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Local tunneling characteristics near a grain boundary of ad-wave superconductor as probed
by a normal-metal or a low-Tc-superconductor STM tip

Hongwei Zhao and Chia-Ren Hu
Department of Physics, Texas A & M University, College Station, Texas 77843-4242

~Received 29 November 1999!

We study the local single-particle tunneling characteristics@as observed with scanning tunnel microscopy
~STM!# for N-D andS-D tunneling, whereD is a d-wave superconductor with a$100%u$110% grain boundary.
The tunneling Hamiltonian method is used. The self-consistent order parameter is first determined using the
quasiclassical Green’s-function method, and then the tunneling characteristics at various distances from the
interface, reflectivity of the interface, and temperature, are studied. ForN-D tunneling, a zero-bias conductance
peak ~ZBCP! occurs near the interface, with diminishing magnitude away from it. ForS-D tunneling, the
ZBCP splits to exhibit the gap of thes-wave low-Tc superconducting tunneling tip, and there is a range of
negative conductance just outside the peaks, when the tunneling point is near the grain boundary. The results
are compared with those obtained by using a constant order parameter in each grain.
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I. INTRODUCTION

There has been a large number of experiments stud
the symmetry of the order parameter in high-Tc supercon-
ductors~HTSC’s!, because this information is crucial for un
derstanding the mechanism of this class of superconduc
Several phase-sensitive experiments1–3 have observed the
sign change of the order parameter on the essentially cy
drical Fermi surface, which supports the conclusion that
order parameter of HTSC’s has predominantly
dx22y2-wave symmetry.

For the dx22y2-symmetry model, the existence of zer
energy~quasiparticle! bound states~ZEBS’s, also called the
midgap states! on the surface has been predicted.4 The rea-
son for their existence is that the incident and reflected q
siparticles see different signs of the order parameter.
number of the ZEBS’s depends on the orientation of
surface with respect to the crystal axis. It has a maximum
a $110% surface and a minimum~i.e., zero! for a $100%
surface.5 ~According to Refs. 6 and 7, the ZEBS’s can al
exist on a microscopically rough$100% surface.! The discus-
sion can be directly generalized to an interface~i.e., a grain
boundary! of a d-wave superconductor, but the condition f
the existence of the ZEBS’s is more restrictive.8,9 Namely,
both the reflected and the transmitted quasiparticles hav
see different signs of the order parameter from that seen
the incident quasiparticle. The ZEBS’s can lead to a ze
bias conductance peak~ZBCP! in quasiparticle tunneling,4,10

which has been observed in many experiments.11–24 Fogel-
strom, Rainer, and Sauls6 then concluded that a pured-wave
order parameter can induce ans-wave subdominant compo
nent near the surface because of the strong pair brea
property of the latter. The two order-parameter compone
have a relative phase difference ofp/2, and the resultan
d1 is order parameter near the surface gives rise to a bro
time-reversal symmetry~BTRS! state, which causes the en
ergy of a ZEBS to shift away from zero by an amount whi
is dependent on its momentum along the surface in theab
plane. This energy shift gives rise to a splitting of the ZBC
PRB 620163-1829/2000/62~2!/1308~11!/$15.00
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at zero magnetic field and further nonlinear splitting w
increasing external field, which appears to have be
observed.22

Originally, the observed ZBCP was analyzed in terms
the spin-flip and Kondo scatterings from the magnetic imp
rities which were presumed to exist at or near the interfa
But this interpretation has been challenged by the exp
mentally observed17,20 nonlinear dependence of the ZBCP
splitting on the applied magnetic field, and also by the a
sence of a ZBCP for the electron-doped, presumablys-wave
cuprate superconductors.17–19,25Furthermore, that the ZBCP
is continuously observed with STM for a long distance~160
nm! on a $110% surface, with nearly a constant height,
strongly against the impurities scenario;16 and that a ZBCP is
consistently observed on a$110% surface, and consistentl
not observed on a$100% surface, is also strongly in favor o
the midgap-states scenario.24 Therefore the observation o
the ZBCP in HTSC’s can nowadays be regarded as a str
evidence for thedx22y2-wave order-parameter symmetry
this class of SC’s~which probably does not include th
electron-doped cuprates!. The ZBCP was also observed o
the$100% surface23 which is attributed to the roughness of th
surface.6,7 For tunneling between a low-Tc superconductor
~LTSC! and a HTSC, a splitting of the ZBCP at zero ma
netic field was observed,11 and the conductance at zero bi
decreases with decreasing temperature. Because this spl
only occurs when the temperature is below theTc of the
LTSC, it cannot be attributed to the BTRS states. It is e
plained as due to the convolution between the quasipar
density of states of the LTSC and that of the HTSC.8

