj}min{xqi , x
r
j}

where X is the state of the system and βpf is the uncoded path cost (equal to the sum of

the link costs on the path) p used by flow f .

Our goal is to build a distributed traffic management scheme in which the source node

of each flow f can split its traffic, xi (packets per unit time), among multiple different

paths, so as to reduce the system cost (4.5), total number of transmissions per unit time

required to support a given traffic demands. We formulate the objective of minimizing

cost, subject to the traffic requirements of each flow, as an optimization problem given

below:

min
X≥0

C(X), (4.6)

subject to

Pf∑
p=1

xpf = xf f = 1, . . . , F.

The problem poses major challenges due to the need to achieve a certain degree of

coordination among the flows. For example, for the network depicted in Figure 4.2, in-

creasing of the value of x23 (the decision made by the node n5) will result in a system-wide
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cost reduction only if it is accompanied by the increase in the value of x21. In the next

section, we develop a distributed traffic management scheme, that does not require any

coordination among flows on deciding their traffic splits.

4.2 Augmented state space and hyper-links

The optimization problem in (4.6) can be solved efficiently in a centralized manner.

But centralized implementations are not practical in large and complex systems. In this

section, we propose a simple way of decomposing it into subproblems that can be solved in

a decentralized fashion. We do this by means of adding extra state variables to the system,

which we refer to as state-space augmentation.

It can be observed from (4.5) that decisions of flows i and j are coupled through the

term min(xqi , x
r
j). In general, for any given xqi and xrj , this term can be expressed as an

optimal value of the following optimization problem,

min{xqi , x
r
j} = maxy>0

(
y − λ1(y −min{y, xqi })

−λ2(y −min{y, xrj})
)
, (4.7)

where λ1, λ2 ≥ 1 are any arbitrary constants. Note that the right hand side of the above

equality does not have any coupling term, due to the presence of the augmented variable y.

Therefore, we can convert the coupled problem (4.6) into a decoupled one by replacing each

‘coupled’ term (min{xqi , xrj}) with an equivalent ‘de-coupled’ expression from (4.7). Since

each coupling term is associated with a coding opportunity h, the augmented variable yh

is introduced in association with each coding opportunity. Let Y = {y1, y2, · · · , yH}. Now,

define C(X,Y ) as

C(X,Y ) =
∑F

f=1

∑Pf

p=1 β
s
fx

s
f −

∑H
h=1(min{αki, αkj})yh

+
∑H

h=1

(
ω1h(yh −min{yh, xqi }) + ω2h(yh −min{yh, xrj})

)
,

where ω1h, ω2h ≥ min{αki, αkj} are any arbitrary constants. It can be seen that the cost
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function (4.5) can be re-written as

C(X) = min
Y≥0

C(X,Y ). (4.8)

Choosing ω1h = αki and ω2h = αkj , we get

C(X,Y ) =
F∑
f=1

Pf∑
p=1

βsfx
s
f −

H∑
h=1

(min{αki, αkj})yh

+

H∑
h=1

(αki(yh −min{yh, xqi })

+αkj(yh −min{yh, xrj})
)
. (4.9)

The cost function has thus been augmented using the variables yh. For any fixed value of

Y, the cost function only depends on X, and the sources can attempt to modify X find

their individually lowest cost solution. The augmented variables Y can then be modified

to change the cost function. In Sections 4.4–4.5 we will formally show how this is accom-

plished. We now show that our choices for ω’s lead to an appealing interpretation for the

function C(X,Y ).

Consider coding opportunity h = nk[(i, q, ni), (j, r, nj)], where the node nk encodes

packets coming from ith and jth flows, and then broadcast them to nodes ni and nj respec-

tively. Grouping the terms associated with coding opportunity h in (4.9), we get

C(h) = αkix
q
i + αkjx

r
j −min{αki, αkj}yh +

αki(yh −min{yh, xqi }) + αkj(yh −min{yh, xrj}),

= max{αki, αkj}yh + αki(x
q
i −min{xqi , yh})

+αkj(x
r
j −min{xrj , yh}). (4.10)

In the above expression, C(h), the first term corresponds to the cost of broadcasting coded

traffic, if we restrict the total coded (broadcast) traffic between the two flows at the node nk
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to be less or equal to yh, and the last two terms are the transmission costs associated with

the remaining uncoded traffic. This leads to the concept of hyper-link, which can be thought

of as a broadcast link with capacity yh. It is composed of physical links (nk, ni) and (nk, nj)

and carries only encoded traffic from flows i and j. And the remaining uncoded traffic is

sent through uni-cast links (nk, ni) and (nk, nj) respectively. Formally, a hyper-link and a

hyper-path are defined as follows:

Definition 2. A hyper-link is a broadcast-link composed of three nodes and two flows. A

hyper-link h = nk[(i, q, ni), (j, r, nj)] at the node nk can encode packets belonging to flow i

(sending packets on path q) with flow j (sending packets on path r). Here, the nodes ni

and nj are the next-hop neighbors of nk; for flow i along path q and for flow j along path

r, respectively. Also, yh denotes capacity of the hyper-link (in packets per unit time).

A hyper-path p ∈ Si between source nsi and destination ndi is a virtual path over a

physical path between nsi and n
d
i . A hyper-path contains zero or more hyper-links on it and

at each node on the underlying physical path there can be atmost one hyper-link. It follows

that the set of all paths are a subset of the hyper-paths.

The cost at hyper-link h, given by (4.10), can be re-written as:

C(h) = αkix
q
i + αkjx

r
j − T (h), where (4.11)

T (h) = αkimin{xqi , yh}+ αkj min{xrj , yh}

− max{αki, αkj}yh. (4.12)

Recall that the first two cost terms are the total cost at the node nk when coding is disabled.

The remaining cost, T (h) can be thought of as the rebate obtained by using hyper-link

h = nk[(i, q, ni), (j, r, nj)]. Note that the rebate could be negative (hence adding to the

total cost), which might happen when one of the flow rate is 0 and the other flow rate is

less than the hyper-link capacity.
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Now the function C(X,Y ) in (4.9) can be written as follows:

C(X,Y ) =

F∑
f=1

Pf∑
p=1

βsfx
s
f −

H∑
h=1

T (h), (4.13)

which represents the total system cost without coding minus the total rebate of all the

hyper-links. Here, C(X,Y ) - total number of transmissions per unit time required to

support a given traffic load- is the system cost given the system state (X,Y ), where X is

the set of traffic vectors of all flows in the system and Y is set of hyper-link capacities.

Our objective is to minimize the cost function which can be formally stated as

min
X,Y≥0

C(X,Y )

subject to

Pf∑
p=1

xpf = xf ∀f = 1, · · · , F . (4.14)

In the next section, we will also account for the fact that the transmission rate of each

node is limited due to scheduling constraints.

4.3 Peak transmission constraints

In a practical scenario, the maximum number of transmissions per unit time from a

wireless node is limited by scheduling. In this section, we assume that the schedule has

been predetermined, and imposes a constraint on the maximum amount of traffic that can

be accommodated on any particular link. In doing so, we will illustrate the fact that the

state space augmentation can be used in conjunction with Lagrange multiplier that enforces

a constraint. reformulate problem (4.14) taking into account the transmission constraints

at each node.

Let Rfpki be a routing variable. It takes a value equal to 1 if any path p associated with

flow f passes through link (nk, ni) and otherwise 0. Similarly, define Zhk which takes 1

if hyper-link h is associated with the node nk and otherwise 0. Let Tk be the maximum

number of allowable transmissions per unit time at the node nk. Then, at each node nk,
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the total number of uncoded transmissions minus the saved number of transmissions (using

hyper-links) should be less than or equal to Tk. Therefore,

N∑
i=1

F∑
f=1

Pf∑
p=1

Rfpki αkix
p
f −

H∑
h=1

ZhkT (h) ≤ Tk. ∀nk ∈ N .

Now, incorporating these constraints on transmission rate, the problem (4.14) can be re-

written as

min
X≥0,Y≥0

C(X,Y ) =

F∑
f=1

Pf∑
p=1

βpfx
p
f −

H∑
h=1

T (h),

subject to

Pf∑
p=1

xpf = xf , ∀f = 1, · · · , F, (4.15)

N∑
i=1

F∑
f=1

Pf∑
p=1

Rfpki αkix
p
f −

H∑
h=1

ZhkT (h) ≤ Tk,

∀k = 1, · · · , N, (4.16)

where X is the set of traffic vectors of all flows in the system and Y is set of hyper-link

capacities. Note that the augmented cost C(X,Y ) is jointly convex in X and Y . The

constraint sets are also convex. Therefore, the above problem is convex. We assume

that the feasible sets of the above problem -set of traffic vectors X and set of hyper-link

capacities Y which satisfy both traffic demands (4.15) and peak transmission constraints

(4.16)- is nonempty. We can use dual decomposition techniques to construct a distributed

algorithm to solve this problem. The Lagrangian function is

C(X,Y,Σ) =
F∑
f=1

Pf∑
p=1

βpfx
p
f −

H∑
h=1

T (h) +
N∑
k=1

σkVk

where Vk =

 F∑
f=1

Pf∑
p=1

Rfpki αkix
s
f −

H∑
h=1

ZhkT (h)− Tk

 . (4.17)

Note that σk is a non-negative Lagrange multiplier associated with the transmission con-
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straint of the node nk. We can interpret σk as the ‘price’ charged by the node nk for each

transmission. Let Σ = [σ1, · · · , σN ] be a set of node-prices.

We define C(X,Y,Σ) as our new system function given the system state (X,Y,Σ),

where X is the set of traffic vectors of all flows in the system, Y is the set of hyper-link

capacities and Σ is the set of node-prices. Our objective is find an optimal state of the

problem given below.

max
Σ≥0

min
X,Y≥0

C(X,Y,Σ),

F∑
f=1

xpf = xf , ∀f = 1, · · · , F.

We propose a bi-level distributed iterative algorithm to find an optimal state for the

above problem.

1. Traffic Splitting: In this phase, each source node finds the optimum traffic assign-

ment given the hyper-link capacities and node-prices. For any given (Y,Σ),

TS: min
X≥0

C(X,Y,Σ),
F∑
f=1

xpf = xf f = 1, · · · , F.

We model this part as a traditional potential game. The reason for our choice is that

there exist several simple, well-studied controllers for routing in potential games.

Thus, for any fixed value of the augmented variables and Lagrange multipliers, we

can use any of these controllers to obtain convergence. Details of our game model

and the payoffs used are discussed in Section 4.4. Note that signalling is required to

ensure feedback of node-prices and hyper-link rebates to the source nodes, but this

overhead is small.

2. Node Control: In this phase, we adjust the augmented variables (hyper-link ca-

pacities) and Lagrange multipliers (node-prices) assuming that potential game of the
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sources has attained equilibrium.

NC: max
Σ≥0

min
Y≥0

C(X∗, Y,Σ),

where X∗ is the assignment matrix at equilibrium. We use gradient decent controllers

to modify the optimal hyper-link state and node-price. Details are discussed in

Section 4.5.

We call our controller as Decoupled Dynamics. The two phases operate at different

time scales. Traffic splitting is done at every small time scale and the node-control is done

at every large time scale. Thus, sources attain equilibrium for given hyper-link capacities

and prices, then the hyper-link capacities and prices are adjusted, and this in turn forces

the sources to change their splits. This process continues until the source splits, hyper-link

capacities and prices converge.

