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Out-of-plane transverse resistivity in high-T, superconductors as a signature
of How of rigid vortex lines
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When the transport current is applied parallel to the Cu02 layers, say, along the a axis, of a high-T,
superconductor, and the magnetic field 8 is in a direction which makes a polar angle 0 with the c axis and an
azimuthal angle P with the ac plane, for the case of rigid flux lines, in addition to the usual longitudinal
resistivity pll, there should also exist an out-of-plane transverse resistivity p~, which is of the same order of
magnitude as pt and satisfies the relation

I pi /pal = tan8 cosP in the high anisotropy limit and for 0 being not
very close to m/2. For less rigid flux lines, reduction in

I pi /pal from this prediction should be observed, and
for a set of decoupled pancake vortices, p~ should vanish entirely.

Because of the layered crystal structures, magnetic vorti-
ces in the high-temperature superconductors (HTSCs) may
be considered as stacks of two-dimensional pancake vortices
coupled via magnetic and Josephson forces. ' The rigidity of
the vortices in these layered materials, or the strength of the
interlayer coupling, has been the subject of several recent
experimental studies. In the flux transformer experiments
of Busch et al. and of Safar et al. ,

' a magne'tic field was
applied along the c axis, a transport current was injected
along one surface (!lab) of the sample, and voltages along
both sides were measured simultaneously. In the case of
Bi2212, it was found that the voltage signal on the side of
current contacts was much greater then that on the other side,
indicating that vortices were sheared under the influence of a
highly nonuniform Lorentz force. (Due to the smallness of
the c axis conductivity in comparison with the ab plane
conductivity, current flew mainly in the layers close to the
surface of current contacts. ) In the case of Y-Ba-Cu-0
(YBCO), in spite of the nonuniform current distribution,
voltage signals on both sides were essentially identical, indi-
cating that vortices were moving as rigid lines. In the ex-
periment of decorating vortices on both sides of a Bi2212
single crystal by Yao et al. , vortices (in the low-field re-
gime) were found to be linelike objects. Lee et al. measured
flux noise generated by films and crystals of Bi2212 and
YBCO (in zero applied magnetic field) at opposing surfaces;
their results indicates that the thermally activated vortices in
both Bi2212 and YBCO move as rigid lines (at specific tem-
peratures).

In this paper we suggest an experiment to study the rigid-
ity of the vortices in HTSCs in the flux-flow state. When the
current is applied along the ab plane and magnetic field B is
tilted away from the c axis, we show that if the vortices
move as rigid lines, an out-of-plane transverse resistivity
should be observed, which is of the same order of magnitude
as the in-plane longitudinal resistivity, and there exists a

quantitative relation between them, which, for B not too
close to the ab plane, is a function only of the orientation of
B relative to the applied current and the c axis. For less rigid
fiux lines, deviations from this relation (i.e., smaller trans-
verse resistivity) should be observed, and if the vortices
move as decoupled pancake vortices, the transverse resistiv-
ity should vanish entirely. Thus, by measuring the relation
between the transverse and longitudinal resistivities, one can
infer the rigidity of the vortices as a function of temperature,
the magnitude of the transport current, and the magnitude
and orientation of the applied field. Results obtained from
such an experiment can complement those from other experi-
ments (for example, Refs. 2—6).

Let the coordinate axes x&, x2, and x3 be parallel to the
a, b, and c axes, respectively, and consider the configuration
in which the applied current J'"' is parallel to xi t and the
magnetic field B is in the direction specified by the polar and
azimuthal angles 6( and P. The macroscopic electric field
E=(E, ,E2i, tEs) induced by the fiux motion can be deter-
mined by measuring the voltages along the three axes. The
longitudinal, in-plane transverse, and out-of-plane transverse
resistivities are defined, respectively, by

1 (2) 2 (3) 3
pll Jext ~ pi Jext ~ pi Jext '

In the following we first deduce some general, model-
independent expressions for pll, p~, and P~ for the case of
rigid flux lines, and then compare the results with the predic-
tions based on the assumption of decoupled pancake vorti-
ces.

