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We consider the effect of nonmagnetic impurities on the onset temperature T � for the d-wave pairing in
spin-fluctuation scenario for the cuprates. We analyze intermediate coupling regime when the magnetic corre-
lation length � /a�1 and the dimensionless coupling u is O�1�. In the clean limit, T ��0.02v f /a in this
parameter range and weakly depends on � and u. We found numerically that this universal pairing scale is also
quite robust with respect to impurities: the scattering rate �cr needed to bring T � down to zero is about four
times larger than in weak coupling, in good quantitative agreement with experiments. We provide analytical
reasoning for this result.
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I. INTRODUCTION

The issue of the pairing glue in the cuprates is still one of
the hottest topics in the physics of strongly correlated elec-
trons. Many researchers believe that the pairing glue is a
spin-fluctuation exchange, at least in the overdoped and op-
timally doped cuprates. At such dopings correlations are rela-
tively strong but not enough so to break a large normal-state
Fermi surface �FS� into the hole and electron pockets.

Recently, Abanov et al.1 analyzed the pairing problem in
the cuprates within spin-fluctuation scenario under the as-
sumption that the FS in the normal state is large. Within this
scenario, the onset of the pairing at T=T � marks the devel-
opment of the pseudogap phase with strong thermal fluctua-
tions of the pairing gap, and the true superconductivity
emerges at a smaller Tc�T �, when thermal fluctuations be-
come weaker. These authors found a smooth crossover be-
tween the limit when the interaction U is smaller than v f /a,
and the pairing is confined to a vicinity of hot spots �points
on the FS separated by �� ,���, and the limit of strong inter-
action, when the entire FS is “hot” �v f is the bare Fermi
velocity as obtained in band theory and a is the interatomic
spacing, v f /a�1 eV�. The onset temperature for the pairing,
T �, scales as T ���v f /a�u for u=3Ua /8�v f �1 and as T �

��v f /a��1 /u� at large u, and weakly depends on � for �
�a. For intermediate values of u=O�1�, which are mostly
relevant to the cuprates, T � goes through a shallow maxi-
mum and is approximately 0.02v f /a. The same pairing scale
was obtained in FLEX calculations for the Hubbard model,2

in two-particle self-consistent calculations,3 in dynamical
cluster approximation,4 and in cluster DMFT.5 The good
agreement between all these results is strong indication that
T ��0.02v f /a�200–250 K is indeed the universal pairing
scale in optimally doped cuprates. At smaller dopings, this
scenario breaks down because of electron localization which
gives rise to precursors to hole and electron FS pockets al-
ready in the normal state. The pseudogap temperature T �

then becomes a scale at which the system develops such
precursors while the pairing emerges at a smaller tempera-
ture due to interaction between electron pockets.

The subject of this communication is the analysis of how
the universal pairing scale T � in optimally doped cuprates is

affected by nonmagnetic impurities, which are pair breaking
for unconventional superconductors. In near-optimally doped
cuprates, concentrations of dopants are quite substantial, and
potential random scattering off dopants could significantly
reduce T �. At weak coupling, which in our case corresponds
to small u and ��a, nonmagnetic impurities in a d-wave
superconductor suppress T � in the same way as magnetic
impurities in a BCS superconductor and T � is given by
Abrikosov-Gorkov �AG� formula6 log T 0

� /T �=��1 /2
+� /2�T ��−��1 /2�, where ��x� is the di-Gamma function
and T 0

� is the pairing temperature in the absence of impurities
�for an s-wave and magnetic impurities, the formula is the
same,7 but with � /2 instead of ��. The ratio of the critical
value of the scattering to T 0

� is �cr /T 0
�=� /2e0.5772�0.88

�T ���cr�=0�.
The issue we address here both analytically and numeri-

cally is what is this ratio when u=O�1� and ��a, when the
pairing problem involves incoherent fermions and near-
gapless dynamical bosons and is very different from the
d-wave version of the BCS theory. We find that in this situ-
ation the ratio �cr /T 0

� is about four times larger than 0.88,
i.e., the pairing is much less suppressed by impurities than in
the weak coupling. This result is in agreement with the ex-
periments which observed8 a similar reduction in the slope of
T ���� compared with the AG formula.

Another issue that we consider here is how impurity scat-
tering affects the angular dependence of the d-wave pairing
gap. For a clean system, Abanov et al.1 have found that in the
universal regime the form of the gap 	p�
� is very close to
cos px−cos py for all frequencies. We show that the cos px
−cos py form holds in the presence of impurities—the angu-
lar dependence only slightly changes with �. The implication
is that both T � and the gap structure are robust toward
impurities.