4.4 Traffic splitting: multi-path network coding game

We model the traffic-splitting process of decoupled dynamics as a potential game with

continuous action space, which we refer to as theMulti-Path Network Coding Game (MPNC

Game). A potential game with continuous action space is defined by,

1. a set of players, F ,

2. an action space, X = {Xi, ∀i ∈ F|Xi ⊂ RM ,M ∈ N}, where Xi is an action set of

player i,

3. a set of continuously differentiable payoff functions of players, C = {Ci : X → R, ∀i ∈

F},

4. a continuously differentiable potential function, Φ : X → R, such that

∇aiΦ(ai, a−i) = ∇aiCi(ai, a−i), (4.18)

where ai ∈ Xi, a−i ∈ X\Xi.
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Now, having defined the components of a potential game, we identify the corresponding

entities in the case of MPNC game.

First of all, the flows are the players in the MPNC game. Then, the set of players is

given by F = {1, 2, · · · , F}. The action set of player i (flow i) is defined as

Xi = {x⃗i = (x1i , x
2
i , · · · , x

Pi
i )|

∑
j

xji = xi},

where xi is the traffic demand of flow i and Pi is the number of hyper paths available to

it. Note that each action x⃗i corresponds to, an instance of distribution of traffic demand

seen by flow i, over the set of available hyperpaths. Then, the action space, X, is given by

X = {X1, · · · , XF }.

Finally, the payoff function of a player i is defined as

Ci(x⃗i, x⃗−i) = C((x⃗i, x⃗−i), Y,Σ)− C((⃗0, x⃗−i), Y,Σ) (4.19)

where C is the system cost function given by (4.17). In the above definition, x⃗i is the

action of player i, x⃗−i is a set of actions of other players and 0⃗ is a null vector. Also Y

is the set of hyper link capacities and Σ is the set of node prices which remain invariant

during each realization of MPNC game. The utility defined above is sometimes referred to

as the Wonderful life utility (WLU) [18]. It is well known that payoff as in (4.19) results

in a potential game with potential function Φ = C [18].

In the context of MPNC game, it is clear that the payoff function, given by (4.19), is

equal to the total transmission cost incurred by player i, while sending its own traffic over

the set of available hyperpaths. Hence, in this game, the objective of each player is to

minimize its own payoff.

But there is a caveat in using the system cost function C as the potential function and

Ci’s as the payoff functions. Recall from the conditions (3) and (4) of the definition of

potential game that, the potential function and the utility functions must be differentiable.

But, from (4.17) and (4.12) note that, the system cost function contains “min” terms over

119



the hyper-link capacity and the flow rates, which makes the function non-differentiable.

In order to have a continuously differentiable cost function we approximate these “min”

terms using a generalized mean-valued function.

Let a = {a1, . . . , an} be the set of positive real numbers and let t be some non-zero real

number. Then the generalized t-mean of a is given by:

Mt(a) =

(
1

n

n∑
i=1

ati

) 1
t

(4.20)

The “min” function over the set a is approximated using Mt(a) as:

min{a1, . . . , an} = lim
t→−∞

Mt(a) (4.21)

Substituting forMt (4.20), instead of the “min” function in (4.17) we get the approximated

total system function as:

C̃(X,Y,Σ) =
F∑
f=1

Sf∑
s=1

βsfx
s
f −

H∑
h=1

T̃ (h) +
N∑
k=1

σkṼk, (4.22)

where for a hyper-link h = nk[(i, q, ni), (j, r, nj)] ∈ H:

T̃ (h) = αki

(
(xqi )

t+(yh)
t

2

) 1
t
+ αkj

(
(xri )

t+(yh)
t

2

) 1
t

−max{αki, αkj}yh (4.23)

and

Ṽk =

F∑
f=1

Sf∑
s=1

N∑
m=1

Rfpkmαkix
s
f −

H∑
h=1

Zhk T̃ (h)− Tk. (4.24)

The system function C̃(X,Y,Σ) is continuous and differentiable. So, we use the ap-

proximated function as our potential function. Similarly, the payoff of player i, given by
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(4.19), is approximated as follows:

C̃i(x⃗i, x⃗−i) = C̃((x⃗i, x⃗−i), Y,Σ)− C̃((⃗0, x⃗−i), Y,Σ). (4.25)

The marginal payoff obtained by flow i ∈ F , given his action, x⃗i, and the set of actions

of other players, x⃗−i, is

Fi(X,Y,Σ) = ∇x⃗iC̃i(X,Y,Σ) = ∇x⃗iC̃(X,Y,Σ), (4.26)

where X = (x⃗i, x⃗−i). The above result follows from definition of potential function and

(4.18). Note that Fi is a vector and let its pth component be F pi . Then,

F pi (X,Y,Σ) =
∂C̃(X,Y,Σ)

∂xpi
, ∀i ∈ F , p ∈ Pi (4.27)

= βpi −
∑
h∈Hp

i

∂T̃ (h)

∂xpi
+

N∑
k=1

N∑
m=1

Ripkmσkαkm

−
∑
h∈Hp

i

N∑
k=1

Zhkσk
∂T̃ (h)

∂xpi
. (4.28)

where, Hp
i the set of all hyper-links associated with flow fpi . From (4.23)

∂T̃ (h)

∂xpi
=

1

2
αki

(
xpi

Mt(x
p
i , yh)

)t−1

, (4.29)

and we have the min-approximation

Mt(x
p
i , yh) =

(
(xpi )

t + (yh)
t

2

)
. (4.30)

As we will show below, our algorithm will converge to the optimal state for any given value

of t < 0. Thus, we can attain a solution that is arbitrarily close to the original problem by

choosing |t| as large as desired. Also note that the payoff is the marginal cost incurred in

using an option, so the players try to minimize their cost. The source node of each flow,
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i ∈ F observes the marginal cost, F pi , obtained in using a particular option (particular

hyperpath), p ∈ Pi, and changes the mass on that particular option, xpi , so as to attain

equilibrium.

Next, we define the concept of equilibrium in potential games. A commonly used

concept in non-cooperative games, is the Nash equilibrium. The game is said to be at

Nash equilibium, if flows do not have any incentive to unilaterally deviate from their

current action states. An action profile, X̂ = (⃗̂xi, ⃗̂x−i) ∈ X, results in a Nash equilibrium

of MNPC game if

Ci(⃗̂xi, ⃗̂x−i) ≤ Ci(x⃗i, ⃗̂x−i), ∀x⃗i ∈ Xi, ∀i ∈ F .

The above NE condition also implies that

F pi (X̂) ≤ F p
′

i (X̂) ∀p, p′ ∈ Pi, ∀i ∈ F ,

where F pi is the marginal payoff given by (4.27). The above result can be interpreted as

follows: At NE, for any player i ∈ F , all the options (hyper paths) being used by that

player, yield the same marginal payoff. Also, the marginal payoff that would have been

obtained is higher for all those unused options.

The above concept refers to an equilibrium condition; the question arises as to how the

system actually arrives at such a state. A commonly used kind of population dynamics is

Brown-von Neumann-Nash (BNN) Dynamics [9]. The source nodes use BNN dynamics to

control the mass on each option. But since each source tries to minimize its payoff, we use

a modified version of BNN dynamics:

ẋpi =

xiγpi − xif

Pi∑
j=1

γji

 , (4.31)

where, γpi = max

 1

xi

Pi∑
j=1

F ji x
j
f − F pi , 0


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where F pi is the marginal payoff of player i given by (4.27). In the next subsection, we

prove the stability of our inner loop contorol.

4.4.1 Convergence of MPNC game

We show in this susection that the multi-path network coding game converges to a

stationary point when each source uses BNN dynamics. We will use the theory of Lyapunov

functions [28] to show that our population game G, is stable for a given hyper-link state Y̆

and node-price state Σ̆. We use the approximated system function (4.22) as our candidate

Lyapunov function.

Theorem 5. The system of flows F that use BNN dynamics with payoffs given by (4.27)

is globally asymptotically stable for a given hyper-link state Y̆ and node-price state Σ̆.

Proof. We use the approximated system function C̃(X,Y,Σ) (4.22) as our Lyapunov func-

tion. It is simple to verify that the cost function C̃(X, Y̆ , Σ̆), is non-negative and convex,

and hence is a valid candidate. For a given hyper-link state, Y̆ , and node-price state, Σ̆,

we define our Lyapunov function as:

LY̆ Σ̆(X) = C̃(X, Y̆ , Σ̆).

From (4.27)

∂LY̆ Σ̆(X)

∂xpf
=
∂C̃(X, Y̆ , Σ̆)

∂xpf
= F pf (X, Y̆ , Σ̆).

Hence,

L̇Y̆ Σ̆(X) =
∑F

f=1

∑Sf

p=1
∂LY̆ Σ̆(X)

∂xpf
ẋpf ,

=
∑F

f=1

∑Sf

p=1 F
p
f (X, Y̆ , Σ̆)ẋ

p
f .
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From (4.31) we can substitute the value for ẋpf and we have

L̇Y̆ Σ̆(X) =

F∑
f=1

Sf∑
p=1

F pf (xfγ
p
f − xpf

Sf∑
j=1

γjf ),

=
F∑
f=1

xf

 Sf∑
p=1

FPf γ
p
f −

 1

xf

Sf∑
p=1

F pf x
p
f

 Sf∑
j=1

γjf

 .

We define

F̄f , 1

xf

Sf∑
p=1

F pf x
p
f ,

=⇒
F∑
f=1

xf

 Sf∑
p=1

FPf γ
p
f −

Sf∑
j=1

F̄fγ
j
f

 ,

=
F∑
f=1

xf

 Sf∑
p=1

γpf (F
P
f − F̄f )

 ,

≤ −
F∑
f=1

xf

 Sf∑
p=1

(γpf )
2

 ≤ 0.

Thus,

L̇Y̆ Σ̆(X) ≤ 0, ∀ X ∈ X .

where equality exists when the state X corresponds to the stationary point of BNN dy-

namics. Hence, the system is globally asymptotically stable.

4.4.2 Efficiency

The objective of our system is to minimize the system function for a given load vector

x⃗ = [x1, . . . , xQ] and given hyper-link state Y̆ and node-price state Σ̆. Here the system

function C̃(X, Y̆ , Σ̆) and is defined in (4.22). This can be represented as the following
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constrained minimization problem:

min
X

C̃(X, Y̆ , Σ̆) (4.32)

subject to:
Si∑
p=1

xpi = xi ∀ i ∈ F (4.33)

xpi ≥ 0.

The Lagrange dual associated with the above minimization problem, for a given Y̆ and Σ̆

is

LY̆ Σ̆(λ, h,X) = max
λ,h

min
X

(
C̃(X, Y̆ , Σ̆) − (4.34)

F∑
i=1

λi

( Si∑
p=1

xpi − xi

)
−

F∑
i=1

Si∑
p=1

hpi x
p
i

)

where λi and hip ≥ 0 , ∀ i ∈ F and p ∈ Si, are the dual variables. Now the above dual

problem gives the following Karush-Kuhn-Tucker first order conditions:

∂LY̆ Σ̆

∂xpi
(λ, h,X⋆) = 0 ∀ i ∈ F and p ∈ Si (4.35)

and

hpi x
⋆p
i = 0 ∀ i ∈ F and p ∈ Si (4.36)

where X⋆ is the global minimum for the primal problem (4.32). Hence from (4.35) we

have, ∀ i ∈ F and ∀ p ∈ Si,

∂C̃

∂xpi
(X⋆, Y̆ , Σ̆)− λi

∂(
∑Si

p=1 x
⋆p
i − x⋆i)

∂xpi
+ hpi = 0

⇒ ∂C̃

∂xpi
(X⋆, Y̆ , Σ̆) = λi + hpi (4.37)

⇒ F pi (X
⋆, Y̆ , Σ̆) = λi + hpi (4.38)
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where the last equation follows from (4.26).