The macroscopic electric field, induced by a uniform mo-
tion of vortices with velocity v, obeys E= —(vXB)/ , c
which shows that in the mixed state K is always perpendicu-
lar to B; i.e.,
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E B=o.
In a recent work we have pointed out that, when this equa-
tion is combined with the linear response relation

(3)

where p;, is the fiux-fiow resistivity tensor and J is the
dissipative transport current density, it gives

T T T
P11J]~1+P22J2~2+ P33J3~3 (4)

Jext JT+ Js

The current J IIB corresponds to a uniform translation of the
whole "superfluid" along B and is not included in Eq. (3).

In Ref. 9 (where the problem of Lorentz force indepen-
dence of the longitudinal resistivity p~~ is discussed), for the
purpose of presenting the main conceptual idea using the
simplest mathematical expressions, we have restricted J to
be in the x1x3 plane. Then for an extremely anisotropic sys-
tem we showed there that J'"' is very nearly along x, , but it
is not exactly along this direction. A similar but slightly more
complicated calculation can be carried out, in which J'"" is
strictly in the x1 direction. We then find that all the compo-
nents of J and J are nonzero in general, as given below:

Ji ——J'"'—Ji ——J"'(pzzsin 0 sin @+p33cos 9)/p, (6)

where

Jz= —Jz= —J'"'p»sin 0 cos@ singlp,

J3 = —J3=J'"'p»sinttt cosH cos@/p, (8)

p= piisin 0 cos p+ pzzsin 8 sin p+ p33cos 0. (9)

This calculation uses only Eqs. (3)—(5) and the fact that

J IIB. It is therefore completely general and model indepen-
dent.

Using Eqs. (6)—(8) and the fact that F.;=p;;J, , we can
easily calculate the three quantities defined in Eq. (1). The
results are

p~~= p»(pzzsin 8 sin P+ p33cos 8)/p

p~ = —p» pzzsin 0 cos @ sin@/ p

p~ = —piip33sin6I cos8 cos@/p.(3)

(10)

(12)

If the supercurrent J along B is large enough, it can
induce a helical instability in the flux-line lattice, ' which in
turn invalidates our assumption of rigid (straight) fiux lines.

where we have neglected the Hall elements of the tensor

p;j, since they are usually smaller than the smallest of the
diagonal elements by O(10 ).

As we have emphasized in Ref. 9, Eq. (4) implies a con-
straint on the relative orientation of J and B. Thus in many
experimental configurations, J actually cannot be identified
with J'"', which, being an externally applied quantity, can be
arbitrary. (Here both J and J'"" are assumed to be uniform. )
Instead, in such cases, we have to identify J'"' as a sum of
J and a nondissipative supercurrent density J along B,
i.e.,

Thus, Eqs. (10)—(12) are valid only under the assumption
that no such instability occurs. For our case of J'"'llxi and
assuming the extreme-anisotropy condition, pi 1

=p22(~ P33,
as can be seen in Eqs. (6)—(8), J is indeed always very
small, except in the limit of 0~ m/2, with the ratio J /J'"'
being only O(pii/p33). [In Ref. 9, below its Eq. (10), the
magnitudes of (p»/p33) for various HTSCs have been
given, and are indeed all very small. ] Thus except for
0~~/2 we do not have to worry about helical instabilities
(unless the applied current is extremely large), and the above
results are valid. In this case we also have
Jz/Ji —O(pit/p33) and J,/J, -O(p»/p33). B« th«iny
current 13 in the x3 direction can induce an electric field

F3 of the same order of magnitude as F.1, because
T TP»J1- P3313.

Restricting here to the case that 8 is not very close to
zr/2, and p i i

=pzz& p33 Eqs. (10)—(12) reduce to

Pll
= Pll[1 + O(Pii /P33)],

pi —piiO(pii /p33),
(2)

PI = —p»tan& costtt[1+ O(p»/P33)].

