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Landau-Zener transitions in a linear chain
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We present an exact asymptotic solution for electron transition amplitudes in an infinite linear chain driven
by an external time-dependent electric field. This solution extends the Landau-Zener theory for the case of an
infinite number of states in the discrete spectrum. In addition to the transition amplitudes we calculate the
effective diffusion constant.
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Landau-Zener(LZ) theory? treats a quantum system was studied earliérWe consider the opposite limiting case
placed in a slowly varying external field. If such a systemin which the sequential tunneling processes are highly coher-
was prepared in a state of its discrete spectrum, it adiabatént and tunneling through many sites becomes available.
cally follows this state until its time-dependent energy level If the coherence between LZ transitions is lost, the prob-
crosses another one. Near the crossing point the adiabaticitgm is reduced to the multiplication and addition of prob-
can be violated and the system can escape from the statedbilities, each described by a proper LZ expression. The
occupied initially to another one. Landau and Zener foundPrice we must pay for incorporating the coherence between
the transition probability for two-level crossing. The crossingdifferent transitions is a strong reduction of the class of quan-
of more than two levels at the same time is generally arfum systems considered. The number of crossing levels in
unlikely coincidence. However, in some systems such a mulsuch systems must be infinite. The hopping amplitudes from
tilevel crossing may occur systematically, due to the highd site to its neighbors must be all identical. Physically it
symmetry of the underlying Hamiltonian. The transition ma-describes the quantum electron transfer between a donor and
trix for special cases of multilevel crossing was studied inacceptor separated by a long polymer strnublecular
Refs. 3—8. Presently only a few exact results for multilevelbridge. The bridge can be considered as a linear array of
crossing are known. One of them relates to a multiplet ofdentical ~ sites. Such one-dimensional atomic-scale
atomic electronic states with a total sgiror total rotational ~ wires were intensely studied, both experimentally and
momentJ larger than 1/2 in a varying external magnetic theoretically:>*" Our results can be also applied
field 34 The Zeeman splitting betweerS2 1 or 2J+1 lev-  to transitions among electron states in semiconductor
els regularly vanishes at nodes of the magnetic field. Anothefuperlattices®*?
exactly solvable model displaying multilevel crossing is the We study the tunneling of a particle in such systems
so-called bow-tie modél,whose physical interpretation is driven by a time-dependent homogeneous external field. An
not obvious. important assumption is that all molecular fragments in the

Since its creation in 1932, LZ theory has had numer0u§hain are identical. An electric field SplItS the energy levels at
app"ca’[ions_ They include molecular predissociaﬁ%alow different sites of the chain and suppresses the tranSitionS,
atomic and molecular Co"isiorfg,and electron transfer in which occur within a narrow intervals about times when the
biomolecules? Recently Wernsdorfeet al!®'* employed electric field becomes zero. Since the tunneling is a fast pro-
the LZ theory to describe consistently the steplike shape ofess, we disregard the oscillatory relaxation originating from
the hysteresis loop in special molecules with large magnetifhonons and other elementary excitations.
moments called nanomagnets. Using the LZ probability for- Let denoteln) a state located at theth site of the chain.
mula these authors were able to find the extremely smalVe assume that these states form a complete orthonormal set
tunnel splitting of the classic degenerate ground states ard@vVannier basis In terms of this set the electron Hamiltonian
even to reveal oscillations of this value in an external magreads
netic field. This beautiful experiment, together with its clever
treatment, is a triumph of quantum mechanics and, in par- N
ticular, LZ theory. A=, (yIn)(n+1|+c.c)+F(t)n[n)(n

The problem considered in this article is closely related to n=1
another application of LZ theory: electronic transfer in
donor-acceptor complexé&sn this process of biological and
chemical importance, an electron tunnels between initial and
final positions through a long chain of identical sites. There
are two limiting cases for such a process. In the first casavhereE(t) is the electric fielde is the electron charge, is
there is no coherence between two sequential tunneling prahe distance between sites, apdis the coupling constant
cesses connecting nearest-neighbor sites. In this case tflgopping amplitudg A series of exact solutions for the time-
probability of tunneling through several sites is very small independent Shainger equation with the Hamiltoniaid) for
comparison to that for one-site tunneling. This limiting caseN=c, known as drifting plane waves, was found long

