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Landau-Zener transitions in a linear chain
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We present an exact asymptotic solution for electron transition amplitudes in an infinite linear chain driven
by an external time-dependent electric field. This solution extends the Landau-Zener theory for the case of an
infinite number of states in the discrete spectrum. In addition to the transition amplitudes we calculate the
effective diffusion constant.
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Landau-Zener~LZ! theory1,2 treats a quantum system
placed in a slowly varying external field. If such a syste
was prepared in a state of its discrete spectrum, it adiab
cally follows this state until its time-dependent energy le
crosses another one. Near the crossing point the adiaba
can be violated and the system can escape from the sta
occupied initially to another one. Landau and Zener fou
the transition probability for two-level crossing. The crossi
of more than two levels at the same time is generally
unlikely coincidence. However, in some systems such a m
tilevel crossing may occur systematically, due to the h
symmetry of the underlying Hamiltonian. The transition m
trix for special cases of multilevel crossing was studied
Refs. 3–8. Presently only a few exact results for multile
crossing are known. One of them relates to a multiplet
atomic electronic states with a total spinS or total rotational
moment J larger than 1/2 in a varying external magne
field.3,4 The Zeeman splitting between 2S11 or 2J11 lev-
els regularly vanishes at nodes of the magnetic field. Ano
exactly solvable model displaying multilevel crossing is t
so-called bow-tie model,5 whose physical interpretation i
not obvious.

Since its creation in 1932, LZ theory has had numero
applications. They include molecular predissociation,10 slow
atomic and molecular collisions,11 and electron transfer in
biomolecules.12 Recently Wernsdorferet al.13,14 employed
the LZ theory to describe consistently the steplike shape
the hysteresis loop in special molecules with large magn
moments called nanomagnets. Using the LZ probability f
mula these authors were able to find the extremely sm
tunnel splitting of the classic degenerate ground states
even to reveal oscillations of this value in an external m
netic field. This beautiful experiment, together with its clev
treatment, is a triumph of quantum mechanics and, in p
ticular, LZ theory.

The problem considered in this article is closely related
another application of LZ theory: electronic transfer
donor-acceptor complexes.9 In this process of biological and
chemical importance, an electron tunnels between initial
final positions through a long chain of identical sites. The
are two limiting cases for such a process. In the first c
there is no coherence between two sequential tunneling
cesses connecting nearest-neighbor sites. In this case
probability of tunneling through several sites is very small
comparison to that for one-site tunneling. This limiting ca
0163-1829/2002/65~15!/153105~4!/$20.00 65 1531
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was studied earlier.9 We consider the opposite limiting cas
in which the sequential tunneling processes are highly co
ent and tunneling through many sites becomes available

If the coherence between LZ transitions is lost, the pro
lem is reduced to the multiplication and addition of pro
abilities, each described by a proper LZ expression. T
price we must pay for incorporating the coherence betw
different transitions is a strong reduction of the class of qu
tum systems considered. The number of crossing level
such systems must be infinite. The hopping amplitudes fr
a site to its neighbors must be all identical. Physically
describes the quantum electron transfer between a donor
acceptor separated by a long polymer strand~molecular
bridge!. The bridge can be considered as a linear array
identical sites. Such one-dimensional atomic-sc
wires were intensely studied, both experimentally a
theoretically.15–17 Our results can be also applie
to transitions among electron states in semiconduc
superlattices.18,19

We study the tunneling of a particle in such syste
driven by a time-dependent homogeneous external field.
important assumption is that all molecular fragments in
chain are identical. An electric field splits the energy levels
different sites of the chain and suppresses the transiti
which occur within a narrow intervals about times when t
electric field becomes zero. Since the tunneling is a fast p
cess, we disregard the oscillatory relaxation originating fr
phonons and other elementary excitations.

Let denoteun& a state located at thenth site of the chain.
We assume that these states form a complete orthonorma
~Wannier basis!. In terms of this set the electron Hamiltonia
reads

Ĥ5 (
n51

N

~gun&^n11u1c.c.!1F~ t !nun&^nu, ~1!