The ZEBS is a quasiparticle state localized near a surf
or an interface. We expect that this localization can be
served in an STM-type of localized quasiparticle tunnelin
The ZBCP is expected to have a maximum height when
tunneling occurs at the surface or interface and to decreas
height when the tunneling point moves away from the s
face or interface.26 In this paper, we study the local chara
teristics for tunneling between an STM tip and ad-wave
superconductor with a grain boundary~as shown in Fig. 1!.27
1308 ©2000 The American Physical Society
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We assume that the left grain is$100% oriented and the righ
grain is$110% oriented. The angular dependence of the or
parameter isDL(u)5cos(2u) and DR(u)5sin(2u), for the
left and right grains, respectively, whereu is the angle be-
tween a two-dimensional momentum vector in theab plane
and the surface normal. When the tip scans in thexy plane,
the tunneling can occur at different points relative to t
grain boundary. A HTSC can, to a good approximation,
considered as a two-dimensional~2D! system. If we assume
translational invariance along the grain boundary, we exp
the spatial dependence of the tunneling characteristics to
pend on one coordinate only, viz., the coordinatex measured
perpendicular to the grain boundary. We will study the lo
tunneling characteristics when the tip is either a norm
metal ~N! or a LTSC~S!.

This paper is organized as follows: Sec. II briefly intr
duces the method of quasiclassical Green’s functions for
calculation of the self-consistent order parameter. In Secs
and IV, we present the tunneling conductance for the
being a normal metal and a LTSC, respectively. Finally,
make brief conclusions in Sec. V.

II. SELF-CONSISTENT ORDER PARAMETER

The situation we considered is shown in Fig. 1. The gr
boundary~interface! is located atx50. We assume that th
left-hand side of the interface is a$100% grain and the right-
hand side is a$110% grain. An STM-type tunneling can occu
at different distances~i.e., x’s! away from the interface. In
order to calculate the tunneling conductance accuratel
different tunneling points, first we need to calculate the s
tially varying self-consistent order parameter. We use
quasiclassical Green’s-function method28–30 to calculate this
quantity. The order parameter can be expressed as

D~r ,r 8!5V~r ,r 8!^C↑~r !C↓~r 8!&

5TV~r ,r 8!(
n

(
l

ul~r !v l* ~r 8!

i«n2El
, ~1!

whereV(r ,r 8) is the pair interaction,T is the absolute tem
perature, «n is the Matsubara frequency, and«n5(2n
11)pT; ul andv l satisfy the Bogoliubov–de Gennes equ
tions with eigenenergyEl :

Elul~x1!5ĥ0ul~xl!1E D~s,r !v l~x2!dx2, ~2!

FIG. 1. Schematic drawing showing an STM tip scanning
vicinity of a $100%u$110% grain boundary of ad-wave supercon-
ductor. The tunneling direction is along thec axis in this figure, but
it does not have to be so.
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Elv l~xl!52ĥ0v l~x1!1E D~s,r !ul~x2!dx2, ~3!

wheres[(x12x2), r[(x11x2)/2, andĥ0[2q2¹x1

2 /2m2m

in the absence of a magnetic field and any other fields, w
m the chemical potential. In the WKBJ approximation, t
wave function has the form

S u~x!

y~x! D5eikF•xS ū~x!

ȳ~x! D , ~4!

wherekF is the Fermi momentum.ū(x) and ȳ(x) vary on a
scale of the coherent lengthj0 , which is much larger than
the Fermi wave lengthkF

21. According to the 2D property of
HTSC’s, and if we assume the translational invariance of
interface,ū, ȳ, andD depend onx only. Substitution of Eq.
~4! into Eqs. ~2! and ~3! and neglecting the second-ord
differential terms lead to the Andreev equations

Eū~x!52 i yFx

d

dx
ū~x!1D~ k̂,x!ȳ~x!, ~5!

