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Thin liquid 4He films on graphite show evidence of layered growth with increasing number density via a
succession of first-order phase transitions. These so-called ‘‘layering transitions’’ separate uniformly covering
phases, such as monolayers and bilayers. The present work is a detailed theoretical study of such layering
transitions using a Maxwell construction. We model the graphite surface by a strong substrate potential, and
using a microscopic variational theory we obtain the uniform coverage solutions for liquid helium. For each
layer, the theory yields the chemical potentialm and surface tensiona as functions of coveragen, and from
this we deducem(a). For each set of adjacent layers, we then obtain the crossing point in the curves of
m(a). In this way we obtain the values ofm, a, and surface coverages for the transition. Particular attention
is paid to the monolayer-bilayer transition.@S0163-1829~96!01933-9#

I. INTRODUCTION

The properties of thin4He films, for a wide range of
coverages and temperatures, have been studied experimen-
tally for many years. Techniques such as specific heat,1,2

third sound,3 neutron scattering,4 nuclear magnetic
resonance,5 and torsional oscillator measurements6 have all
been used to determine the structure and behavior of this
system. There is considerable evidence1,4,7,8 that liquid 4He
arranges itself in well-defined atomic layers parallel to the
substrate. The transition between films of different thickness
is not necessarily continuous, but can happen discontinu-
ously through a succession of phase transitions, calledlayer-
ing transitions.

Theoretical work has yielded results9–13 consistent with a
succession of such discontinuous, or first-order, phase tran-
sitions. These layering transitions typically occur near layer
completion. They separate a uniformly covering phase from
a phase where two-dimensional~2D! clusters are adsorbed
onto helium underlayers. Layering transitions have been dis-
cussed theoretically for many years: De Oliviera and
Griffiths9 discuss them for classical systems using a lattice-
gas model; a general discussion of the effect of substrate
strength and range on multilayer growth, including layering
transitions, may be found in Ref. 10. The first quantum-
mechanical theory predicting layering transitions was given
in Refs. 11 and 12, using the variational method, and was
later verified by path-integral Monte Carlo calculations.13

However, although layering transitions have been predicted,

no previous work, to our knowledge, discusses the phase-
separation boundary in detail.

The present paper is devoted to a detailed study of layer-
ing transitions for 4He, concentrating on the monolayer-
bilayer case. For the requisite Maxwell construction, we em-
ploy input from existing microscopic calculations of the
energy per particle,e, and the chemical potentialm, as func-
tions of surface coveragen.

It is not a priori obvious that layering transitions should
occur for higher liquid layers in a multilayer4He film; nor is
it clear that such transitions can occur on any substrate. Typi-
cally, the variational method finds that strong, steep substrate
potentials~as for graphite and glass! favor layering transi-
tions, whereas the shallower, longer-range substrate poten-
tials ~as for alkali metals! tend to suppress layering
transitions.14 This agrees with the general considerations of
Ref. 10.

In the present work, we consider a substrate potential ap-
propriate to graphite, and model only thosefluidlike layers in
excess of what is required to produce the first two solid lay-
ers. These layers are sufficiently far from the graphite surface
that they are not affected by the surface corrugation and
other nonintrinsic surface irregularities or inhomogeneities.
In addition to being influenced by the substrate, the proper-
ties of thin 4He films are influenced by many-body phenom-
ena reflecting the hard-core helium-helium interaction.

Layering transitionsmayoccur when there are two locally
stable uniform states of the helium film for a range of surface
coveragesn. The Maxwell construction determines the cov-
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erages for each state at which the system starts to go from
one state to the other. Witha denoting the surface tension,
the locus ina-n space of thesecoexistence pointsfor differ-
ent temperatures defines thecoexistence line.

Layering transitionsmustoccur when there is a range of
surface coverages where the system is unstable to uniform
compression. The onset of this instability is signaled by the
vanishing of the third-sound velocityc3.