: D

F(t)=eE(t)a,
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It depends on only one dimensionless numipery/+/F(0),
which is the Landau-Zener parameter. Let the time-
dependent state vector be,t)==3,c,(t)|n). Then the sys-
tem of equations for the amplitudeg(t) reads

iCo=N1tCh+g(Cpo1+Cpi1). (5)

The transition matrix elemert, ,» should be identified with
the t— +o asymptote of an amplitude,(t) for a solution
obeying the initial condition|c(t)|?= Ompr at t——o,
Since allc,(t) except ofc, (t) are zero at— — oo, the initial
condition can be more explicitly written as

Crn(t— — )= 8 X —in't?/2). (6)

FIG. 1. Dependence of eigenvalues of the HamiltorfilaronE. ~ We multiply the asymptotic values af,(t) by exdint?/2] to
Solid lines show adiabatic energies as a functioEoflashed lines  remove strongly oscillating phase factors frdm,. .
depict diabatic energies. While the diabatic levels intersect in one  Now introduce an auxiliary function u(e,t)
point; the adiabatic levels do not intersect. =37___ca(t)e"?. The systen(5) is equivalent to the fol-

lowing equation in partial derivatives far(¢,t):

agol®~2*Below we solve the same problem for fixed initial
conditions, thus resolving the multistate LZ problem. du  odu

The states|n) are conventionally called the diabatic ot TG, T2igucose=0. (7)
states. They are the eigenstates of the diagonal part of this N ) ) o N
Hamiltonian Ho= F(t)n|n)(n|. The eigenstates of the total The initial cond|t|on(6) is 2saquwalent tq the initial conlelon
Hamiltonian (1) depending ort or F(t) as parameters are U(¢,t——*)—exdin’(—t72+¢)]. Given the solution
called adiabatic states. UnfiF(t)|>y, the diabatic levels U(#.1), the amplitudes,(t) can be found by the inverse
are close to the adiabatic ones and the transitions betwedipurier —transformation c,(t) = (1/2m)[5"u(¢,t)e”"*de.
levels are suppressed. This is the adiabatic regime. The adidhe solution of Eq(7) that obeys proper boundary condi-
baticity is violated in the vicinity of the electric field nodes tlons Is
determined by the inequalify (t)|< y, where all transitions
proceed. By level crossing we mean that the diabatic levels t 2t ,
cross and the exact eigenvalues of the Hamiltodamever u(e,t)y=exp| —i ng coy =5+ 35 dt
cross, in accordance with the Wigner-Neumann theorem. It is o
convenient to place the time origts=0 directly at the node 5
of F(T). Since only a narrow vicinity of the node is substan- n n/( _ t_) ] ]
tial for transitions, the exact dependence of the field on time 2
can be reasonably approximated by a linear oRét)
~F(0)t. At zero electric fieldE and free boundary condi-
tions the Hamiltonian(1) can be diagonalized analytically.
Its spectrum is

®

Putting t=+00 in the solution(8) and taking the inverse
Fourier transform, we arrive at following asymptotic values:

int?  (n'—n)w
cn(t)~exp( -t %)Jnn,(Z\/ﬁg). 9)
gj=2gcogmj/N), j=1,...N. (2
Thus, the scattering amplitudes in terms of modified states,

For nonzero fields we have found the adiabatic eigenvalwith the fast phase factor exp{nt/2) incorporated, are
ues numerically. The result is shown in Fig. 1 for a finite o
chain with 15 sites. For comparison the diabatic levels are Ton=(n[Tn")y ==V, (2\2mg), (10
depicted in the same figure.

