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We investigate the spin-current linear response conductivity tensor to an electric field in a paramagnetic
two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit coupling in the weak scattering
regime within the Born approximation. In the usual sample parameters, and for cross-sectional size smaller
than the spin-coherence length, the spin-Hall conductivity depends only on the sign of the difference in
magnitude of the Rashba and Dresselhaus coupling except within a narrow window where both coupling
strengths are equal. We also find that a spin current is generated in the direction of the driving field for a
non-zero Dresselhaus term. Possible experimental setups for its detection, taking into account the finite mo-
bility and typical parameters of current samples, are discussed.
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The manipulation of spin by electrical means in semicon-
ducting enviroments has generated a lot of recent theoretical
and experimental research aimed at developing useful spin-
tonic devices and novel physical concepts,1 many focusing
on effects that generate spin-polarized current.2 Given the
success of ferromagnetic metal based spintronic devices,3

which have revolutionized the information storage industry,
the possibility of doping, gating, and heterojunction forma-
tion in seminconducting spintronic devices makes their
possibilities that much wider. However, the practical
implementation of semiconducting spintronics is awaiting
the resolution of effective injection of spin-polarized
carriers4 from ferromagnetic metals combined with long
spin lifetimes,5 or room-temperature semiconductor
ferromagnetism.6 The recently proposed intrinsic spin-Hall
effect by Murakamiet al.7 in p-doped semiconductors and by
Sinovaet al.8 in Rashba spin-orbit coupled two-dimensional
electron gases(2EDGs) offers new avenues in spintronics
research and transport phenomena which may meet the first
challenge.

The intrinsic spin-Hall effect consists of a dissipationless
spin-current contribution generated perpendicular to the driv-
ing electric field whenever spin-orbit coupling is stronger
than the scattering induced disorder and the spin-coherence
length is larger than the cross-sectional system size. This
effect contrasts with the proposed extrinsic spin-Hall effect
recently revived by Hirsch9 and Zhang10 and first studied by
Dyakonov and Perel,11 where spin-orbit dependent scattering
from impurities can generate a Hall spin-current. In the
Rashba spin-orbit coupled 2DEGs it was shown that the in-
trinsic spin-Hall conductivity has a valuee/8p in the case of
both spin-split subbands being occupied.8 Motivated by re-
cent experiments12,13 which have demonstrated the ability to
tune the magnitude of the Rashba and Dresselhaus spin-orbit
coupling strength directly and by the fact that when both
coupling strengths are equal the quasiparticles are effectively
spin-orbit decoupled14 and the intrinsic spin-Hall effect
should vanish, we extend our prior studies to include 2DEGs
with both Rashba and Dresselhaus spin-orbit coupling. We
find that the spin Hall conductivity remainse/8p in the weak
scattering mesoscopic limit except for a small window where

the spin-orbit coupling strengths are equal and changes sign
when the difference of the spin-orbit coupling strengths
changes sign. We also find a novel effect in which a spin-
polarized current is generated in the direction of the driving
electric field whenever the Dresselhaus spin-orbit coupling is
nonzero, which should have important consequences if
observed.15

The Hamiltonian which we consider contains the spin-
orbit coupling interaction form for a two-dimensional elec-
tron gas16

Hso=
l

"
sŝxp̂y − ŝyp̂xd +

b

"
sŝxp̂x − ŝyp̂yd, s1d

where the first term is the Bychkov-Rashba term due to the
lack of inversion symmetry of the trapping well17 and the
second is the linear Dresselhaus term due to the lack of in-
version symmetry in bulk semiconductors.18 Hence the full
particle Hamiltonian can be written as

H = S p̂2

2m* − mDs0 +
aik

"
ŝi p̂k, aik = S b l

− l − b
D . s2d

This Hamiltonian has a simple spectra given by

j±skd =
"2k2

2m* − m ± kÎsl2 + b2d + 2lb sins2fd, s3d

where tanf=ky/kx, m is the chemical potential, and the cor-
responding eigenfunctions are given by

c±sr d =
1

Î2A
S eiuk/2

±e−iuk/2
Deik·r , s4d

where

tanuk =
lkx + bky

lky + bkx
, s5d

andA is the area of the system.
The Rashba coupling strength in a 2DEG can be modified

by a gate field by up to 50%12,19 and therefore this system
affords the study of the intricate interplay between both types
of coupling directly whose ratiol /b can vary between 1.5
and 2.5 typically.13 Recent observations of a spin-galvaic
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effect13,20 and spin-orbit coupling weak localization studies
in these systems12,21,22 illustrate the potential importance of
these tunable interactions in semiconductor spintronics.23