The angular dependence of the gap, particularly in under-
doped cuprates, has been the subject of intensive debates
recently and some ARPES data were interpreted as evidence
for strong deviations from the cos px−cos py form. We em-
phasize in this regard that the position of the maximum of
the spectral function Ap�
� represents the pairing gap 	p�
�
only deep in the superconducting state. At higher T, the po-
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sition of the maximum in Ap�
� differs from 	p�
� because
of damping induced by scattering off thermal bosons. In par-
ticular, even for a gap with a perfect cos px−cos py form a
maximum in Ap�
=0� is still present in some neighborhood
of a node �a Fermi arc�. In this regard, our result that the gap
keeps cos px−cos py form even in the presence of impurities
agrees with ARPES data by Campuzano and co-workers,9

who detected this form at the lowest T.
The effects of nonmagnetic and magnetic impurities in

superconductors with unconventional order parameters have
been studied for high-Tc cuprates,10–15 noncuprate
superconductors,16–19 and most recently for the pnictides.20,21

For the cuprates, most of the studies attributed a slow de-
crease in T � to the extended nature of the impurity
potential12–14 but Monthoux and Pines10 performed a numeri-
cal analysis of T � suppression in YBCO by nonmagnetic Ni
impurities and found that the initial slope of T � is quite small
even when impurities are pointlike scatterers. Very recently,
Kemper et al.15 studied the effect of disorder using dynami-
cal cluster approximation and quantum Monte Carlo, and
found that ordinary pair breaking by impurities is partly bal-
anced by the impurity-induced enhancement of spin correla-
tions which increases the pairing interaction mediated by
spin fluctuations

Our result agree with Kemper et al.15 and also Graser
et al.14 in that the origin of the flattening of T ���� are mag-
netic strong-correlation effects. At the same time, we found
that, in the universal regime, T � very weakly depends on the
spin-correlation length �. In our theory, softness of T � sup-
pression compared to weak-coupling AG theory is primarily
associated with the strong frequency dependence of the pair-
ing interaction.

II. THEORY

We follow earlier work1 and consider fermions with a
large FS and d-wave pairing mediated by overdamped spin
fluctuations. We add to earlier analysis an isotropic, elastic
scattering by pointlike impurities. As customary for the pair-
ing problem, we introduce normal and anomalous Green’s
functions and self-energies and treat spin-fluctuation medi-
ated pairing within the Eliashberg theory, by keeping self-
energies but neglecting vertex corrections. For small and
large u’s, this approximation can be rigorously justified be-
cause vertex corrections are small in u or 1 /u, respectively.
For u=O�1�, it can only be justified on the basis that vertex
corrections are small numerically.22

The set of equations includes fermionic and bosonic self-
energies in the normal state and the linearized equation for
the d-wave pairing vertex �pf

� �
m� �Ref. 1�

pf
�
m� = �T ��


m�
� dp f��pf−pf�


m−
m� sign�
m
m� � , �1�

�pf

� �
m� = − �T ��

m�
� dp f�

�
pf−pf�

m−
m� �pf�

�
m� �

	
m� 	 + � + pf�
�
m� �

, �2�

�pf
�
m� = �pf

� �
m� + �� dp f��pf�
�
m�

	
m	 + � + pf�
�
m�

, �3�

�pf−pf�
	
 =

�ua/��
�a/��2 + a2	p f − p f� − Q	2 + 		
	/�

, �4�

where �=3v f / �16ua� and momenta p f in all formulas are
confined to the FS because integration in the direction trans-
verse to the FS has been carried out. In distinction to Ref. 1
in Eqs. �2� and �3�, we also included impurity renormaliza-
tion of �pf

� and of Matsubara energies 
m=�T ��2m+1�,
where �= �ni /�Nf�sin2 � depends on impurity concentration
ni, fermionic density of states Nf, and the impurity potential
u0 via tan �=�u0Nf.

The set of equations for � and  can be simplified in the
usual way by introducing mass-renormalization factor
Zpf

�
m� and the pairing gap 	pf
�
m� via

Zpf
�
m� =

	
m	 + � + pf
�
m�

	
m	
, 	pf

�
m� =
�pf

�
m�

Zpf
�
m�

.