11,12 Third sound
corresponds to an areal density excitation — that is, a surface
mode — propagating parallel to the liquid-vacuum interface
of the film. The corresponding locus of instability points, or
spinodal points, defines thespinodal line. The spinodal line
lies within the coexistence line, serving to define the limits of
metastability.

The treatment of the solid layers and the physical assump-
tions implicit to this model have been discussed earlier.11,12

Section II summarizes the microscopic theory employed to
provide the necessary macroscopic properties. Section III
discusses the direct Maxwell construction by which we de-
termine the chemical potential and surface tension at which
the transition takes place. It also discusses the determination
of the spinodal points, and the tangent method of performing
the Maxwell construction. Although the direct method we
employ is equivalent to the tangent method of Maxwell, the
direct method is more suited to the output provided by the
present microscopic theory. Section IV employs the results
from the microscopic variational calculations to actually per-
form the Maxwell construction. It also presents a full discus-
sion of what happens as helium is added to the system, to
obtain the monolayer-bilayer equilibrium coexistence line
that describes the layering transition. A substantial regime of
surface coverage may be metastable, thus enhancing the like-
lihood of experimentally observing the layering transition.
Section V discusses some experimental consequences of lay-
ering transitions. Section VI provides a brief summary and
our conclusions.

II. THEORETICAL BACKGROUND

Theoretical methods to study4He films include micro-
scopic variational theory,15,12quantum Monte Carlo theory,13

and density functional theory.16 Of these, the microscopic
variational theory15,12is particularly well suited for studies of
inhomogeneous films because it is not hampered by finite-
size or limited-sampling effects; nor is it influenced by biases
implicit in the fitting functionals. For that reason, we have
employed it to obtain the requisite microscopic information
about this system.

With constantly improving computational facilities, the
more detailed variational theory and quantum Monte Carlo
theory become less demanding to implement. Both of these
methods give not only the energies and densities, but also the
two-body correlation functions. These two methods are es-
sentially complementary in their strengths and weaknesses.
The quantum Monte Carlo theory is more accurate but more
time consuming, but its results contain statistical fluctua-
tions, whereas the approximate variational method is faster
and without statistical fluctuations, but needs a comparison
with exact results to demonstrate its validity.

In recent years a consensus has been reached on a ‘‘ge-
neric’’ microscopic theory for strongly interacting particles,

in the sense that the major theoretical methods — variational
method,17 the Feynman-diagram-based parquet-diagram
theory,18 and the coupled cluster theory19 — all lead to the
same set of many-body equations to be solved, namely, the
hypernetted-chain Euler-Lagrange equations derived by
Campbell and Feenberg.17,20 In fact, the same set of equa-
tions can also be obtained from an augmentation of density
functional theory if minimal information on short-range cor-
relations is implemented.21 Hence, the actual means of deri-
vation is a matter of taste, but not of substance. We now
present a brief summary of the variational method, as applied
to inhomogeneous systems. A complete description may be
found in Ref. 15, and further details on the three-body equa-
tions are discussed in Ref. 12.

The only input to the theory is the microscopic Hamil-
tonian

H5(
i

N F2
\2

2m
¹ i
21Usub~r i !G1(
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V~ ur i2r j u!, ~2.1!

where m is the 4He mass,V(ur i2r j u) is the 4He-4He
interaction,22 andUsub(r ) is the

4He-substrate potential.
The variational method begins with an ansatz for the

ground-state wave function of the form
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u3~r i ,r j ,r k!G . ~2.2!

The correlation functions u1(r i), u2(r i ,r j ), and
u3(r i ,r j ,r k) have intuitively simple physical interpretations:
For example,u1(r i) reflects the broken symmetry of the sys-
tem, disappearing in the homogeneous limit, andu2(r i ,r j )
predominantly reflects the core exclusion principle, which
turns out to be the driving mechanism for the layered growth
of the film. Note also thatu2(r i ,r j ) and all derived two-body
quantities, such as the two-body density or the pair distribu-
tion function, reflect the full symmetry breaking of the sys-
tem. For the present planar geometry, they are functions of
z1, z2, andr i , wherez1 andz2 are the distances of the two
particles from the substrate, andr i their relative distance
parallel to the surface.