Eȳ~x!5 i yFx

d

dx
ȳ~x!1D~ k̂,x!ū~x!, ~6!

whereD(k,x) is the order parameter after a Fourier transf
mation with respect to the relative coordinates; i.e., k is the
relative wave vector.yFx is the x component of the Ferm
velocity alongk. For the order parameter in Eqs.~5! and~6!,
only the direction of the wave vector,k̂5k/uku, is retained as
a variable, because the momentum can be fixed on the F
surface in the weak-coupling treatment. To simplify the n
tation, we have suppressed thek̂ dependence inū and ȳ.

If we assume partial specular reflection~with probability
r! and partial forward transmission~with probability t51
2r ) at the interface, they component of the momentum of
quasiparticle will be stillky after a reflection, but thex com-
ponent of the momentum will change sign. Therefore
wave function should be a linear combination of two term
on each side of the interface:

S ul~x,y!

y l~x,y! D5eikyy (
a51,2

f la~x,ua!ea ikxx, ~7!

whereua measures the direction of the momentum (akx ,ky)
with respect to thex axis. 1 and 2 mean right and left
moving, respectively.u15u with 2p/2,u,p/2 gives the
direction of a right-moving electron, andu25p2u gives
that of a left-moving electron.kx5kF cosu.0 and ky
5kF sinu are thex and y components of a right-going mo
mentum vector, respectively, and

f la5S ūla

ȳ la
D . ~8!

After applying a Fourier transformation to Eq.~1!, the order
parameter can be expressed as28,29,31

D~u,x!5
Tm

4p (
n,a56

E
2p/2

p/2

du8@ ĝaa~x,ua8 ,«n!V~u,ua8 !#12,

~9!

e
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1310 PRB 62HONGWEI ZHAO AND CHIA-REN HU
where eachĝab is a 232 matrix in the particle-hole space.
is known as the quasiclassical Green’s function. The s
script 12 means the element 12 of this matrix. The defin
equation

ĝab~x!6 i ~g3!ab1̂522yFxr̂3Ĝab~x60,x!, ~10!

relates ĝab to Ĝab(x,x8), which is the Gor’kov Green’s
function, a 232 matrix in the particle-hole space, furthe
converted to a 232 matrix in the ‘‘directional space,’’ with
indices ab, so that the rapidly oscillating factors can b
removed:28

Ĝab~x,x8!5(
l

f la~x!f lb
1 ~x8!

i«n2El
, ~11!

where thel sum is now confined to the sum over the qua
tum number in association with thex motion only, since the
sum overky has been turned into an integral overu8 in Eq.
~9!. @The l sum in Eq.~1! includes the sum over both quan
tum numbers.# In Eq. ~10!, g3 is the third Pauli matrix in the
directional~i.e., 1 2! space,r3 is the third Pauli matrix in
the particle-hole space, and 1ˆ is the unit matrix in the
particle-hole space. To simplify the notation, we have l
out the variablesu and«n in ĝab andĜab in Eqs.~10! and
~11!. In Eq. ~9!, We have omitted theĝ12 and ĝ21 terms
because their contributions are rapidly oscillating in the sc
of Fermi wavelength. The quasiclassical Green’s funct
ĝab satisfies the following differential equation:29

i yFx
]xĝab52a~ i«n1̂2D̂a!r̂3ĝab1ĝabb~ i«n1̂2D̂b!r̂3 ,

~12!

where

D̂a5S 0 D~ua ,x!

D* ~ua ,x! 0 D . ~13!

In order to solve the differential Eq.~12!, we need the
boundary conditions of the quasiclassical Green’s funct
ĝab at the interface and the two end points:x52LL andLR .
~Eventually, we will let LL and LR go to infinity.! The
boundary condition at the interface is28

g̃L~0!5M̃ g̃R~0!M̃ 1, ~14!

whereg̃ is a 232 matrix in the directional~i.e., 1 2! space
with elementsĝab , each of which is a 232 matrix in the
particle-hole space.M̃ is also a 232 matrix in the direc-
tional space, of the form

M̃5S 1

cd

cr*

cd*

cr

cd

1

cd*
D , ~15!
b-
g

-

t

le
n

n

wherecr and cd are the reflection and transmission coef
cients~i.e., probability amplitudes!, respectively. The bound
ary conditions at the two endsx52LL andx5LR are28