From (4.36), it follows that

F pi (X
⋆, Y̆ , Σ̆) = λi when x⋆pi > 0 (4.39)

and

F pi (X
⋆, Y̆ , Σ̆) = λi + hpi when x⋆pi = 0 (4.40)

∀ i ∈ F and ∀ p ∈ Si. The above condition (4.39, 4.40), implies that the payoff on

all the options used is identical and for options not in use the payoff is more, which is

equivalent to the NE condition given by (4.31). Notice that we use a modified definition of

Nash equilibrium, since each source tries to minimize it’s cost (or payoff). The following

theorem proves the efficiency of our system.

Theorem 6. The solution of the minimization problem in (4.32) is identical to the Nash

equilibrium of MPNC game.

Proof. Consider the BNN dynamics (4.31), at stationary point, X̃, we have ẋpi = 0, which

implies that either,

F̂i = F pi (X̃, Y̆ , Σ̆) (4.41)

or x̂pi = 0,

where, F̂i , 1
x̂i

∑Q
r=1 x̂

r
iF

r
i (X̃, Y̆ , Σ̆) ∀ i ∈ F , (4.42)

The above expressions imply that all hyper-paths used by a particular flow i ∈ F yield

same payoff, F̂i, while hyper-paths not used (xpi = 0) yield a payoff higher than F̂i.

We observe that the conditions required for Nash equilibrium are identical to the KKT

first order conditions (4.39)-(4.40) of the minimization problem (4.32) when

F̂i = λi ∀ i ∈ F

126



It follows from the convexity of the total system cost that, there is no duality-gap between

the primal (4.32) and the dual (4.34) problems. Thus, the optimal primal solution is equal

to optimal dual solutions, which is identical to the Nash equilibrium.

4.5 Node control

Thus far we have designed a distributed scheme that would result in minimum cost for

a given hyper-link state or capacities Y , node-price state Σ and for a given load vector

x⃗ = {x1, . . . , xf}. In this phase of Decoupled Dynamics, the hyper-link capacities and

node-prices are adjusted based on the current value of system function. This phase runs at

a larger time-scale as compared to the traffic splitting phase described in Section 4.4. It is

assumed that during this phase all the flows instantly reach equilibrium, i.e., changing the

hyper-link capacities and node-prices would force all the source nodes to attain Wardrop

equilibrium instantaneously.

The node control can be formulated as a convex optimization problem as follows:

max
Σ

min
Y

Q(Y,Σ), (4.43)

subject to, yh, σk ≥ 0, ∀yh ∈ Y and ∀σk ∈ Σ.

where, Q(Y,Σ) is the minimum value of the system function for a given hyper-link state Y

and node-price state Σ, i.e., Q(Y,Σ) = C̃(X⋆, Y,Σ), where, for a given Y and Σ, X⋆ is an

optimal state of the flows that results in minimum cost.2 We use simple gradient descent:

ẏh = −κ∂Q(Y,Σ)

∂yh
∀yh ∈ Y, (4.44)

σ̇k = ρ
∂Q(Y,Σ)

∂σk
∀σk ∈ Σ. (4.45)

The partial derivative, ∂Q
∂yh

, is over the variables yh ∈ Y . Keeping Σ fixed and changing

the hyper-link capacity yh, of some hyper-link h ∈ H, would result in a different state of

2Notice, there could be many different states, X⋆, which result in a minimum cost but the minimum
value, C̃(X⋆, Y,Σ), is unique.
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the flows, X⋆
h and hence a different minimum cost, C̃(X⋆

h, Yh,Σ), where Yh corresponds to

the changed hyper-link capacity of yh while other capacities are fixed, as compared to Y .

Thus for a hyper-link, h = nk[(i, q, ni), (j, t, nj)] with capacity yh,

∂Q(Y,Σ)

∂yh
= ∂C̃

∂yh
(X⋆, Y,Σ)

+
∑F

i=1

∑Pi
p=1

∂C̃
∂xpi

(X⋆, Y,Σ)
∂x∗pi
∂yh

(4.46)

= ∂C̃
∂yh

(X⋆, Y,Σ) +
∑F

i=1 Fi
∑Si

p=1
∂x∗pi
∂yh

,

where the last expression follows from the definition of F pi (Definition 4.27) and the fact that

for changes in the hyper-link state, the sources attain Wardrop equilibrium instantaneously.

In other words, before and after a small change in yh the system is in Wardrop equilibrium.

Hence, F pi = Fi ∀i ∈ F and ∀p ∈ Si. Finally,
∑Si

p=1
∂x∗pi
∂yh

= 0, since the total load

x∗i =
∑Si

p=1 x
∗p
i is fixed. For hyper-link h = nk[(i, q, ni), (j, t, nj)],

∂Q(Y,Σ)

∂yh
= ∂C̃

∂yh
(X⋆, Y,Σ) = −(1 + σk)

∂T̃
∂yh

(h), (4.47)

where from (4.23),

∂T̃

∂yh
(h) = αki

4

(
yh

Mt(x
q
i ,yh)

)t−1
+

αkj

4

(
yh

Mt(xrj ,yh)

)t−1

−max{αki, αkj},

and Mt(x
q
i , yh) =

(
(xqi )

t+(yh)
t

2

) 1
t
.

Similarly, we can show that

∂Q(Y,Σ)

∂σk
= ∂C̃

∂σk
(X⋆, Y,Σ) = ∂Ṽk

∂σk
, (4.48)
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where, from (4.24)

∂Ṽk
∂σk

=

 N∑
m=1

F∑
f=1

Sf∑
p=1

Rfpkmαkix̂
s
f −

H∑
h=1

Zhk T̃ (h)− Tk

 .

Theorem 7. At the large time-scale, the hyper-link capacity control with dynamics (4.44)

and node price control with dynamics (4.45) is globally asymptotically stable.

Proof. We use the following Lyapunov function

G(Y,Σ) =
1

2κ

H∑
h=1

(yh − ŷh)
2 +

1

2ρ

N∑
k=1

(σk − σ̂k)
2 (4.49)

where ŷh ∈ Ŷ and σ̂k ∈ Σ̂ are optimizers of (4.43). We will use LaSalle’s invariance

principle [28] to show stability.

Differentiating G we obtain

Ġ =
1

κ

H∑
h=1

(yh − ŷh)ẏh +
1

ρ

N∑
k=1

(σk − σ̂k)σ̇k.

Now from (4.44) and (4.45),

Ġ = −
H∑
h=1

(yh − ŷh)
∂Q

∂yh
+

N∑
k=1

(σk − σ̂k)
∂Q

∂σk
. (4.50)

We will show that Ġ ≤ 0, ∀Y,∀Σ.

Note that Q(Y,Σ) = C̃(X∗, Y,Σ), where X∗ is a minimizer of approximated cost func-

tion defined in (4.22) for fixed Y and Σ. Also, for any fixed node-price state Σ, the

approximated cost function is jointly convex in X and Y . Therefore, minimizing it over a

convex set of X yields a convex function. In essence, Q(Y,Σ) is convex in Y for any fixed

Σ. It can be observed that for any fixed hyper-link state Y and rate vector X, the approx-

imated cost function defined in (4.22) is a linear function of Σ. Then the minimization

of C̃(X,Y,Σ) over X can be thought of as a point-wise minimization of infinite number

of linear functions of Σ which results in a concave function of Σ. Therefore, Q(Y,Σ) is
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concave in Σ for any fixed Y . Therefore, from the convex-concave nature of Q(Y,Σ) we

can show that

Q(Ŷ ,Σ) ≤ Q(Ŷ , Σ̂) ≤ Q(Y, Σ̂), ∀Y, ∀Σ. (4.51)

where Ŷ and Σ̂ are optimizers of the problem (4.43). Now, using the first order properties

of convex and concave functions,

Q(Ŷ ,Σ) ≥ Q(Y,Σ) +
H∑
h=1

(ŷh − yh)
∂Q

∂yh
, (4.52)

Q(Y, Σ̂) ≤ Q(Y,Σ) +

N∑
k=1

(σ̂k − σk)
∂Q

∂σk
. (4.53)

From equations (4.50-4.53), we can write

Ġ = −
H∑
h=1

(yh − ŷh)
∂Q

∂yh
+

N∑
k=1

(σk − σ̂k)
∂Q

∂σk
≤ 0

In order to apply La Salle’s invariance priniciple, let us consider a set of points E for which

the condition Ġ = 0 is satisfied. The largest invariant set M is a subset of points such that

∂Q
∂yh

= 0, ∀yh ∈ Y and ∂Q
∂σk

= 0, ∀σk ∈ Σ. Pick any point (Ỹ , Σ̃) ∈ M. We can show from

the properties convex-concave nature of function Q(Y,Σ) that Q(Ỹ , Σ̃) ≤ Q(Y, Σ̃), ∀Y and

Q(Ỹ , Σ̃) ≥ Q(Ỹ ,Σ),∀Σ. Therefore, the pair (Ỹ , Σ̃) satisfies the condition (4.51) and it

is an optimizer of (4.43). From La Salle’s principle, the dynamics converge to the largest

invariant set M and therefore the convergent point is an optimal state of (4.43). Hence

the system is globally asymptotically stable [28].

4.6 Simulations

We simulated our system in Matlab to show system convergence. We first performed

our simulations for our simple network shown in Figure 4.3(a). The load at the source
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nodes 1, 2 and 3 is given as 4.73, 2.69 and 3.56 respectively, which are randomly generated

values. We use the following costs on the individual links (αij): α12 = 2.8, α23 = 1.6,

α34 = 1.8, α25 = 1.3, α54 = 2.1, α26 = 1.7, α48 = 2.9, α86 = 2.2, α57 = 1.9, α71 = 2.6;

we assume the costs on the links are symmetric. We use the approximated cost function

(4.22), with a value of t = −30 for the approximation parameter (4.21) for our simulations.

We have assumed that the maximum number of transmissions (per unit time) from each

node is limited to 15. The simulation is run for 50 large time units, and in each large time

scale we have 20 small time units.

We compare the total cost of the system for the following:

1. Decoupled Dynamics (DD): This is the algorithm that we developed under the aug-

mented potential game framework; we use our hyper-links to decouple the flows that

participate in coding.

2. Coupled Dynamics (no hyper-link) (CD): Here, there is coupling between individual

flows and coding happens at the minimum rate of the constituent flows. In other

words, this is the original potential game without augmentation. We use similar

game dynamics as that was used in DD. The total cost is specified in Equation (4.5).

3. No Coding: In this system no network coding is used. This gives an baseline with

respect to which the gains attained by coding can be quantified.

4. LP Optimal (LP): This is a centralized solution. We formulated our system as a

Linear Program (LP) of minimizing cost (4.17) over X and Y for a given load vector

that we obtain using an LP-solver.

As seen in the Figure 4.3(b), the total cost of the system (number of transmissions

per unit time) for our model (decoupled using hyper-link) is close to the optimal solution

obtained by solving it in a centralized fashion. We compared the final system state of DD

and CD with that of the solution obtained using LP. We observe from Table 4.1 that the

values for the split (X) and the hyper-link capacities (Y ) generated by DD are near-optimal
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(a) Network topology
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Figure 4.3: Performance evaluation of simple network topology

(LP results), but CD is very different. We have plotted time evolution of traffic splits of

flow 3, over options 1 and 2, in the Figure 4.3(c), which shows that they converge to the

optimal values obtained by LP solver. In Figure 4.3(d), we have shown that the number

of transmissions from all the nodes is less than or equal to the maximum threshold.

