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ABSTRACT 
 

Learning Reflexes for Teleoperated Ground-Based Rescue Robots. (April 2011) 
 

Matthew Moss 
Department of Computer Science 

Texas A&M University 
 

Research Advisor: Dr. Robin Murphy 
Department of Computer Science 

 

This thesis presents a system for shared autonomy, where a search and rescue robot uses 

training data to create a "maintain balance" reflex to enable a robot to autonomously 

stop, back up, or change configuration to avoid falling over as the operator drives it 

through rubble. Currently, the operator is responsible for determining if the robot is in an 

unsafe state and about to fall. Falling over often ends the mission for the robot. With a 

"maintain balance" reflex, the operator can drive the robot with less risk of falling over.  

This project required retrofitting an ASR/Inuktun Extreme variable geometry robot with 

an Analog Devices ADXL335 3-axis accelerometer to provide inputs for a fall classifier 

optimized by a genetic algorithm. The software system written in C# uses a 

Subsumption Architecture, where the reflex takes priority over operator commands that 

place the robot in danger. The developed system was tested over 3 trials, 2 with the 

NIST Standard Test Method for Response Robots: Mobility: Terrain: Stepfields. 4 

variants of the system and a control were compared for effectiveness. Over the 3 trials 

each variant was tested with 45 starting configurations. Variants of the system 
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demonstrated an 8% decrease in the probability of falling on a simple climbing stepfield, 

and a 40% decrease on flat terrain. The results show that the primary mechanism for 

reducing falls is backing up, which shows a 6% improvement over halting in terms of 

fall probability. The small improvement reflects the lack of agility and sensing 

limitations of the robot, the data suggests the classification algorithm was an appropriate 

choice, as it responds to situations not captured by a simple physically based model. This 

work is expected to be useful for other search and rescue robots; each type of robot 

would have to be trained using the procedures described in this thesis.  
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NOMENCLATURE 

 

CRASAR Center for Robot Assisted Search And Rescue 

UGV Unmanned Ground Vehicle 

VGTV Variable Geometry Tracked Vehicle 
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CHAPTER I 

INTRODUCTION 

 

The goal of this thesis is to explore and implement a method for adding reflexes to a 

UGV. We will retrofit a CRASAR owned Inuktun VGTV ExtremeTM with a 3-axis 

accelerometer to provide orientation estimation, and then apply artificial intelligence 

techniques to develop a controller that will allow the robot to maintain its balance during 

operation. We will then compare the effectiveness of the controller against the existing 

direct control system in a constrained lab environment. 

 

Ground-based robots are an attractive option for responding to certain classes of 

manmade disaster, such as building collapses, chemical releases, and radiological 

disasters. Such robots are able to search deep within hazardous environments while 

providing information on survivor locations and environmental conditions. Effectively, 

robots are able to extend the senses of responders without risking either humans or 

canines [1]. 

 

These disaster environments provide significant operational challenges for robots. 

Rubble provides a rough, uneven operating surface with many obstacles that need to be 

overcome. These conditions make the use of wheeled robots infeasible. Additionally, 

_______________ 
This thesis follows the style of IEEE Transactions on Robotics. 



  2 

spaces in collapsed buildings typically provide poor clearance and freedom of movement 

for small aerial vehicles. Current practice is to use teleoperated tracked robots with a 

variable (polymorphic) geometry [1]. These robots are susceptible to several problems. 

In particular we will focus on the problem of maintaining balance. Polymorphic robots 

are vulnerable to falling over due to changing vehicle geometry, or due to a change in 

orientation while surmounting an obstacle, or even accelerating forward too quickly. In 

current practice a human operator is responsible for tracking and correcting this issue. 

The operator is expected to remember the polymorphic shape (pose) of the robot and 

relationship to gravity and then estimate visually whether the robot will fall over. 

Effectively, the operator is responsible for providing balance to the robot. 

 

The reliance on a human operator for reflexes is a major limit in deploying robots. The 

operator typically cannot react quickly enough, is distracted, or has insufficient training 

and experience with the robots to provide adequate reflexes. In addition, providing 

reflexes for the robot serves as a distraction to the operator, making the operator less 

effective at task execution. Finally, AI implemented reflexes stand to decrease the 

amount of training and experience required for an operator to become proficient at 

operating a robots. 