ĝ11
L ~2LL!1 i 5ĝ22

L ~2LL!1 i 52e2 ihLĝ12
L ~2LL!,

ĝ11
L ~2LL!2 i 5ĝ22

L ~2LL!2 i 52eihLĝ21
L ~2LL!,

~16!
ĝ11

R ~LR!1 i 5ĝ22
R ~LR!1 i 52e2 ihRĝ21

R ~LR!,

ĝ11
R ~LR!2 i 5ĝ22

R ~LR!2 i 52eihRĝ12
R ~LR!,

wherehL andhR are arbitrary phase factors.
For the d-wave superconductor described in Fig.

DL(u,x)5DL(x)cos(2u) and DR(u,x)5DR(x)sin(2u). The
pair interactionV(u,u8) in Eq. ~9! has the same symmetry a
the order parameter. From Eq.~9!, we have

D~x!5
2T(n50

vc/2pT
*2p/2

p/2 du8(a56@l~ua8 !ĝaa~x,ua8 ,«n!#12

lnS T

Tcd
D1(n50

vc/2pT 1

n10.5

,

~17!

where D(x) meansDL(x) for the left-hand side~l.h.s.! (x
,0), and DR(x) for the right-hand side~r.h.s.! (x.0);
l(u)5cos(2u) for the l.h.s. andl(u)5sin(2u) for the r.h.s.;
vc is a cutoff to the summation for«n ; The strength of the
pair interactionV(u,u8) has been eliminated after we intro
duce Tcd—the transition temperature of thed-wave
superconductor—by lettingD→0.29 We solve the differen-
tial Eq. ~12! and the boundary conditions~14! and ~16! to-
gether with Eq.~17! iteratively till the self-consistency is
achieved. Before numerically solving Eq.~12!, the exponen-
tially growing part of the solution needs to be analytica

FIG. 2. Plot of the normalized self-consistent superconduct
order parameter as a function ofx at four values of the interface
reflectivity r and two values of the temperatureT. Upper panel:T
50.1Tcd ; lower panel:T50.025Tcd .
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FIG. 3. Normalized local tunneling conductanceG between a normal-metal STM tip and ad-wave superconductor with a$100%u$110%
grain boundary, as a function of the applied voltageV. Part~a! is for four values ofx ~in units of j0) on the$100% side~i.e., the negativex
side!, and part~b! is for four values ofx on the$110% side~i.e., the positivex side!. The grain-boundary reflectivity parameter is assumed
be r 50 here, and the temperature is assumed to beT50.025Tcd . Solid lines are obtained using the self-consistent order parameter, an
dashed lines are obtained by assuming a constant order parameter on each side. A width parameter for the quasiparticle eigensta
taken to bed50.05Tcd . With 100% transmission at the grain boundary assumed here, the local conductance shows no discontinx
50.
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separated and removed. The technique is explained in d
in Ref. 29. On the r.h.s. of Eq.~17!, the numerator and the
denominator depend on the cutoff frequencyvc . However,
when vc is large, though both of them are divergent, th
ratio is convergent. In our calculation, we have chosenvc
520pTcd , and we have established that the convergence
been achieved. The accuracy of the self-consistent orde
rameter for every point studied is four significant digi
ail

r

as
a-
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WhenLL , LR→`, the self-consistent order parameter is i
dependent of the phase factorshL andhR , and only depends
on two parameters: temperatureT and the reflectivity of the
interfacer[ucr u2.29

Figure 2 shows the results of the self-consistent order
rameter for two temperatures,T50.025Tcd and 0.1Tcd . For
each temperature, we calculate the order parameter for
values ofr :r 50, 0.3, 0.7, and 1. The unit ofx is the coherent
FIG. 4. Same as Fig. 3 except thatr 50.3 in this figure. The local conductance is now discontinuous atx50. That is, the plots atx5
60 are now different.
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FIG. 5. Same as Fig. 4~or 3! except thatr 50.7 in this figure.
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lengthj0[\yF /D0 . Whenr 51, the interface is pure reflec
tion, so the two grains are independent of each other. In
case, the order parameter should be that of a supercond
with a specular surface on each side of the interface.
order parameter on the l.h.s.~the $100% side! is a constant,
just like ans-wave superconductor because the incoming
outgoing quasiparticles experience the same order-param
sign. However, for the r.h.s.~the $110% side!, the reflected
electrons see the sign change of the order parameter so
exists a pair breaking effect.31 Therefore the order paramete
near the interface is depressed relative to that in the bulk
fact, it drops to zero at the interface. In the case ofr ,1, for
the l.h.s., some Cooper pairs can leak into the r.h.s., wh
is
tor
e