F~ t !5eE~ t !a,

whereE(t) is the electric field,e is the electron charge,a is
the distance between sites, andg is the coupling constan
~hopping amplitude!. A series of exact solutions for the time
dependent Shro¨dinger equation with the Hamiltonian~1! for
N5`, known as drifting plane waves, was found lon
©2002 The American Physical Society05-1
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ago.19–23 Below we solve the same problem for fixed initi
conditions, thus resolving the multistate LZ problem.

The statesun& are conventionally called the diabat
states. They are the eigenstates of the diagonal part of
HamiltonianH05F(t)nun&^nu. The eigenstates of the tota
Hamiltonian ~1! depending ont or F(t) as parameters ar
called adiabatic states. UntiluF(t)u@g, the diabatic levels
are close to the adiabatic ones and the transitions betw
levels are suppressed. This is the adiabatic regime. The a
baticity is violated in the vicinity of the electric field node
determined by the inequalityuF(t)u<g, where all transitions
proceed. By level crossing we mean that the diabatic lev
cross and the exact eigenvalues of the Hamiltonian~1! never
cross, in accordance with the Wigner-Neumann theorem.
convenient to place the time origint50 directly at the node
of F(T). Since only a narrow vicinity of the node is substa
tial for transitions, the exact dependence of the field on ti
can be reasonably approximated by a linear one:F(t)
'Ḟ(0)t. At zero electric fieldE and free boundary condi
tions the Hamiltonian~1! can be diagonalized analytically
Its spectrum is

« j52g cos~p j /N!, j 51, . . . ,N. ~2!

For nonzero fields we have found the adiabatic eigen
ues numerically. The result is shown in Fig. 1 for a fin
chain with 15 sites. For comparison the diabatic levels
depicted in the same figure.

We proceed to solve the time-dependent Schro¨dinger
equation with the Hamiltonian~1!. Its matrix representation
reads

Hnm5nḞ~0!tdnm1g~dm,n111dm,n21!. ~3!

For an infinite chain (N→`), Eq.~3! is valid for all n andm.
After a proper rescaling of time the Hamiltonian~3! becomes
dimensionless:

Hmn5ntdmn1g~dm,n111dm,n21!. ~4!

FIG. 1. Dependence of eigenvalues of the Hamiltonian~1! on E.
Solid lines show adiabatic energies as a function ofE; dashed lines
depict diabatic energies. While the diabatic levels intersect in
point; the adiabatic levels do not intersect.
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It depends on only one dimensionless numberg5g/AḞ(0),
which is the Landau-Zener parameter. Let the tim
dependent state vector beua,t&5(ncn(t)un&. Then the sys-
tem of equations for the amplitudescn(t) reads

i ċn5ntcn1g~cn211cn11!. ~5!

The transition matrix elementTn,n8 should be identified with
the t→1` asymptote of an amplitudecn(t) for a solution
obeying the initial conditionucm(t)u25dm,n8 at t→2`.
Since allcm(t) except ofcn8(t) are zero att→2`, the initial
condition can be more explicitly written as

cm~ t→2`!5dm,n8exp~2 in8t2/2!. ~6!

We multiply the asymptotic values ofcn(t) by exp@int2/2# to
remove strongly oscillating phase factors fromTn,n8 .

Now introduce an auxiliary function u(w,t)
5(n52`

` cn(t)einw. The system~5! is equivalent to the fol-
lowing equation in partial derivatives foru(w,t):

]u

]t
1t

]u

]w
12igu cosw50. ~7!

