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Local tunneling characteristics near a grain boundary of ad-wave superconductor as probed
by a normal-metal or a low-T .-superconductor STM tip
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We study the local single-particle tunneling characteridtas observed with scanning tunnel microscopy
(STM)] for N-D and S-D tunneling, whereD is ad-wave superconductor with {00{{110} grain boundary.
The tunneling Hamiltonian method is used. The self-consistent order parameter is first determined using the
quasiclassical Green’s-function method, and then the tunneling characteristics at various distances from the
interface, reflectivity of the interface, and temperature, are studied\fdtunneling, a zero-bias conductance
peak (ZBCP) occurs near the interface, with diminishing magnitude away from it. && tunneling, the
ZBCP splits to exhibit the gap of thewave low-T. superconducting tunneling tip, and there is a range of
negative conductance just outside the peaks, when the tunneling point is near the grain boundary. The results
are compared with those obtained by using a constant order parameter in each grain.

I. INTRODUCTION at zero magnetic field and further nonlinear splitting with
increasing external field, which appears to have been
There has been a large number of experiments studyingbserved?
the symmetry of the order parameter in high-supercon- Originally, the observed ZBCP was analyzed in terms of
ductors(HTSC's), because this information is crucial for un- the spin-flip and Kondo scatterings from the magnetic impu-
derstanding the mechanism of this class of superconductorsgties which were presumed to exist at or near the interface.
Several phase-sensitive experiménitshave observed the But this interpretation has been challenged by the experi-
sign change of the order parameter on the essentially cylirmentally observed:?° nonlinear dependence of the ZBCP
drical Fermi surface, which supports the conclusion that thesplitting on the applied magnetic field, and also by the ab-
order parameter of HTSC's has predominantly asence of a ZBCP for the electron-doped, presumahbiave
d,2_y2-wave symmetry. cuprate superconductot.*?>Furthermore, that the ZBCP
For the d,2_,2-symmetry model, the existence of zero- is continuously observed with STM for a long distari¢€0
energy(quasiparticlg bound state$ZEBS'’s, also called the nm) on a {110 surface, with nearly a constant height, is
midgap statéson the surface has been predicfethe rea-  strongly against the impurities scenatfand that a ZBCP is
son for their existence is that the incident and reflected quasonsistently observed on @10 surface, and consistently
siparticles see different signs of the order parameter. Thaot observed on @100 surface, is also strongly in favor of
number of the ZEBS’s depends on the orientation of thehe midgap-states scenafib Therefore the observation of
surface with respect to the crystal axis. It has a maximum fothe ZBCP in HTSC’s can nowadays be regarded as a strong
a {110 surface and a minimunti.e., zerg for a {1000  evidence for thed,2 ,2-wave order-parameter symmetry in
surface> (According to Refs. 6 and 7, the ZEBS's can alsothis class of SC’s(which probably does not include the
exist on a microscopically rougti00: surface). The discus- electron-doped cupratesThe ZBCP was also observed on
sion can be directly generalized to an interféce., a grain  the{100 surfacé®which is attributed to the roughness of the
boundary of a d-wave superconductor, but the condition for surface®’ For tunneling between a loWz superconductor
the existence of the ZEBS's is more restrictieNamely, (LTSC) and a HTSC, a splitting of the ZBCP at zero mag-
both the reflected and the transmitted quasiparticles have teetic field was observelt,and the conductance at zero bias
see different signs of the order parameter from that seen bgecreases with decreasing temperature. Because this splitting
the incident quasiparticle. The ZEBS’s can lead to a zeroenly occurs when the temperature is below fhe of the
bias conductance pe&kBCP) in quasiparticle tunneling®  LTSC, it cannot be attributed to the BTRS states. It is ex-
which has been observed in many experiméhté! Fogel-  plained as due to the convolution between the quasiparticle
strom, Rainer, and Sadlthen concluded that a putewave  density of states of the LTSC and that of the HTSC.
order parameter can induce awave subdominant compo- The ZEBS is a quasiparticle state localized near a surface
nent near the surface because of the strong pair breaking an interface. We expect that this localization can be ob-
property of the latter. The two order-parameter componentserved in an STM-type of localized quasiparticle tunneling:
have a relative phase difference ef2, and the resultant The ZBCP is expected to have a maximum height when the
d+is order parameter near the surface gives rise to a broketunneling occurs at the surface or interface and to decrease in
time-reversal symmetryBTRS) state, which causes the en- height when the tunneling point moves away from the sur-
ergy of a ZEBS to shift away from zero by an amount whichface or interfacé® In this paper, we study the local charac-
is dependent on its momentum along the surface inathe teristics for tunneling between an STM tip anddavave
plane. This energy shift gives rise to a splitting of the ZBCPsuperconductor with a grain boundagas shown in Fig. 12’
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u the chemical potential. In the WKBJ approximation, the
wave function has the form
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=elkpx E(X)
v(X)