Next, we perform our simulations on a bigger topology shown in Figure 4.4. This

network consists of 30 nodes shared by 6 flows. Flows 1, 2, 3 and 6 have two hyper-

paths each and flows 4 and 5 have three hyper-paths each. There are 6 hyper-links in the

system. Table 4.2 describes the source, destination nodes and the hyper-paths for each
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Table 4.1: Comparison of state variables for LP, DD and CD

Variable x11 x21 x12 x22 x13 x23 y2 y3
LP 1.52 3.2 1.52 1.16 0.00 3.56 3.20 1.52
DD 1.6 3.12 1.71 0.97 0.09 3.46 3.29 1.58
CD 4.70 0.00 0.01 2.68 0.62 2.93 N/A N/A

flows. Notice, options 2 and 3 of flow 4 have the same physical path but different hyper-

links, y1 and y2 at node n7. This is because the sub-flow of x4 traversing the physical

path (16, 15, 11, 6, 7, 8) can be encoded with two different flows, x21 and x22 traversing in the

reverse direction at node 7.

Figure 4.4: Complex network

We ran our algorithms on this network with random link costs. The simulation is run

for 150 large time units, and in each large time scale we have 50 small time units. As

seen in Figure 4.5, the total system cost for decoupled dynamics converges to the optimal

solution which is obtained by solving the problem in a centralized fashion. We observe from

Table 4.3 that the values for the split (X) and the hyper-link capacities (Y ) generated by

DD are near-optimal (LP results), but CD is very different.
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Table 4.2: Source, destination nodes and hyper-paths corresponding to each flow.

Id Src Node Dest. Node Hyper-Paths

1 8 1 (8,3,2,1) & (8,7,6,1)

2 8 6 (8,3,2,1,6) & (8,7,6)

3 5 26 (5,4,9,13,12,17,16,21,26) &
(5,10,14,19,24,29,28,27,26))

4 16 8 (16,17,12,8), (16,15,11,6,7,8) &
(16,15,11,6,7,8)

5 23 14 (23,22,17,12,13,14), (23,18,13,14) &
(23,24,19,14)

6 29 20 (29,24,19,20) & (29,30,25,20)

Table 4.3: Comparison of state variables for no coding, LP, DD and CD.

No Coding LP DD CD

x11 19.10 19.10 19.09 19.09

x21 0 0 0.01 0.01

x12 0 0 0.01 0.04

x22 21.08 21.07 21.07 21.07

x13 15.32 12.42 12.99 15.32

x23 0 2.90 2.33 0

x14 14.97 15.10 15.02 15.08

x24 0.06 0 0.0087 0.0087

x34 0 0 0 0

x15 0 8.69 8.8 0.05

x25 0 0 0.05 9.19

x35 11.6 2.90 2.79 11.54

x16 18.43 18.43 18.43 18.43

x26 0 0 0 0

y1 N/A 0 0 N/A

y2 N/A 0.17 0.63 N/A

y3 N/A 12.47 13.87 N/A

y4 N/A 8.69 9.15 N/A

y5 N/A 2.9 2.68 N/A

y6 N/A 2.9 3.98 N/A
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Figure 4.5: Comparison of total system cost (per unit rate), for different systems: DD and
non-coded against LP.

4.7 Conclusion

We considered a wireless network with given costs on arcs, traffic matrix and multiple

paths. The objective was to find the splits of traffic for each source across its multiple

paths in a distributed manner leveraging the reverse carpooling technique where the peak

transmissions (per unit time) at each node is limited. For this we split the problem into two

sub-problems, and propose a two-level distributed control scheme set up as a game between

the sources and the hyperlink nodes. On one level, given a set of hyperlink capacities and

node-prices, the sources selfishly choose their splits and attain a Nash equilibrium. On

the other level, given the traffic splits, the hyperlinks and nodes may slightly increase or

decrease their capacities and prices using a steepest descent algorithm. We constructed

a Lyapunov function argument to show that this process asymptotically converges to the

minimum cost solution, although performed in a distributed fashion.

In designing the two level controller, we came up with an interesting formulation that

we believe might be useful in other coordination games. The idea is to augment the

state space of the system using additional variables that are controlled by unselfish agents.

Although these agents only have local information at their disposal, they are able to modify

the potential function of the system as a whole, and hence change the actions taken by
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the selfish routing agents. Essentially, these agents take on some of the system cost on

themselves in order to redistribute the overall costs. The system wide cost is minimized as

a result. We also showed that the idea can be coupled with a Lagrange multiplier approach

to enforce constraints as well.

We performed several numerical studies and found that our two-level controller con-

verges fast to the optimal solutions. Some of the bi-products of our experiments were that:

more expensive paths before network coding became cheaper and shortest paths were not

necessarily optimal. In conclusion, from a methodological standpoint we have a distributed

controller that achieves a near-optimal solution when the individuals are self-interested.

In the next chapter, we explore the benefits of an auction based scheduling mechanism

that allocates channel resources to a large number of competing mobile applications in a

cellular network. We model the apps as queues that arrive and depart as they are turned

on and off. Conventional wisdom suggest to use Longest Queue First (LQF) policy in

which the server awards its service at each instant to the longest of queues at that instant.

LQF has many nice properties like achieving throughput optimality, fairness etc. However,

this policy requires knowledge of queues at the scheduler (base station), which may not

be possible in the case of cellular networks. The applications may be asked to provide

queue length information. In that case, the applications, being selfish, may attempt to

obtain unfair amount of resources by providing false informations to mislead the scheduler.

Then, how can we enforce the apps to report their queue lengths truthfully? One solution

is second price auction based scheduling. When the resource becomes available, the base

station conducts a second-price auction in which one unit of service is awarded to the

highest bidder at the payment of second highest bid. Now, the question we are interested

in answering is whether conducting such an auction repeatedly over time with queues

arriving and departing would result in some form of equilibrium? Would the scheduling

decisions resulting from such auctions resemble that of LQF? We attempt to answer these

questions in the next chapter.
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5. MAC LAYER: A MEAN FIELD GAMES APPROACH TO SCHEDULING IN

CELLULAR SYSTEMS

There has been a rapid increase in the usage of smart hand held devices for Internet

access. These devices are supported by cellular data networks, with the usage of these

data networks taking the form of packets generated by apps running on the smart devices.

The users of the apps terminate and start new ones every so often, and move around to

different cells as they do so. Scheduling uplink and downlink packets in a “fair” manner

under these circumstances is a topic of much recent research.

In this work, we consider a system consisting of smart phone users whose apps are

modeled as queues that arrive when the user starts the app, and depart when the user

terminates that app and starts a new one. Apps may generate packets (uplink) or might

request packets from else where (downlink), and these processes are captured by considering

jobs of different sizes that arrive to these queues. Users move around in an area that is

divided up into cells that each has a cellular base station, and scheduling a particular user

in a cell implies providing a unit of service to the queue that represents his/her currently

running app. At any time, the user might terminate the app with a fixed probability, giving

rise to a geometric lifetime for each app. Note that the app may be terminated even if it

has packets queued up, i.e., the lifetime of a queue is unrelated to the amount of service

performed on it or the jobs waiting for service.

The problem of scheduling in wired and wireless systems has been a topic of much

recent research. Most have focused on the case where a finite number of infinitely log lived

flows exist in the system, and the objective is the maximize the total throughput of the

system as a whole. A seminal piece of work in this regime is [74], in which the so called

max-weight algorithm was introduced. Essentially, the argument consisted of minimizing

the drift of quadratic Lyapunov function by maximizing the queue-length weighted sum of

acceptable schedules. Follow on works [15, 32, 34, 48, 49, 75] have illustrated its validity in
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a variety of network scenarios.

If queues arrive and depart in the system, then a natural scheduling policy in the single

server case is a Longest Queue First (LQF) scheme, in which each server picks the longest

of the queues requesting service from it, and awards it one unit of service. LQF has many

attractive properties, such a minimizing the expected value of the longest queue in the

system. It has also been shown [1] that with Bernoulli arrivals it minimizes the probability

of the shortest queue being shorter than a target value. In other words, it minimizes the

longest queue, and maximizes the shortest queue, effectively giving rise to queue that at

similar in length.

Critical to all the above work is the assumption that the queue length values are avail-

able to the scheduler. While the downlink queues would naturally be available at a cellular

base station, the only way to get the uplink queue information is to ask the users them-

selves. However, reporting a larger value of queue length implies a higher probability of

being scheduled under all the above policies, implying a strong incentive to lie about one’s

queue length. How are we to design a scheduling scheme that possesses the good qualities

of LQF, while relying on self-reported values from the users?

An appealing idea is to use some kind of pricing or auction scheme to take scheduling

decisions for cellular data access. For instance, [20] describes an experimental trial of a

system in which day-ahead prices are announced to users, who then decide on whether or

not to use their 3G service based on the price at that time. However, these prices should

be have to be determined empirically.

The key objective of this work is to design an incentive compatible scheduling scheme

that behaves in an LQF-like fashion. Thus, we aim to systematically analyze an auction

theoretic framework in which each app bids for service from the cellular base station that

the device is currently located in. The auction is conducted in a second-price fashion,

with the winner being the one that bids highest, and the charge being the second highest

bid. It is well known that such an auction promotes truth-telling [29]. The question we

are interested in answering is whether conducting such an auction repeatedly over time
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with queues arriving and departing would result in some form of equilibrium? Would the

scheduling decisions resulting from such auctions resemble that of LQF?

In this work, we investigate the existence of such an equilibrium using the theory of

Mean Field Games (MFG). MFG has received a lot of attention in the recent years [2,22,79].

MFG offers a mathematical framework to approximate Perfect Bayesian Equilibrium (PBE)

in large player dynamic games which is otherwise intractable. PBE requires each player

to keep track of their beliefs on the future plays of every other opponent in the system.

This makes the computation of PBE computationally intractable when the number of

players is large. Henceforth, Mean Field Equilibrium (MFE), an equilibrium concept in

MFG is used to approximate PBE. In MFG, the players model their opponents through

an assumed distribution over their action spaces, and play the best response action against

this distribution. We say that the system is at MFE if this best response action turns out

to be a sample drawn from the assumed distribution.

Our main result is that the dynamic auction based scheduling mechanism has a MFE.

Also, we show that the equilibrium bidding strategy of each player is montone in their

queue length. That means, at each time the service is awarded to the longest of queues, a

policy that resembles LQF. Hence, we believe that auction theoretic scheduling mechanism

may attain the same benefits as that of LQF policy.

5.1 Model

Consider a large geographical area that is uniformly partitioned into N cells each having

one base station. We assume that there are a large number of mobile users and assume that

they are randomly moving around the region passing from one cell to another cell. At every

unit interval, the mobile users are uniformly and randomly distributed across N cells such

that each cell contains exactly M users. Each base station conducts second price auction

among the users within its cell territory at unit intervals. And the winner receives one unit

worth of service. Let Qi,k represents the residual workload of agent (mobile user) i, just

before kth auction. We assume that Qi,k ∈ [0,∞) and note that it completely represents

the state of the queue at time k. Agent i’s workload is influenced by the following three
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processes.

1. Arrivals: After every auction, an arrival Ai,k occurs at agent i, where Ai,k is a random

variable independent of every other parameter and distributed according to ΦA.

2. Service: Di,k is the random variable representing the amount of service delivered at

the k-th time instant. We assume that the server serves at-most a unit amount of

workload of the winner in any auction. Di,k = min{1, Qi,k}×Wi,k, where Wi,k = 1(i

wins at time k).

3. Regeneration: We assume that after participating in an auction agent i may regen-

erate its workload with probability 1− β where 0 < β < 1. We assume that the new

workload is a random variable distributed according to ΨR.

Hence, the state of agent i at time k + 1 is,

Qi,k+1 =


Qi,k −Di,k +Ai,k agent i does not regenerate at k

Ri,k otherwise,

(5.1)

where Ai,k ∼ ΦA and Ri,k ∼ ΨR. Below we state the assumptions on the arrival and

regeneration processes.