 

Learning itself is not novel as it has been successfully applied to ground robots for 

obstacle avoidance [2], walking with four legs [3], and with six legs [4]. However, none 

of the past work considers applying learning to a robot designed for teleoperation. 
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Robots intended for teleoperation typically do not have the proprioceptive sensors 

needed to dynamically measure and control their pose. By performing simple retrofits to 

the robot sufficient sensing can be made available for learning to be applied.  

 

  



  4 

CHAPTER II 

METHODS 

 

This chapter details the implementation strategy for adding reflexes to the robot. This 

chapter includes information about the starting equipment, equipment capabilities, the 

overall learning process, and the decisions made that influence the process. It concludes 

with details of the experiments to be carried out, and the reasoning behind the 

experiment conditions. 

 

Starting equipment 

A robot, pose estimator, and laptop are required. 

  

Robot 

The base robot is an Inuktun VGTV ExtremeTM provided by CRASAR, as shown in 

Figure 1. It is a water proof variable geometry tracked robot used in search, rescue, and 

inspection operations. The robot uses a 30m long tether for all power and 

communications needs. It includes limited proprioceptive sensors, including current 

sensing on all major electrical components, temperature, raise angle, and a single axis 

inclinometer. [5]  
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Figure 1. Inuktun VGTV ExtremeTM, ©Inuktun Services Ltd. 
 
 

The robot is tethered to a control box. The control box provides an interface point for the 

tether, a connection to the power source, and exposes a USB based control interface. The 

USB control interface acts as a serial port operating at a baud rate of 9600 bps. A control 

request is sent in the form of a 12 byte packet, and a response from the controller is 

issued in the form of an 18 byte data packet. This limits the control frequency to 40 

operations per second. Control is handled between the robot and the controller via a 

9600 baud serial connection over a half-duplex RS-485 link. 

 

The control request includes the requested speed (throttle), for each track, and other 

commands for manipulating vehicle geometry or camera positioning. The response 

packet includes limited sensor data from the robot, including current consumptions, 
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limited pose information, temperature, and voltage. The response packet also includes 

the state of the control interface, such as joystick position and button presses.  

 

Pose estimator 

The pose estimator works by wirelessly transmitting raw accelerometer readings to the 

controlling laptop. The control software on the laptop is in turn responsible for 

performing filtering and transformation of the signal into more relevant values. 

 

The pose estimator is powered by 4 AA batteries, and is secured to the robot by Velcro. 

It uses an Atmel ATTiny85 to read analog values from an Analog Devices ADXL335 3-

axis accelerometer configured with and read at a 50Hz sampling bandwidth. The 

accelerometer readings are packetized, and sent at 9600 bps to an XBee transmitter. The 

data is transmitted wirelessly at 250 kbps to a listening XBee, and sent at 9600 bps from 

the XBee receiver to an FTDI USB to TTL Serial cable, which is in turn read by the 

control software listening on the corresponding serial port.  

 

For each axis of the accelerometer 11 8-bit values are read serially, and the median value 

from these readings is taken as the „raw‟ value for that axis. This median reading 

approach should filter out the majority of ADC noise. Each axis reading sequence occurs 

over the course of 1ms. Readings are taken serially because the microcontroller uses a 

single multiplexed ADC, and rapid switching between inputs could lead to more 

electrical noise in readings.  
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Figure 2. Filtering Effects on Accelerometer Values. A low pass filter is used to remove 

high frequency noise from the accelerometer signal, while maintaining adequate impulse 

response time.  

 

One problem encountered with using an accelerometer for pose estimation is sensor 

noise. While the robot is running the tracks introduce a large amount of vibration into 

the chassis. The magnitude of vibrations on flat terrain with no obstructions was 

observed to be up to +/- 2g. To provide sufficiently accurate pose estimation the raw 

values from each axis of the accelerometer are passed through a low pass filter with a 

time constant of 0.1s. Figure 2 demonstrates the accelerometer readings during a fall, 

before and after filtering. The low pass filter with 0.1s time constant was observed to be 

a reasonable median between filtering out the relatively high frequency vibration while 

preserving sudden changes in orientation. 
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Wireless transmission was chosen due to a lack of materials. The robot platform includes 

6 spare conductors in the tether, and a broken out connection for accessing those 

conductors, but we did not have the connectors to access the spare conductor connection. 

