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ABSTRACT 

 
Differential Gene Expression in the Anterior Forebrain Pathway Nucleus Area X During 

Rapid Vocal Learning. (April 2010) 
 
 

Dustin Thad Whitaker 
Department of Biology 
Texas A&M University 

 
 

Research Advisor:  Dr. Thierry Lints 
Department of Biology 

 
 

Vocal learning is the complex process by which an organism is able to modify its vocal 

output, such as birdsong or human speech, due to experience.  The pathways used in the 

production and modification of human speech and birdsong have been shown to be quite 

similar, and so, the determining the transcriptome changes in songbirds provide a logical 

first step to learn more about human speech development.  In the current study, trained 

Zebra Finches, a passerine songbird, were allowed to progress through only the initial 

stage of vocal development, as determined by a pitch increase compared with untrained 

isolates.  The transcriptomes of the four song nuclei and three auditory forebrain regions 

of these two groups were compared using microarray hybridizations, and the results 

were confirmed using in situ hybridization.  In Area X, part of the anterior forebrain 

pathway known to play a role in vocal learning, 149 genes were found to be 

differentially regulated, with approximately 85% of these genes decreasing in 

expression.  Of the differentially expressed genes, some have already been found to play 

a role, either directly or indirectly, in learning through previous studies, though most 
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have still yet to have their properties determined.  This study, though important in and of 

itself, is only the first of many pieces to the large process of vocal learning to be put into 

place; further work will be able to expand upon work here to fill in gaps in our 

knowledge of the vocal learning process. 
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NOMENCLATURE 

 

AFP Anterior forebrain pathway 

BOS Bird’s own song 

CMM Caudal portion of the medial mesopallium 

DLM Magnocellular nucleus of the dorsolateral thalamus 

DM Dorsal medial nucleus of the midbrain 

DPH Days post hatch 

L2 Region 2 of Field L 

lMAN Lateral magnocellular nucleus of the anterior nidopallium 

NCM Caudal portion of the neostriatum 

nXIIts Tracheosyringeal subdivision of the twelfth nucleus 

PVP Posterior vocal pathway 

RA Robust nucleus of the arcopallium 
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CHAPTER I 

INTRODUCTION 

 

Vocal learning has been defined as the ability of animals to modify acoustic and 

syntactic structure of sounds produced, including imitations and improvisations as a 

result of experience with others (Konishi, 1969). Vocal learning, unlike auditory 

learning or the ability to make sound associations has only been documented in a few 

species.  This exclusive group includes three groups of birds; oscine songbirds, parrots, 

and hummingbirds; and five groups of mammals; humans, bats, cetaceans, and the two 

recent discoveries of elephants and seals (Reiss et al., 1997; Boughman, 1998; Poole et 

al., 2005; Sanvito et al., 2007)). While many of these groups have contributed to 

research, the oscine songbirds, with the other two groups of birds to a minor extent, have 

been the most well studied of any vocal learners, except humans, since they were first 

discovered to participate in this type of learning in the 1970s (Nottebohm et al., 1976). 

Work done has shown that the bird groups, as well as humans, exhibit similarly designed 

central nervous system circuits for vocal learning and vocal production, despite 

differences in the design and developmental organization of their peripheral vocal 

organs, the avian syrinx and the human larynx (Fig. 1 (Jarvis, 2004)).  Along with the 

similar brain structures and pathways, vocal learning itself has many parallels between 

the avian species and humans including: infant (juvenile) babbling, an early critical 

_______________ 
This thesis follows the style of The Journal of Neuroscience 



  2 

period for learning and a requirement for auditory input and practice.  Examples of 

isolated or deaf humans and birds the inability to learn proper speech without these four 

criteria being fulfilled ((Thorpe, 1958; Marler, 1970; Fromkin et al., 1974; Doupe and 

Kuhl, 1999).  As both avian species and humans utilize similar brain and learning 

mechanisms, research conducted with songbirds may have potentially significant 

implications for understanding human speech development and vocal motor control.  