Assumption 1. The arrivals {Ai,k} are i.i.d random variables distributed according to

ΦA. We assume that Ai,k ∈ [0, Ā]. Also, these random variables have a bounded density

function, ϕA. (∥ϕA∥ < cϕ.)

Assumption 2. The regeneration values {Ri,k} are i.i.d are random variables distributed

according to ΨR and they have a bounded density ψR. (∥ψR∥ < cψ.)

Each agent bears a holding cost at every instant, that corresponds to the dis-utility due

to unserved workload. The holding cost of agent i at time k is C(Qi,k), where C : R+ → R+.

The agent also pays for for service if it wins the auction. This is called bidding cost. Let
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Xi,k is the bid submitted by agent i in the k-th auction and

X̄−i,k = max
j∈Mi,k

Xj,k,

where Mi,k is the set consisting of all other agents participating in at time k with agent

i. Then, the bidding cost of agent i is X̄−i,k ×Wi,k. We make some assumptions on the

holding cost function as stated below.

Assumption 3. The holding cost function C : R+ 7→ R+ is continuous, increasing and

strictly convex. We also assume that C is O(qm) for some integer m.

5.1.1 Optimal bidding strategy

In this section we begin to understand the strategy space available to an agent. We

note that the information available with any agent, about the market at any time prior to

the auction, only includes the following:

1. The bids it made in each of the previous auction from point of last regeneration.

2. The auctions it won.

3. The payments made for the auctions won.

Let, Hi,k be the vector containing the above information available to agent i at time k.

An agent is unaware of any information concerning other agents. Each agent holds a belief

that is a distribution over future trajectories which gets updated via Baye’s rule as new

information arrives at the occurrence of each auction event. Let µi,k be the belief of agent i

at time k.

Let pure strategy θi be the history dependent strategy of agent i, i.e θi(Hi,k) = Xi,k.

We define θ−i to be the vector of strategies of all agents except agent i and θ = [θi,θ−i].

We refer to θ as strategy profile.
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Given a strategy profile θ, a history vector Hi,k and a belief vector µi,k, expected cost

is,

Vi,µi,k(Hi,k;θ) = Eθ,µi,k

T
(k)
i∑
t=k

[
C(Qi,t) + X̄−i,t1(Wi,t = 1)

] , (5.2)

where T
(k)
i is the time at which player i regenerates after time k.

We are now ready to introduce the notion of Nash equilibrium in dynamic games, called

Perfect Bayesian Equilibrium (PBE).

Definition 3 (Perfect Bayesian equilibrium). A strategy profile θ is said to be a Perfect

Bayesian Equilibrium if

1. For each agent i, after any history Hi,k, θi(Hi,k) ∈ argmaxθ′i Vi,µi,k(Hi,k, θ
′
i,θ−i)

2. The belief vectors µi,k are updated via Bayes’ rule for all agents.

The above equilibrium requires each agent to keep track of complex beliefs over other

agents and update them using Bayes’ rule at each time. As the number of agents grow

large, this imposes large computational constraints on the agents. Also, the equilibrium

bid calculation of an agent depends on the entire histories and the strategies of all the

agents. So this equilibrium characterization is intractable.

5.2 Mean field model

In the mean field model we approximate the model parameters of the above stochastic

game as the number of agents in the game approaches infinity. According to the belief

of a single agent, as the number of the other agents increases, we conjecture that the

distribution of a random agent’s state does not change under Bayesian updates. Further,

we can also conjecture that the bid distributions of the m − 1 agents in an auction are

independent, as it is unlikely that they would have interacted from the point of earliest

regeneration of the all the agents in the auction. Since, in any auction the identity of other

agents is unimportant, agent i needs to only maintain belief over the bid of a random agent.
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In the following sections, we formalize these ideas and define the concept of mean field

equilibrium (MFE).

5.2.1 Agent’s decision problem

In this section, we address a single agent’s decision problem. Let the candidate be

agent i. As described above, the agent needs to maintain a belief over the bids of a random

agent. Suppose this cumulative distribution is ρ. We assume that ρ ∈ P where,

P = {ρ|ρ is a continuous c.d.f,

∫
(1− ρ(x))dx < E},

where E < ∞ and independent of ρ. Under this belief model, the expected cost of the

agent (5.2), can be re-written as,

Vi,ρ(Hi,k;θ) = E

 Tk
i∑

t=k

[C(Qi,t) + rρ(Xi,k))]

 (5.3)

where the expectation is over T ki and future state evolutions. Note that Xi,k = θi(Hi,k).

Also, rρ(x) = E[X̄−i,kI{X̄−i,k ≤ x}] is the expected bidding cost when the agents bids x

under the assumption that the bids of other agents are distributed according to ρ. We see

that in replacing the belief with ρ, we have made an agent’s decision problem independent

of other agents’ strategies, hence we represent the cost by Vi,ρ(Hi,k; θi).

We now give the expression for rρ in terms of ρ. Given ρ, the winning probability in a

second price auction is

pρ(x) = Pr(X̄−i,k ≤ x) = ρ(x)M−1. (5.4)

where M is the number of agents selected for participating in an auction. The expected

payment when bidding x is

rρ(x) = E[X̄−i,kI{X̄−i,k ≤ x}] = xpρ(x)−
∫ x

0
pρ(u)du. (5.5)
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Since, T ki is a geometric random variable, the above expression reduces to

Vi,ρ(Hi,k; θi) = E

[ ∞∑
t=k

βt[C(Qi,t) + rρ(Xi,t)]

]
. (5.6)

Here, the state process Qi,k is Markov; the future state is independent of past states and

past actions given the current state and current action. The transition kernel of the process

is

Pr(Qi,k+1 ∈ B|Qi,k = q,Xi,k = x) =βpρ(x)Pr((q − 1)+ +Ak ∈ B) (5.7)

+ β(1− pρ(x))Pr(q +Ak ∈ B) + (1− β)ΨR(B).

(5.8)

where B ⊆ R+ is a Borel set and x+ , max(x, 0). Recall that Ak ∼ ΦA is the arrival

between (k)th and (k+1)th auction and ΨR is density function of the regeneration process.

In the above expression, the first two terms correspond to the event that the agent does not

regenerate. In particular the first corresponds to the event that agent wins the auction at

time k. The last term captures the event that the agent regenerates after auction k. Also,

note that the transition kernel is time invariant. Therefore, the agent’s decision problem,

which is to find a policy that minimizes the cost given above, can be modeled as an infinite

horizon discounted cost MDP. From Theorem 5.5.3 in [56], there exists an optimal Markov

deterministic policy to a discounted cost MDP. Then, from (5.6), the optimal value function

of the agent can be written as

V̂i,ρ(q) = inf
θi∈Θ

E

[ ∞∑
t=1

βt[C(Qi,t) + rρ(Xi,t)] |Qi,0 = q

]
. (5.9)

where Θ is the space of Markov deterministic policies.

Note that user index is redundant in the above expression as we are concerned with a

single agent’s decision problem, In future notations, we will omit the user subscript i.
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5.2.2 Stationary distribution

Given cumulative bid distribution ρ and a Markov policy θ ∈ Θ, the transition kernel

given by (5.7) can be re-written as,

Pr(Qk+1 ∈ B|Qk = q) =βpρ(θ(q))Pr((q − 1)+ +Ak ∈ B)+

β(1− pρ(θ(q)))Pr(q +Ak ∈ B) + (1− β)ΨR(B). (5.10)

Then, we have an important result in the following lemma:

Lemma 10. The Markov chain described by the transition probabilities in (5.10) is positive

Harris recurrent and has a unique stationary distribution.

Proof. From eq. (5.10) we note that,

Pr(Qk+1 ∈ B|Qk = q) ≥ (1− β)ΨR(B)

where 0 < β < 1 and ΨR is a probability measure. The result then follows from results in

Chapter 12, Meyn and Tweedie [43].

We denote the unique stationary distribution by Πρ,θ.

5.2.3 Mean field equilibrium

In this section, we define the mean field equilibrium for our stochastic game. Assume

that all agents conjecture the same bid distribution ρ and the decision problem in eq. (5.9)

has an optimal policy θ̂ρ. This induces a dynamics with transition probabilities as in

eq. (5.10). We have shown in the previous section that the dynamics induced by the

transition kernel eq. (5.10) has a stationary distribution which we denote by Πρ = Πρ,θ̂ρ .

The mean field equilibrium requires the consistency check, that the bid distribution

induced by the stationary distribution Πρ be equal to the bid distribution conjectured by
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the agent, i.e., ρ. In other words we require,

ρ(x) = Πρ(θ
−1
ρ ([0, x])). (5.11)

Thus, we have the following definition of MFE:

Definition 4 (Mean field equilibrium). Let ρ be a bid distribution and θρ be a stationary

policy for an agent. Then, we say that (ρ, θρ) constitutes a mean field equilibrium if

1. θρ is an optimal policy of the decision problem in eq. (5.9), given bid distribution ρ;

and

2. ρ(x) = Πρ(θ
−1
ρ ([0, x])),∀x ∈ R+.

We prove the existence of an MFE in Section 5.4. Before that, in the following section,

we establish monotonicity and continuity the optimal bid function. These properties are

essential in showing the existence of an MFE.

5.3 Properties of optimal bid function

In this section, we state the optimality equation for the single agent’s decision problem

given in eq. (5.9) and describe an optimal strategy. We subsequently list some useful

properties of this optimal strategy. In this section we have a fixed bid distribution ρ, and

hence, omit ρ from the subscripts.

Note that the decision problem given by eq. (5.9) is an infinite horizon, discounted

Markov decision problem. The optimality equation or Bellman equation corresponding to

the decision problem is

V̂ρ(q) = C(q) + βEA(V̂ρ(q +A))

+ inf
x∈R+

[rρ(x)− pρ(x)βEA

(
V̂ρ(q +A)− V̂ ρ((q − 1)+ +A)

)
], (5.12)

where A is the arrival process. In the following lemma we show that there exists a unique

solution to the above optimality equation and derive an optimal Markov stationary strategy
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to the decision problem.

We first introduce some necessary notation.Let,

V =

{
f : R+ 7→ R+ : sup

q∈R+

∣∣∣∣ f(q)w(q)

∣∣∣∣ <∞

}
, (5.13)

where w(q) = maxC(q), 1. Note that V is a Banach space with w-norm,

∥f∥w = sup
q∈R+

∣∣∣∣ f(q)w(q)

∣∣∣∣ <∞.

Also, define the operator Tρ as

(Tρf)(q) = C(q) + βEAf(q +A)

+ inf
x∈R+

[
rρ(x)− pρ(x)β(EA(f(q +A)− f((q − 1)+ +A)))

]
, (5.14)

where f ∈ V. Lemma 17 shows that infimum in the above operator occurs at max{0, β∆f(q)},

where ∆f(q) = EA(f(q + A)− f((q − 1)+ + A)). Then, substituting rρ and pρ from (5.4)

and (5.5), the above expression can be rewritten as,

(Tρf)(q) = C(q) + βEAf(q +A)−
∫ max{0,β∆f(q)}

0
pρ(u)du. (5.15)

Now, we are ready to state the lemma.

Lemma 11. Given a cumulative bid distribution ρ,

1. There exists a unique f̂ρ ∈ V such that Tρf̂ρ = f̂ρ. Also, for any f ∈ V, Tnρ f → f̂ρ

(as n→ ∞).

2. The unique fixed point f̂ρ of operator Tρ is a unique solution to the optimality equation

(5.12), i.e., f̂ρ = V̂ρ.