Wireless presents a problem while operating in rubble, where transmissions are typically 

blocked by several feet of metal and concrete[1]. If this device were to be deployed, it 

would need a sturdy, water proof housing for the electronics and to either tap into the 

provided spare conductors on the tether, or provide an auxiliary tether. 

 

One concern with this setup is the delay in getting readings from the accelerometer to the 

software. The packet sent from the transmitter of the pose estimator is 7 bytes, and at 

9600 baud each byte takes roughly 1ms to send. The microcontroller takes 7ms to send 

data to the XBee. The XBee waits 5ms to packetize and send data. The data is sent at 

250 kbps in the 2.4GHz spectrum. Once the packet is received, the data is transmitted 

over 7ms to the laptop, and in turn to the control software, which is polling for data 

every 20ms. This gives an average transmission time of around 25ms, not accounting for 

any wait times due to wireless transmission interference. We do not currently have data 

on how wireless interference may be affecting transmission delays, and it is a potential 

variable that would be removed by using a tethered serial connection. 
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Developing the controller 

This section describes the form of the control system, its general operation, and how the 

controller is trained.  

 

Anatomy of a fall 

A fall occurs when a robot enters a state where the tracks lose good driving contact with 

the ground. This can be better thought of as whenever the robot enters a state with phi, 

the angle between the normal of the pose estimator and gravity, greater than 90o. In this 

state, while the robot may be able to recover, doing so is difficult, with a chance of 

recovering in an upside-down pose. This is generally caused by an unsafe shift in the 

center of gravity of the robot.  

 

An unsafe shift in the center of gravity occurs in several situations. One situation is 

when accelerating quickly on a high friction surface while in a raised pose- this causes a 

rotation backward as the tracks apply a torque when countering momentum, eventually 

leading to a fall. Another situation occurs when climbing rubble: the robot does not have 

enough power to climb some obstacles, so it needs to approach them with enough 

forward momentum to pull itself over the obstacle. If the robot contacts the rubble at too 

high a speed, or too high a raise angle, the forward portion of the robot will „jump‟, and 

combined with the continuing forward speed of the motors, fall over backward. There 

are also methods of falling sideways and forwards, which are beyond the scope of this 

thesis.  
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Several variables influence whether or not a robot will fall. In all observed correctable 

falls (falls due to operator action or inaction), the robot is in a relatively raised 

configuration, moving forward. Based on this, lowering the robot‟s raise angle or 

releasing the throttle, if done preventively, should decrease the probability of falls. 

Modifying the raise angle sufficiently to change the probability of falling often takes 

over 2 seconds. Most falls occur in the course of a single second, meaning that using the 

raise angle as the controlled variable will only work if we can accurately predict falling 

cases. Predicting falls at a time range of 2 seconds would require knowledge of the 

environment, which our system does not have. Due to this, and limitations discussed in 

Chapters 3 and 4, the level of prediction required to use the raise angle as the control 

variable is not available, and thus throttle is the variable used to prevent falls. 

 

Controller structure 

The controller uses a subsumption architecture to enable protection behaviors. The 

overall data and command flow is as shown in Figure 3. If a fall is considered imminent, 

a fall response is enacted which will modify the throttle command. This command is 

issued and merged into the flow of normal operator inputs, overriding any throttle 

request by the operator. 

 

The “Fall Likely” component maps the current state of the robot, including pose, into a 

safe or unsafe value. If the robot is considered to be unsafe, a fall response is enacted. 
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The AI and learning component of this system is the mapping from states to a safe or 

unsafe value. 

 

Figure 3. Controller Diagram.  
 

 

Learning process 

Our system classifies a robot state as likely to fall if 10% of similar states in training data 

were marked as falls. To determine similarity a state space distance function is defined 

and optimized via a genetic algorithm. The genetic algorithm uses performance on a 

training and testing data set to score candidate functions, and the best candidate is taken 

and implemented for use in the classifier. 