d
ter

ere

In

h

leads to some depression of the order parameter near
interface on this side. The depression increases with decr
ing r because more Cooper pairs can leak into the r.h.s. H
ever for the r.h.s., the depression decreases with decreasr
because less probability of reflection implies less pair bre
ing effect.

III. N-D TUNNELING

We extend the tunneling Hamiltonian approach used
Ref. 8 to local tunneling characteristics. The local tunnel
current between a normal metal tip and thed-wave supercon-
ductor described in Fig. 1 can be expressed by using
with
FIG. 6. Same as Fig. 4~or 3! except thatr 51.0 in this figure. This case corresponds to the sample split into a semi-infinite sample
a $100% surface situated atx,0, and a semi-infinite sample with a$110% surface situated atx.0. The ZBCP then shows up on thex.0 side
only, nearx50, where midgap surface states exist.
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FIG. 7. Same as Fig. 5 except that the temperatureT50.1Tcd . This figure is to illustrate the temperature effect.
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quasiclassical Green’s function:

I ~x,V!5
1

2p E
2p/2

p/2

duE
2`

`

dEN~E1ey!@ f ~E!2 f ~E1eV!#

3Im@ ĝ11~x,u1 ,E!1ĝ22~x,u2 ,E!#11, ~18!

where ‘‘Im’’ means the imaginary part, and ‘‘11’’ means th
element 11 of the matricesĝaa (a51,2). The current
I (x,V) has been normalized by that of theN-N tunneling.V
is the bias voltage, andf (x) is the Fermi function.N(E) is
the normalized density of states of the counter electrode
N(E)51 for a normal-metal tip.ĝab(x,u,E) is the analyti-
cal continuity ofĝab(x,u,«n):

ĝab~x,u,E!5ĝab~x,u,«n!u«n→2 iE1d , ~19!

with d being a small positive number. Inserting the Gree
function ĝab obtained by using the self-consistent order p
rameter into Eq.~18!, we obtain the normalized tunnelin
conductance. We have calculated the tunneling conducta
for eight distances~x’s! from the grain boundary. Four dis
tances are on the l.h.s. of the grain boundary~i.e.,x,0), and
the other four distances are on the r.h.s.~i.e., x.0). ĝab

5ĝab
R for x.0 and ĝab5ĝab

L for x,0 in Eq. ~18!. The
results of the normalized conductance versus the bias vol
at temperatureT50.025Tcd and four values ofr (r 50, 0.3,
0.7, and 1! are shown in Figs. 3–6. Part~a! gives the results
for the tunneling points on the l.h.s. of the grain bounda
and part~b!, the r.h.s. The corresponding results for anot
temperatureT50.1Tcd and r 50.7 are shown in Fig. 7. We
have chosend50.05Tcd in Eq. ~19! for all of the calcula-
tions.

We have also calculated the tunneling conductance
using a constant order parameter in each grain for comp
son. In Figs. 3–6, the dash lines are the results obtaine
using a constant order parameter for each side of the in
face, and the solid lines are those by using the self-consis
order parameter. We can see that for a givenr, the error in
nd
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ce

ge

,
r
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by
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nt

the results due to the use of the constant order paramete
larger when the tunneling point is closed to the interface.
a fixed tunneling point on the l.h.s., this error is smaller
increasingr, and whenr 51 @Fig. 6~a!#, the error reduces to
exactly zero, as it should be, since forr 51, the l.h.s. has a
free surface, and the self-consistent solution gives a cons
order parameter. For the r.h.s., the error is larger for largr
due to the pair breaking property of the interface.