We proceed to solve the time-dependent Sdimger
equation with the Hamiltoniafil). Its matrix representation

where the operatof is expressed in terms of the evolution
operatorU(t,t’) for the Hamiltonian(4) in the interaction
representation:

reads
. - 0
Hnm:nF(o)t(snm+ ,y( §m,n+1+ 5m,n—1)- (3) T—tﬂxlir;nﬁwexﬁ( | J;,HO( T)dT) U(tyt )
For an infinite chainll— ), Eq.(3) is valid for alln andm. [t
After a proper rescaling of time the Hamiltonié3) becomes X exp( [ fOHo(T)dT : (13)

dimensionless:

The matrix element§, ,, display an infinite number of os-
Hnn=nt8mnt 9(Smn+1t Omn-1)- (4) cillations with the LZ parameteg. However, for large
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Ry in a trajectory has average lengit{see below. Such a step
cannot be realized in a system with a finite number of states
if g>N.

The mean square displacement at one crossing event is

o O O O
I\)u;moo»—\_:
o o O O
N I Oy 0 5

04\1152253OJ 05/1\152253g .
Sz Sz (n=n"%)= 2 (n=n") Iy ((2V270)|*=47g”
" (13)

If the external field is periodic in time and the coherence
between crossing events is 18tthe electron performs a
random walk; i.e., it diffuses. Assume the field to oscillate
harmonically asF(t) =Fgsin(wt). At the nodest,= 7wk/w
(k is an integer all diabatic levels cross together. The
FIG. 2. Transition probabilities to sites closest to an initially squared Landau-Zener parameteg?s= y?/Fow. The diffu-
filed one as functions of: (8) [n—n’|=0, (b) [n—n’|=1, (c)  sion coefficient iD=2a%((n—n")?)/T, whereT=27/w is
In—n’|=2, and(d) [n—n'[=3. the period of oscillations and the factor of 2 accounts for two

- _ _ crossing events per period. Collecting these results and Eq.
In—n’| the oscillations start witly>|n—n’'|. These oscilla-  (13), we find

tions can be observed experimentally by varying the field

sweep rateE(0). For small values ofg the amplitudes are _ 4ay?

. . . ) . D= : (14
small and quickly decrease with growifg—n’|. In Fig. 2 Fo
we depict transition probabilities for several levalslosest
to the initial onen’ versus the Landau-Zener parameger
Figure 3 shows the dependence of the transition amplitud
on|n—n’| at a fixed value ofy.

For largeg>|n—n’| the asymptotic values of the ampli-

o O O o
N ds oy ® b
o o o o
N U O © =3B

0.5 11.52 2.5 39 0.5 1 1.5 2 2.5 39

This result does not depend on the frequency of the external
field.

The theory can be extended to a more general Hamil-
tonian incorporating hopping between any two sites, but con-

tudes(10) are serving translational invariance:
i(n"—n)m/4 (n_n/)ﬂ_ a H:E H |m><n|
A - m,n 1
(n|T|n") (Wg)uzcos(z\ng 3 7l mn
12
(12 Hmn:ntamn+g|mfn|a gfk:gykr . (19

It is instructive_ to compare this result with other exactly g, simplicity we present below the result for real hopping
solvable generalized Landau-Zener models. Most of then&mplitudesgﬁg,k:

refer to systems with a finite number of stabésin the limit
g>N the transition probabilities behave like an exponent i(n"=n)wld o
exd —C(n,n")g?], where theC(n,n’) do not depend og. In <n|T|n'>: —f exp[—i&/ﬁf(cp,gj)
contrast, the resul{l2) displays a power law with oscilla- 2m 0

tions instead of an exponential dependenceydar largeg. L

This is the manifestation of quantum interference of different +i(n —njelde,

Feynman trajectories, which are discrete in the chain. A steg,heref(go,gj) = (g /VK) coske.