 

Classification process 

Our system needs to find a mapping from the current robot state to the “is falling” value. 

To do this we need a set of training states, the current state of the robot, and a means of 

finding the similarity between states. Each state consists of the following inputs: 
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 Orientation with respect to the dominant force (gravity and accelerations) 

 Average Angular Velocity on the pitch axis, over ¼ second. 

 Requested speed for both tracks 

 Current consumed by both tracks 

 Raise Angle 

 

                              

 

 

Equation 1. Distance Function 

 

Finding the similarity between states is done using the state space distance between 

states. The function used to calculate this distance is listed in equation 1. The proper 

values for the weights in equation 1 are determined by the application of a genetic 

algorithm detailed in the next section. 

 

To classify the current state the distances between the current state and all states in the 

training data are calculated. If 10% of the training states within unit distance are falls, 

then the current state is also considered a fall. 
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Figure 4. Inuktun Near Example Stepfield.  
 
 

Based on analysis of fall events we expect that the primary factors that cause a fall can 

be tied to the angular velocities on the pitch axis, the raise angle, the throttle, and the 

current orientation. Environmental differences (such as friction of the load bearing 

surface) could be seen in track current consumption, but are not explored in this thesis.  

 

Training process 

Training is handled by capturing large quantities of training and testing data from test 

runs in a simulated hazardous environment. The simulated hazardous environment is 

built around stepfields[6], similar to what is shown in Figure 4. Stepfields allow for the 

repeatable construction of difficult to navigate terrain. In the course of our experiments 

we will use stepfields to create relatively simple, well defined climbing environments. 

 

The training and testing data is automatically classified based on accelerometer readings 

and controller inputs as “Not Fallen”, “Fallen”, and “Correcting”. The fallen and not 
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fallen classifications are for normal trainable states of data, and represent standard 

operation of the robot. The correcting state is for the time between a robot falling, and 

the next user control request. This period of time represents the user manually correcting 

a fallen robot, during which several orientations which would be otherwise invalid are 

experienced. To add an element of prediction to the fall classifier, states that occur ¼ 

second before a fall (phi > 90o) are also classified as falls. 

 

A genetic algorithm is then used to optimize the weights of the distance finder. This 

genetic algorithm scores a candidate set of weights by going through each testing state 

and determining the classification given with the candidate weight set. The percent 

correct classifications of falls and of non-falls are then combined with a 50% weight 

given to each component. Due to the relative counts of fall states and not-fall states, this 

typically means a fall classification is worth 10 non-fall classifications. Roulette wheel 

selection on a population of size 16 with elitism for 2 individuals is then used for the 

evolution process. Evolution continues until the user feels that a peak has been reached 

(typically in less than 200 generations), and those peak weights are selected for use in 

the classification component of the reflex controller. 

 

Fall response 

We will now detail the response that our controller will enact when falling. In a previous 

section we determined that throttle is our only suitable control variable, but not how it 

will be manipulated. In this section we will discuss the two response types that we are 
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considering, and their implications for an operator. Correctable falls in our testing 

environment are always tied to the robot moving forward, meaning the robot always has 

a forward throttle active. Our classification scheme states simply that if the user 

continues moving forward they are likely to fall. Therefore, our response types are 

centered on ceasing that movement. To this end we have two response types: halting 

outright, and applying a reverse throttle. 

 

Halting represents removing control from the operator temporarily. This is done in the 

hope that the robot will correct itself out of a falling state if the halt is triggered before a 

fall becomes critical. A fall is considered critical when the fall cannot be corrected by 

simply ceasing forward movement. The human controller could then be alerted to the 

probable fall, and allowed to take corrective action. The downside to this approach is 

that to be useful it needs to be enacted before the fall enters the critical phase, which is 

difficult to do due delays in the control loop. 

 

Reversing represents not only removing operator control, but actively allowing the AI 

subsystem to issue commands to the robot. Reversing as a response to falling was 

developed during testing when halting was being triggered too late in the fall process to 

be useful. The idea behind applying a reverse is that, while a fall may have entered the 

critical stage, it has not yet become uncorrectable. Specifically, a short burst of a reverse 

throttle will change the angular velocities enough that the robot is no longer in a fall 

state. The downside to this approach is that false fall classifications tend to at best slow 
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the robot down, and at worst backtrack down from successfully conquered obstacles. 