The initial condition~6! is equivalent to the initial condition
u(w,t→2`)→exp@in8(2t2/21w)#. Given the solution
u(w,t), the amplitudescn(t) can be found by the invers
Fourier transformation cn(t)5(1/2p)*0

2pu(w,t)e2 inwdw.
The solution of Eq.~7! that obeys proper boundary cond
tions is

u~w,t !5expH 2 iF2gE
2`

t

cosS w2
t2

2
1

t82

2
D dt8

1n8S w2
t2

2 D G J . ~8!

Putting t51` in the solution~8! and taking the inverse
Fourier transform, we arrive at following asymptotic value

cn~ t !'expS 2
int2

2
1 i

~n82n!p

4 D Jun2n8u~2A2pg!. ~9!

Thus, the scattering amplitudes in terms of modified sta
with the fast phase factor exp(2int2/2) incorporated, are

Tn,n8[^nuTun8&5ei (n82n)p/4Jun2n8u~2A2pg!, ~10!

where the operatorT is expressed in terms of the evolutio
operatorU(t,t8) for the Hamiltonian~4! in the interaction
representation:

T5 lim
t→`,t8→2`

expS i E
t8

0

H0~t!dt DU~ t,t8!

3expS i E
0

t

H0~t!dt D . ~11!

The matrix elementsTn,n8 display an infinite number of os
cillations with the LZ parameterg. However, for large

e
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BRIEF REPORTS PHYSICAL REVIEW B 65 153105
un2n8u the oscillations start withg.un2n8u. These oscilla-
tions can be observed experimentally by varying the fi
sweep rateĖ(0). For small values ofg the amplitudes are
small and quickly decrease with growingun2n8u. In Fig. 2
we depict transition probabilities for several levelsn closest
to the initial onen8 versus the Landau-Zener parameterg.
Figure 3 shows the dependence of the transition amplit
on un2n8u at a fixed value ofg.

For largeg@un2n8u the asymptotic values of the ampl
tudes~10! are

^nuTun8&;
ei (n82n)p/4

~A2p3g!1/2
cosS 2A2pg2

~n2n8!p

2
2

p

4 D .

~12!

It is instructive to compare this result with other exac
solvable generalized Landau-Zener models. Most of th
refer to systems with a finite number of statesN. In the limit
g@N the transition probabilities behave like an expone
exp@2C(n,n8)g2#, where theC(n,n8) do not depend ong. In
contrast, the result~12! displays a power law with oscilla
tions instead of an exponential dependence ong for largeg.
This is the manifestation of quantum interference of differ
Feynman trajectories, which are discrete in the chain. A s

FIG. 2. Transition probabilities to sites closest to an initia
filled one as functions ofg: ~a! un2n8u50, ~b! un2n8u51, ~c!
un2n8u52, and~d! un2n8u53.

FIG. 3. Transition probabilities vsn2n8 at a fixedg51.6. Solid
line is a guide for the eye.
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in a trajectory has average lengthg ~see below!. Such a step
cannot be realized in a system with a finite number of sta
if g@N.

The mean square displacement at one crossing event

^~n2n8!2&5 (
n52`

`

~n2n8!2uJun2n8u~2A2pg!u254pg2.

~13!

If the external field is periodic in time and the coheren
between crossing events is lost,24 the electron performs a
random walk; i.e., it diffuses. Assume the field to oscilla
harmonically asF(t)5F0sin(vt). At the nodestk5pk/v
(k is an integer! all diabatic levels cross together. Th
squared Landau-Zener parameter isg25g2/F0v. The diffu-
sion coefficient isD52a2^(n2n8)2&/T, whereT52p/v is
the period of oscillations and the factor of 2 accounts for t
crossing events per period. Collecting these results and
~13!, we find

D5
4ag2

F0
. ~14!

This result does not depend on the frequency of the exte
field.

The theory can be extended to a more general Ham
tonian incorporating hopping between any two sites, but c
serving translational invariance:

H5(
m,n

Hm,num&^nu,

Hmn5ntdmn1gum2nu , g2k5gk* . ~15!

For simplicity we present below the result for real hoppi
amplitudesgk5g2k :

^nuTun8&5
ei (n82n)p/4

2p E
0

2p

exp@2 i2A2p f ~w,gj !