3. Let θ̂ρ(q) = max
{
0,EA

[
V̂ρ(q +A)− V̂ρ((q − 1)+ +A)

]}
. Then, θ̂ρ is an optimal

policy.
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Proof. First and second statement in the lemma follows from Theorem 6.10.4 in [56] if the

following conditions are satisfied. Let Qk be the random variable denoting queue length at

time k. Then, the conditions to be satisfied are,

Tρf ∈ V ,∀f ∈ V, (5.16)

sup
x∈R+

|C(q) + r(x)| ≤ K1w(q), for some K1 > 0, ∀q ∈ R+, (5.17)

EQ1 [f(Q1)|Q0 = q] ≤ K2w(q), for some K2 > 0, ∀q ∈ R+, ∀f ∈ V, (5.18)

and

βjEQj (w(Qj)|Q0 = q) ≤ K3w(q), for some 0 < K3 < 1, for some j, ∀q ∈ R+. (5.19)

To prove (5.16), one may observe from (5.15) that

C(q) ≤ (Tρf)(q) ≤ C(q) + βEAf(q +A). (5.20)

Here, the left most expression is positive. And, the rightmost expression is bounded by

some multiple of w(q) since A is a bounded random variable by Assumption 1. Together,

we get (5.16). Further, (5.17) holds true from the definition of w(q) and from the fact that

r(x) ≤ lim
y→∞

r(y) < (M − 1)

∫
(1− ρ(x))dx < (m− 1)E.

Here, the last inequality is due to ρ ∈ P. Equation (5.18) holds true since

EQ1 [f(q1)|Q0 = q] ≤ ∥f∥wEQ1 [w(Q1)|Q0 = q]

= ∥f∥w
[
p(b)EAw((q − 1)+ +A) + (1− p(b))EAw(q +A)

]
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≤ ∥f∥w [EAw(q +A)]

≤ ∥f∥wK2w(q).

for some large enough K2 due to Assumption 3. Finally, we have eq. (5.19) since,

βjEQj [w(Qj)|Q0 = q] = βjEQj [C(Qj)|Q0 = q]

≤ βjC(q + jĀ)

≤ βC(q),

for large enough j. Here Ā. as defined in Assumption 1, is the maximum arrival possible

between any two adjacent auctions.

Since all the conditions of Theorem 6.10.4 are met, the first result in the lemma holds

true. The second result can be obtained by comparing (5.14) and (5.12). The last part of

the lemma follows from Lemma 17.

Now, we establish that V̂ρ and θ̂ρ are continuous and increasing functions.

Lemma 12. Given a cumulative bid distribution function ρ, we have

1. V̂ρ is a continuous monotone increasing function.

2. θ̂ρ is a continuous strictly monotone increasing function.

Proof. Let f ∈ V. Suppose f is a continuous monotone increasing function. Now, we prove

that Tρf is also continuous monotone increasing function. Since, Tnρ f → V̂ρ according to

statement 2 of the previous lemma, we can conclude that V̂ρ also holds the same property.

First we prove that Tρf is a monotone increasing function. Let q > q′. Then,

Tρf(q)− Tρf(q
′) =C(q)− C(q′) + βEA(f(q +A)− f(q′ +A))

+ β inf
x
[rρ(x)− pρ(x)EA(f(q +A)− f((q − 1)+ +A))]

− β inf
b
[rρ(x)− pρ(x)EA(f(q

′ +A)− f((q′ − 1)+ +A))]
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≥βEA(f(q +A)− f(q′ +A))

+ β inf
b
[pρ(x)EA(f(q

′ +A)− f((q′ − 1)+ +A))

−EA(f(q +A) + f((q − 1)+ +A))]

≥βmin
{
EA(f(q +A)− f(q′ +A)),

EA(f((q − 1)+ +A)− f((q′ − 1)+ +A))
}
≥ 0.

The second inequality follows from the assumption that C(.) is an increasing function. And

the last inequality follows from the assumption that f(.) is an increasing function.

To prove that Tρf is continuous consider a sequence {qn} such that qn → q. Since f is a

continuous function, f(qn+a) → f(q+a). Then, by using dominated convergence theorem,

we have EAf(qn+A) → EAf(q+A) and EAf((qn− 1)++A) → EAf((q− 1)++A). Also,

∆f(qn) ≥ 0 as f is an increasing function. Then, from (5.15), we get that

Tρf(qn) =C(qn) + βEAf(qn +A)−
∫ β∆f(qn)

0
pρ(u)du (5.22)

→C(q) + βEAf(q +A)−
∫ β∆f(q)}

0
pρ(u)du = Tρf(q). (5.23)

Hence, Tf is a continuous function. This yields statement 1 in the lemma.

Now, to prove second part of the lemma, assume that ∆f is an increasing function.

First, we show that ∆Tρf is an increasing function. Let q > q′. From (5.15), for any a < Ā

we can write

(Tρf)(q + a)− (Tρf)((q − 1)+ + a)− (Tρf)(q
′ + a) + (Tρf)((q

′ − 1)+ + a)

= C(q + a)− C((q − 1)+ + a)− C(q′ + a) + C((q′ − 1)+ + a)

+ βEAf(q + a+A)− βEAf((q − 1)+ + a+A)

− βEAf(q
′ + a+A) + βEAf((q

′ − 1)+ + a+A)

−
∫ β∆f(q+a)

β∆f(q′+a)
pρ(u) du+

∫ β∆f((q−1)++a)

β∆f((q′−1)++a)
pρ(u) du
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= C(q + a)− C((q − 1)+ + a)− C(q′ + a) + C((q′ − 1)+ + a)

+EAf((q + a− 1)+ +A)−EAf((q − 1)+ + a+A)

−EAf((q
′ + a− 1)+ +A) +EAf((q

′ − 1)+ + a+A)

+

∫ β∆f(q+a)

β∆f(q′+a)
1− pρ(u) du+

∫ β∆f((q−1)++a)

β∆f((q′−1)++a)
pρ(u) du

It can be easily verified that EA(f(q+a−1)++A)−EA(f(q−1)++a+A)−EA(f(q
′+a−

1)++A)+EA(f(q
′−1)++a+A) ≥ 0 as f is increasing (due to statement 1 of this lemma).

From the assumption that ∆f is increasing, the last two terms in the above expression are

also non-negative. Now, taking expectation on both sides, we obtain ∆Tρf(q)−∆Tρf(q
′) ≥

∆C(q)−∆C(q′) > 0. Therefore, from Statement 2 and 3 of the previous lemma, we have

θρ(q)− θρ(q
′) = ∆V̂ρ(q)−∆V̂ρ(q

′) ≥ ∆C(q)−∆C(q′) > 0.

Here, the last inequality holds since C is a strictly convex increasing function.

We state a useful Corollary that defines the optimal policy of the agent.

Corollary 6. An optimal policy of the agent’s decision problem (5.9) is given by

θ̂ρ(q) = βEA

[
V̂ρ(q +A)− V̂ρ((q − 1)+ +A)

]

The proof follows from Statement 3 of Lemma 11 and Statement 1 of Lemma 12

5.4 Existence of MFE

Now, we have the main result showing the existence of MFE.

Theorem 8. There exists an MFE (ρ, θ̂ρ) such that

ρ(x) = Πρ

(
θ̂−1
ρ [0, x]

)
,∀x ∈ R+.

We prove theorem in the next section. Before moving to the proof, let us introduce
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some useful notation. Let Θ = {θ : R 7→ R, ∥θ∥w < ∞}. Note that Θ is a normed space

with w-norm. Also, let Ω be the space of absolutely continuous probability measures on

R+. We endow this probability space with the topology of weak convergence. Note that

this is same as the topology of point-wise convergence of continuous cumulative distribution

functions.

We define θ∗ : P 7→ Θ as (θ∗(ρ))(q) = θ̂ρ(q), where θ̂ρ(q) is the optimal bid given by

Corollary 6. It can easily verified that θ̂ρ ∈ Θ. Also, define the mapping Π̂ that takes

a bid distribution ρ to the invariant workload distribution Πρ(·) = Πρ,θ̂ρ(·). Later, using

Lemma 13 we will show that Πρ(·) ∈ Ω. Therefore, Π̂ : P → Ω. Finally, let F be a mapping

from P. We define F as (F(ρ))(x) = Πρ(θ̂
−1
ρ ([0, x])).

Now to prove the above theorem we show that F has a fixed point, i.e F(ρ) = ρ.

Schauder’s fixed point theorem, stated below, yields the sufficient conditions for the exis-

tence of a fixed point to the mapping F .

Theorem 9 (Schauder’s fixed point theorem). Suppose F(P) ⊂ P. Then, F(.) has a fixed

point, if F is continuous, F(P) is contained in a convex and compact subset of P.

In subsequent sections, we show that the mapping F satisfies the conditions of the

above theorem, and hence it has a fixed point. Note that P is a convex set. Therefore, we

just need to show that the other two conditions are satisfied.

5.5 MFE existence: proof

5.5.1 Continuity of the map F

To prove the continuity of mapping F , we first show that θ∗ and Π̂ are continuous

mappings. To that end, we will show that for any sequence ρn → ρ in uniform norm,

we have θ∗(ρn) → θ∗(ρ) in w-norm and Π̂(ρn) ⇒ Π̂(ρ) ( ⇒ implies weak convergence).

Then, we show that F(P) ∈ P. Finally, we use the continuity of θ∗ and Π̂ to prove that

F(ρn) → F(ρ) which completes the proof.

5.5.1.1 Step 1: continuity of θ∗

Theorem 10. The map θ∗ is continuous.
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Proof. Define the map V ∗ : P 7→ V that takes ρ to V̂ρ(·). From Corollary 6,

0 <|θ̂ρ1(q)− θ̂ρ2(q)|

=|β[EA(V̂ρ1(q +A)− V̂ρ1((q − 1)+ +A)− V̂ρ2(q +A) + V̂ρ2((q − 1)+ +A))]| (5.24)

≤βEA|V̂ρ1(q +A)− V̂ρ2(q +A)|+ βEA|V̂ρ1((q − 1)+ +A)− V̂ρ2((q − 1)+ +A)| (5.25)

≤β∥V̂ρ1 − V̂ρ2∥wEA(w(q +A) + w((q − 1)+ +A)) (5.26)

≤K∥V̂ρ1 − V̂ρ2∥ww(q) (5.27)

for some large K independent of q. The last inequality follows from the fact that the

random variable A has bounded support. Hence, ∥θ∗ρ1 − θ∗ρ2∥w ≤ K∥V̂ρ1 − V̂ρ2∥w and

continuity of the map V ∗ implies the continuity of the map θ∗.

For any ρ ∈ P and f1, f2 ∈ V, from (5.15), we have

|Tρf1(q)− Tρf2(q)| ≤β|EA(f1(q +A)− f2(q +A))|

+

∣∣∣∣∣
∫ β∆f1(q)

0
ρM−1(u) du−

∫ ∆f2(q)

0
ρM−1(u) du

∣∣∣∣∣
≤β∥f1 − f2∥K1w(q) +

∣∣∣∣∣
∫ β∆f1(q)

β∆f2(q)
|ρM−1(u)| du

∣∣∣∣∣
≤β∥f1 − f2∥K1w(q) + β|∆f1(q)−∆f2(q)|

≤β(K1 +K2)∥f1 − f2∥w(q)

Therefore,

∥Tρf1 − Tρf2∥w ≤ K̂∥f1 − f2∥w ⇒ (A) (5.28)

for some large K̂, independent of ρ.