In these figures,x510.0 andx520.0 mean that the tun
neling occurs just to the right and left side of the interfac
respectively. Whenr 50, the quasiclassical Green’s functio
is continuous across the interface, so the tunneling cond
tance is also continuous there. Therefore the curve fox
520.0 in Fig. 3~a! is exactly the same as that forx
510.0 in Fig. 3~b!. WhenrÞ0, the tunneling conductanc
is discontinuous across the interface because of the disc
nuity of the quasiclassical Green’s function there. Then t
neling characteristics atx510.0 andx520.0 are different,

FIG. 8. The height of the ZBCP is plotted as a function of t
distancex away from the interface for different values ofr. T
50.025Tcd is assumed.
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FIG. 9. Plot ofn(x,u,E) at E50 as a function ofx for four values ofr at u5( 3
16)p. Part~a! is obtained using the self-consistent ord

parameter, and part~b! is obtained by assuming a constant order parameter in each grain.
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as may be seen in Figs. 4~a! and ~b!, in Figs. 5~a! and ~b!,
and in Figs. 6~a! and ~b!.

The ZBCP corresponds to the quasiparticles tunne
into the ZEBS’s. All of these figures show that the height
the ZBCP has a maximum at the interface, and diminis
when the tunneling point moves away from the interfa
Observing this behavior will clearly verify that the ZEBS
are localized around the interface.@Note that ther 51 case
presented in Figs. 6~a! and~b! corresponds to a single-cryst
sample with a free$100% and $110% surface, respectively
probed by local tunneling near the surface.# The relationship
between the height of the ZBCP and the distance away f
the interface for differentr is shown in Fig. 8. It also show
g
f
s
.

m

that the l.h.s. ZBCP decreases in height, and the r.h.s. ZB
increases in height, whenr increases. The relationship be
tween the height of the ZBCP andr reflects that between th
wave function of the ZEBS’s andr. We can consider the
following normalizedlocal density of states:29

n~x,u,E!5
1

4 (
a

Im$Tr@ ĝaa~x,ua ,E!r̂3#%. ~20!

For E50, it gives essentially the absolute-squared wa
function of the ZEBS for the givenu because practically al
of the contribution ton(x,u,E50) is from the wave function
of the ZEBS for thisu whend in Eq. ~19! is very small.~But
FIG. 10. Same as Fig. 9 except thatu5( 3
8 )p.
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FIG. 11. Same as Fig. 5 except that the STM tip is now assumed to be made of a low-Tc s-wave superconductor withTcs50.1Tcd . The
temperatureT50.025Tcd is !Tcs so we have approximatedDs(T) by Ds(0).
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notice that it has its rapidly oscillating component remov
already.! n(x,u,E) in Eq. ~20! has been normalized by th
corresponding density of states of a normal metal. Figur
gives a plot of thisn(x,u,E50) versusx for r 50, 0.3, 0.7,
and 1, and in these figures we have chosenu5(3/16)p. In
Fig. 9, part~a! gives the results obtained by using the se
consistent order parameter and part~b! gives those obtained
by using a constant order parameter on each side of the g
boundary. It shows thatn(x,0,u,E50) decreases, an
n(x.0,u,E50) increases with increasingr, which corre-
sponds to the l.h.s. ZBCP’s height decreasing, and the r
ZBCP’s height increasing, with increasingr, as shown in
Fig. 8. @Actually, the n(x.0,u,E50) calculated using the
self-consistent order parameter is found to decrease whenr is
increased, for some angles closed top and with x near the
d

9

-

in

.s.

interface, as shown in Fig. 10 foru5( 3
8 )p. However, the

ZBCP corresponds to a summation of allu, and the contri-
bution from this special angular range is small in comparis
with that from the remaining angular range, so the relatio
ship between the ZBCP height andr does not show this
complication.# When r 51, only the $110% side ~i.e., the
r.h.s.! can have the ZEBS’s. So, all of the wave functions
the ZEBS’s are located on the r.h.s., which correspond
the fact that the ZBCP is located on the r.h.s. in Figs. 6 a
8. From Fig. 9, we can also see that the quasiclass
Green’s function is continuous across the interface wher
50 but discontinuous whenrÞ0.