 

 

 

 

 

 

 

 

 
Figure 1.  Comparative auditory and vocal brain regions of birds and humans.  Posterior 
vocal pathways shown in yellow; anterior forebrain pathways shown in red; auditory 
forebrain regions are shown in light blue.  Scale bar ~7 mm. (Figure from Jarvis, 2004) 
 
 
Structures of the song system 

The Zebra Finch (Taeniopygia guttata) has been the best studied of all non-human vocal 

learners.  Three brain pathways and regions of interest which have been found in Zebra 

Finches have been implicated in vocal learning and production, with the other bird 

groups containing similar, though differently named, structures. The posterior vocal 
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pathway (PVP) consists of connections projecting from the nucleus HVC (now used as a 

proper name) to the robust nucleus of the arcopallium (RA) to the dorsal medial nucleus 

of the midbrain (DM) and tracheosyringeal subdivision of the twelfth nucleus (nXIIts) 

which ultimately innervates the syrinx (Fig. 1).  The anterior forebrain pathway (AFP) is 

a loop of nuclei which has projections to each other and also input from, and output to, 

the posterior vocal pathway; this loop consists of the lateral magnocellular nucleus of the 

anterior nidopallium (lMAN) projecting to Area X to the magnocellular nucleus of the 

dorsolateral thalamus (DLM) and back to lMAN.  lMAN in turn projects to RA, which 

represents a point of convergence of the PVP and AFP (Foster and Bottjer, 2001).  The 

auditory forebrain regions are: the caudal portion of the neostriatum (NCM), the caudal 

portion of the medial mesopallium (CMM), and field L (Fig. 1 and 2A; (Striedter, 1994; 

Vates et al., 1996; Durand et al., 1997; Gahr, 2000; Reiner et al., 2004).   

 

The structures located in the anterior vocal pathway play complementary but opposite 

roles in the song learning process.  Juveniles containing Area X without lMAN produced 

‘monotonous repetitions of a single note complex;’ those containing lMAN without an 

Area X produced extremely variable song structures (Scharff and Nottebohm, 1991).  

This demonstrates effectively the competing influence of both Area X and lMAN on 

song stability.  The mechanisms behind these dual interests in song structure are still 

unknown, in juveniles as well as adults. 
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ZENK mRNA expression in both NCM and CMM has been shown to positively 

correlate with the level of similarity between the bird’s own song (BOS) and the tutor 

song, also implicating these areas in song memory (Bolhuis et al., 2001; Terpstra et al., 

2004).  Moreover, disruption of molecular signaling mechanisms in NCM during the 

exposure of tutor song blocks song learning (London and Clayton, 2008).  The anterior 

forebrain pathway is thought to regulate both song learning in juveniles and song 

plasticity in adults (Brainard and Doupe, 2000; Solis and Doupe, 2000; Olveczky et al., 

2005; Aronov et al., 2008).  Since females do not sing in Zebra Finches, and therefore do 

not learn song, the nuclei of the AFP are absent, but in species in which both sexes sing, 

all song nuclei can be found in both sexes (MacDougall-Shackleton and Ball, 1999). 

 

The process of vocal learning 

In Zebra Finches, only the males are capable of vocal learning and, once mature, adults 

produce a single, highly stereotyped, song.  This process occurs in two overlapping 

stages: the sensory and sensorimotor phases (Fig 2B).  In the sensory phase, juveniles 

acquire a template of their tutor’s song; this phase begins at approximately 25 days post 

hatch (dph) and spans until 60 dph  (Roper and Zann, 2006).  Overlapping with this 

initial phase is the sensorimotor phase in which the juvenile birds begin to practice 

singing their own song and gradually modify it to match that of their tutor.  Song 

structure becomes more crystallized and unable to be modified to a great extent after 90 

dph, when the bird becomes an adult.  The timelines for this two-stage process are found 

in Figure 2B.  Although the process of modification of vocal output of the juvenile’s  
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Figure 2. The auditory and vocal systems.  A) The anterior forebrain pathway and its 
connections is labeled in red, the posterior vocal pathway is in green, and the forebrain 
auditory areas are in grey.  cHV, above, is the outdated nomenclature for CMM.  To the 
right is a picture of an adult male Zebra Finch. (Figure from Brainard and Doupe, 2000)  
B) Timeline of critical period in Zebra Finches (Modified from Brainard and Doupe, 
2002) 
 

song towards that of its tutor extends for months, changes in the temporal and spectral 

structure of song have been seen after only a single training session of approximately 75 

seconds of exposure of tutor song.  This short amount of exposure has been shown to 

produce induce song imitation in juvenile males as tested at 90 dph (Figs. 3 & 4).  Thus, 

a single session of operant training can time lock the beginning of neural processes 

occurring in the juvenile bird’s brain during his march through vocal learning.  Before 

this study, changes in gene expression of the songbird vocal control nuclei during 

periods of vocal learning had not been properly explored; instead, most studies have 
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shown only the beginning and end results, with a lack of information of what is 

occurring throughout the process.   