This intricate interplay has generated several theoretical
studies of their transport properties16,24 and a new proposed
spin-FET14 in the regime wherel=b motivated by the origi-
nal proposal by Datta and Das.25

In the Rashba coupled 2DEGsb=0d, Sinovaet al.8 found
that the dcz-component spin-current Hall response to a driv-
ing internal electric field,js

z=sxy
spinEy, in the clean limit has a

universal value whenever the two Rashba split bands are
occupied(the usual case), sxy

spin=e/8p, and vanishes linearly
with the electron density when only one Rashba split band is
occupied. This result was obtained both within the Kubo
linear response formalism and within an equivalent and more
physically transparent multi-band wave-packet dynamics
theory.8,26,27

To address the interplay between the Rashba and Dressel-
haus spin-orbit coupling and its consequence on the spin-
current response to an applied electric field we use the linear
response Kubo formalism.28 In this Kubo formalism ap-
proach the spin-current response to an electric field has the
form

say
spin= e" o

nÞn8
E dkW

s2pd2sfn8,k − fn,kd

3
Imfkn8ku ĵa

z unklknkuv̂yun8klg
sjnk − jn8kd2 , s6d

wheren, n8=±, jWz=" /4hŝz,vWj, vW =]Hskd /]"kW, anda=x,y.23

We address the effects of finite quasiparticle lifetime, i.e.,
finite mobility samples, within the Born approximation(see
below) to address the relevant experimental regime similarly
to Refs. 29 and 30. This approximation captures the finite
lifetime effects dues to disorder in a finite system size but
still requires the spin-coherence length to be larger than the
length of the spin transport considered since multiple scatter-
ing will eventually lead to loss of spin polarization in an
infinite system size as shown in Ref. 31. Inserting eigenval-
ues, Eq.(3), and eigenvectors, Eq.(4), above we obtain(for
the experimentally relevant regime of both subbands being
occupied):

sxy
z =5

e

8p
for l2 . b2

0 for l = b

−
e

8p
for l2 , b26 , s7d

syy
z =5−

e

8p

b

l
for l2 . b2

0 for l = b

e

8p

l

b
for l2 , b2 6 . s8d

These equations predict that the spin-Hall conductivity only
depends on the sign ofb2−l2, and that there is a diagonal(in

the sense that it points along the driving field direction) re-
active part of the spin-current wheneverb is non-zero and
bÞl. The sharpness and singularities of these results are
simply an artifact of the quasiparticle induced lifetime broad-
eningh→0 limit, which can be easily rectified by introduc-
ing a finite lifetime to the spin-orbit coupled quasiparticles
induced by the scattering in the usual Born approximation
approach32,33 given by

say
spin= −

e

v
E dkWde

s2pd3onn8
fsedImfkn8kWu ĵa

z unkWlknkWuv̂yun8kWlg

3 fAn8,kWsedRefGn,k
retse + "vdg

+ An,kWsedRefGn8,k
advse − "vdgg, s9d

whereAn,kWsed=h / sse−jnkWd2+h2/4d is the disorder broadened
spectral function andGn,k

ret/advs"vd=1/s"v−jn,k± ih /2d are
the advanced and retarded quasiparticle Green’s functions
with finite lifetime 2h−1/" (here chosen to be momentum
independent for simplicity). The above expression can be
evaluated numerically, however, we can make progress un-
derstanding qualitatively the effect of finite quasiparticle life-
time by taking the further approximation that the spectral
function is sharp enough to allow substituting it for a delta
function. This simplification translates into adding a small
complex value to the frequency in the frequency dependent
response function from which the weak scattering dc limit
expression, Eq.(6), was obtained. The expression that is ob-
tained is identical to Eq.(6) but with the denominator re-
placed byh2+sjnkW −jn8kWd2. Anticipating already the typical
experimental situation where the Fermi energy is only
slightly modified from its non-spin-orbit coupled form, we
obtain after some straightforward algebraic manipulation

sxy
spin=

e

8p

eFsel − ebd
ÎeF

2sel − ebd2 + h2eFseb + eld/4 + h4/64

s10d

and

syy
spin= −

eseb − eld
16pÎebel

3S1 −
h2 + 8eFsel + ebd

Îh4 + 64eF
2seb − eld2 + 16h2eFseb + eld

D ,

s11d

where eF is the Fermi energy, andel=ml2/"2 and eb

=mb2/"2 are the spin-orbit coupling characteristic energy
scales for the Rashba and Dresselhauss mechanisms defined
in the same way as Ref. 30, andeF@el ,eb is assumed. In the
limit of h→0 one recovers Eqs.(10) and(11), although near
thea=b point we see that one limit goes smoothly but fairly
rapidly to the next in the scale ofh as illustrated in Fig. 1.
This analysis illustrates then that, unlike the universal Hall
conductivity value on a 2DEG quantum Hall plateau, the
universality of the intrinsic spin Hall effect does not extend
to the disorder domain. Also, as expected,8 the spin Hall
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conductivitysxy
spin and the spin diagonal conductivitysyy