, (4)

FIG. 1. Schematic drawing showing an STM tip scanning the
vicinity of a {100[{110 grain boundary of ad-wave supercon-
ductor. The tunneling direction is along thexis in this figure, but  wherekg is the Fermi momentunu(x) andv(x) vary on a
it does not have to be so. scale of the coherent lengiy, which is much larger than

the Fermi wave Iengtk;l. According to the 2D property of
We assume that the left grain{$00 oriented and the right HTSC's, and if we assume the translational invariance of the
grain is{110; oriented. The angular dependence of the ordeinterface,u, v, andA depend orx only. Substitution of Eq.
parameter isA (6)=cos(%) and Ag(6)=sin(20), for the (4) into Egs.(2) and (3) and neglecting the second-order
left and right grains, respectively, wheteis the angle be- differential terms lead to the Andreev equations
tween a two-dimensional momentum vector in #ieplane
and the surface normal. When the tip scans inxh@lane,
the tunneling can occur at different points relative to the
grain boundary. A HTSC can, to a good approximation, be
considered as a two-dimension@D) system. If we assume _ d .
translational invariance along the grain boundary, we expect Ev(X) =i vpygy v(X) +A(Kx)u(x), (6)
the spatial dependence of the tunneling characteristics to de-
pend on one coordinate only, viz., the coordinateeasured whereA (k,x) is the order parameter after a Fourier transfor-
perpendicular to the grain boundary. We will study the localmation with respect to the relative coordinate.e., k is the
tunneling characteristics when the tip is either a normakelative wave vectorug, is the x component of the Fermi
metal (N) or a LTSC(S). velocity alongk. For the order parameter in Eq$) and(6),

This paper is organized as follows: Sec. Il briefly intro- 51y the direction of the wave vectdt=k/|k|, is retained as
duces the method of quasiclassical Green'’s functions for thg \,ariable. because the momentum can be fixed on the Fermi
calculation of the self-consistent order parameter. In Secs. llrface in the weak-coupling treatment. To simplify the no-

and 1V, we present the tunneling conductance for the t'ptation we have suppressed tfqedependence i and v
being a normal metal and a LTSC, respectively. Finally, we If we assume partial specular reflectiomith probability

make brief conclusions in Sec. V. r) and partial forward transmissiofwith probability t=1
—r) at the interface, thg component of the momentum of a
[l. SELF-CONSISTENT ORDER PARAMETER quasiparticle will be stilk, after a reflection, but the com-
nponent of the momentum will change sign. Therefore the
wave function should be a linear combination of two terms
on each side of the interface:

Eu(x)= —quXdEXU(xHA(R,x)?(x), (5)

The situation we considered is shown in Fig. 1. The grai
boundary(interface is located atx=0. We assume that the
left-hand side of the interface is{d00 grain and the right-
hand side is 4110 grain. An STM-type tunneling can occur
at different distancesi.e., xX's) away from the interface. In
order to calculate the tunneling conductance accurately at
different tunneling points, first we need to calculate the spa
tially varying self-consistent order parameter. We use th
quasiclassical Green’s-function metkdd®to calculate this
guantity. The order parameter can be expressed as

U|(X,y)
y(X,y)

)=e‘kvy 2 dax0)e (D)

whered, measures the direction of the momentuaky,k,)
Qith respect to thex axis. + and — mean right and left
moving, respectivelyf, = 0 with — 7/2<§<m/2 gives the
direction of a right-moving electron, ané_=7— 0 gives
that of a left-moving electronk,=kgcos¢>0 and k,

A )=V, ) (P (nw(r')) =ke sin@ are thex andy components of a right-going mo-

U (r' mentum vector, respectively, and
=TV(R )Y > w (1) _
n o1 len E| U,
¢|a:(? ) (8)
la

whereV(r,r') is the pair interactionT is the absolute tem-
perature, g, is the Matsubara frequency, anel,=(2n After applying a Fourier transformation to E@.), the order
+1)#T; u, andv, satisfy the Bogoliubov—de Gennes equa- parameter can be expressed®38>!

