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Based on weak-coupling anisotropic BCS theory, the temperature dependence of energy gap and the specific
heat are evaluated for the MgB2 superconductor, and the results are compared with experimental data. We
show that the weak-coupling anisotropic BCS theory describes thermodynamic experimental data with high
precision, 3–6%.

DOI: 10.1103/PhysRevB.71.012514 PACS numberssd: 74.70.Ad, 74.20.Fg, 74.25.Bt

A keen interest excited by discovery and experimental
investigation of a new highTc superconductor MgB2 is to a
large extent associated with its dissimilarity to cuprate super-
conductors. The superconductivity of MgB2 is definitely a
three-dimensional effect, whereas in cuprates it is presum-
ably two-dimensionals2Dd. Nevertheless, the superconduct-
ing gap in MgB2 displays strong anisotropy. The most pre-
cise tunneling measurements by Gonnelliet al.1 give the
value 2.6 for the ratio of the gaps at two conductivity bands.
On the other hand, the measured gaps are the same for the
tunneling in theab-plane and in thec-direction, indicating
that they do not depend on direction within each piece of the
Fermi surface.

An important problem is how strong is the interaction in
MgB2. First-principles calculations2–4 indicate that electron-
phonon interaction is not weak and that the Eliashberg de-
scription is appropriate. However, anisotropy and interaction
were shown to influence thermodynamics oppositely. For ex-
ample, the anisotropy decreases the relative discontinuity of
the specific heat at the transition point,5,6 whereas the first
correction due to interaction increases it.7 Besides, MgB2 is a
very hard material with a high value of Debye frequency,
which usually correlates with a weak coupling. Therefore it
is not a priori clear what is more substantial in the case of
MgB2.

The purpose of our work is to demonstrate that the aniso-
tropy effects are more substantial at least for thermodynamic
measurements. We show that, as a matter of fact, the weak
coupling anisotropic BCS theory describes all known ther-
modynamic experimental data including the temperature de-
pendence of the energy gap and specific heat with a high
precision, 3–6%.

The main features of the anisotropic weak coupling BCS
model were elucidated in the early 1960s,5,6,8–10the ultimate
result being the factorization of the gap5

DsT,kd = QsTdxskd, s1d

which was experimentally verified by Zavaritskii.11 The
function of anglexskd is the eigenfunction of the interaction
operatorVsk ,k8d corresponding to the maximal eigenvalue
l+. It satisfies the linear homogeneous integral equation:

E Vsk,k8dxsk8d
ds8

nFvF
= l+xskd. s2d

Integration in Eq.s2d proceeds over the Fermi surface with
ds=dS/8p3 with dS being a differential area of the Fermi
surface;nF=eds /vF is the electron density of the state per
spin at Fermi level. The functionxskd is normalized as fol-
lows:

kx2skdl = 1. s3d

The angular average valuekXl is kXl=eXds /nF. The tem-
perature dependent factorQsTd can be found from the or-
thogonality condition:

ln
Qs0d
QsTd

=Kx2skdFSQsTdxskd
T

DL , s4d

where

Fsxd =E
−`

+` du
Îx2 + u2sexpÎx2 + u2 + 1d

. s5d

The valueQs0d is associated with the transition temperature
Tc by the following relationship:

Qs0d
Tc

=
p

g
expf− kx2skdlnuxskdulg, s6d

hereg=eC=1.781072… andC is Euler’s constants. The spe-
cific heatCsTd reads

CsTd = 2nFT
d

dT
KDkGSDk

T
DL , s7d

whereGsxd=2xe0
` coshs2wdFsx coshwddw.

We now apply these formulas to MgB2. The Fermi surface
of MgB2 has twos-type 2D cylindrical hole sheets and two
p-type three-dimensional tubular networks.12,13,16,17We ac-
cept a simple model introduced first by Moskalenko14 and
Suhlet al.,15 in which the interaction does not depend on the
momentum inside each band, but only on the band index.
Thus it can be written as a 232 Hermitian matrixVik si ,k
=s ,pd. The order parametersenergy gapd in each band in
such a model does not depend either on the momentum
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within each band and can be described by a 2D vector with
componentsDs, Dp. The validity of this simple model is
supported by the tunneling measurements of the energy gap,1

which displays the same values for two gaps in theab-plane
and in thec-direction. The normalized wave function of the
Cooper pairsxk has the same property:xsskd=xs, xpskd
=xp, wherexs and xp are two constants. We introduce an
additional simplification assuming these constants to be real.
Let us denote the density of states in thes andp bands as
nFs andnFp, respectively. Then the definition of an average
value kXl for any physical valueX, which does not change
within each band reads

kXl = Xscs + Xpcp, s8d

where cs and cp are statistical weights of the bandscs

=nFs /nF andcp=nFp /nF, nF=nFs+nFp. The general normal-
ization condition Eq.s3d for this model reads

xs
2cs + xp

2cp = 1. s9d

Equations6d can be written explicitly as follows:

Qs0d
Tc

=
p

gxav
, s10d

wherexav=xs
xs

2csxp
xp

2cp. We assume the valuescs=0.44 and
cp=0.56 as found from density-functional theory calcula-
tions in Refs. 12, 13, and 16. The second fitting parameter is
Tc. There is no experimental discrepancy on this value, and it
is commonly accepted to beTc<39 K. One additional fitting
parameter for the two-band theory is the ratiod=xs /xp. We
have extracted it from the tunneling gap measurements1 ex-
trapolating them to zero temperature:

d = xs/xp < 2.54. s11d

Equationss9d and s11d allow us to determinexs and xp

separately: xs=d /Îcsd2+cp=1.38; and xp=1/Îcsd2+cp

=0.54. According to the weak-coupling theory, the ratiod
must be the same at any temperature. This crucial condition
is satisfied in the tunneling experiment1 with all experimental
precision.

For the temperature dependence of the gap in the BCS
two-band model, we find from Eq.s4d:

− ln q = xs
2FSpxsq

gxavt
Dcs + xp

2FSpxpq

gxavt
Dcp. s12d

Here qstd=Qstd /Qs0d and t=T/Tc. Fsxd is defined by Eq.
s5d. The graph of the functionqstd is shown in Fig. 1 by the
solid curve. The dashed curve in Fig. 1 representsqstd in the
isotropic single-gap modelsstandard BCS modeld. The
graphs of the energy gapsDs=Qstdxs and Dp=Qstdxp ver-
susT/Tc are shown in Fig. 2 together with the experimental
data,1 which agree with theory within the limits of experi-
mental uncertainty.

The specific heat in the two-band model is given by the
following equation directly stemming from Eq.s7d:

CsTd
CNsTd

= csrcsysd + cprcsypd

+
12

7zs3d
fcsxs

2rasysd + cpxp
2rasypdg2

csxs
4rbsysd + cpxp

4rbsypd
, s13d

whereCNsTd=gT is the specific heat for the normal metal;
ys=p /2g q/ t xs /xav, and yp=p /2pq/ txp /xav. The func-
tions r i are defined by integralsr isxd=e−`

+`gisÎx2+y2ddy, i
=a, b, c, wheregi read:

gasxd =
1

2 cosh2sxd
,

gbsxd =
p2

14zs3dS tanhx

x
−

1

coshx
D 1

x2 ,

gcsxd =
6

p2

x2

cosh2 x
. s14d

For technical details related to this calculation see Mishonov
et al.;18 the functionsgi were introduced and graphically pre-
sented in Ref. 19.

The jump of the specific heat atTc readsscf. Refs. 5 and
14d:

DCsTcd
CNsTcd

=
12

7zs3d
sxs

2cs + xp
2cpd2

xs
4cs + xp

4cp

. s15d

For the data specified earlier, we findDCsTcd /CNsTcd
=0.874. It agrees with the high precision measurements by
Bouquetet al.20 with about 3% precision. In Fig. 3 the ratio

FIG. 1. The solid curve depicts the ratioQsTd /Qs0d vs t
=T/Tc for the two-band model; the dashed curve is the same value
for the standardsisotropicd BCS theory.

FIG. 2. The solid curve is the theoretical graph ofDs vs T/Tc;
the dashed curve is the same forDp; “1” and “3” represent ex-
perimental data by Gonnelliet al. sRef. 1d.
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CsTd /CNsTd versusT/Tc is plotted. The solid curve is the
prediction of the two-band weak coupling theory; the dots
are experimental data by Bouquetet al.,20 courteously sent to
us by the authors. The theoretical graphCsTd /CN versus
T/Tc agrees well with the experimental data everywhere ex-
cept for a range of low temperatureT/Tcø0.2. The discrep-
ancy most probably is caused by a relatively small variation
of the gap within one band. The specific heat at low tempera-
ture is proportional toe−Dmin/T, whereas the tunneling mea-
surements give the value of the gap along the direction of
the tunneling. Given the value of discrepancy, we can esti-
mate the variation of the gapD−Dmin,0.1–0.15Tc ln 2
<3.3–4.2 K. It is about 8–12% of the value of the smaller
gap.

