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ABSTRACT  
This paper presents the results of an energy 

predictor that predicts the energy demand of 
commercial buildings using Case-Based Reasoning 
(CBR). The proposed approach is evaluated using 
monitored data in a real office building located in 
Varennes, Québec. The energy demand is predicted 
at every hour for the following three hours using 
weather forecasts. The results show that during 
occupancy, 7:00 to 17:00, the coefficient of 
variance of the root-mean-square-error (CV-
RMSE) is below 12.3%, the normalized mean bias 
error (NMBE) is below 1.3% and the root-mean-
square-error (RMSE) is below 16.6 kW. When the 
statistical criteria are calculated for all hours of the 
day, the CV-RMSE is 13.9%, the NMBE is 2.7% 
and the RMSE is 17.9 kW. The case study 
demonstrates that CBR can be used for energy 
demand prediction and could be implemented in 
building operation systems. 

INTRODUCTION 
Building load management is often used to 

optimize the operation of building systems. This is 
achieved more easily if the peak demand and loads 
are known ahead of time using building energy 
prediction. Different techniques can be used to 
forecast the energy demand of the building such as 
whole building energy simulation, regression 
analysis, and black-box models (e.g., artificial 
neural networks). In this paper, Case-Based 
Reasoning (CBR), a machine-learning artificial 
intelligence technique, is used to predict the 
electricity demand of commercial buildings.  

CBR is a problem solving technique that uses 
past experience, represented as “cases”, to identify 
and adapt solutions to new problems (Aamodt and 
Plaza 1994). It is characterized by four distinct 
processes: (1) retrieval of the most similar case or 
cases; (2) adaptation of the retrieved information 
and knowledge to solve the problem; (3) revision 
of the proposed solution; and (4) case 
accumulation, where information and knowledge 
are retained for future solutions (Lopez De 
Mantaras et al. 2005). Different techniques can be 
used to retrieve cases. In the proposed approach, 
the database of cases is scanned for cases having 
similar characteristics for variables that influence 

the dependent variable (energy demand). The 
contribution of each variable to the global case 
similarity is defined by its weight. The weights are 
selected based on the impact of each variable on 
the variable to be predicted. Using this approach, a 
prototype tool was developed to predict the energy 
demand of commercial buildings, which is 
currently installed in a real office building located 
in Varennes, Québec.  

The initial implementation of the tool showed 
good agreement between the predicted energy 
demand and the measured values: the CV-RMSE 
were lower than 13.2%, the NMBE lower than 
5.8% and the RMSE lower than 14 kW during 
occupancy, 7:00 to 18:00 (Monfet et al. 2013). 
Since then, lighting retrofits as well as major 
operation changes have occurred in the building. 
These changes require the identification of new 
weights to be selected for case retrieval. To re-
select the weights, a new approach is evaluated and 
recommendations are presented.  

BACKGROUND INFORMATION 
CBR has been applied to several engineering 

applications; however, it has only been used in a 
few cases in the field of building environment. For 
example, CBR was used to select an appropriate 
neural network model to predict building energy 
consumption (Breekweg et al. 2000a, b). Similarly, 
it was used to evaluate thermal comfort by 
combining analytic and case-based approaches with 
knowledge-based expert system information 
(Kumar and Mahdavi 2001). CBR was used also in 
an approach to predict greenhouse gas emission 
level of housing units (Hong et al. 2012). For this 
case, CBR was used within cluster to identify 
similarities between housing units and a genetic 
algorithm was used to improve the performance of 
the CBR.  

Different prediction accuracy criteria have also 
been proposed to evalute CBR approaches. 
Breekweg et al. (2000a) initially suggested that the 
CV-RMSE should be below 5% for energy 
prediction. However, energy predictions that were 
performed using a generalized neural network 
model with CBR as a learning technique for local 
training resulted in CV-RMSE of 10-11% with 
simulated data and around 20-25% with real 
building data, except for one building where the 
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CV-RMSE was below 5% (Breekweg et al. 2000b). 
The possible causes identified for the low 
prediction accuracies included inconsistency and 
high noise in the data set as well as system 
operating under manual mode. 