Another downside is that this approach may lead the robot into areas it should avoid, 

such as reversing over a cliff. Therefore, reversing can be dangerous in certain 

environments as the control system lacks the exteroceptive sensing required to prevent 

such actions. Reversing also induces another falling risk. A reverse followed by a sudden 

stop can be as bad as sudden acceleration in terms of inducing falls. To this end the 

reverse response is implemented with a cool down phase, to slowly phase down the 

throttle until it hits 0 again.   

 

Each response is implemented such that it will be maximally activated for ½ second, to 

prevent the control system from completely locking the operator out of the robot. An 

override is also included in the control system. In addition, to prevent unnecessarily long 

backtracking, the response is active for only twice the amount of time the robot was in a 

fall classified state, with a minimum active time of 0.2 seconds.  

 

Experiment process 

For the purpose of this thesis we want to prove the viability of using an AI approach to 

handling reflexes. For such an approach to be viable, it needs to be better than the 

current system of no reflexes, and ideally would be better than a simple model based 

reflex system.  
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We chose to simulate a user using our control system as a worst case operator. This 

operator applies a constant forward throttle while the robot is in a predetermined fixed 

raise configuration. We then test this against a simple physically based classifier and our 

distance based classifier, with both the reverse and halting fall responses. We also test 

this against a control group, the „no-reflex‟ controller, which does not attempt to classify 

falls. 

 

Physically based classifier 

For comparison purposes we implement a simple physically based classifier. This 

classifier takes the current phi and time averaged angular velocity, and calculates what 

phi will be in ¼ second. If the projected phi value is greater than 90o then the current 

robot state is classified as a fall. 

 

Testing process 

Each test set will take place on a specific step field configuration, with a specified 

starting configuration consisting of a group of raise angles and throttle speeds. Each of 

the 5 controllers will be tested on each starting configuration 5 times. These 

configurations are enumerated, and then randomized for testing. The test proctor will 

move the robot to a specified starting position, and indicate to the control agent that it 

can begin the test. The control agent will then try to attain the desired raise angle. Due to 

limitations of the control interface with the Inuktun, the attained raise angle is only 

accurate to +/- 10o. Once the target raise angle is achieved to sufficient accuracy the 
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agent begins a timed application of forward throttle at the speed specified by the test run 

parameters, with the specified reflex controller configuration active. If the robot falls, or 

encounters an insurmountable obstacle, the test proctor indicates to the agent to stop the 

test, and test statistics are then recorded. The robot is then reset for the next test run. 

 

Environment configurations 

For the purposes of testing we look at two stepfield configurations and one carpeted flat 

surface for testing. Both stepfields consist of a small stepfield with 1.5” blocks leading 

into a larger stepfield with 3” blocks. The larger stepfield always includes an 

insurmountable wall along the outer edge to reduce the risk of falling damage to the 

robot. If a robot reaches the rear wall of a stepfield course, it is considered to have 

“completed” the course. 
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Figure 5. Ideal Climbing Stepfield. 
 
 
The first stepfield is intended to showcase responses in the simple climbing case. To that 

extent the stepfield consists of two 1.5” climbs and one 3” climb. The simple climbing 

stepfield uses the block configuration shown in Figure 5. Based on past experience, we 

expect the majority of robot configurations to reach the large stepfield, where most will 

fall or become stuck at the 3” climb. This is due largely to physical limitations in the 

ability of certain raise configurations to climb the obstacle. This stepfield is also used for 

training and testing data collection. 
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Figure 6. Low Hill with Some Noise Stepfield. 

 
The testing configuration shown in Figure 6 makes the ideal climbing case more difficult 

by include a 2 block hill on the small stepfield, and adding noise to the generated field 

pattern. We expect the robot configurations to have more difficulty surmounting the first 

hill, with an increased number of falls at this point, but to be otherwise similar to the 

ideal climbing case. 