 
 
Figure 3.  Spectral changes after single session.  The spectral diagrams show that the 
song output becomes more organized, as well as increases in pitch, after only a single 
training session.  The songs of both birds are seen here after a lapse of 8 hours. 
 

 
 
Figure 4.  Single training session similarity comparison.  Birds were trained using the 
same protocol as the current study (see Methods); the similarity of imitation to that of 
the tutor song (Samba) is seen to be highest in the early sensitive period for vocal 
learning (35/45 dph).  This figure shows that a single session significantly increases song 
imitation compared to that of an isolate. 
 



  7 

The genomics era 

Since the beginning of the genomics era, high-throughput methods, such as the 

microarray, have been developed to generate large sets of data and interrogate biological 

processes in a quicker and more efficient way.  Genomes have been sequenced in many 

species, with more likely completed in the near future, and genes skipped over in the 

past are finally finding their rightful place in the regulation of cellular processes.  The 

Zebra Finch has not been left out of all of these genomic experiments as its genome has 

just been fully sequenced (Warren et al., 2010) and multiple other genomic experiments 

have recently brought forth new data that has previously been unknown.  Microarrays 

have been used recently to obtain differential gene expression between multiple 

groupings of birds to find gene products that might be regulated as a consequence of 

adult singing and/or song perception ((Wada et al., 2006; London et al., 2009).  A recent 

description of the Zebra Finch genome (Warren et al., 2010) reveals that 17,475 protein-

coding genes are represented in the songbird genome, of which approximately 57% are 

expressed in the brain.  A significant amount of these neurally-expressed genes (~900) 

are differentially regulated between the 50 dph juvenile brain, in the sensitive stage for 

song learning, and adult (2.5 years) male brains.  Though changes between these two 

distinct stages might show differences based on experience or age, it lacks a way to 

properly represent genes that might only be activated, or deactivated, during transitory 

stages of vocal learning.  This study puts the song nuclei of the Zebra Finch through a 

rigorous analysis in the hope of providing some insight into the genomic changes 

occurring during the first days of the vocal learning process. 
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CHAPTER II 

METHODS 

 

Animals 

The current study used juvenile male Zebra Finches (42 – 48 dph; n=6/group), which 

were raised in breeding colonies in our laboratory.  These males were isolated from their 

fathers prior to fledging at 7 – 10 dph and were raised by their mothers until reaching an 

age of independence, at approximately 35 dph.  The juveniles were relocated again into 

sound isolation boxes at this stage.  All animal procedures were carried out under 

guidelines established by the Texas A&M Institutional Animal Care and Use 

Committee, under approved Animal Use Protocols 2006-21 and 2009-35. 

 

Operant training paradigm 

The isolation boxes contained two Zebra Finch models, a camera with microphone, and 

a speaker; a key string was attached to the female model while a speaker was located 

behind the male model on the opposite end of the cage (Fig. 5).  Continuous recordings 

were taken during the entire training program, and from these recordings, the subject’s 

subsong, its auditory output prior to receiving any training, and its post-training song 

development were analyzed using Sound Analysis Pro software (Tchernichovski et al., 

2004). Each bird was allowed to pull at the string to trigger song playback, with a 

maximum of forty playbacks given per day (2 sessions/day; 20 playbacks/session), as 

per earlier experiments (Tchernichovski et al., 2001). The number of songs was limited 
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due to the fact that too many playbacks in a given time have been found to be 

detrimental to song learning (Tchernichovski et al., 1999). 

 

Once the song of the trained birds was found to have a definitive increase in song pitch, 

relative to its untutored baseline pitch, the birds were allowed to have approximately 30 

minutes of singing before sacrifice.  Thirty minutes of song has been found to maximize 

the expression levels for some activity regulated genes (Jarvis and Nottebohm, 1997).  