ASHRAE (2002), on the other hand, 
recommends, for general model accuracy, the CV-
RMSE and the NMBE to be within 30% and 10%, 
respectively on an hourly basis and 15% and 5% 
for monthly measurements, respectively.   

In this paper, three criteria are used to evaluate 
the performance of the case-based reasoning 
prediction: the coefficient of variance of the root-
mean-square error (CV-RMSE), the normalized 
mean bias error (NMBE) and root-mean-square 
error (RMSE) as defined by Equations (1) to (3), 
respectively. 
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where ypred,i is the predicted dependent variable 
value, ydata,i is the data value of the dependent 
variable, 

datay  is the mean value of the dependent-

variable test set, n is the number of records of data 
in the test set, and p is equal to 1. 

DESCRIPTION OF THE CASE STUDY 
The proposed CBR energy prediction tool, 

called energy predictor, is used to forecast the 
energy demand of the CanmetENERGY building, 
located in Varennes near Montréal, Québec. The 
building has a total floor area of 5300 m2 (57 050 
ft2) and consists of two main sections of roughly 
equal size: (1) offices and conference rooms and 
(2) testing laboratories. The HVAC equipment 
consists of seven air handling units served by an air 
cooled chiller, ice storage, two fire tube gas boilers 
and one electric boiler. The chiller uses R-22 
refrigerant with a shell and tube evaporator having 
a capacity of 120 tons. Two ice banks are available 
for ice storage that have a total capacity of 324 ton 
hours and generate ice at -5°C (23°F). The boilers 
operate during the heating season (October to early 

May). The electric boiler operates as the lead boiler 
and has a capacity of 200 kW (685 MBH); it is 
supplemented by the gas-fired boilers, having a 
capacity of 470 kW (1605 MBH) each.  

The prediction is performed only for the 
offices and conference rooms, since the operation 
of the testing laboratories varies widely. The 
proposed CBR energy predictor is implemented 
within the monitoring and data acquisition system 
of the building under study. 

BRIEF DESCRIPTION OF THE ENERGY 
PREDICTOR 

The energy predictor was developed using 
case-based reasoning. At this stage, most of the 
development for the energy predictor has been on 
defining the case retrieval approach and adaptation 
process. No criteria have been defined to determine 
if new cases provide acceptable energy demand 
information and should be retained or not for case 
accumulation: new cases are automatically 
included in the library of cases. A brief description 
of each stage is presented. For a more detailed 
description of the tool refer to Monfet et al. (2013). 

Case Retrieval 
The approach undertaken for case retrieval 

scanned the database of cases having similar 
characteristics for variables that influence the 
dependent variable. To predict the total energy 
demand (dependent variable), the database of cases 
is scanned for cases having similar independent 
variables as presented in Table 1. Data for the 
previous three hours and available “forecastable” 
data for the next three hours are used to retrieve 
cases. The “forecastable” data include weather 
information, such as the outdoor air temperature 
and relative humidity. The weather forecasts are 
provided by the Canadian Meteorological Service 
for hourly data of the next 48 hours that are 
updated online every 6 hours.  

Table 1 
Variables and distance measurements for case 
retrieval 
Input variables dmin dmax 

Outdoor air temperature, °C 2.3 6 
Outdoor air relative humidity, % 10 25 
Day type1 0 1 
Total building electricity demand, kW 20 75 
Total electrical cooling demand, kW 10 50 
Total electrical heating demand, kW 10 50 
Total fan demand, kW 1 5 
Representative interior zone temperature, 
°C 

1.3 5 

Ice making2 0 1 

Notes 
1. 0, 1, 2 for unoccupied, fully occupied, occupied 
after unoccupied day, respectively 
2. -1 for ice bank discharge 
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For most of the selected independent variables, 
the distance between two time series is defined 
according to the Weighted Euclidean (WE) 
distance. Using the normalized WE distance 
(Equation (4)), the similarity is determined between 
two time series: the similarity is set to 1 if the 
distance is less than a minimum threshold, dmin; if 
the distance is higher than dmax, then the similarity 
is set to 0. The similarity varies linearly between 
dmin and dmax. The values of dmin and dmax are 
selected based on expert knowledge for each 
variable (Table 1). Data for the three previous 
hours and forecast data for the next three hours are 
considered to select the most similar cases from the 
database. 
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The global case similarity allows the ranking 
of the cases to identify the most similar cases to be 
used for case adaptation. The contribution of each 
variable to the global case similarity is defined by 
its weight. The weights are selected based on the 
impact of each variable on the variable to be 
predicted. For the case study, the weights were 
selected using Pearson product moment correlation 
coefficients between each pair of variables, 
determined using a commercial statistical software 
(STATGRAPHICS 2012). The Pearson product 
moment correlation coefficients range between -1 
and +1 and measure the strength of the linear 
relationship between variables. The variables are 
correlated with the total building electricity 
demand at the next hour (t+1). The relative 
importance of each coefficient is used to determine 
the weights.  