 

Finally, the flat carpeted surface case is intended to test controller responses to rapid 

acceleration from a dead stop. We expect all of the no-reflex controller runs in this 

configuration to fall quickly, and expect the reflex based controllers to fare better. 
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CHAPTER III 

RESULTS 

 

This chapter details the numerical results from experiments carried out on an Inuktun 

VGTVTM Extreme for the three test cases.  

 

Genetics training 

Training and Testing data were taken from the Ideal Climbing Stepfield, and run through 

the genetic algorithm based optimizer. The training data consists of approximately 5 

minutes of data with 18 falls, at varying raise angles. The testing data consists of 

approximately 2 minutes of data with 6 falls. The relatively short period of data is due to 

the time required to optimize weights when more data is collected, and the relatively 

small number of falls that can be experienced on the ideal stepfield. In retrospect, we do 

believe more testing data would have been appropriate. 

 

After 200 generations the best scoring distance based classifier correctly classified 90% 

of the testing data, with correct classification of 85% of falls, and 95% of non-falls. The 

classifier generated the following weights:  
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Table 1  
Distance Function Weights 

Parameter Weight Value Range Relative Weight 
Current Angular Velocity 0.05 0-15 0.8 
¼ s Angular Velocity 0.5 0-10 5.0 
Phi 2.39 0-Pi/2 3.8 
Raise Angle 0.005 0-90 0.5 
Throttle 0.018 -128 – 127 4.5 
Track Current 0.005 0-255 1.2 

 

Table 1 suggests that whether or not a given state is in danger of falling is based heavily 

on the time averaged angular velocity, current throttle, and phi. 

 

Ideal climbing case 

The ideal climbing case consists of 3 well defined transitions: a 1.5” climb from lab 

carpet to wooden blocks, a 1.5” climb from wooden blocks to wooden blocks, and a 3” 

climb from wooden blocks to wooden blocks. These transitions are at 0”, 9”, and 27” 

respectively.  

 

Each reflex type is tested along 2 variables: full or half throttle (FT/HT in tables), and a 

20, 45, or 70 degree target raise angle. This gives 6 possible starting configurations a 

reflex type can be tested by, and each test was repeated 5 times, for a total of 30 tests for 

each reflex type. 
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Table 2  
Ideal Climbing Case, Completions, Averages 

Reflex Type Time (s)- FT Time (s)- HT Corrections  Count 
None 5.5 10.4 0 7 

Velocity, Halt 8.5 9.9 2.1 7 

Velocity, Reverse 7.3 10.1 2 6 

Distance, Halt 6.0 9.9 1.6 7 

Distance, Reverse 9.0 11.2 4.4 9 

 

Table 2 shows data on the configurations that reached the end of the course. The only 

robot configurations to successfully complete the course were those with a target raise 

angle of 20; all other configurations were stopped by the large climb obstacle at 27”, or 

earlier. This data indicates that the distance based reflex controller with reverse response 

leads to more completions, though at a cost of increased completion time due to the 

backtracking and speed loss that comes from the reverse response. All other reflex 

controllers are on par with each other. 

 

Table 3 
Ideal Climbing Case, Distance = 0”, Averages 

Reflex Type Time(s)- FT Time(s)- HT Corrections Fall Count 
None 2.3 3.0 0 9 
Velocity, Halt 2.8 3.4 1.7 15 
Velocity, Reverse 3.6 3.3 1.5 11 
Distance, Halt 3.6 4.3 2.3 12 
Distance, Reverse 4.3 6.1 4.9 7 
 

Table 3 shows data on the configurations that fell at the first obstacle.  We observe that 

the distance based reflex controller with reverse response is less likely to fall than any 

other reflex controller, and that all other reflex controllers fair worse than no the no-
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reflex case. We also observe that all reflex controllers took more time to completely fall, 

indicating that the controllers are able to delay a fall by varying amounts of time.  

 

It is worth noting that two falls were recorded for each velocity based reflex controller at 

the 9” obstacle. These were not included in Table 3 to prevent skewing of the time data. 