Birds were sacrificed by decapitation, and the brains were fast frozen in -40°C 

isopentane and mounted in optimal cutting temperature (OCT) gel.  Untrained birds were 

isolated in the sound chambers for an approximately equal amount of time and also 

sacrificed after a singing bout of 30 minutes.  The brains were sectioned using a Leica 

CM1850 cryostat at 10 and 12 µm for the in situ hybridizations and microarray 

hybridizations, respectively.  
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Figure 5. Operant training paradigm setup.  The birds were isolated in an acoustic 
chamber.  Audio/video recordings were taken throughout the entire session using the 
camera (left) and microphone (not shown).  After pulling the string key attached to the 
female model (left), song playback would come through from the speaker (right) behind 
the male model. 
 

Microarray hybridizations 

Sections from the left hemispheres of the birds were dehydrated in washes of 70, 95, and 

100% ethanol and fixed with xylenes in preparation for laser capture microscopy.  Once 

fixed, four song nuclei (HVC, RA, Area X, lMAN) and three regions of the auditory 

forebrain (NCM, CMM, L2) were isolated and the mRNA was extracted using the 

PicoPure® RNA Isolation kit (Molecular Devices).  Using the µMACS™ SuperAmp™ 

kit (Miltenyi Biotec), the mRNA was reverse transcribed and amplified to yield cDNA; 

this same kit was utilized to couple the Cy-3 fluorophore with the cDNA products.  

Microarrays were hybridized using the Gene Expression Hybridization Kit (Agilent).  
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The arrays were scanned at a 5µm resolution on a GenePix 4000B microarray scanner 

using the Agilent Feature Extraction Software v9.5.1.   

 

Microarray analysis 

Following the hybridization and scanning procedures for the microarrays, a number of 

control steps were taken in order in ensure that the microarray results were of high 

quality.  Negative controls on the microarrays are measured; probes that were not 

significantly higher than that of the negative controls (three standard deviations) were 

filtered.  If almost no probe on an array reached this criterion, the entire array was 

rejected.  An array was also discarded from the analysis if the probe value for that array 

showed little relationship to the median probe value for all other arrays (Fig. 6).  

Normalization of the microarrays was done using two assumptions.  The first is that 

most genes, greater than fifty percent, do not change between the two groups and so are 

normalized to one another.  The variance of the expression levels between arrays should 

be consistent using the mean of the probe increases across arrays.  If many of the probes 

match the same gene, and the expression level across all experiments is highly 

correlated, the individual probe values are merged to get a single median value for the 

gene. 
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Figure 6.  Microarray boxplot analysis.  Shown are the M-values for 36 microarrays; 
arrays must all be similar in expression values.  One array (*) shown had to be 
physically removed from any analysis due to its lack of consistency with the other 
arrays.  
 

Differential gene expression between the two groups was tested using a linear model for 

individual brain regions.  In this case, a t-test was used to determine if the gene is 

significantly different between the two groups.  A problem using a simple t-test is the 

microarray’s potential for type I errors, a problem when analyzing microarray data 

(Benjamini and Yekutieli, 2005); this problem is corrected by applying a false discovery 

rate (FDR) p-value to the samples.  All samples found to be significant in the present 

study met the adjusted FDR p-value of 0.25. 
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In situ hybridizations 

Every tenth section was fixed using 4% paraformaldehyde and the hybridizations were 

performed using the protocol described by Mello and Clayton, with the following 

adjustments:  [33P] was used in place of [35S]; 120 µl of hybridization solution was used 

and covered using the adjacent slide; the slides were incubated in mineral oil overnight; 

slides were exposed to phosphoimager screens (X) in place of the X-ray films  (Mello 

and Clayton, 1995) .  Slides were exposed to the screens for a period of 18 – 24 hours 

and scanned using FujiFilm BAS-5000 Phosphoimager.  Adjacent slides were stained 

using cresyl violet to identify brain regions.  

 

In situ hybridizations were performed as an independent confirmation of the microarray 

results on a subset of the genes.  Genes tested represented genes from different nuclei in 

the song system in order to confirm each set of microarrays.  Analysis of the images was 

done using the ImageJ analysis program provided by the National Institutes of Health 

(Sheffield, 2007). Using this software, a ratio of the mean pixel intensities of the region 

of interest over that of the region’s background were taken for each gene in each region.  