�5�

Due to A1g symmetry of pf
and B1g symmetry of �pf

� the
impurity renormalization of the pairing vertex vanishes, i.e.,
�pf

=�pf

� . Using Eq. �5� we obtain from Eq. �2�

�

m�
� dp f�
�T

�
pf−pf�

m−
m�

	
m� 		
m	
+ �mm��pfpf�

Z�
m,p f�
	
m	

�	�
m� ,p f�� = 0.

�6�

We wrote the gap equation as an eigenvalue problem by
moving all terms to one side and symmetrizing the kernel
with respect to 
m ,
m�.

III. NUMERICAL SOLUTION

This linearized gap equation is solved numerically by pre-
senting the FS integral as a sum, varying T and finding T � as
the highest temperature where Eq. �6� is satisfied. The result
is presented in Fig. 1. We clearly see a strong increase in the
ratio �cr /T 0

� compared with a BCS d-wave superconductor.
For u�1, when T 0

� as a function of u has a maximum at
about 0.02v f /a, this ratio is nearly four times larger than in
the BCS limit. This result is in a good quantitative agreement
with the experiment in Ref. 8 and shows that the universal
pairing scale in the cuprates is resistant to ordinary
impurities.

In Fig. 2 on the left we show the angular dependences of
the quasiparticle renormalization factor Zpf

�
0�=1

+ �pf
�
0�+�� /
0 and of the gap function 	pf

�
0� for clean
and dirty cases, for 
0=�T � and different u and �. In the
clean case and u=O�1� the angular dependence is quite close
to cos 2� �or cos px−cos py�. We see that the effect of the
impurities on the angular dependence of the gap is quite
small, i.e., cos 2� form is preserved in a dirty case. We veri-
fied that this holds for all � up to the critical value and for all
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Matsubara frequencies. For completeness, in Fig. 2�c� we
show the frequency dependences of Zpf

�
m� and 	pf
�
m�,

and in panel �d� we present �pf
�
m� at �=0 which we will

later compare with the analytical formula.

IV. ANALYTICAL REASONING

To understand the origin of the increase in �cr /T 0
� we

analyze the equation for the pairing vertex �pf
�
m� analyti-

cally at T=0, i.e., we look for a solution near �cr. To do this,
we make an approximation and neglect angular dependence
of the gap near a hot spot. The momentum integration along
the FS then can be carried out analytically and the equation
for the gap at a hot spot becomes one-dimensional integral
equation in frequency only. This equation is more easy to
analyze than the original three-dimensional �3D� integral
equation. The approximation of the gap function by a con-
stant near hot spots can be rigorously justified at small u
�corrections are higher powers of u� but remains qualitatively
valid up to u=O�1� �Ref. 1�. The expression for T 0

� in
this approximation has been obtained earlier23—T 0

�

�0.13u�v f /a�, with very weak dependence on � as long as
u��1. For small u�, T 0

� is described by a BCS formula.
Using �pf+Q�
m�=−�pf

�
m�, dropping the dependence of
p f near a hot spot, integrating over momentum in Eqs.
�1�–�3� and rescaling variables, we obtain after some algebra
the equation for ��
m� at T=0 in the form

��x� =
�

2
�

0

�

dy
��y�

y + �̃ +
2�y

1 + �4�2y + 1

�  1
�4�2	y − x	 + 1

+
1

�4�2	y + x	 + 1
� , �7�

where x , y are frequencies in units of 
̄= �3u /4�v f /a, �̃
=�cr / 
̄, and �= �2u�� �mass renormalization in the normal
state is 1+��.

Weak coupling BCS limit corresponds to ��1. In this
limit, ��x� becomes independent of x �and �=	�, the gap
equation is solved in the same way as in AG theory and the
value of �cr /T 0

��0.88. We, however, are interested in the
opposite limit, when ��1. We analyzed Eq. �7� by normal-
izing ��x� to ��0�=1, expanding at small x and at large x
and extrapolating between the two limits. At small x, �=1
−O�x�, at large x, ��x��1 /�x. We found that ��x� is well
approximated by ��x�=1 /�1+cx, where c is a constant

which depends on � and �̃. The error is less than 2% for all
x and for all � which we considered. We also checked that
this solution is not an artifact: if we use this ��x� as an input
and run iterations, ��x� rapidly converges. The critical value

of �̃ is then obtained by substituting this form back into Eq.
�7� and solving for ��0�=1.