spin are
slightly suppressed foreF , uel−eb u .h,

sxy
spin=

e

8p
S1 −

h2sel + ebd
8eFsel − ebd2D , s12d

syy
spin=

e

8p
Îeb

el
S1 −

h2el

4eFsel − ebd2D , s13d

for el.eb, and forel,eb the equations have opposite sign
and we must switcheb andel in Eq. (13). We note that Eq.
(12) is in agreement with Ref. 30 forb=0. In the strong
disorder limit of Eqs.(10) and (11) the spin conductivity
tensor goes aseFel/b /h2 but in this case one must still as-
sumeeF /h@1 (a basic justification of the above approxima-
tion) and thereforeel/b /h!1 is the condition for such ef-
fects to vanish. We also note that the specific coefficients in
the above expression proportional toh2 will change since the
full expression(9) which takes into account the broadening
present in the occupation number must be used in a quanti-
tative analysis. This analytical result has been recently veri-
fied numerically in several finite size calculations in the pres-
ence of disorder and system sizes a few times larger than the
mean free path.33,34

In current 2DEG high quality samples12,13,19,35the typical
carrier concentrations range from 531011 to 1012 cm−2, the
l ,b range is 1–5310−11 eV m, and the mobilities range is
1–50 m2/V s. In terms of the effective mass ratiom* /me the
energy scales defined above are given by

eF < 0.24
n2Df1011 cm−2g

m* /me
, s14d

el/b < 1.31
m*

me
sl/bf10−11 eV mgd2, s15d

h <
0.116

mfm/V sgsm* /med
, s16d

with m being in this case the mobility of the sample. The
typical m* /me=0.05 in InAs based heterostructures gives a
range of eF=20–50 meV, el/b=0.07–1.6 meV, andh
=0.05–2.3 meV. Also, the largest mean free path is of the
order of 7.8mm and the spin-coherence length is necessarily
several times larger. This indicates that current samples(al-
though not all) are already within the regime where these
effects should be observable and the weak scattering meso-
scopic regime applicable.

It is also important to note that the intrinsic character of
our spin Hall effect, compared to the extrinsic character of
the effect discussed by Hirsch,9 is analogous to the intrinsic
contribution to the anomalous Hall effect recently empha-
sized in various studies,27,29,36–38proposed to be the main
contribution to the anomalous Hall effect in some ferromag-
nets and strongly polarized paramagnets. In both cases scat-
tering contributions to the Hall conductivities can become
important if skew scattering39 is present, especially when the
overall electron scattering rate is small and the steady state
distribution function of the current-carrying state is strongly
disturbed compared to the equilibrium one. In the case of
(III,Mn )V ferromagnetic semiconductors for example, the in-
trinsic theory of the anomalous Hall effect accounts rather
convincingly for experimental observations.36

Besides the several approaches already proposed to mea-
sure the spin-Hall effect,7,8,12,37 the tunability of both the
Rashba and Dresselhaus coupling parameters12,13 and the
non-zero diagonal spin-current generated in the presence of a
linear Dresselhaus term offers new possibilities. We propose
a bottom gate sample coupled with non-contact probes such
as spatially resolved Kerr effect measuremnts, ferromagnetic
STM, or scanning Hall probe microscope. Having four non-
contact local probe observations(two for Hall and two for
diagonal conductivity) on the edges of the sample as a func-
tion of gate voltage which varies the Rashba and Dresselhaus
coupling12,13 simultaneous acquisition of transverse and di-
agonal spin currents without the usual spurious geometrical
effects present in typical transport measurements. Of course,
a major challenge is the small resolution needed in order to
satisfy the mesoscopic requirement which will only be ob-
tained in the largest mobility samples.

Note added in proof. After the submission of this article
the author became aware of a work which independently
reached similar conclusions as us within a Berry’s phase
approach.40

The authors would like to thank T. Jungwirth, A. H. Mac-
Donald, S. Murakami, N. Nagaosa, Q. Niu, and S.-C. Zhang
for extensive and fruitful discussions, and J. Schliemann and
D. Loss for useful correspondence. N.A.S. was supported by
DOE under grant No. DE-FG03-96ER45598, NSF under
grant DMR0072115 and Telecommunication and Informa-
tion Task Force at TAMU.

FIG. 1. (Color online) Plot of syy
spin vs eb=m*b2/"2 and el

=m*b2/"2 with Fermi energy eF=50 meV, h=0.63 meV, and
m* /me=0.05.
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