Another group of available experimental thermodynamic
data relates to magnetic properties: the energy gaps in exter-
nal magnetic field21 and the dependence of the second criti-
cal field on temperature.22 The dependence ofHc2 on tem-
perature was considered theoretically in the framework of the
anisotropic BCS model by two groups of authors23,24 based
on the classical approach by Helfand and Wertheimer.25 Un-
fortunately, a consistent solution of these problems at any
temperature between 0 andTc requires much more detailed
knowledge about the Fermi surface. For example, to reach a
satisfactory convergence Miranović et al.23 were forced to
introduce 11 different parameters characterizing the Fermi
surface and electron interaction. It is clear that our real
knowledge of the Fermi surface is too poor for such a so-
phistication. Dahm and Schopohl24 applied a simplified
model of the Fermi surface as consisting of a torus and cyl-
inder characterized by four parameters only and assumed a
plausible variational procedure introducing one more param-
eter. As it could be expected from the results by Miranović et
al., the number of parameters is too small to ensure a rea-
sonable precision. Indeed, a satisfactory agreement with the
experiment in Ref. 24 is reached at the expense of a rather
exotic choice of parameter. Summing up, the magnetic prop-
erties can not be described by such an elementary theory as
described above two-band BCS model and require a much
more sophisticated approach even in the weak coupling ap-
proximation.

Let us discuss why this simplified theory works so well.

Let us start from the assumption supported by experiments
that the gap does not vary within each band. The in-band
isotropy of the gap could be a result of sufficiently strong
in-band scattering. At the scattering timet,10−14 s, i.e., at
the residual resistance larger than 10−5 V cm, the energy gap
becomes isotropic. However, the ratio of the gaps for differ-
ent bands still remains bigger than 2 indicating that the in-
terband scattering must be much weaker. It should be empha-
sized that it is the density of states which becomes isotropic,
whereas the order parameter remains anisotropic unless the
Ioffe-Regel limit t«F,1 of the scattering rate is reached.26

The tunneling experiment measures just the density of state.
The second question is why the weak-coupling model

gives such high accuracy. Two different aspects must be en-
lightened. First, the separability of variables for the order
parameter, even in the framework of the weak-coupling ap-
proximation, has the precision of the weak coupling con-
stant, i.e.,flnsD /vDdg−1,0.3. For the case of the two-band
model such a crude estimate can be checked more accurately
by direct solution of the nonlinear matrix equation for the
energy gap. It has following form:

Di = o
j

VijcjD jF 1

l+
− fsbD jdG , s16d

where i, j take values s, p and fsxd=e−`
` stanhu/u

−tanhÎu2+x2/Îu2+x2ddu. Its solution can be found as a su-
perposition of two normalized eigenstates of the correspond-
ing linear equation:D j =Q+C+j +Q−C−j. In our calculations
we used only one of them,C+ corresponding to the larger
eigenvaluel+. Such an approximation is justified when the
second eigenvaluel− is much less thanl+, even ifl+ is not

very small. Indeed, the symmetrized matrixṼ with matrix

elementsṼij =ÎcicjVij can be represented asṼ=l+u+lk+u
+l−u−lk−u. This representation shows that atl−=0 the opera-

tor Ṽ is separable, and the solution of nonlinear equations16d
is factorizable:D=QsTdC+. The equationl−=0 is equivalent
to DetV=VssVpp−Vps

2 =0. Though such a fine tuning of pa-
rameters seems improbable, our numerical calculations dem-
onstrate that the ratiol−/l+ and the thermal variation of the
ratio Dp /Ds remain small sabout 3%d even at
DetV/ scsVss+cpVppd2, ±0.2. Thus the experimental facts
seem to indicate that one of the two eigenvalues is signifi-
cantly smaller than the other. Such a situation occurred ear-
lier in a band calculation for high-Tc superconductors.27,28

The second aspect mentioned in the preamble is that the
BCS approximation itself has a low precision and should be
substituted by the Eliashberg formalism. The numerical cal-
culations by Golubovet al.3 indicate that the Eliashberg
weight function is very small in a broad range of low energy
and has rather sharp peaks in the range of 800–1000 K. This
is an unusual situation. Leavens and Carbotte29 considered
an extended Eliashberg weight functiona2Fsvd centered at
valuesv,v0 much larger than the superconducting energy
gapDs0d. They argued on the basis of numerical calculations
that in this case the functionDsvd varies very weakly atv
,v0 and then rapidly changes sign. They even modeled
Dsvd by the step function. Their arguments seem to be cor-

FIG. 3. The solid curve is the theoretical graph of the specific
heat for the two band MgB2 vs t=T/Tc; the circles are the experi-
mental data due to Bouquetet al. sRef. 20d; and the dashed curve is
the theoretical plot of the specific heat given by the isotropic BCS
theory.

BRIEF REPORTS PHYSICAL REVIEW B71, 012514s2005d

012514-3



rect for the considered case as well. Then it is obvious that
by integrating in the range of high frequency, it is possible to
obtain the BCS-like equations with a renormalized, not small
interaction between electrons with momenta on the Fermi
surface. Though such an explanation is plausible, further
study of the Eliashberg equation with a model weight is
highly desirable.

When this Brief Report was submitted for print, an
article30 was published in which the authors arrived at a simi-

lar conclusion on thede facto applicability of the weak-
coupling two-band model to MgB2. A new element in our
Brief Report is the analysis of the question why this approxi-
mation works.
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