In Ref. 9, we shall discuss the conditions for the existen
of the ZEBS’s for ad-wave superconductor with a grai
boundary. Even though in that work we considered only
ives rise
FIG. 12. TheI (V) characteristics corresponding to the normalized conductance plotted in Fig. 11. The current peak in this plot g
to the negative conductance in Fig. 11.



a
el
tu

a

ro

. I
th
: A
m
f

Th
ro
-
at
.
a
’s

ic
ie

on
-

g

h
co
ha
d

wa
a

ar

a
a
tu

g

.
t
n

nt

f
ting
just

n-
rre-
e

t
n-
o
ins

the

en-
n
ch
The
ac-

so-

ce
d

in

y at

1316 PRB 62HONGWEI ZHAO AND CHIA-REN HU
constant order parameter for each side of the grain bound
the conditions obtained there are also valid for the s
consistent order parameter because of the topological na
of the ZEBS’s.4,6–8 In that work we have shown that for
d-wave superconductor with a$100%u$110% grain boundary,
there are no ‘‘ZEBS’s’’ with thir energies shifted to nonze
energies in the WKBJ approximation.9 All of the ZEBS’s
will remain at zero energy whenr changes to any value
between 0 and 1. So the apparent subgap peak atE;1/& in
Figs. 3–7 is not due to any finite-energy bound states
fact, it is from the interference between the effects of
order parameters on the two sides of the grain boundary
long asrÞ1, every quasiparticle can see two order para
eters from the two sides of the interface. The subgap peak
constant order parameter is located at 1/&, where the qua-
siparticle experiences equal pair potential in both sides.
self-consistent order parameter shifts its energy away f
1/& only slightly. Whenr 51, there is no interference be
tween the two sides because they are completely separ
Therefore this kind of subgap peak does not appear in Fig
Of course, when the orientation angles of the two sides
not as chosen here, it is possible to have some ‘‘ZEBS
shifted to nonzero energies.9 Then we expect that the
‘‘ZBCP’’ will show more complex behavior, and it will be
different for differentr. But it may be very difficult to ob-
serve this behavior due to the faceting problem wh
plagues actually grain boundaries, especially when the or
tations of the grains are neither$100% nor $110%.

We have also calculated the normalized tunneling c
ductance atT50.1Tcd which is shown in Fig. 7. The behav
ior of the tunneling characteristics under the change ofr is
qualitatively the same as that atT50.025Tcd , so we only
show the results forr 50.7 at this temperature. Comparin
with T50.025Tcd for each tunneling point at the samer, the
height of the ZBCP is seen to be reduced and the widt
somewhat broadened. When the tunneling point is two
herent lengths away from the grain boundary, the ZBCP
almost disappeared.~Notice, however, that we have define
the coherence length to bej05\yF /D0 here, whereas in
other works it is often defined to be\yF /pD0 . In that scale
this point is already more than six coherence lengths a
from the interface.! Because the magnitude of the order p
rameter atT50.1Tcd is almost the same as that atT
50.025Tcd , the depression and broadening of the ZBCP
practically all due to thermosmearing.

IV. S-D TUNNELING

In this section, we will study the case when the tip is
conventional,s-wave, LTSC. In this case we obtain a neg
tive conductance for a narrow range of energy when the
neling point is closed to the interface. Equation~18! can be
directly generalized toS-D tunneling by using N(E)
5E/AE22Ds

2 for the LTSC tip.Ds is the gap function~or
pair potential! order parameter of the LTSC. In the followin
calculation, we chooseDs50.1D0 , whereD0 is the maxi-
mum bulk order parameter for thed-wave superconductor
We calculate the tunneling current and conductance aT
50.025Tcd . Figure 11 shows the normalized tunneling co
ductance versus the bias voltage forr 50.7. There are two
interesting features. The first one is that the ZBCP splits i
ry,
f-
re

n
e
s
-
or

e
m

ed.
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two peaks ateV56Es , whereEs is essentially the gap o
thes-wave LTSC. The second, and also the more interes
one, is that there is a range of negative conductance
outside the gap of thes-wave superconductor when the tu
neling occurs near the interface. Figure 12 shows the co
spondingI-V curves which exhibit current peaks. Both of th
two features are due to the ZEBS’s in thed-wave supercon-
ductor: WheneV56Ds , the quasiparticles with the highes
density of states in thes-wave superconductor side can tu
nel into the ZEBS’s on thed-wave superconductor side, s
the tunneling current increases dramatically, which expla
the high conductance peak ateV56Ds . When ueVu.Ds ,
the quasiparticles with the highest density of states in
s-side tunnel into the gap region of thed-side, which has few
available states. Only the quasiparticles with the smaller d
sity of states in thes-side can now tunnel into the ZEBS’s i
the d side. Therefore the tunneling current is lower, whi
corresponds to the negative conductance in Fig. 11.
above discussion is similar to that on the tunneling char
teristics of the conventionalS-S tunneling,32 but here the
current peak appears atueVu5Ds , rather than atueVu5uD1
2D2u. In Fig. 11, the negative conductance has larger ab