tions with eigenenerg¥, :
2

w/2d0’[@aa(X, 0& !Sn)v( 0! 0;)]12!
9

™m
AOXN= g 2,

Eyuy (x) = Rt () + J AsNnORde ()
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where eaclf,z is a 2X2 matrix in the particle-hole space. It wherec, andcy are the reflection and transmission coeffi-
is known as the quasiclassical Green'’s function. The subeients(i.e., probability amplitudes respectively. The bound-
script 12 means the element 12 of this matrix. The definingary conditions at the two ends= —L, andx=Lg are’®
equation

g5 (—Lo+i=g" (~Lp+i=—e g} (-Ly),

00p(X) £ (¥3) apl=— 203G p(x=0X),  (10)

g5 (—L)—i=8" (~Ly-i=—eng" (-Ly),
~ o 16
relatesg,z to G,4(x,x"), which is the Gorkov Green’s 0% (LR +i=88 (Lp)+i=—e "RgR (Lg), (16)
function, a 2x2 matrix in the particle-hole space, further
converted to a X2 matrix in the “directional space,” with aR (Lo —i=8R (Lo)—i=—emgR (L
indices aB, so that the rapidly oscillating factors can be G5+ (br) = (Le) G- (Lr)
removed® where 5, and 5y are arbitrary phase factors.
For the d-wave superconductor described in Fig. 1,
B () Bh(x') AL(0,X)=A(X)cos() and Agx(6,x)=ARr(X)sin(26). The
éaﬁ(x!x,): > “,—'B, (11)  pairinteractionvV(6,60') in Eq. (9) has the same symmetry as
' ten—E the order parameter. From E(@), we have
where thel sum is now confined to the sum over the quan- 2Tz“’c’2ﬂfﬂ/§ 00" = [N(0))F0al(X, 0. ,£0)]12
tum number in association with themotion only, since the A(x)= ,
sum overk, has been turned into an integral ow#rin Eq. In( ) DR
(9). [Thel sum in Eq.(1) includes the sum over both quan- Ted =0 n+05

tum numberg.In Eq. (10), y3 is the third Pauli matrix in the (17)

directional(i.e., + —) spaceps is the third Pauli matrix in where A(x) meansA,(x) for the left-hand sidel.h.s) (x
the particle-hole space, and i the unit matrix in the <0), and Ag(x) for the right-hand sider.h.s) (x>0);
particle-hole space. To simplify the notation, we have left\ (8) =cos() for the l.h.s. and\(6) =sin(26) for the r.h.s.;
out the variableg) ande, in §,5 and éaﬁ in Egs.(10) and ~ @c is_ a cuto_ff to the summation fosrn; _The strength of_the
(12). In Eq. (9), We have omitted th@, _ and§_, terms pair interactionvV(#,6') has been eliminated after we intro-
because their contributions are rapidly oscillating in the scalgluce T.q—the transition temperature of thel-wave
of Fermi wavelength. The quasiclassical Green’s functiorsuperconductor—by letting —0.° We solve the differen-

8.5 satisfies the following differential equatié: tial Eqg. (12 and the boundary conditiond4) and (16) to-
gether with Eq.(17) iteratively till the self-consistency is

. . P U A Lo A achieved. Before numerically solving Ed.2), the exponen-
1r, xGap= _“('Snl_Aa)p3gaﬁ+gaﬁlB('snl_Aﬁ)P(S' : tially growing part of the solution needs to be analytically
12

Self-Consistent Order Parameter
where AL(x,8) = A(X)cos(28)  Ag(x,8) = A(x)sin(26)

i 0 A(0,,X)
* 1 A*(6,,%) 0

(13 1

In order to solve the differential Eq.12), we need the

boundary conditions of the quasiclassical Green’s function 0.5
0.4 at the interface and the two end points: —L andLg. T=0.1Ty,
(Eventually, we will letL, and Lg go to infinity) The (T =0.047A)
boundary condition at the interfaceds 0

§-(0)=MgROM™, (14 !

g

whereg is a 2X 2 matrix in the directionali.e., + —) space §
with elementsj,;, each of which is a 22 matrix in the 05 |
particle-hole spaceM is also a 22 matrix in the direc- T=0.025T;

(T =0.0124,)

0 I ) 1 1 ! ) 1 )
S5 4 3 2 -1 0 1 2 3 4 5
X

tional space, of the form

FIG. 2. Plot of the normalized self-consistent superconducting
J (19 order parameter as a function wfat four values of the interface
reflectivity r and two values of the temperatufe Upper panelT
=0.1T.q; lower panel:T=0.025T 4.