Case Adaptation 
Once a sub-set of cases has been selected, it 

needs to be transformed into a solution for the 
current problem. From the set of retrieved similar 
cases, the most likely prediction is determined 
using equation (5). 
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where Pt is the predicted value at time t, k is 
the number of cases retrieved, (Ci)t is the value 
from case i at time t, and ws,i is the weight of case i, 
which is equal to the similarity value of that case 
(GS). The prediction is updated every hour to 
improve its accuracy. 

The energy predictor estimates the shape of the 
building’s load curve for the next three hours as 
well as the possible occurrence of peak demand. 
This prediction allows building operators and 
energy managers to optimize the operation of 
building systems and reduce peak demand by 
modifying the control sequence. 

WEIGHTS SELECTION FOR CASE 
RETRIEVAL 

Different techniques such as contribution 
factor (Breekweg et al. 2000b), statistical analysis 
(Morcous 2002), and gradient descend method 
(Kim et al. 2004) have been discussed in the 
literature for the selection of the weights. In this 
study, the Pearson product moment correlations 
between each pair of variables was used to estimate 
the weights by using the relative importance of 
each coefficient to the total building electricity 
demand at the next hour (t+1). A similar approach 
was followed by Morcous (2000).  

The initial testing of the energy predictor used 
a full year of data to identify the weights. This 
delays the implementation of the tool if no 
measured data are available at the time of 
installation. Therefore, a dynamic approach that 
can adapt itself to changes in the energy demand 
pattern is proposed. The approach consists of using 
an initial data set and to periodically re-calculate 
the value of the weights as new data become 
available (Figure 1). For example, the initial 
weights are identified using three data sets (no.1 to 
no.3). Once the weights are identified, the new 
monitored data sets (no.4 to no.6) are compared 
with the predicted values by the CBR energy 
predictor. The window is increased as new data are 
collected, and is composed now of four data sets 
(no.1 to no.4). The weights are re-calculated using 
the new enlarged data sets. The monitored data sets 
(no.5 to no.6) are compared with the values 
predicted by the CBR energy predictor with the 
new weights.  

 
Figure 1. Schematic of the increase in dataset size 

The new collected data are added in to the 
initial data set periodically (daily, weekly, bi-
weekly or monthly), thus enlarging the quantity of 
data used to identify the weights. At the end of the 
year, for instance, the data set is large and covers 
the whole spectrum of operating and weather 
conditions. 

DATA 
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INITIAL PREDICTION 
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In this study, the initial data set includes data 
from January to the end of March 2012. The 
database was then enlarged on a monthly basis to 
evaluate the impact of increasing the number of 
cases to determine the weights.  

Table 2 presents the variation of the weights as 
well as the weights used previously in the energy 
predictor, prior to the changes that occurred in 
2010 and 2011 (pre-retrofit weights). The results 
show that the most influential parameter is the 
previous total building electricity demand. Also, it 
is interesting to note that weights for the outdoor 
air temperature, the day type, the total heating 
demand and the total fan demand have varied 
slightly compared to the pre-retrofit period (Table 
2). This is particularly true for the total fan demand 
that had an initial weight of 0.2 and has now a 
value of 0.6. At this stage, a full year of data was 
assumed to cover the full range of operating and 
weather conditions and the process of re-
calculating the weights on a monthly basis was 
stopped. The next section presents the results 
obtained on a monthly basis as well as the 
prediction over the first three months of the year 
2013. 

RESULTS AND DISCUSSION 
Two different sets of results are presented. 