The model(1) can be generalized also to incorporate in-
ternal degrees of freedom of identical chain fragments. In
this case the local states are described by amplitages
with two indices. The first indexi denotes the position and
the second index labels the inner states. The Sctiirmger
equation for the amplitudes then reads

(16)

ié‘ﬂ,az (nt+ 601+ 5at)an,a+ % ga,B(an+1,ﬁ+ ar‘l—l,ﬁ)!
17

where the indexes,8=1, ... N;,; run over the internal
states of the molecular wire segment. Changing to variables

non’ an,a:bn,ae*imz’2 we eliminate the term proportional tan

T > 1o 1> Eq. (17. |Introducing a new function u,(¢)

FIG. 3. Transition probabilities vs—n’ at a fixedg=1.6. Solid =2~ _..b, ,€"¢, we reduce the infinite systeifi7) to a
line is a guide for the eye. finite set ofN;,; ordinary differential equations:
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. Our solution demonstrates a phenomenon that is probably
iU, = (€, 3,t)u,+2cost?+ ) > g, s, (18  common for most systems with multilevel crossing: oscilla-
p tions of the transition probabilities as a function of the LZ
in which ¢ plays the role of a parameter. The initial condi- parameter and site positiddistance between diabatic lev-
tions areby, ,(t— —»)=exp(-i8,t?/2)8,» and u,(¢.t—  elg. However, their asymptotic values for large values of the
—=)=exf(—i8,t/2)+in’¢]. Thus, the variable(param- |z parameter differ from those for other solvable multistate
ete) ¢ enters not only in the systeif18), but also in the | 7 models with a finite number of states. We expect that in a
initial conditions. This system must be solved for all Va|uesgeneral situation witiN>1 crossing levels, the transition
of parametere in the interval (0,2r). The inverse Fourier propabilities will behave similarly to those found in this
transformation yields the evolution operator just as for theyork for 1<g<N, provided that the initially occupied states
caseNiy=1. An analytical solution of the systeif18) is  are far enough from the diabatic spectrum boundaries.
possible for some special choices of the parametgrss,, , Finally we discuss the relationship between our problem
andg, . For example, two identical coupled chains corre-and a typical problem for semiconductor superlatties.
spond toN;,;=2. Then the indicesy, 3 take on the values The |atter is associated with Anderson localization. The di-
1,2. The simplest solvable choice of parameters;iss0,  apatic levels at sites are randomly distributed. In one and two
gx=¢; 61=0, 6,=6; 01170227, 912=921=7'- AN eX-  dimensions all sites are localized. If the width of the energy
act solution of this model can be reduced to ones solved igistribution A is much less than the tunneling amplitugle
this article together with the solvable two-level LZ model. the |ocalization length in one dimensionds/A. To enhance
In conclusion, we have generalized the LZ theory to anthe tunneling through a chain it is reasonable to apply a
infinite number of crossing levels. Physically it describes anjme-dependent electric field. The electric field is substantial
electron on an infinite chain subject to a time-dependenff F,/A=A whereF is a typical value of (t). Our approxi-
electric field. The high symmetry of the problem allows us tomation is valid if the inequality is strondf y/A>A. Tunnel-
find not only the asymptotics, but also the intermediate valing transitions in the field proceed during an interval of time
ues of the amplitudes. Our solution is valid for an infinite . gefined by relatiorF(7)~y. The valueF(7) can be ac-
chain with translational symmetry. We demonstrated it forcepted forF. We see that the strong inequalify>A guar-
the case of a simple primitive cell, but it can be generalizedyntees the existence of the strong-field limit in which the
and in some cases exactly solved even if the primitive celfangomness of levels can be ignored. This requirement does

contains more than one site. not impose any limitations on the LZ parametgr
Finite-size effects do not permit us to apply our re$u@)

directly to the transition amplitude from the first to the last

site of the chain even if it contains many sites. However, our We thank W. Saslow for a critical reading of the manu-
calculation of the diffusion coefficientl4) is valid since  script. This work was supported by the NSF under Grant No.
diffusion presumably proceeds far from the ends of theDMR 0072115 and by the DOE under Grant No. DE-FGO03-
chain. Certainly, we assume that coherence is lost during th@6ER45598. One of uév.P.) acknowledges the support of
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