The correlation functionsun(r1 , . . . ,rn) are determined
by the condition such that they minimize the ground-state
energyE:

dE

dun~r1 , . . . ,rn!
50. ~2.3!

In practice, the energy expectation value and the Euler equa-
tion ~2.3! are evaluated using the hypernetted chain~HNC!
hierarchy of integral equations. An important consideration
in that procedure is that anapproximateenergy functional
reflects the features of theexactenergy functional. Among
numerous desirable properties, the Euler equations have no
solutions if the assumed symmetry of the state is physically
unstable.23 Hence this method cannot provide information
about the unphysical region employed in the equal-areas ap-
proach to the Maxwell construction. The Maxwell construc-
tion in this case must be obtained either by the tangent
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method or a direct approach, using results applicable in the
regime where the system is stable. Both methods are dis-
cussed in the next section.

In principle, the only limitations on the variational
method arise from its truncation of the wave function at the
level of triplet correlations and the computational effort to
determine the relevant ‘‘elementary’’ diagrams. These dia-
grams arise in the theory when the hypernetted-chain equa-
tions are invoked as part of a tractable scheme for solving the
Euler equations. Applied to the bulk liquid, the most recent
implementations24,25of the theory reproduces the equation of
state over a wide density range, with the ground-state energy
given to better than 0.02 K. When compared with the 2D
Monte Carlo calculations of Refs. 26 and 27, the method is
similarly successful in two dimensions.

Our model of the substrate includes contributions from
the two solidlike layers of helium and from the graphite sub-
strate; details of the substrate potential can be found in Ref.
12. The ground state is completely determined for any choice
of surface coverage by specifying the substrate potential, the
4He-4He interaction, and the surface coveragen. Calcula-
tion using the variational method then yields the energy per
particle,e, and the chemical potentialm, the speed of sound,
the density profilesr(z), and the Feynman excitation spectra
as a function of the surface coveragen.

III. THERMODYNAMICS, MAXWELL CONSTRUCTION,
AND SPINODAL POINTS

We first review the Maxwell construction for a bulk sys-
tem. There, the thermodynamics is specified by the differen-
tial form for the total energy:

dE5TdS2PdV1mdN. ~3.1!

The equilibrium conditions for a single-component sys-
tem are that the temperatureT, pressureP, and chemical
potentialm be uniform throughout the system. If more than
one phase can exist at a given pressure and temperature, then
the equilibrium phase is the one with the smallest chemical
potential. At a fixed temperature, the equilibrium phase can
be different for different pressures. In such cases the two
chemical potential curvesm1(P) andm2(P) must cross at
the coexistence pressureP* , where

m*5m1~P* !5m2~P* !. ~3.2!

At this pressure, the system goes from the low-density phase
to the high-density phase as the average density is increased.
These two densities define thecoexistence points. Thus the
two phases coexist over a range ofaveragedensities for
which neither phase is individually stable.

In addition, when the system is metastable, each phase
can extend beyond its coexistence point until it reaches a
spinodal point, where the bulk compressibility

2
1

V S ]V

]PD U
T

diverges. At this density, the system must undergo a first-
order phase transition.

By analogy to the bulk, the energy of a surface system has
the differential

dE5TdS1adA1mdN. ~3.3!

Here a is the surface tension~or surface energy per unit
area! andA is the surface area.

In this case the equilibrium conditions for a single-
component system are that the temperature, surface tension,
and chemical potential be uniform throughout the system. As
for the bulk system, two phases can coexist at a given tem-
perature if at some surface tensiona they have a common
chemical potential

m*5m1~a* !5m2~a* !. ~3.4!