 

Table 4  
Ideal Climbing Case, Distance = 27", Averages 

Reflex Type Time(s)- FT Time(s)- HT Corrections Fall Count Active 
Count 

None 5.5 8.4 0 (67%)  14 21 
Velocity, Halt 10.3 9.6 2.6 (50%)    7 14 
Velocity, Reverse 13.8 10.4 5.5 (67%)  12 18 
Distance, Halt 6.9 9.8 2.3 (61%)  11 18 
Distance, Reverse 7.4 13.9 3.9 (61%)  14 23 
 

Table 4 shows summary information on the falls surrounding the 3” climb obstacle, 

where “Active Count” is the number of robot configurations that did not fall before this 

point.  This table indicates that each controller is performing on par or better than the no-

reflex case. 

 

Hill climbing with low noise case 

The hill climbing case consists of 2 stepfield hills with low noise added to the structures. 

The first wall occurs at 6”, peaking at 3” above the plane, with a maximal 45
o angle. The 

second wall occurs at 27”, peaking at 3” above the plane.  

 



  25 

Each reflex type is tested along 2 variables: full or half throttle, and a 20 or 40 degree 

target raise angle. This gives 4 possible configurations a reflex type can be tested by, and 

each test was repeated 5 times, for a total of 20 tests for each reflex type. The exclusion 

of the 70o target raise angle and the slight decrease of the 45 o target raise angle were due 

to the overall poor results these configurations had in the ideal climbing case. In the 

ideal case, only 10% of the configurations with a target raise angle of 70 o overcame the 

first obstacle. 

 

The primary issues encountered in this test run were twofold. First, 10% of the robot 

configurations would reach the transition from lab carpet to the stepfield, and stop, 

unable to overcome the 1.5” climb. This was not observed in the first test, and may be 

due to mechanical wear on the robot. Second, a further 30% of the configurations could 

not climb the first wall- these configurations typically stopped on coming in contact with 

the wall, possibly due to mechanical wear. Due to these issues, and the nature of how 

data was recorded, data on the configurations that stopped at the first two obstacles 

cannot be reliably disambiguated from data on configurations that fell at those first 

obstacles. The only data that can be reliably extracted is the number of configurations to 

reach the second hill. 
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Table 5  
Hill Climbing Case, Distance > 20", Averages 

Reflex Type Time(s)- FT Time(s)- HT Corrections Count 
None 6.0 7.6 0 7 
Velocity, Halt 7.0 --- 4.5 2 
Velocity, Reverse 12.2 11.7 2.4 5 
Distance, Halt 6.0 12.6 1.5 2 
Distance, Reverse 9.4 --- 6.5 2 

 

Table 5 indicates that the no-reflex controller case outperformed all other controllers in 

terms of reaching the final stage of the course. It should also be noted that the only 

configuration to complete the course was based on a no-reflex controller. This data 

assumes that the probability of getting stuck is uniformly distributed. 

 

Flat carpeted surface case 

The final test case looks at falls induced by a sudden acceleration from the stopped state. 

This case looks at going from zero to full throttle with a raise angle of 90o, which has 

been identified as the second major source of falls, along with attempting to climb 

obstacles.  
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Table 6  
Flat Carpeted Surface Case, Averages 

Reflex Type Time(s) Corrections Completions 
None 1.7 0 0 
Velocity, Halt 1.4 2 0 
Velocity, Reverse 4.2 1.4 0 
Distance, Halt 5.0 2.4 2 
Distance, Reverse 3.5 2.4 2 

  

Table 6 gives the data for the flat carpeted surface case. We note that the only 

completions ending without a fall are the controllers using distance based classifiers. The 

poor performance of the physically based classifiers may be due to a combination of 

control loop delay and delays introduced by the low pass accelerometer filter, or due to 

angular acceleration not being considered in the projection. 
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CHAPTER IV 

DISCUSSION AND SUMMARY 

 

This chapter will discuss the implications of the experiment data. We will focus on 

whether or not actively taking control of the robot, as opposed to cutting off human 

control, provides better results. We will also compare our distance based learning reflex 

controller to the simple angular velocity based reflex controller, and compare both to the 

no-reflex test case. 

 

Response type: Halt or reverse? 

The response types were originally developed in the context of developing an assistive 

robot teleoperation system for human consumption. In that context, halting before a fall 

becomes „critical‟ is intended to prevent the robot from entering a fall, and to alert the 

user to the danger of proceeding. Reversing, by contrast, assumes that the robot has 

already entered the critical stage of a fall, and that applying a reverse throttle will 

remove enough angular velocity to prevent the fall. 