(13)

(14)

(15)

Clearly, for the in-plane transverse resistivity, the ratio

pi /p~~-O(p»/p33) is negligibly small, but for the out-of-
plane transverse resistivity, we have

p~ /P~~=E3/E, = —tan9 costtt.(3)

We now compare the above results with the predictions
based on the assumption of a system of decoupled pancake
vortices. In the latter case, only the field component parallel
to the c (x3) axis is responsible for forming the vortices, so
that p~t(B) = pi(B cos8) (for 0 being not too close to zr/2)
and is clearly Lorentz force independent (i.e., for a given B,
it depends only on the angle 0 between 8 and the c axis, but
is independent of the angle between B and J'"')." The
Lorentz-force independence (LFI) of p~~ has been observed
experimentally (including also the case of 0= m/2) (see, for
example, Refs. 12—16) and was first explained in terms of
the formation of pancake vortices. " However, in Eq. (13),
p~~= p» is also Lorentz-force independent, because p», a
linear transport coefficient, cannot depend on the driving cur-
rent J'"', but can only depend on the equilibrium properties
of the sample. This explanation of the LFI of p~~ in terms of
rigid flux lines was given in Ref. 9. It also has a p~~(B)
=p»[B/H, z(8, hatt)]= p~~(Bcos|It) field dependence (for the
latter point, see the discussion and the references cited in
Ref. 9). Thus, from the LFI, and/or the B dependence of
p~~, one actually cannot tell whether the vortices in HTSCs
are decoupled pancake vortices or rigid Aux lines, as the
predictions for the behavior of P~I based on the two assump-
tions are practically the same.

As to the transverse resistivities, we have p~ = p~( =0
for a system of decoupled pancake vortices, since the motion
of the pancake vortices in the xz direction [under the driving
force (xi J"')X (x3Bcos8)] can only induce an electric field
in the x, direction (neglecting Hall effect).

For the cases of intermediate interlayer coupling
strengths, it is necessary to consider the contributions from
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the Josephson vortices which fit in the interlayer regions. In
the presence of J'"'= 1'""xi, the driving force acting on the
Josephson vortices is always in the x3 direction. Because of
the substantial energy barrier against direct hoping of the
Josephson vortices across superconducting layers, it is more
likely that the hoping is mediated by the creation of pancake
and antipancake vortex pairs, as described in Ref. 15. Motion
of the so-created pancake and antipancake vortices in oppo-
site directions along a Josephson vortex can contribute to
both E& and E2, but not to E3, and the hopping of the
Josephson vortices in the x3 direction cannot contribute to
E3 either. Although this qualitative argument suggests that
both E

&
and E2 can likely exist in the intermediate

interlayer-coupling regime, it is likely true that E2 will be
negligibly small in comparison with E& for extremely aniso-
tropic systems, since it is already found here to be true for
both extreme limits of strongly coupled layers and com-
pletely decoupled layers.

Since the driving (Lorentz) force acting on the Josephson
vortices is always zero in any direction parallel to the layers,
they can only be dragged to move along the layers by the
pancake vortices in the superconducting layers. This motion
can then induce an electric field E3 in the x3 direction, but
slippage may occur between the motion of the pancake vor-
tices and that of the Josephson vortices to make E3 smaller
than that given by Eq. (16).We expect such slippage to occur
with larger frequency for weaker interlayer coupling, and

therefore E3 should be a monotonic function of the interlayer
coupling strength; i.e., it is larger for stronger interlayer cou-
pling, having maximum in the limit of rigid Aux lines and
minimum p~~

~ = 0 in the limit of decoupled pancake vortices.
Experimentalists can of course measure E2 to see whether

it is indeed always small in comparison with E& in extremely
anisotropic superconductors, but the main point of this paper
is that the most significant difference between the predictions
based on the two limiting assumptions (of rigid vortex lines
vs decoupled pancake vortices) is in the out-of-plane trans-
verse resistivity p~t i: it is finite and satisfies Eq. (16) for
rigid Aux lines, but is zero for decoupled pancake vortices.
For intermediate cases, p~~

~ may be nonzero, but should lie
between zero and that given by Eq. (16). It is also interesting
to note that p~ is strongly @ dependent [see Eq. (16)],
whereas p~~ is @ independent (in the extremely anisotropic
limit, and neglecting any in-plane anisotropy). Thus for ex-
perimentalists to find out whether the electric transport prop-
erties of extremely anisotropic, high-T, or other supercon-
ductors are truly "Lorentz-force independent" (more
precisely, @ independent), they should measure the P depen-
dence of E3 and p~, and not that of E) and p~~ .
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