21
Il
&
cg(-l = cg(-l -'Ox-
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12 (a) constant A -=---- 12 (b) constant A —-----
self-consistent A self-consistent A ———

9 W X =-2.0 9r t W X =+20
8 » —— 8 - .

5 r x=+1.0

normalized tunneling conductance
(=)}

normalized tunneling conductance
(=2

3 4 x=-0.5 3 = x =+0.5

1 = x=-0.0 1 = x=+0.0

. . r=0 . r=0
05 1.0 15 20 25 T=0.025T 05 1.0 1.5 20 25 T =0.025T 4
eV/iag eViAg

FIG. 3. Normalized local tunneling conductan@ebetween a normal-metal STM tip anddavave superconductor with &.00{110
grain boundary, as a function of the applied voltagePart(a) is for four values of (in units of &y) on the{100} side(i.e., the negativex
sidg), and part(b) is for four values ofk on the{110} side(i.e., the positivex side). The grain-boundary reflectivity parameter is assumed to
ber=0 here, and the temperature is assumed tdH®.025T.4. Solid lines are obtained using the self-consistent order parameter, and the
dashed lines are obtained by assuming a constant order parameter on each side. A width parameter for the quasiparticle eigenstates has bee
taken to bes=0.05T.4. With 100% transmission at the grain boundary assumed here, the local conductance shows no discortinuity at
=0.

separated and removed. The technique is explained in detaVhenlL, , Lr— o, the self-consistent order parameter is in-
in Ref. 29. On the r.h.s. of Eq17), the numerator and the dependent of the phase factoys and 5, and only depends
denominator depend on the cutoff frequeney. However, on two parameters: temperatufeand the reflectivity of the
when w,, is large, though both of them are divergent, theirinterfacer=|c,|2.2°

ratio is convergent. In our calculation, we have chosgn Figure 2 shows the results of the self-consistent order pa-
=20mT.q, and we have established that the convergence haameter for two temperature$=0.025T .4 and 0.T.4. For
been achieved. The accuracy of the self-consistent order paach temperature, we calculate the order parameter for four
rameter for every point studied is four significant digits. values ofr:r=0, 0.3, 0.7, and 1. The unit afis the coherent

12 (a) constant A -~~---- 12 (b) constant A ------
self-consistent A self-consistent A

of | WFQO 9 I W\_‘xﬁz‘o
8 . 8 — —

5 x=-10

5 x=+1.0

normalized tunneling conductance
(=2}

normalized tunneling conductance
()}

3 7 x=-0.5 3 d x=+0.5

1 /T x =-0.0 1 = x=+0.0

. . r=03 . . r=03
05 1.0 15 20 25 T =0.025Ty 05 10 1.5 20 25 T=0.025T 4
eV/h, eV/IAg

FIG. 4. Same as Fig. 3 except that 0.3 in this figure. The local conductance is now discontinuous=ad. That is, the plots at=
+0 are now different.
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12r (a) constant A ------ 12| (b) constant A ------
self-consistent A ——— self-consistent A ———

11 11

AR Wh-zo 9
8t —— 8

5 = Xx=+10

X =+2.0

normalized tunneling conductance
(o)}

normalized tunneling conductance
(=2}

3r Xx=-05 3 -~ x=+0.5

1 7 x=-0.0 1/ o X =+0.0

. . r=0.7 . . . . . r=0.7
05 1.0 15 20 25 T =0.025T 05 1.0 1.5 20 25 T =0.025T 4
eV/iAg eVihy

FIG. 5. Same as Fig. ébr 3) except thar =0.7 in this figure.

lengthég=7nve/Ay. Whenr =1, the interface is pure reflec- leads to some depression of the order parameter near the
tion, so the two grains are independent of each other. In thigterface on this side. The depression increases with decreas-
case, the order parameter should be that of a superconductog r because more Cooper pairs can leak into the r.h.s. How-
with a specular surface on each side of the interface. Thever for the r.h.s., the depression decreases with decreasing
order parameter on the I.h.@he {100; sidg is a constant, because less probability of reflection implies less pair break-
just like ans-wave superconductor because the incoming andhg effect.
outgoing quasiparticles experience the same order-parameter

sign. However, for the r.h.qthe {110 side), the reflected

electrons see the sign change of the order parameter so there

exists a pair breaking effett.Therefore the order parameter ~ We extend the tunneling Hamiltonian approach used in
near the interface is depressed relative to that in the bulk. IRef. 8 to local tunneling characteristics. The local tunneling
fact, it drops to zero at the interface. In the case <fL, for ~ current between a normal metal tip and thevave supercon-
the L.h.s., some Cooper pairs can leak into the r.h.s., whichductor described in Fig. 1 can be expressed by using the