 

In these experiments simply halting is consistently shown to be either on par or worse 

than doing nothing. This is likely due to the situations in which a halt is triggered. A halt 

is typically triggered as the track and middle wheel come into contact with an obstacle. 

With the forward momentum present in the robot, this typically means the middle wheel 
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will come in hard contact with the obstacle. Once the reflex response timeout finishes 

the previous throttle is reapplied by the testing agent. This means that the robot tries to 

apply a forward throttle when it is in direct contact with what is effectively a wall, which 

ends with the robot trying to climb up the wall. When this happens an angular 

momentum is induced which is not countered by other forces. This in turn leads to a fall, 

or a retriggering of the reflex response. If the operator did not immediately apply a 

forward throttle, but rather tried to correct the problem in some way, this response 

method would likely have seen better statistics. 

 

Another factor in halting performance is the delay between a state being classified as a 

probable fall and the halt being acted on by the robot. There is an estimated 0.15s delay 

between readings on the accelerometer changing, to a command being processed by the 

robot. This time lag may be enough for the robot to enter the critical stage of a fall, 

beyond which merely halting input from the user is not enough to save the robot from 

falling. 

 

Responding with a reverse throttle is not shown to be universally better then halting. 

Reversing is better than halting for aspects of each test case. On smaller obstacles in the 

ideal climbing case using a reverse leads to fewer falls than does halting; but on the 

larger obstacle and in terms of completion, using reverse is more appropriate with a 

distance based classifier then a velocity based classifier. This holds true on all the data.  
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Based on the data, discussion, and specifically limitations stemming from the time delay 

between sensor readings and robot response, we believe reversing is a better response 

type then halting for reflex controllers. We also believe that if the time delay issue could 

be resolved then halting would be a more appropriate response, but would still face 

issues with the robot halting in a bad spatial relationship relative to an obstacle. 

 

Fall classifier: Distance based, velocity based, or nothing? 

Velocity based classifiers tended to show worse performance then both the distance 

based classifier and the control classifier. The velocity based classifier is based on the 

principle of predicting what the orientation of the robot will be one quarter second from 

the present, based on the current angular velocity and orientation readings. In testing it 

was often noted that the reflex would typically only be triggered after it was needed, 

suggesting that this reflex controller is suffering from the time lag for changes from the 

accelerometer to reach the reflex and commands to then be sent to the robot. 

 

Reflex controllers using distance based classifiers generally performed better than the 

those controllers using velocity based classifiers, and on par or better than the no-reflex 

controller. In the hill climbing case the distance based reflex controllers performed 

worse than all alternatives. Additionally, it was observed that distance based reflex 

controllers were subject to far more false positive fall classifications then velocity based 

controllers, which is why the correction counts for most of the distance based reflex 

controllers are much higher than others. The false positive issue may be due to a 
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deficiency in the training or the testing data, or may be a fundamental issue with the 

classification approach. Overall we feel that the better performance shown in terms of 

completion and fall likely hoods make this a better choice than the velocity based reflex 

controllers.  

 

The no-reflex controller is typified by powering over obstacles. It works best on fast 

robot configurations with a low raise angle, and uses its forward momentum and low 

center of gravity to force itself over obstacles. While this approach works in many cases, 

it very quickly causes larger raise angles (typically anything much over 30o) to fall, 

which is clearly not ideal. 

 

Based on the performance metrics from the data collected, we recommend a distance 

based reflex controller over a velocity based reflex controller. If the time delay issue can 

be resolved a velocity based approach should be on par with the distance based approach 

performance wise, though the distance based approach may be better able to sense falls 

not due simply to angular velocity, such as those where raise angles or other factors may 

come into play. 

 

Summary 

A distance based reflex controller with reversing response to falling has been shown to 

be better than a physically based model approach at dealing with system limitations and 

preventing falls. It has also been shown to be better than taking no corrective action in 
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several test cases. This indicates that the approach of developing an assistive reflex 

based controller for robot protection based on AI principles has merit, and is worth 

exploring further. 
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