At this surface tension, the system goes from the low-density
phase to the high-density phase as the average density is
increased. These two densities define thecoexistence points.
Thus the phases coexist over a range ofaveragedensities for
which neither phase is individually stable.

In practice, the zero-temperature variational theory yields
the energy per particle,e5E/N, andm as a function of the
surface densityn5E/A for each layer. The surface density
n is obtained from the one-body number densityr1 inte-
grated over the width of the film,n5*dzr1(z), and it does
not include the atoms within the first two solid layers. For
the Maxwell construction, we needa. To obtain it from this
input requires some minor formal development.

From Eq.~3.3!, at fixedA one has

m5
]E

]N
5

]~Ne!

]N
5

]~nAe!

]~nA!
5

]~ne!

]n
5e1n

]e

]n
~3.5!

and at fixedN one has

a5
]E

]A
5

]~Ne!

]~N/n!
5

]e

]n21 52n2
]e

]n
5n~e2m!.

~3.6!

From (e,m,n) and Eq.~3.6!, for each layer one can im-
mediately obtaina. Then, for each layer one plots botha
andm vsn, from which one determinesm(a) for each layer.
The Maxwell construction, Eq.~3.4!, can then be performed
directly to obtain the coexistence points. Although the
ground-state structure of the liquid film was calculated over a
much wider range of coverages, we will focus in the present
work only on those coverages for which the layering transi-
tions are most pronounced.

In addition to the two coexistence points, there are also
two two spinodal points, at which the surface compressibility

2
1

A S ]A

]a D U
T

diverges. Explicitly, using the Gibbs-Duhem relation

Ndm52SdT2Ada, ~3.7!

the surface compressibility is

1

A S ]A

]a D U
T,N

52
1

A S ]A

~N/A!]m D U
T,N

52
1

N S ]~N/n!

]m D U
T,N

5
1

n2 S ]n

]m D U
T

. ~3.8!
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We will find it convenient to express the reciprocal com-
pressibility in terms of the third-sound velocity. To see this,
note that for a uniform system with mass densityr the sound
velocity c is given byc25]P/]r. Correspondingly, by let-
ting (P,r)→(2a,mn) we see that the third-sound velocity
should be given byc3

252]a/](mn). Use of Eqs.~3.5! and
~3.6! then permits us to write

mc3
25n

]m

]n
. ~3.9!

Thus, to determine the spinodal points, one can either take
]m/]n numerically, using two different values ofn, or one
can determinec3 at a given value ofn. In practice, to avoid
numerical uncertainties12 that can occur when taking the
thermodynamic derivative ofm at differentn, c3 is deduced
from the excitation spectrum at a givenn, and then]m/]n is
calculated from Eq.~3.9! rather than from Eq.~3.8!. In gen-
eral, these two calculations ofc3 will agree only for an exact
theory.

Alternatively to the direct Maxwell construction, one can
perform the tangent Maxwell construction. This is based
upon drawing tangent linesy to the curves ofe vs n21, for
two adjacent layers, and finding the densities at which the
two tangent lines coincide. Using Eqs.~3.5! and ~3.6!, it is
straightforward to show that, ify denotes the tangent line at
a point 1, then

y5e11
]e

]n21 ~n212n1
21!5m11a1n

21. ~3.10!

Since matching of both the chemical potentialm and the
surface tensiona must occur for two layers to coexist when
tangent lines for two layers coincide, these matching condi-
tions are satisfied at the coexistence points.

For the bulk, the corresponding equation for the tangent
line is

y5e11
]e

]r21 ~r1
212r21!5m12P1r

21. ~3.11!