Ill. N-D TUNNELING

12+ (a) constant A ------ 12
self-consistent A ———

1 Wuao 9
8t — 8

(b) constant A ------
self-consistent A ———

== x=+42.0

normalized tunneling conductance
N

normalized tunneling conductance
=)}

3 x=-0.5 3 H P x =+0.5

. . N . . r=1.0 r=10
05 1.0 1.5 20 25 T=0.025T 4 05 10 15 20 25 T=0.025T4
eV/A, eV/A,

FIG. 6. Same as Fig. ébr 3) except that = 1.0 in this figure. This case corresponds to the sample split into a semi-infinite sample with
a{100 surface situated at<0, and a semi-infinite sample with{410 surface situated at>0. The ZBCP then shows up on the-0 side
only, nearx=0, where midgap surface states exist.
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12] (a) constant A ------ 12 (b) constant A ~-----
self-consistent A ——— self-consistent A ———

9 W x=-20 9 W x=+2.0
8 b 8 —

x=+1.0

normalized tunneling conductance
(=)}

normalized tunneling conductance
(=2}

i
|
i
1
1
i
':
|
3 b / x=-05 3 ST x=+0.5
7 i
|
i
i
it
|
\l
\

. r=07 . r=07
05 10 1.5 2.0 25 T=01Ty 05 10 15 20 25 T=0.1Ty
eVih, eViA,

FIG. 7. Same as Fig. 5 except that the temperalu®.1T.4. This figure is to illustrate the temperature effect.

quasiclassical Green'’s function: the results due to the use of the constant order parameters is
1 /2 larger when the tunneling point is closed to the interface. For
_ " * fixed tunneling point on the I.h.s., this error is smaller for
I(x,V)==— | d#| dEME+ev)[f(E)-f(E+e a . > S,
(x.V) 2 j_w/z 0f_w EM LT(E) = V] increasingr, and wherr =1 [Fig. 6(@)], the error reduces to
R R exactly zero, as it should be, since for 1, the L.h.s. has a
XIM[G, + (%, 04, E)+8- (%60 ,E)]iz, (18 free surface, and the self-consistent solution gives a constant
where “Im” means the imaginary part, and “11” means the order parameter. For the r.h.s., the error is larger for larger
element 11 of the matrice§,, (a=+,—). The current due to the p_air breaking property of the interface.
I(x,V) has been normalized by that of theN tunneling.V In these figuresy= + 0.0 andx= —0.0 mean that the tun-
is the bias voltage, anf(x) is the Fermi functionA(E) is neling occurs just to the right and left side of the interface,
the normalized density of states of the counter electrode anfgSPectively. Whem=0, the quasiclassical Green’s function
N(E)=1 for a normal-metal tipd,,s(x, 6,E) is the analyti- is continuous across the interface, so the tunneling conduc-

cal continuity ofg, (X, 6,&,): tance is also continuous there. Therefore the curvexfor
ap(X, 0,8 =—-0.0 in Fig. 3a) is exactly the same as that for
Gap(X, 0,E)=8,5(X,0,80)|c . —ig+s, (19 =+0.0in Fig. 3b). Whenr #0, the tunneling conductance

is discontinuous across the interface because of the disconti-
with & being a small positive number. Inserting the Green’snuity of the quasiclassical Green’s function there. Then tun-
function g, obtained by using the self-consistent order pa-neling characteristics at= +0.0 andx= —0.0 are different,
rameter into Eq(18), we obtain the normalized tunneling
conductance. We have calculated the tunneling conductance
for eight distancegx’s) from the grain boundary. Four dis-
tances are on the L.h.s. of the grain boundasgy,x<0), and e S
the other four distances are on the r.His., x>0). 9,4 g 103
=g, for x>0 and§,5=0,, for x<0 in Eq. (18). The
results of the normalized conductance versus the bias voltag T=0.025Ty
at temperaturd =0.025T .4 and four values of (r=0, 0.3, o
0.7, and 1 are shown in Figs. 3—6. Paid) gives the results
for the tunneling points on the l.h.s. of the grain boundary,§ 4|
and part(b), the r.h.s. The corresponding results for another
temperaturel =0.1T.4 andr =0.7 are shown in Fig. 7. We