Carrying out this procedure, we found that c increases
with increasing �=u�, i.e., when the correlation length in-
creases and the pairing problem becomes more and more
non-BCS, the gap function gets confined to progressively
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FIG. 1. �Color online� The onset temperature for the pairing, T �,
vs � for different values of u. T 0

� is the pairing temperature in the
clean limit. v f /a�1 eV in the cuprates, hence 10−3v f /a�1 meV.
We set � /a=4.8 and show examples of �-dependent spread from
� /a=2.4 to 9.8 for u=0.2 and 1.0, by dotted lines. The solid line is
AG-type result for a BCS d-wave superconductor, which in our case
corresponds to the limit u��1. The key result in this figure is a
progressive increase with u of the critical ratio �cr /T 0

�, at which
T �=0. For u=O�1�, this ratio is about four times larger than in the
BCS limit. The transition temperature is found with relative preci-
sion 10−2. The range of low T requires special care because for any
finite number of Matsubara points the curve T ���� bends back to-
ward the origin producing a spurious second solution.
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FIG. 2. �Color online� Left: the angular dependence of the qua-
siparticle renormalization factor Zp f
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m=0� and of the gap function
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0� for �a� u=1 and �=4.8a and �b� u=0.2 and �=9.8a. T �, �,
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m are in units of 10−3v f /a. Observe that the angular depen-
dences of the gap and Z �with subtracted constant shift due to ��
changes very little between �=0 �light lines� and ���cr �dark
lines�. Panel �c�: frequency dependences of �=0 	p f
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m� and
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m�. Panel �d�: the comparison of the numerically obtained fre-
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smaller frequencies. The c��� increases from c�1�=0.66,
through c�2�=1.04 and c�5�=1.7, to c���=2.31. In Fig. 2�d�
we compare our approximate analytic ��
m� for u=0.2, �
=9.8a ���2� with the numerical �pf

�
m�. We see that the
agreement is expectedly not prefect but generic trends of the
frequency dependence is captured by the approximate solu-
tion.

Substituting ��x�=1 /�1+cx back into Eq. �7� and solv-
ing for ��0�=1, we found that �̃ progressively increases as �
gets larger, from �−2e−1/� at small � to 0.3 for �=1 and to
0.46 for �=�.

The monotonic increase in the value of �̃ with increasing
� is a tricky effect. One could expect that the confinement of
��x� to smaller x as � increases and the increase in the
self-energy tend to reduce �̃ simply because typical frequen-
cies get smaller. However, as � increases, the interaction
strength also increases and this tends to increase �̃ because �̃
appears in the denominator in the integral for ��0�=1, and

larger �̃ are required to balance the increase in the interac-
tion. We compared the two effects and found that increase in
the interaction overshadows other effects and is the origin of

the growth of �̃ with increasing �.

We next compared the growth of �cr= 
̄�̃��� and the
grown of T 0

�. The latter also scales as 
̄ with �-dependent
prefactor �Ref. 23�. This prefactor increases with increasing
� but its � dependence is very weak: it changes by less than
5% between �=1 and �=�. As a result, the � dependence of

the ratio �cr /T 0
� predominantly comes from �̃���, which, we

remind, increases with �. Inserting the numbers, we find that
the ratio �cr /T 0

� becomes 2.0 for �=1,2.37 for �=2,2.47 for
�=5, and 2.74 for �=�. The scale of the increase is quite
consistent with what we found numerically in Fig. 1 by solv-
ing the full 3D integral equation in momentum and
frequency.

V. SUMMARY

In this Brief Report we considered the effect of nonmag-
netic impurities on the onset temperature T � for the d-wave
pairing in spin-fluctuation scenario for the cuprates. Non-
magnetic impurities are pair breaking for d-wave supercon-
ductivity and one should expect a reduction in T � due to
impurities. In weak coupling, T � falls off rapidly, following
the AG curve.

We analyzed the effect of impurities in the intermediate
coupling regime when the magnetic correlation length � /a
�1, the dimensionless coupling u is O�1�, and the pairing
problem is qualitatively different from BCS. In the clean
limit, T � in this parameter range weakly depends on � and u
and is approximately 0.02v f /a. We found that this universal
pairing scale is quite robust with respect to impurities: the
critical value of the scattering rate �cr needed to bring T �

down to zero is about four times larger than in the weak
coupling. This implies that the slope of the initial reduction
in T � is weaker by about the same factor than in the weak
coupling. This reduction in the slope agrees with the
experiments8 and with earlier work by Monthoux and Pines10

on T � suppression in YBCO due to nonmagnetic Ni impuri-
ties. We also analyzed the angular dependence of the gap and
found that it is little affected by impurities.
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