First, the results of the monthly predictions for 
April to December 2012 where the weights, 
updated on a monthly basis, are presented. 
Secondly, the prediction made over the first three 

months of 2013 using the weights selected using a 
full year of data (data for 2012) are presented.  

Predictions versus Measurements: 2012 Monthly 
Results  

Table 3 presents the monthly statistical criteria 
calculated with hourly data for the first predicted 
hour. The CV-RMSE are lower than 23% except 
for the month of May. Before May, the outdoor air 
conditions were cooler; thus only a few cases 
corresponding to warmer weather conditions 
influenced the value of the weights. The 
predictions made at the first hour with the 
dynamically enlarged window after May are well 
within the recommended value for general model 
accuracy of CV-RMSE and NMBE to be within 
30% and 10%, respectively (ASHRAE 2002). 
However, when the prediction is extended to the 
three-hour period, the CV-RMSE and NMBE are 
within the recommended accuracy for prediction 
made in July forward. Also, the percentage of 
predicted cases increases to 84% after July. 
Therefore, when the data acquisition begins in 
January for a climate similar to Montréal, at least 
six months of data are required to initialize the 
weights used in the energy predictor. However, 
these results must be interpreted with caution; a 
colder year – where warmer days only begin 
towards the end of June – might require an 
additional month of data to provide accurate 
predictions. 

 
Table 2 
Variation of weights for different size of initial database for input variables 

Input 

variables 

01 to  

03/12 

01 to  

04/12 

01 to  

05/12 

01 to  

06/12 

01 to  

07/12 

01 to  

08/12 

01 to  

09/12 

01 to  

10/12 

01 to  

11/12 

01 to  

12/12 

Pre-

retrofit 

Outdoor air 
temperature, °C 

0.6 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.8 

Outdoor air 
relative 
humidity, % 

0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 

Day type 0.4 0.5 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.4 0.3 
Total building 
electricity 
demand, kW 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Total electrical 
cooling 
demand, kW 

0.2 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.2 0.1 0.1 

Total heating 
demand, kW 

0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.9 

Total fan 
demand, kW 

0.8 0.7 0.6 0.6 0.6 0.6 0.7 0.7 0.6 0.6 0.2 

Representative 
interior zone 
temperature, °C 

0.5 0.4 0.1 0.2 0.4 0.4 0.4 0.4 0.3 0.4 0.4 

Ice making 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
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Table 3 
Prediction results for the first hour – 2012 

Weights set Predicted month CV-RMSE, % NMBE, % RMSE, kW % of cases predicted 
01 to 03/2012 April 18.95 -2.40 15.9 64.1 
01 to 04/2012 May 41.98 0.37 20.4 58.0 
01 to 05/2012 June 22.89 3.54 12.7 82.5 
01 to 06/2012 July 17.70 2.39 11.4 92.3 
01 to 07/2012 August 15.40 2.74 10.5 96.6 
01 to 08/2012 September  20.31 3.92 11.9 90.0 
01 to 09/2012 October  19.18 3.84 15.3 84.5 
01 to 10/2012 November 14.88 1.73 15.9 88.6 
01 to 11/2012 December 13.40 2.78 14.4 89.0 

Predictions versus Measurements: 2013 Results  
The weights identified with a full year of data 

– year 2012 – were used to forecast the energy 
demand every hour for the next three hours for the 
first three months of 2013, from January 1 to April 
3. Table 4 presents the statistical criteria calculated 
at each prediction hour over the three months, 
while Table 5 presents the statistical criteria during 
occupancy. The occupancy period considered in the 
case study are 7:00 to 17:00 Eastern Standard Time 
(EST) and 8:00 to 18:00 Eastern Daylight Time 
(EDT), when it is recommended to reduce the 
electricity demand of the building.  

The prediction results are in fair agreement 
with the measured values with CV-RMSE and 
NMBE lower than 13.9% and 2.7%, respectively. 
The RMSE is around 10% of the average total 
electricity demand of the building. During 
occupancy, the CV-RMSE is 10.5% for prediction 
made at time t+1, while being lower than 12.3% 
over a three-hour prediction period. These values 
are well within the values recommended by 
ASHRAE (ASHRAE 2002).  