10

BCP Height

have chosers=0.05T.4 in Eq. (19) for all of the calcula- 2r

tions.
We have also calculated the tunneling conductance by 0

using a constant order parameter in each grain for compari s 4 3 a2 -

son. In Figs. 3—6, the dash lines are the results obtained by *

using a constant order parameter for each side of the inter- FIG. 8. The height of the ZBCP is plotted as a function of the
face, and the solid lines are those by using the self-consisteristancex away from the interface for different values of T
order parameter. We can see that for a givethe error in ~ =0.025T 4 is assumed.
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40 40
=1.0 — =1.0 —
L =0.7 ------- L =07 -—----
35 (a) 1=03 oo 35 () =03 e
1=0.0 e
30 0=3/16n 30
T=0.025Ty
25 - 25 b
=X
< L L
20 20
k=4
15 F 15
10 - 10 +
SF 5L
0 - . 0 N
-5 4 4 5 S 4 3 -2 -1 0 1 2 3 4 5
X X

FIG. 9. Plot ofn(x,0,E) atE=0 as a function ok for four values ofr at 0:(%)77. Part(a) is obtained using the self-consistent order
parameter, and patb) is obtained by assuming a constant order parameter in each grain.

as may be seen in Figs(a} and (b), in Figs. 5a) and (b), that the I.h.s. ZBCP decreases in height, and the r.h.s. ZBCP

and in Figs. €) and(b). increases in height, whenincreases. The relationship be-
The ZBCP corresponds to the quasiparticles tunnelingween the height of the ZBCP amdeflects that between the

into the ZEBS's. All of these figures show that the height ofwave function of the ZEBS’s and. We can consider the

the ZBCP has a maximum at the interface, and diminishefollowing normalizediocal density of state&®

when the tunneling point moves away from the interface.

Observing this behavior will clearly verify that the ZEBS's 1 N R

are localized around the interfad@ote that ther=1 case n(x,0,E)= Z; IM{T3aa(X, 00, E)Dsl}. (20

presented in Figs.(6 and(b) corresponds to a single-crystal

sample with a free{100; and {110 surface, respectively, For E=0, it gives essentially the absolute-squared wave

probed by local tunneling near the surfdcehe relationship  function of the ZEBS for the give® because practically all

between the height of the ZBCP and the distance away fromof the contribution ta(x, §,E=0) is from the wave function

the interface for different is shown in Fig. 8. It also shows of the ZEBS for thisd when §in Eq. (19) is very small.(But

30 30
=10 —— =10 ——
(a) 1=0.7 ------- (b) 1=0.7 -=-----
25 r=03 oo 25+ 1=0.3 -oees
r=0.0 e 1=0.0 <o .
6=3/87 6=38n
20 - T=0.025T, 20 - T =0.025Ty
) i
< 15t 15 b :
k-1

5 4 3 2 1 0 1 2 3 4 5 5 4 3 2

FIG. 10. Same as Fig. 9 except that (3) .
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i
18 (a) constant A ------ 184 (b) constant A ------
self-consistent A ——— self-consistent A

16 16
@ Q
2 14 g 14
g x=-2.0 2 == X =420
5 <
§ 12 § 124 +
2 z
51 < 10
g E
3 2
3 ® 3 ° S
= x=-10 5 . == x=+1.0

6
g £ S
<) \ . =

4 / x=-05 4 P x=40.5

[}
2 . 2
= x =-0.0 ST X =+0.0
il . . . r=07 . r=07
05 1.0 1.5 20 25 T = 0.025T,, 05 10 15 20 25 T = 0.025T,

eViAg

Vi

FIG. 11. Same as Fig. 5 except that the STM tip is now assumed to be made offa fswave superconductor with.;=0.1T 4. The
temperaturel = 0.025T .4 is <T.s SO we have approximatetly(T) by A4(0).

notice that it has its rapidly oscillating component removedinterface, as shown in Fig. 10 far=(3)«. However, the
already) n(x,6,E) in Eq. (20) has been normalized by the 7BCP corresponds to a summation of élland the contri-
corresponding density of states of a normal metal. Figure $ution from this special angular range is small in comparison
gives a plot of thisn(x,#,E=0) versusx for r=0, 0.3, 0.7,  with that from the remaining angular range, so the relation-
and 1, and in these figures we have choger(3/16)x. In  ship between the ZBCP height amddoes not show this
Fig. 9, part(a) gives the results obtained by using the self-complication] When r=1, only the {110 side (i.e., the
consistent order parameter and p@t gives those obtained r.h.s) can have the ZEBS's. So, all of the wave functions of
by using a constant order parameter on each side of the grathe ZEBS’s are located on the r.h.s., which corresponds to
boundary. It shows than(x<0,0,E=0) decreases, and the fact that the ZBCP is located on the r.h.s. in Figs. 6 and
n(x>0,0,E=0) increases with increasing which corre- 8. From Fig. 9, we can also see that the quasiclassical
sponds to the I.h.s. ZBCP’s height decreasing, and the r.h.&reen’s function is continuous across the interface when
ZBCP's height increasing, with increasing as shown in =0 but discontinuous when+ 0.