Now, let Tρ1 and Tρ2 be the Bellman operators corresponding to ρ1 and ρ2. We will
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bound |Tρ1f − Tρ2f |. From (5.4), we have

|pρ1(x)− pρ2(x)| =|ρM−1
1 (x)− ρM−1

2 (x)|

=|ρM−1
1 (x)− ρ2(x)ρ

M−2
1 (x) + ρ2(x)ρ

M−2
1 (x)− ρM−1

2 (x)|

≤|ρ1(x)− ρ2(x)|+ |ρM−2
1 (x)− ρM−2

2 (x)| (since ρ1(x) ≤ 1)

Hence by induction, |pρ1(x)− pρ2(x)| ≤ (M − 1)|ρ1(x)− ρ2(x)| ≤ (M − 1)∥ρ1 − ρ2∥. Also,

from (5.5)

|rρ1(x)− rρ2(x)| ≤ x|pρ1(x)− pρ2(x)|+
∫ x

0
|pρ1(u)− pρ2(u)|du ≤ 2x(M − 1)∥ρ1 − ρ2∥

Now, using the definition of Tρ from 5.15,

|Tρ1f(q)− Tρ2f(q)| = |
∫ β∆f(q)

pρ1(u)du−
∫ β∆f(q)

pρ2(u)du| (5.29)

≤ 2(M − 1)∆f(q)||ρ1 − ρ2||

≤ 2(M − 1)K1∥f∥ww(q)∥ρ1 − ρ2∥,⇒ (B) (5.30)

where the last statement is due to the fact that f ∈ V .

Now, let j be such that T jρ1 is a α-contraction.

∥V̂ρ1 − V̂ρ2∥w =∥T jρ1 V̂ρ1 − T jρ2 V̂ρ2∥w

≤∥T jρ1 V̂ρ1 − T jρ1 V̂ρ2∥w + ∥T jρ1 V̂ρ2 − T jρ2 V̂ρ2∥w

=⇒ (1− α)∥V̂ρ1 − V̂ρ2∥w ≤∥T jρ1 V̂ρ2 − T jρ2 V̂ρ2∥w (5.31)

It can be shown that

∥T jρ1 V̂ρ2 − T jρ2 V̂ρ2∥w ≤ ∥T jρ1 V̂ρ2 − T j−1
ρ1 Tρ2 V̂ρ2∥w + ∥T j−1

ρ1 Tρ2 V̂ρ2 − T j−2
ρ1 T 2

ρ2 V̂ρ2∥w

+ · · ·+ ∥Tρ1T j−1
ρ2 V̂ρ2 − T jρ2 V̂ρ2∥w
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≤ K̂j−1∥Tρ1 V̂ρ2 − Tρ2 V̂ρ2∥w + · · ·+ ∥Tρ1T j−1
ρ2 V̂ρ2 − T jρ2 V̂ρ2∥w (5.32)

≤ (K̂j−1 + · · ·+ 1)∥Tρ1 V̂ρ2 − Tρ2 V̂ρ2∥w (5.33)

≤ 2(m− 1)K∥ρ1 − ρ2∥(K̂j−1 + · · ·+ 1)∥V̂ρ2∥w (5.34)

Here (5.32) and (5.34) are due to (B) and (A) respectively. Now, from (5.31) and (5.34),

we get

∥V̂ρ1 − V̂ρ2∥w ≤ 2(m− 1)K(K̂j−1 + · · ·+ 1)

1− α
∥ρ1 − ρ2∥∥V̂ρ2∥w (5.35)

≤ 2(m− 1)K(K̂j−1 + · · ·+ 1)

1− α
∥ρ1 − ρ2∥(∥V̂ρ1∥w + ∥V̂ρ1 − V̂ρ2∥w) (5.36)

(5.37)

Therefore, if 2(m−1)K(K̂j−1+···+1)
1−α ∥ρ1 − ρ2∥ < 1

2 , then

∥V̂ρ1 − V̂ρ2∥w ≤4(m− 1)K(K̂j−1 + · · ·+ 1)

1− α
∥V̂ρ1∥w∥ρ1 − ρ2∥ (5.38)

Hence, the map V̂ and θ̂ are continuous.

5.5.1.2 Step 2: continuity of the map Π̂

Recall that Π̂ takes ρ ∈ P to probability measure Πρ(.) = Πρ,θ̂ρ(.). First we show that

Πρ(.) ∈ Ω, where Ω, as defined before, is the space of absolutely continuous (with respect

to Lebesgue measure) measures on R+.

Lemma 13. For any ρ ∈ P and any θ ∈ Θ, Πρ,θ(·) is absolutely continuous with respect

to the Lebesgue measure on R+.
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Proof. Πρ,θ(·) is the invariant queue-length distribution of the dynamics

q →


q +A with probability βpρ(θ(q))

(q − 1)+ +A with probability β(1− pρ(θ(q))

R with probability (1− β),

(5.39)

where, A ∼ ΦA and R ∼ ΨR. This is the same as the dynamics

q →


q′ +A with probability β

R with probability (1− β),

where q′ is a random variable with distribution generated by the conditional probabilities

p(q′ = q|q) =pρ(θ(q))

p(q′ = (q − 1)+|q) =1− pρ(θ(q))

Let Π′ be the distribution of q′. Then for any Borel set B,

Πρ,θ(B) =β(ΦA ∗Π′)(B) + (1− β)ΨR(B)

=β

∫ ∞

−∞
ΦA(B − y)dΠ′(y) + (1− β)ΨR(B) (5.40)

If B is a Lebesgue null-set, then so is B − y ∀y. So, ΦA(B − y) = 0 and ΨR(B) = 0 and

therefore π(B) = 0.

We now develop a useful characterization of Πρ,θ. Let

Υ
(k)
ρ,θ(B|q) = Pr(Qk ∈ B|no regeneration , Q0 = q)

be the distribution of queue length Qk at time k induced by the transition probabilities

(5.10) conditioned on the event that Q0 = q and that there are no regenerations until time
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k. We can now express the invariant distribution Πρ,θ(·) in terms of Υ
(k)
ρ,θ(·|q) as in the

following lemma.

Lemma 14. For any bid distribution ρ ∈ P and for any stationary policy θ ∈ Θ, the

Markov chain described by the transition probabilities in eq. (5.10) has a unique invariant

distribution Πρ,θ(·) given by,

Πρ,θ(B) =
∑
k≥0

(1− β)βkEΨR
(Υ

(k)
ρ,θ(B|Q)), (5.41)

where EΨR
(Υ

(k)
ρ,θ(B|Q)) =

∫
Υ

(k)
ρ,θ(B|q)dΨ(q).

Proof. For brevity, denote Πρ,θ(·) be Π(·) and Υ
(k)
ρ,θ = Υ(k) . Let −τ be the last time before

0 the chain regenerated. We have

Π(B) =

∞∑
k=0

Pr(B, τ = k) (5.42)

=
∞∑
k=0

Pr(τ = k)Pr(B|τ = k) (5.43)

Since the regeneration events are independent of the queue-length and occur geometrically

with probability (1− β), Pr(τ = k) = (1− β)βk. Hence,

Π(B) =

∞∑
k=0

(1− β)βkPr(Q0 ∈ B|τ = k) (5.44)

=

∞∑
k=0

(1− β)βkE(E(1Q0∈B|τ = k,Q−k = Q)|τ = k) (5.45)

=
∞∑
k=0

(1− β)βkE(Υ(k)(B|Q)|τ = k) (5.46)

=
∞∑
k=0

(1− β)βkEΨR
(Υ(k)(B|Q)). (5.47)

since Q−k ∼ ΨR given τ = k.

We shall now prove the continuity of Π̂ in ρ. Let Υ
(k)
ρ = Υ

(k)

ρ,θ̂ρ
.
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Theorem 11. The mapping Π̂ : P 7→ Ω is continuous.

Proof. To prove continuity of the mapping Π̂, we just need to show that for any sequence

ρn → ρ in w-norm and for any open set B, lim infn→∞Πρn(B) ≥ Πρ(B). By Fatou’s

lemma,

lim inf
n→∞

Πρn(B) = lim inf
n→∞

∞∑
k=0

(1− β)βkEΨR
[Υ(k)

ρn (B|Q))

≥
∞∑
k=0

(1− β)βkEΨR
[lim inf
n→∞

Υ(k)
ρn (B|Q)] (5.48)

where Q ∼ ΨR.

Recursively, define functions Υ
(0)
B,ρ(q) = 1(q∈B) and Υ

(k)
B,ρ(q) = E[Υ

(k−1)
B,ρ (Q′)|q], where

Prρ(Q
′ ∈ C|q) = pρ(θ̂ρ(q))ΦA(C − (q − 1)+) + (1− pρ(θ̂ρ(q)))ΦA(C − q). (5.49)

Using backward equations, it is easy to see that EΨR
[Υ

(k)
ρ (B|Q)] = EΨR

[Υ
(k)
B,ρ(Q)],

where Q ∼ ΨR.

We now prove that lim infn→∞Υ
(k)
B,ρn

(q) ≥ Υ
(k)
B,ρ(q) for every q ∈ R+. In fact we prove a

stronger result: if qn → q is any converging sequence, then lim infn→∞Υ
(k)
B,ρn

(qn) ≥ Υ
(k)
B,ρ(q)

for every k.

We show the above result by mathematical induction on k. For k = 0, we have

Υ
(0)
B,ρn

(qn) = 1(qn∈B) and, one can easily check that for any open setB, lim infn→∞ 1(qn∈B) ≥

1(q∈B). Hence, our hypothesis holds true for k = 0. Suppose that the hypothesis is true

till k = m − 1. To prove the lemma, we just need to verify that the hypothesis holds for

k = m. Verify that Prqn,ρn(·) =⇒ Prq,ρ(·) by considering the integrals of a bounded

continuous function. Then, by Skorokhod representation theorem, there exists Xn and X

on common probability space such that Xn ∼ Prqn,ρn , X ∼ Prq,ρ and Xn → X a.s. We

have,

lim inf Υ
(m)
B,ρn

(qn) = lim inf E(Υ
(m−1)
B,ρn

(Xn)) (5.50)
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≥E(lim inf Υ
(m−1)
B,ρn

(Xn)) (by Fatou’s lemma) (5.51)

≥E(Υ
(m−1)
B,ρ (X)) (by induction hypothesis) (5.52)

=Υ
(m)
B,ρ(q) (5.53)

which completes the proof.

5.5.1.3 Step 3: continuity of the mapping F

Now, using the results from Step 1 and Step 2, we establish continuity of the mapping

F . First we show that F(ρ) ∈ P.

Lemma 15. For any ρ ∈ P, let ρ̂(x) = (F(ρ))(x) = Πρ(θ̂
−1
ρ ([0, x])), x ∈ R+. Then, ρ̂ ∈ P.

Proof. From the definition of Πρ, it is easy to note that ρ̂ is a distribution function. Since

θ̂ρ is continuous and strictly increasing function as shown in Lemma 12, θ̂−1
ρ ({x}) is either

empty or a singleton. Then, from Lemma 13, we get that Πρ(θ̂
−1
ρ ({x})) = 0. Together, we

get that ρ̂(x) has no jumps at any x and hence it is continuous.

To complete the proof, we need to show that the expected bid under the cumulative

distribution function ρ̂ is bounded from above by a constant that is independent of ρ̂. To

that end, define a new Markov random process Q̃k with the probability transition matrix

Pr(Q̃k+1 ∈ B|Q̃k = q) = β1(q+Ā∈B) + (1− β)ΨR(B) (5.54)

where Ā is the maximum possible arrival between any two consecutive auction instants.

The process Q̃k has an invariant distribution which is given by,

Π̃(B) =

∞∑
k=0

(1− β)βkEΨR
(1(q+kÂ)∈B). (5.55)

The proof of the above result is identical to that of Lemma 14. For any q given, the above

probability measure (5.54) stochastically bounds the probability measure in eq. (5.10),

Therefore, it can be shown that Π̃ stochastically dominates Πρ for all ρ ∈ P, i.e, Πρ 4 Π̃.
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Now, the expected value of the optimal bid function θ̂ρ(q) under Πρ satisfies,

EΠρ [θ̂ρ(q)] ≤EΠ̃[θ̂ρ(q)] (5.56)

≤EΠ̃[V̂ρ(q + Ā)] (5.57)

≤
∞∑
k=0

(1− β)βkEΨR
(V̂ρ(q + (k + 1)Ā)) (5.58)

Above, the first inequality follows from stochastic dominance of Π̃ and the second inequality

is due to the definition of optimal bid function.