Table 4 
Prediction results – January to April 2013 

 CV-

RMSE

% 

NMBE

% 

RMSE 

kW 

% of 

cases 

predicted 

+ 1 hour 12.31 2.72 16.6 89.0 
+ 2 hour 13.57 2.55 17.5 89.1 
+3 hour 13.88 2.39 17.9 89.1 

 
Table 5 
Prediction results during occupancy – January to 
April 2013 

 CV-

RMSE

% 

NMBE

% 

RMSE 

kW 

% of 

cases 

predicted 

+ 1 hour 10.53 1.06 15.2 87.7 
+ 2 hour 11.65 1.26 16.2 87.9 
+3 hour 12.33 1.13 16.6 87.9 

 
Figure 2 presents the CV-RMSE on an hourly 

basis. For most occupied hour, from 7:00 to 17:00, 
the CV-RMSE is around 10%, while being below 
20% for all hours.  

 

 

Figure 2. CV-RMSE for hourly prediction: January 
to April 2013 

The results obtained in 2013 for all hours and 
occupied hours are slightly better than the CV-
RMSE of 20-25% reported in the previous study 
when real building data were used to predict the 
energy use based on a neural network model 
combined with CBR (Breekweg 2000a).  

Figure 3 to Figure 5 present the predicted 
electricity demand and measured values for three 
days: 19 January, 21 February and 20 March 2013. 
For 19 January (Figure 3), the whole building 
electric demand varies slightly throughout the day: 
there is no noticeable electricity demand peak and 
the energy predictor estimates provide enough 
information for the building operator to modify the 
operation of the system if required.  

The shape of the predicted energy demand is 
close to the measured value on 21 February 2013 
(Figure 4). The electricity demand is relatively 
constant during occupancy and decreases at around 
18:00. However, it rises again at around 21:00 to 
maintain the minimum building air temperature at 
night. 

There is more variation in energy demand on 
20 March 2013 (Figure 5). Two demand peaks 
occurred: (1) between 7:00 and 10:00 at the 
beginning of the work day, and (2) one at 16:00. 
The magnitude of the first peak was well estimated 
by the energy predictor while its duration 
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underestimated. For the second peak, the value was 
slightly underestimated. In order to proceed with a 
deeper understanding of the discrepancies, 
additional information such as occupancy level is 
required.  

 
Figure 3. Predicted versus whole building electric 

demand: 19 January 2013 

 
Figure 4. Predicted versus whole building electric 

demand: 21 February 2013 

 
Figure 5. Predicted versus whole building electric 

demand: 20 March 2013 

CONCLUSIONS 
In this paper, an energy predictor prototype 

tool based on the use of CBR to predict the energy 
demand in commercial building was tested. A 
dynamically augmented dataset approach was 
proposed for the selection of the weights. The 
results showed that for the building under study, 
where the energy predictor is installed, six months 

of data – form January to the end of June – were 
required to obtained accurate predictions over the 
remaining of the year. Once a full year of data was 
available to identify the weights, the weights 
remained the same to predict the energy demand 
for the first three months of 2013. For the 2013 
data sets, the CV-RMSE varies between 12-14 % 
and the NMBE is lower than 3%. These results are 
well within the recommended values by ASHRAE 
of 30% for CV-RMSE and 10% for NMBE 
(ASHREA 2002). Also, when compared to the CV-
RMSE of 20-25% reported in previous study 
(Breekweg 2000a), the results obtained with the 
proposed approach are slightly better, especially 
during occupancy, when reducing the electricity 
demand is recommended.  

The approach presented in this paper is based 
on data monitored in a real building where 
inconsistency may occur due to manual operation 
and noise in the data set. Also, the evaluation of 
changes in weights with the dynamically 
augmented approach is the first step towards 
improving the robustness of the CBR energy 
predictor. Additional research is required to 
identify if the time at which recording of the 
measured data has an influence on the amount of 
data required to identify the weights. Furthermore, 
a comparison between different techniques for the 
identification of the weights value might lead to 
improve accuracy. As a final remark, the proposed 
CBR energy predictor show promising results for 
its use as a tool to implement load management 
strategies in buildings. This is becoming more 
important with the rise in complexity of the 
building systems as well as the integration of 
renewable energy.  
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