1 i ~n82n!w#dw, ~16!

where f (w,gj )5(k(gk /Ak)coskw.
The model~1! can be generalized also to incorporate

ternal degrees of freedom of identical chain fragments.
this case the local states are described by amplitudesan,a
with two indices. The first indexn denotes the position an
the second indexa labels the inner states. The Schro¨dinger
equation for the amplitudes then reads

i ȧn,a5~nt1ea1dat !an,a1(
b

ga,b~an11,b1an21,b!,

~17!

where the indexesa,b51, . . . ,Nint run over the internal
states of the molecular wire segment. Changing to variab
an,a5bn,ae2 int2/2 we eliminate the term proportional tot in
Eq. ~17!. Introducing a new function ua(w)
5(n52`

` bn,aeinw, we reduce the infinite system~17! to a
finite set ofNint ordinary differential equations:
5-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 153105
i u̇a5~ea1dat !ua12 cos~ t21w!(
b

ga,bub , ~18!

in which w plays the role of a parameter. The initial cond
tions arebn,a(t→2`)5exp(2idat2/2)dn,n8 and ua(w,t→
2`)5exp@(2idat2/2)1 in8w#. Thus, the variable~param-
eter! w enters not only in the system~18!, but also in the
initial conditions. This system must be solved for all valu
of parameterw in the interval (0,2p). The inverse Fourier
transformation yields the evolution operator just as for
caseNint51. An analytical solution of the system~18! is
possible for some special choices of the parameters«a , da ,
andga,b . For example, two identical coupled chains cor
spond toNint52. Then the indicesa,b take on the values
1,2. The simplest solvable choice of parameters is«150,
«25«; d150, d25d; g1,15g2,25g; g1,25g2,15g8. An ex-
act solution of this model can be reduced to ones solve
this article together with the solvable two-level LZ model

In conclusion, we have generalized the LZ theory to
infinite number of crossing levels. Physically it describes
electron on an infinite chain subject to a time-depend
electric field. The high symmetry of the problem allows us
find not only the asymptotics, but also the intermediate v
ues of the amplitudes. Our solution is valid for an infin
chain with translational symmetry. We demonstrated it
the case of a simple primitive cell, but it can be generaliz
and in some cases exactly solved even if the primitive
contains more than one site.

Finite-size effects do not permit us to apply our result~10!
directly to the transition amplitude from the first to the la
site of the chain even if it contains many sites. However,
calculation of the diffusion coefficient~14! is valid since
diffusion presumably proceeds far from the ends of
chain. Certainly, we assume that coherence is lost during
time interval between two sequential crossing events.
in

lly
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Our solution demonstrates a phenomenon that is prob
common for most systems with multilevel crossing: oscil
tions of the transition probabilities as a function of the L
parameter and site position~distance between diabatic lev
els!. However, their asymptotic values for large values of t
LZ parameter differ from those for other solvable multista
LZ models with a finite number of states. We expect that i
general situation withN@1 crossing levels, the transitio
probabilities will behave similarly to those found in th
work for 1!g!N, provided that the initially occupied state
are far enough from the diabatic spectrum boundaries.

Finally we discuss the relationship between our probl
and a typical problem for semiconductor superlattices.18,19

The latter is associated with Anderson localization. The
abatic levels at sites are randomly distributed. In one and
dimensions all sites are localized. If the width of the ene
distributionD is much less than the tunneling amplitudeg,
the localization length in one dimension isag/D. To enhance
the tunneling through a chain it is reasonable to apply
time-dependent electric field. The electric field is substan
if Fg/D>D whereF is a typical value ofF(t). Our approxi-
mation is valid if the inequality is strong:Fg/D@D. Tunnel-
ing transitions in the field proceed during an interval of tim
t defined by relationF(t);g. The valueF(t) can be ac-
cepted forF. We see that the strong inequalityg@D guar-
antees the existence of the strong-field limit in which t
randomness of levels can be ignored. This requirement d
not impose any limitations on the LZ parameterg.
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