A simple two-tailed t-test was used to determine significance; since only one gene is 

tested at a time, an adjusted FDR p-value is not necessary for this analysis. 
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CHAPTER III 

RESULTS 

 

Of the 44,000 features on the microarray, corresponding to approximately 17,000 genes; 

149 were seen to change in Area X between birds undergoing rapid vocal change (pitch 

increase, n=6) and birds singing untutored song.  23 (15.4%) were seen to be up 

regulated while 126 (84.6%) decreased in expression.  In the recently sequenced genome 

of the Zebra Finch, approximately 40% of transcripts found in the auditory forebrain of 

unstimulated birds were non-coding or are derived from intronic loci (Warren et al., 

2010); our results are consistent with these findings in that many of the genes (~17.5% 

predicted) which decrease in expression in the days after operant song training are non-

coding. 

 

Table 1 lists a selection of the genes which have been found to be differentially regulated 

during this first stage of the vocal learning process; the genes in this list also provide a 

starting point for genes which will be further tested using in situ hybridization as a 

complement to the microarray results. 

Table 1. Differentially expressed genes. 
Clone ID Gene Name Area X (+/-) 
0063P0022D04 CNTNAP4 + 

0203P0043C05 JAG2 + 

0205P0012C03 SAP18 + 

0206P0011N18 RFNG  (DCXR) - 

0202P0004P12 A2BP1 (Fox-1) - 

0203P0011I23 CRTC1 - 
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The above listed genes were selected highlight some processes in which might be 

important in vocal production and learning.  Four genes in Area X (JAG2, RFNG, 

SAP18, and CRTC1) are all genes encoding proteins that play a role in the Notch 

pathway, which has been seen to influence learning (Costa et al., 2003). 

Even if these studies seem to be fairly unrelated, the basis for learning and memory 

consolidation could require similar mechanisms of the Notch pathway.  

 

Another differentially regulated gene that immediately becomes apparent is CNTNAP4, 

a paralog of the CNTNAP2 gene.  The CNTNAP2 gene has been implicated in autism as 

well as processes of vocal learning and production (Arking et al., 2008; Vernes et al., 

2008).  CNTNAP2 has also been shown to be negatively regulated by the FoxP2 protein 

(Vernes et al., 2008), which has been implicated in speech dyspraxia and autism (see 

discussion).  With the close similarity between the two genes, CNTNAP4 might also be 

a negatively regulated target of FoxP2 during vocal production and have some direct 

parallels with CNTNAP2.   

 

A2BP1, also known as Fox-1, is also a regulated gene that stands out.  This gene is able 

to autoregulate itself, and the protein product is able to modulate alternative splicing of 

many downstream targets by inhibiting alternative splicing patterns ((Underwood et al., 

2005; Lee et al., 2009; Damianov and Black, 2010).  A2BP1’s recognition sequence is 

highly conserved but widely distributed, with thousands of potential targets ((Zhang et 

al., 2008; Kuroyanagi, 2009).  The possible involvement of A2BP1 in regulating whole-
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scale alterations to the ratio of non-coding and coding RNAs in the unstimulated and 

stimulated brain, respectively, is considered further in the discussion. 
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 

Discussion 

Vocal learning, or song learning in songbirds, is a highly complex process that is the 

result of a combination of sensory and motor processes working in tandem to produce 

dramatic changes in vocal output, i.e. song.  Changes in the transcriptional products 

during the vocal learning process have not been fully addressed to date, though this 

study begins to shine some light upon the initial stage of this complex process.  

Surprisingly, many of the genes found to be differentially regulated in the current study 

are non-coding and have decreased expression levels post-training. More work will need 

to be performed to determine Area X’s activity levels during the vocal learning process 

and how this relates to the transcriptional changes we observe.  Does the net decrease in 

transcription in this nucleus at the start of the song imitation process reflect a decreased 

overall activity in this nucleus?  This would suggest that Area X’s function of song 

stability, or its function of inhibiting lMAN’s variability function, is decreased during 

the vocal learning process, perhaps facilitating the birds production of rapid vocal 

changes at the syllable level (for example, pitch increase).  Alternatively, the transition 

from a higher proportion of non-coding RNAs to a transcriptome with a greater bias 

towards functional coding RNAs might indicate an increase in Area X neural control.  

This would tend to inhibit lMAN function and song variability, and perhaps might 

contribute to the increased temporal stereotypy of syllable delivery  (e.g. repetitive 
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delivery of one or a few syllables) that also characterizes an early phase of vocal 

learning.  Distinguishing between these two possible mechanisms requires further 

investigation. 