IV. RESULTS OF CALCULATION

A. Overview

We have studied the first three liquid overlayers in detail.
Each overlayer can be described with a set of points
(a,b,c,d), as shown in Fig. 1. Pointsa and d define the
limits of local stability of each layer: Ata the uniform solu-
tion becomes locally stable on increasing the number den-
sity, and atd it becomes locally unstable on increasing the
the number density. At these spinodal points, the surface
compressibility is infinite andc350, as shown in Fig. 2,
which presentsc3 for each layer.

Unlike pointsa andd, the pointsb andc are not intrinsic
to the layer. They are the points where a Maxwell construc-
tion must be made in order to determine the range of cover-
ages of coexistence from one layer to another. The pointsb
correspond to the high-coverage side of the transition, and
the pointsc give the low-coverage side. In the case of the
first layer, pointb1 is given only schematically. It cannot be
determined from our calculation because the true lower-

coverage state has two solid layers, whereas we have ap-
proximated the substrate as inert. To be specific, we have
placed pointb1 at the zero-pressure coverage for the mono-
layer. The true position ofb1 is likely to fall between this
value anda1. On the other hand, pointsc1 andb2, describ-
ing the coexistence regime for the~first-order! monolayer-
bilayer transition, are determined from the Maxwell con-
struction described in the previous section. Pointsc2 and
d2 are similar toc1 and d1, and pointsa3 and b3 are
similar toa2 andb2.

In the case of uniformly covering layers, true equilibrium
occurs only between adjacent pointsb andc. In Fig. 1, be-
tween adjacent pointsa and b, and betweenc and d, the
uniformly covering film is metastable. The horizontal dashed
lines give the equilibrium values of the chemical potential;
the segmentc1 andb2, for example, corresponds to coex-
istence of a nearly completed monolayer and the forming

FIG. 1. The variational theory chemical potential for the mono-
layer and bilayer4He film. The horizontal dotted linesc1-b2 and
c2-b3 are the two-phase coexistence regions obtained from the
Maxwell construction.

FIG. 2. The theoretical reciprocal compressibilitymc3
2 for the

4He liquid film.
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bilayer. The range of coverages betweenc1 and b2 de-
scribes the monolayer to bilayer coexistence regime.

In Fig. 3 we present the chemical potentialm vs the sur-
face tensiona for the first two liquid layers. As indicated in
the previous section, for each layer bothm anda were plot-
ted vsn, thus permittingm(a) to be obtained. The crossing
point determines the valuesm* , a* , and the number densi-
ties of the coexisting layers. It is from this figure that the
coexistence line of Fig. 2 was determined.

In Fig. 4 we present the tangent-based Maxwell construc-
tion. It does not locate the transition as clearly as does the
Maxwell construction of Fig. 3.

B. Detailed discussion

Because we have not considered the solidlike layers, we
will give only a qualitative description of the initial buildup
of the first liquidlike layer.

For densities below that ata1, the symmetry of the sys-
tem is broken in the direction parallel to the surface. A mi-
croscopic study of such a configuration is feasible only at
significant additional computational cost, which we defer to
a future date.

For the present, we will assume that the only relevant
phases are those described by uniform solutions. The lever
rule then is employed to determine the fraction of coverage
for the first monolayer. Then, as the density is increased to
b1, the entire surface becomes covered with4He — a filled
monolayer. On further increase in density, the system re-
mains in this monolayer state, following the curve fromb1
towardsc1. At c1 the system then begins to fill the second
layer, according to the Maxwell construction described ear-
lier. Part of the surface then is in the state atc1 and part is in
the state atb2.

We may compare with Refs. 26 and 27, which perform
Monte Carlo calculations for a strictly two-dimensional sys-
tem. They find thatdE/dn50 for n'0.042–0.043 Å22.
This is close to the variational theory value, and it is the
point we have drawn asb1, althoughb1 is only schematic,
as indicated above. Note that that in Ref. 28, the spinodal
point atn2D min50.037 Å22 corresponds toa1 at n50.033
Å 22. The more recent Monte Carlo calculations of Ref. 27
yield a somewhat lower value ofn2D min50.034 Å22, which
is in better agreement with the variational theory value12 of
n2D min50.032 Å22. However, it would be inaccurate to
identify point a1 with the spinodal pointn 2D min of the
strictly two-dimensional system; the present calculation is
done for a film offinite thicknessthat varies with coverage,
whereasn2D min refers to a strictly 2D system. Although point
a1 is very close ton2D min, this agreement is not absolute,
since it depends on the strength of the substrate potential.