From (5.12), we can observe that for any ρ, V̂ρ(q) ≤
∑∞

k=0 β
kC(q+ kĀ) independent of

ρ. Since C(q) ∈ O(qm) for somem, we have V̂ρ(q) ∈ O(qm). Then, EΨR
(V̂ρ(q+(k+1)Â)) ∈

O(km) as the moments of ΨR are bounded. This directly gives that EΠρ [θ̂ρ(q)] is bounded

by the some constant that is independent of ρ and, hence independent of ρ̂. This completes

the proof.

Now, we have the main theorem showing continuity of the map F .

Theorem 12. The mapping F : P 7→ P given by (F(ρ))(x) = Πρ(θ̂
−1
ρ ([0, x])) is continu-

ous.

Proof. Let ρn → ρ in uniform norm. From previous steps, we have θ̂ρn → θ̂ρ in w-norm

and Πρn ⇒ Πρ. Then, using Theorem 5.5 of Billingsley [8], one can show that

Πρn(θ̂
−1
ρn (B)) ⇒ Πρ(θ̂

−1
ρ (B)),

for any Borel set B. Then, F(ρn) converges point-wise to F(ρ) as it is continuous at every

x, i.e., (F(ρn))(x) → (F(ρn))(x) for all x ∈ R+.

Now, we complete the proof by showing that in the norm space P, point wise con-

vergence implies convergence in uniform norm. Let ρn, ρ ∈ P and Fn → F point-wise.

Given ϵ > 0, choose L large enough so that ρ(L) > 1− ϵ. Since ρ is continuous function by

definition, it is uniformly continuous on the compact set [0, L]. Therefore, we can construct
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a sequence 0 = x1 < x2 < · · · < xk = L such that and ρ(xi+1) − ρ(xi) < ϵ. Let J be

large enough so that for all n > J , |ρ(xi) − ρn(xi)| < ϵ for all i. For any y such that

xi < y < xi+1,

|ρ(y)− ρn(y)| <ρ(y)− ρ(xi) + |ρ(xi)− ρn(xi)|+ |ρn(y)− ρn(xi)| (5.59)

<|ρ(xi+1)− ρ(xi)|+ |θ(xi)− ρn(xi)|+ |ρn(xi+1)− ρn(xi)| (5.60)

<2|(ρ(xi+1)− ρ(xi))|+ |ρ(xi)− ρn(xi)|+ 2ϵ (5.61)

<5ϵ (5.62)

While if L < y, then

|ρ(y)− ρn(y)| <|ρn(y)− ρn(L) + |ρn(L)− ρ(L)|+ |ρ(y)− ρ(L)| (5.63)

<1− ρ(L) + ϵ+ ϵ+ 1− ρ(L) (5.64)

<4ϵ. (5.65)

Therefore, |ρ(y) − ρn(y)| < 5ϵ for all n > J and hence ρn converges to ρ uniformly. This

completes the proof.

5.5.2 F(P) contained in a compact subset of P

We show that the closure of the image of the mapping F , denoted by F(P), is compact

and is contained in P. As P is a normed space, sequential compactness of any subset

of P implies that the subset is compact. Henceforth, we just need to show that F(P)

is sequentially compact. Sequential compactness of a set F(P) means the following: if

{ρn} ∈ F(P) is a sequence, then there exists a subsequence {ρnj} and ρ ∈ F(P) such that

ρnj → f . We use Arzela-Ascoli theorem and uniform tightness of the measures in F(P) to

show the sequential compactness. The version of Arzela-Ascoli theorem that we will use is

stated below:

Theorem 13 (Arzela-Ascoli Theorem). Let X be a σ-compact metric space. Let G be a
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family of continuous real valued functions on X. Then the following two statements are

equivalent:

1. Every sequence {gn} ⊂ G there exists a subsequence gnj which converges uniformly

on every compact subset of X.

2. The family G is equicontinuous on every compact subset of X and for any x ∈ X,

there is a constant Cx such that |g(x)| < Cx for all g ∈ G.

Say the family of functions F(P) satisfies the conditions of Arzela-Ascoli theorem. Also,

let they satisfy the uniform tightness property, i.e, ∀f ∈ F(P), there exists an xϵ such that

1 ≥ f(xϵ) > 1− ϵ. Then, for any sequence {ρn} ⊂ F(P), there exists a subsequence {ρnj}

that converges uniformly on every compact sets to a continuous increasing function ρ. As

these functions are uniformly tight, uniform convergence on compact sets imply uniform

convergence. i.e. ρnj → ρ. Therefore, F(P) is totally bounded and hence so is its closure.

Finally, we have to show that F(P) ⊂ P. From the tightness property, the limit

function ρ satisfies that 1 ≥ ρ(xϵ) ≥ (1− ϵ) and therefore ρ(∞) = 1. Also, we have

∫
(1− ρ(x))dx ≤ lim inf

nj→∞

∫
(1− ρnj (x))dx <∞. (5.66)

The first inequality is due to Fatou’s lemma. And, the second inequality holds since

{ρnj} ∈ P . Therefore ρ ∈ P and hence F(P) ⊂ P.

Now we just need to verify F(P) satisfies the conditions of Arzela-Ascoli theorem and

tightness property. First we verify the conditions of the Arzela-Ascoli theorem. Note

that the functions in consideration are uniformly bounded by 1. To prove equicontinuity,

consider an ρ̂ = F(ρ) and let x > y.

ρ̂(x)− ρ̂(y) = Πρ(θρ(q) ≤ x)−Πρ(θρ(q) ≤ y) = Πρ(y < θρ(q) ≤ x) (5.67)

Lemma 16. For any interval [a, b], Πρ([a, b]) < c · (b− a), for some large enough c.
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Proof. We know that Π([a, b]|ρ, θ) =
∑

k≥0(1 − β)βkEΨR
(Υ

(k)
ρ ([a.b]|Q0)). Let Ak be the

net arrivals and Dk be the net departures till time k. Then,

Υ(k)
ρ ([a, b]|Q0) =E(1(Q0+Ak−Dk∈[a,b])|Q0) (5.68)

= E(E(1(Q0+Ak−Dk∈[a,b])|Dk, Q0)|Q0) (5.69)

= E(E(1(Ak∈[a−Q0+Dk,b−Q0+Dk])|Q0, Dk)|Q0) (5.70)

≤ c1 · (b− a). (5.71)

Above results holds since the random variable Ak is independent of Q0 andDk for any k and

it has a bounded density function. Therefore, EΨR
(Υ

(k)
ρ ([a.b]|Q0)) ≤ c·(b−a) for all k > 0.

For k = 0, we know that ΨR has a bounded density which implies ΨR([a, b]) ≤ c1ψ · (b−a).

These two results prove that there is a large enough c such that Πρ([a, b]) < c · (b− a).

The above lemma and equation eq. (5.67) imply that ρ̂(x)− ρ̂(y) ≤ c(θ−1
ρ (x)− θ−1

ρ (y)).

To show equicontinuity, it is enough to show that lim supy↑x
ρ̂(x)−ρ̂(y)
x−y ≤ K(x) for some K

independent of ρ̂. We have

lim sup
y↑x

ρ̂(x)− ρ̂(y)

x− y
≤c lim sup

y↑x

θ−1
ρ (x)− θ−1

ρ (y)

x− y
(5.72)

=c lim sup
y↑x

θ−1
ρ (x)− θ−1

ρ (y)

θρθ
−1
ρ (x)− θρθ

−1
ρ (y)

(5.73)

≤c lim sup
y′→x′

x′ − y′

θρ(x′)− θρ(y′)
(x′ = θ−1

ρ (x)) (5.74)

≤c lim sup
y′→x′

x′ − y′

β(∆C(x′)−∆C(y′))
(5.75)

≤c 1

H(x′)
(5.76)

where eq. (5.74) due to strict monotonicity of θρ and where

0 < H(x′) =


EA[C

′(x′ +A)− C ′(x− 1 +A)] x′ > 1

EA[C
′(x′ +A)] x′ ≤ 1
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and C ′(x) = dC(x)
dx .

Now, we show uniform tightness property of F(P). We have already shown that F (P) ⊂

P. Hence, the expected value of the bids distributed according to the functions in F (P)

are uniformly bounded. Now, using Markov inequality, it can be shown that functions in

consideration are uniformly tight.

5.6 Conclusion

We studied an auction theoretic scheduling mechanism for use in cellular networks

where the base station allocates resources to mobile applications via repeatedly conducting

second price auctions and serving the winner at each time with one unit of service. Here, we

have a dynamic game in which each app play against his opponents by choosing a bidding

strategy so as to minimize his expected cost. We established that the game has a MFE

(of strategies) that closely approximates its Bayesian equilibrium. Also, we have shown

that the equilibrium bidding strategy of each player is montone in their queue length. It

implies that at each time the service is awarded to the longest of all queues - a policy that

resembles LQF. Hence, we propose that auction theoretic scheduling mechanism can be

used as an alternative to LQF policy when the queue lengths not known at the scheduler.

5.7 Supplemental: Technical lemma

Lemma 17. Define g(b, v) = r(b)− p(b)v. Then v ∈ argminb∈R+ g(b, v).

Proof. If v ≤ 0, then −p(b|ρ)v ≥ 0 and g(b, v) is increasing in b. Hence the minimum

occurs at b = 0. If v > 0, then consider

g(b, v)− g(v, v) =bp(b)−
∫ b

0
p(u)du− vp(b) +

∫ v

0
p(u)du

=(b− v)p(b) +

∫ v

b
p(u)du

=

∫ v

b
p(u)− p(b)du

≥0

164



with equality at b = v. Hence we have the desired result
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6. CONCLUSION

In this thesis, we studied several instances of coordination problems in communication

networks using game theoretical tools. A summary can be found in Table 6.1. The scenar-

ios we considered involve interaction among a group of agents who compete for network

resources to attain their own private interests. For example, the agents may selfishly choose

congestion controllers to maximize their payoff that may be a function of the throughput

and the delay incurred in the network, or strategically choose routes that to yield the min-

imum transmission cost. In most of such scenarios, selfish interactions among the agents

lead to chaos or to bad equilibrium states. We characterized the price of selfishness; and

devised mechanisms or rules that encourage cooperative behavior among these agents.

There are several extensions possible to the work presented here. The incentive design

problem for P2P systems can be further explored to consider heterogeneous classes of

users with varying degree of sensitivity to delay and price. Also, the current work can be

extended to study incentive schemes for streaming contents. In future, we may study the

protocol selection problem considering a larger set of protocol choices that contains UDP,

RTCP etc. along with TCP and its variations. Also, we propose to further explore the

idea of tolled, virtual networks. The benefits of auction based scheduling can be further

investigated in the case of heterogeneous classes of applications.

One of the goals of the thesis is to create tractable analytical models of complex network

systems. As far as possible, I have validated the accuracy of these models with real-time

measured data. The final objective, both in my thesis and my future research, is to work

towards an analytical approach to network design.
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Table 6.1: A summary of coordination problems studied

Coordination OSI layer Game Incentive
problems structure schemes

P2P incentive Application static game, action space, Booster incentives
problem layer payoff structure

are known

Protocol game Transport static game, action space link tolls (delay)
layer payoff structure

are known

Multipath routing Routing repeated game, action space rebate (link capacity)
game layer is known, payoffs

are learned

Scheduling game MAC dynamic game, action space second price auction
layer is known, payoffs

are learned
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