 

Unexpectedly, we also found (not presented here) that relatively few genes that are 

expressed differently after training in the nucleus HVC.  At first thought, this seems to 

be counter-intuitive during this period of rapid changes to song characteristics due to the 

fact that the posterior vocal pathway provides the coding signaling for song production.  

However, the fact that few genes are seen to change in HVC relative across the two 

groups of birds, seems to make sense when viewed from the perspective that HVC is 

more tonic, providing essentially a timing code for song production (Long and Fee, 

2008) while the nuclei in the anterior forebrain pathway have been shown to produce 

changes in song structure.  Nucleus RA potentially would show greater changes in gene 

expression levels because of its direct contribution to the spectral properties of song 

output compared to HVC, which only provides the overall temporal code of the song, 

and the large pitch changes seen after training (Shank and Margoliash, 2009).  It would 

seem that lMAN would also be producing large amounts of change during this period 

because of the nucleus’ activity in adding variability to song output, though this 

hypothesis has yet to be tested.  Once the transcriptional product changes have been 

found for lMAN, the relationship between the two main AFP nuclei engaged during 

song learning will begin to become clearer.  As of now, it seems uncertain whether Area 

X is providing a drive towards stability with lMAN’s activity staying constant or if Area 
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X’s activity is fairly constant and lMAN becomes more active in order to overcome the 

stability effects of Area X, or if the two work in tandem.  

 

CNTNAP4 is one of the many genes down regulated.  Many studies have found an 

inverse relationship between a paralog of this gene, CNTNAP2, and FoxP2.  

Knockdown of the FoxP2 gene in Area X of the young finches has been found to lead to 

incomplete or inaccurate vocal imitation (Haesler et al., 2007); levels of this gene were 

also shown to be significantly lower during adult undirected singing in comparison with 

directed (to a female) singing (Teramitsu and White, 2006), leading one to think that 

lower levels of FoxP2 present allows for greater variability during song production. If 

FoxP2’s relationship with CNTNAP4 is similar to that of CNTNAP2 (BLAST gives an 

e-value of 2*10-76 between the two mRNAs), it would seem that song variability might 

also be regulated by FoxP2 through CNTNAP4.  Previous studies show the relationship 

between FoxP2 and many speech and language disorders ((Fisher et al., 2001; Lai et al., 

2001; Enard et al., 2002; Vargha-Khadem et al., 2005) CNTNAP4 may provide another 

mechanism by which FoxP2 is able to affect song imitation and production. 

 

Not only is the CNTNAP4 and FoxP2 relationship one that will be tested, the 

contribution of other differentially expressed genes to the vocal learning process will 

also be determined in a later study. A2BP1 is a case in point; this gene has been shown 

to be important in the regulation of alternative splicing and may be importation in the 

regulating non-coding RNA population.  Another reason for delving deeper into the 
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function of this particular gene is that Martin et al. (2007) and Morrow et al. (2008) have 

implicated it as a candidate gene of autism spectrum disorders, a major class of disorders 

involving deficits in social communication, speech and language (Martin et al., 2007; 

Morrow et al., 2008).  A2BP1 is a negative regulator of splicing (Underwood et al., 

2005). It is also decreased in expression after training in the songbirds.  If mutations in 

this gene are able to produce the effects of autism, the mechanism by which this is 

accomplished could be by continual repression of needed downstream products. 

 

Conclusions 

Though the current study has begun to determine Area X’s role in song learning, the role 

of the other song nuclei, in conjunction, will need to be determined in order to obtain the 

whole picture.  This work has already begun; once completed, extensive work will need 

to be done to determine not only how each gene influences song learning but also how 

whole networks of genes interact with one another for this common goal.   

 

Our current study will determine the many genetic changes occurring during this first 

part of the vocal learning process; though it is only one small piece of the puzzle.  Later 

work will need to progress through later stages of song development in order for the 

entire process to be seen.  Although these studies will be able to show more accurately 

how vocal development progresses in the isolated individual, song learning in the wild 

and human vocal learning are not processes done by the individual in isolation but are 

highly influenced by social interactions; determining social influences will be another 
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large step in bridging the gap in our understanding of these complex developmental 

learning processes. 
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