Fig. 8.[Actually, then(x>0,6,E=0) calculated using the In Ref. 9, we shall discuss the conditions for the existence
self-consistent order parameter is found to decrease wisen of the ZEBS's for ad-wave superconductor with a grain
increased, for some angles closedst@nd withx near the  boundary. Even though in that work we considered only a
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FIG. 12. Thel (V) characteristics corresponding to the normalized conductance plotted in Fig. 11. The current peak in this plot gives rise

to the negative conductance in Fig. 11.
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constant order parameter for each side of the grain boundary,
the conditions obtained there are also valid for the self-
consistent order parameter because of the topological nature =
of the ZEBS's*®~8In that work we have shown that for a
d-wave superconductor with £00{{110 grain boundary,
there are no “ZEBS’s” with thir energies shifted to nonzero
energies in the WKBJ approximatiSnAll of the ZEBS's
will remain at zero energy when changes to any value

14 (a) r=07

a)
8]

=]
T T T T T T T T T T T T T T

)

=

normalized tunneling conduct

IS

between 0 and 1. So the apparent subgap peBk-aA2 in & [ ke x=03
Figs. 3—7 is not due to any finite-energy bound states. In *[ /i 02T
fact, it is from the interference between the effects of the E=SLes s i T-0.097T) ——

order parameters on the two sides of the grain boundary: As eving
long asr #1, every quasiparticle can see two order param-
eters from the two sides of the interface. The subgap peak for
constant order parameter is located af2]1/where the qua-
siparticle experiences equal pair potential in both sides. The
self-consistent order parameter shifts its energy away from
1W2 only slightly. Whenr =1, there is no interference be-
tween the two sides because they are completely separated.
Therefore this kind of subgap peak does not appear in Fig. 6.
Of course, when the orientation angles of the two sides are
not as chosen here, it is possible to have some “ZEBS's”
shifted to nonzero energi@sThen we expect that the

N S

>

T T T T T T T T T 1

x=+1.0

=N

-~

normalized tunneling conductance
%

[S]

“ZBCP” will show more complex behavior, and it will be _ x =400 T-0028Tg -
different for differentr. But it may be very difficult to ob- 05 0Ty, e
serve this behavior due to the faceting problem which Vo

plagues actually grain boundaries, especially when the orien- FIG. 13. Plotted is the normalized local tunneling conductance

tations of the grains are neithgf0Q nor {110. G between a low-temperatusswave superconductor STM tip and

We have also calculated the normalized tunneling cong 4.vave superconductor containing{200|{11G grain boundary

ductance aff =0.1Tq which is shown in Fig. 7. The behav- g 5 function of the applied voltageat six values ok (in units of

ior of the tunneling characteristics under the change isf ) showing the effect of the temperatufeas it is raised from
qualitatively the same as that @t=0.025T.4, so we only  mych below T.(=0.1T.;) toward T.c. The gap of the low-
show the results for=0.7 at this temperature. Comparing temperatures-wave superconductor is seen to gradually close up in
with T=0.025T .4 for each tunneling point at the samethe  the(split) zero-bias conductance peak. Raitis for three values of
height of the ZBCP is seen to be reduced and the width i on the{100 side (i.e., thex<0 sidg, and part(b) is for three
somewhat broadened. When the tunneling point is two covalues ofx on the {110 side (i.e., thex>0 sidg. The negative
herent lengths away from the grain boundary, the ZBCP hasonductance just outside the split ZBCP is seen to occur only at
almost disappearedNotice, however, that we have defined temperatured <T.g only.

