

Identification of changes needed in supermarket design for energy demand reduction

Frances Hill

Rodger Edwards
Geoff Levermore
School of Mechanical, Aerospace and Civil Engineering
University of Manchester

Frances Hill also teaches at the Centre for Alternative Technology, Machynlleth

Identification of changes needed in supermarket design for energy demand reduction

- Supermarket energy usage/loads
- Difference between design and predicted load
- Modelling route
- Sensitivity differences
- Implications

UK supermarkets

- Over 91,500 supermarkets in UK
- ~ 300 new stores each year
 - Many others refitted
- Use 3% of UK electricity on site
- Account for 1% UK CO₂ emissions

Supermarkets: Reality is very different from design

Components of energy use

Design of supermarkets – heat gains and losses

To comply with SBEM

re size elements to match figs from Excel R@Regs Frances Hill, 23/03/2012 FH1

Heat transfers in a supermarket include **cold** refrigeration cabinets

needs an equipment arrow too, and resizing Frances Hill, 23/03/2012 FH2

Model including non- SBEM (unregulated) energy use

- Spreadsheet in Excel
- Hourly weather data
- Store temperature range 18-25C
- Profiled occupancy, 24hours
- Include refrigeration
 - With doors,
 - opened according to occupancy
- But not catering or in-store bakery
 - Yet

Building model

- Simple U value box
 - Plus (north) windows and aerogel rooflights
- Rooflight solar gains
- Radiant gains and losses to/from roof and rooflights
- Ventilation rate set values
 - Windcatchers explored
- No stratification

Lighting

- 900/400lux
- Daylight sensitive
- Light from rooflights evenly spread
- Lighting infinitely dimmable
 - No staging
 - No lower limit
- Heat from lights incorporated into thermal balance

Heating and cooling

- 2 boilers, one cooler
- Modelled as ON / OFF per iteration (15 mins)
- Hysteresis range 2^oC at each end
 - 18-20C for heating
 - 23-25C for cooling
- Fans and pumps according to demand

Refrigeration

- Freezer cabinets with doors
- Chiller cabinets with doors
- Open chillers

- Fabric
- Ventilation
- Auxiliary power uses

Refrigeration COPs

- COPs on Carnot cycle model
 - $-\frac{1}{2}$ * (evaporation temperature/ evap-condenser temperature differential)

learnthermo.con

- Condenser temperature dependent on ambient temperature, therefore
- COPs dependent on ambient temperature

Refrigeration on SBEM

Proceedings of the Twelfth International Conference for Enhanced Building Operations, Manchester, UK, October 23-26, 2012

Dehumidification

- Only if needed
- Humidity ratio maintained at or below 7.5 g/kg
 - Based on ambient humidity and anthropogenic water vapour
 - To maintain efficiency of evaporator coils in refrigeration cabinets
 - (may not be appropriate with mostly closed cabinets)

Optimisation - ventilation

Optimisation - insulation

Optimisation – rooflight fraction

Optimising on insulation and ventilation

Further research

- Modelling in EnergyPlus finds
 - Very similar comparison SBEM/COLD refrigeration
 - 25% potential savings from insulation, airtightness improvements suggested
- Stratification (present in case study store) may be responsible for further 10-25% heat losses
 - Which would not be an issue if cooling were needed as SBEM suggests

Conclusion

- In a supermarket, omission of refrigeration heat transfers on the retail floor is causing a major gap between operation energy use and design expectations
- Inclusion of refrigeration cabinet heat transfers at design stage could reduce energy demand by 25-40%
- Inclusion could also incentivise improvement in cabinet design, as improvements have effect on both refrigeration and heating demands