In equilibrium, as the density is increased abovec1, the
fraction of the second liquidlike layer increases, according to
the lever rule, until it is completely filled atb2. This marks
the end of the monolayer-bilayer transition. For further in-
creases in density, the system follows the curve fromb2
towardsc2, at which point the system undergoes a similar
bilayer-trilayer transition.

These results are forT50. At finite temperatures, the
situation becomes more complicated, as the distinction be-
tween layers becomes blurred, so that the layering transitions
extend over a lower-density regime. These regimes eventu-
ally go to zero, corresponding to completely continuous be-
havior.

A tangent Maxwell construction may be found in a dis-
cussion of the liquid-gas phase transition for bulk4He.29

There, treating the vapor as a vacuum still gave a good de-
scription of the system.

V. EXPERIMENTAL CONSEQUENCES

All first-order transitions are hysteretic. Thus, the most
important aspect of the present work is its indication that
there is a significant regime for which metastability and hys-
teresis can occur. Measurements of third-sound velocities,
normal fluid density, and specific heat might all provide in-
dications of a first-order monolayer-bilayer transition.

Because of the lever rule determining the amount of each
component, the static and dynamic properties should have

FIG. 3. The chemical potential as function of the surface tension
~see text!.

FIG. 4. Maxwell construction based on plotting the energy per
particle,e5E/N, as a function ofn21. The straight line takes the
form y5m11a1n

215m21a2n
21 when it satisfies the common

tangent construction, thus identifying the densities at which the
first-order layering transition occurs.
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some characteristic properties. The density is an average be-
tween the two phases. Similarly, the specific heat is an aver-
age between the two phases, and should show evidence of
satisfying the lever rule. On the other hand, the surface com-
pressibility should not show evidence of satisfying the lever
rule. Indeed, the system is infinitely compressible during a
layering transition.

Our results indicate that, at sufficiently low temperatures,
there is a density regime where part of the system is in the
monolayer phase and part of it is in the bilayer phase. The
characteristic dimension of each of these phases is expected
to be determined by the scale of inhomogeneities on the
surface; depending on the nature of the substrate, this scale is
expected to range from micrometers down to 100 Å. There-
fore, according to their wavelength relative to the microme-
ter scale, different probes can detect different aspects of the
layering-transition behavior:~1! A long-wavelength probe,
such as third sound, will average over the inhomogeneities,
and respond to a single mode whose velocity is expected to
be a complicated average of the third-sound velocities of the
monolayer and the bilayer;~2! a short-wavelength probe,
such as neutron scattering, will detect primarily local struc-
ture ~indeed, neutron scattering should show individual scat-
tering peaks corresponding to both monolayer and bilayer,
with relative weights proportional to the coverage of each
type!; and ~3! an intermediate wavelength probe, such as a
~high-frequency! acoustic wave with wavelength larger than

10 Å but shorter than micrometers, should show absorption
corresponding to third sound in each phase, with relative
weights proportional to the coverage of each phase.

VI. CONCLUSIONS

We have studied the first-order monolayer-bilayer transi-
tion using a Maxwell construction with input from the mi-
croscopic variational theory for the4He film. The primary
limitation of the theory is that the substrate interaction is flat
and static; graphite should be a good example of such a
substrate. There is a substantial range in density where
monolayer-bilayer coexistence can occur. This indicates that
in analyzing experiments on4He films one should carefully
consider the possibility that such first-order transitions occur.
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