the coherence length to b&=7%v:/A, here, whereas in

other works it is often defined to beve /7Ao. Inthat scale  two peaks aeV=+E,, whereE; is essentially the gap of
this point is already more than six coherence lengths awayhe swave LTSC. The second, and also the more interesting
from the interface.Because the magnitude of the order pa-gne, is that there is a range of negative conductance just
rameter atT=0.IT;4 is almost the same as that & gytside the gap of thewave superconductor when the tun-
=0.0251 4, the depression and broadening of the ZBCP argeling occurs near the interface. Figure 12 shows the corre-

practically all due to thermosmearing. spondingl-V curves which exhibit current peaks. Both of the
two features are due to the ZEBS's in ttkevave supercon-
IV. S-D TUNNELING ductor: WheneV=*= A, the quasiparticles with the highest

density of states in the-wave superconductor side can tun-

In this section, we will study the case when the tip is anel into the ZEBS'’s on the-wave superconductor side, so
conventionals-wave, LTSC. In this case we obtain a nega-the tunneling current increases dramatically, which explains
tive conductance for a narrow range of energy when the tunthe high conductance peak @v==*A. When|eV|>Aq,
neling point is closed to the interface. Equatid®) can be the quasiparticles with the highest density of states in the
directly generalized toS-D tunneling by using M(E)  sside tunnel into the gap region of theside, which has few
=E/ \/EZ—AS2 for the LTSC tip.Aq is the gap functiorfor  available states. Only the quasiparticles with the smaller den-
pair potential order parameter of the LTSC. In the following sity of states in the-side can now tunnel into the ZEBS's in
calculation, we choosA =0.1A,, whereA, is the maxi- the d side. Therefore the tunneling current is lower, which
mum bulk order parameter for thetwave superconductor. corresponds to the negative conductance in Fig. 11. The
We calculate the tunneling current and conductancd at above discussion is similar to that on the tunneling charac-
=0.025T 4. Figure 11 shows the normalized tunneling con-teristics of the conventiona$-S tunneling®? but here the
ductance versus the bias voltage for0.7. There are two current peak appears fV|=Aq, rather than afeV|=|A;
interesting features. The first one is that the ZBCP splits into- A,|. In Fig. 11, the negative conductance has larger abso-
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lute value when the tunneling point is on the r.h.s. becausbas a{100}{110} grain boundary, at various positions near
most part of the ZEBS wave function is localized on thethe grain boundary. The tunneling Hamiltonian method is
r.h.s. whenr=0.7. Hurd® has also obtained negative con- used. The quasiclassical Green’s-function method is used to
ductance fors—d,, tunneling. However, here we need to obtain the self-consistency of the order parameter of the
emphasize that because the ZEBS’s are localized aroundwave superconductor. F¥-D tunneling, The ZBCP has
surface or interface, the negative conductance can only bge maximum height at the interfadgrain boundary and
observed in local tunneling near the surface or interface, angiminishes when the tunneling point moves away from the
the average over even a small nonmicroscopic region of thgyterface. The ZBCP on the I.h.6.e., the{100 side of the
sample san make the negative conductance d|§aﬁ®aha grain boundary decreases in height with the increase of the
and Ng" have studied the LTSC-HTSC tunneling, and they;ia face reflectivityr, whereas the ZBCP on the r.h(se.,

saw the split ZBCP peaking at different energies at d'fferenﬁhe{llo} side increases in height with increasingFor S-D

temperatures. In order to qualitatively show this peak-energ¥unneling the ZBCP splits into two peaks Bt=-+A
] < — S

shift at different temperatures, we have also calculated the .
tunneling conductance when the temperature is only inghtI)\/NhICh reflects the gap of thewave LTSC, and has a range

belowT,, the critical temperature of the LTSC. The resultsOf negative (_:on_ductance just putside these peaks when the
are shown in Fig. 13. We see that the conductance at ze nneling point is near the grain bound_ary. Tshwav_e 9ap

bias is dramatically increased and the splitting of the zBCPaS already been observed by nonlocalized tnneling, but we
is very small in comparison with the result &t=0.025T . expect that this negatlve_conductance just outside the gap
because the gap of LTSC is very sméWe have arbitrarily feature can be qbservgd in the STM-type of Iocgl tunneling
chosen the gap to be @1, for this calculation, which cor- when the tunneling point is near a surface or grain boundgry
responds to choosir=0.97T ., or T=0.097T .4, since we of a d-wave superconductor where ZEBS's exist, assuming
have letT.s=0.1T.4). Sinha and N& did not see any nega- that temperature is sufficiently low, and there is not a wide
tive conductance. We think that it is because they studie@lamaged region near the surface or interface to suppress su-
planar junction tunneling, which measures only a spatiallyperconductivity there(But superconductivity can be some-
averaged tunneling characteristics. We predict that negativehat weakened there without losing the qualitative features
conductance can be observed if STM is used to see locgiredicted herg.

tunneling characteristics, if only the tunneling point is suffi-

ciently near a surface or an interface ofl-avave supercon-

ductor where ZEBS's exist. ACKNOWLEDGMENTS
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