FIG. 13. Plotted is the normalized local tunneling conductan
G between a low-temperatures-wave superconductor STM tip an
a d-wave superconductor containing a$100%u$110% grain boundary
as a function of the applied voltageV at six values ofx ~in units of
j0), showing the effect of the temperatureT as it is raised from
much below Tcs (50.1Tcd) toward Tcs . The gap of the low-
temperature,s-wave superconductor is seen to gradually close up
the ~split! zero-bias conductance peak. Part~a! is for three values of
x on the $100% side ~i.e., thex,0 side!, and part~b! is for three
values ofx on the $110% side ~i.e., thex.0 side!. The negative
conductance just outside the split ZBCP is seen to occur onl
temperaturesT!Tcs only.
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lute value when the tunneling point is on the r.h.s. beca
most part of the ZEBS wave function is localized on t
r.h.s. whenr 50.7. Hurd33 has also obtained negative co
ductance fors2dxy tunneling. However, here we need
emphasize that because the ZEBS’s are localized arou
surface or interface, the negative conductance can only
observed in local tunneling near the surface or interface,
the average over even a small nonmicroscopic region of
sample can make the negative conductance disappear.8 Sinha
and Ng20 have studied the LTSC-HTSC tunneling, and th
saw the split ZBCP peaking at different energies at differ
temperatures. In order to qualitatively show this peak-ene
shift at different temperatures, we have also calculated
tunneling conductance when the temperature is only slig
belowTcs , the critical temperature of the LTSC. The resu
are shown in Fig. 13. We see that the conductance at
bias is dramatically increased and the splitting of the ZB
is very small in comparison with the result atT50.025Tcd
because the gap of LTSC is very small.~We have arbitrarily
chosen the gap to be 0.1Ds , for this calculation, which cor-
responds to choosingT50.97Tcs , or T50.097Tcd , since we
have letTcs50.1Tcd). Sinha and Ng20 did not see any nega
tive conductance. We think that it is because they stud
planar junction tunneling, which measures only a spatia
averaged tunneling characteristics. We predict that nega
conductance can be observed if STM is used to see l
tunneling characteristics, if only the tunneling point is suf
ciently near a surface or an interface of ad-wave supercon-
ductor where ZEBS’s exist.

V. CONCLUSIONS

We have studied thelocal tunneling characteristics o
N-D andS-D tunneling when thed-wave superconductor~D!
g,
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has a$100%u$110% grain boundary, at various positions ne
the grain boundary. The tunneling Hamiltonian method
used. The quasiclassical Green’s-function method is use
obtain the self-consistency of the order parameter of
d-wave superconductor. ForN-D tunneling, The ZBCP has
the maximum height at the interface~grain boundary! and
diminishes when the tunneling point moves away from
interface. The ZBCP on the l.h.s.~i.e., the$100% side! of the
grain boundary decreases in height with the increase of
interface reflectivityr, whereas the ZBCP on the r.h.s.~i.e.,
the $110% side! increases in height with increasingr. For S-D
tunneling, the ZBCP splits into two peaks atE.6Ds ,
which reflects the gap of thes-wave LTSC, and has a rang
of negative conductance just outside these peaks when
tunneling point is near the grain boundary. Thes-wave gap
has already been observed by nonlocalized tunneling, bu
expect that this negative conductance just outside the
feature can be observed in the STM-type of local tunnel
when the tunneling point is near a surface or grain bound
of a d-wave superconductor where ZEBS’s exist, assum
that temperature is sufficiently low, and there is not a w
damaged region near the surface or interface to suppres
perconductivity there.~But superconductivity can be some
what weakened there without losing the qualitative featu
predicted here.!
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