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A previous study [C.-R. Hu and C.-H. Huang, Phys. Rev. B 43, 7718 11991)]of the phase boundary

T,(H) of a single-cube superconducting circuit in an external magnetic field 8 of arbitrary magnitude
and direction is extended here to superconducting circuits containing 2X2X2, 4X4X4, and 6X6X6
cubes. For the last two cases, the study reported here is limited to the vicinity of one major peak of
T, (H) only, in order to limit the total computing time. However, by going up to 6X 6 X 6 cubes, we have

practically obtained the limiting behavior, in the vicinity of this major peak studied, of an n X n X n cube
circuit as n ~~. This result is believed to illustrate the generic behavior of a11 such major peaks, which,
as has been noted in the earlier work of Hu and Huang, is the most important property of such circuits
for most applicational purposes.

Recently Hu and Huang' have calculated the phase
boundary T, (H) of a pm-sized cubic superconducting
circuit in an external magnetic field H. It was shown
there that this phase boundary depends in a complex and
sensitive way on both the magnitude and the direction of
the external magnetic field, and that the sensitive direc-
tional dependence can potentially have practical applica-
tional values as the basis of a pm-sized device, which can
either determine sensitively the orientation of an instru-
ment or another device, or detect the magnitude and
direction of a weak external magnetic field. It was also
pointed out there that in any such applications, using a
multicube circuit will most likely improve the sensitivity
of the device, when compared with the use of a single-
cube circuit, much like the improvement from a double-
slit interferometer to a grating. This is because the sensi-
tive dependence of T, (H) of such circuits on the magni-
tude and direction of the external magnetic field is simply
the result of interference effects due to the multipathed
nature of the superconducting pair wave function in such
circuits, in analogy to the interference effects exhibited by
light waves in the optical devices mentioned above. One
important difference between an electron wave interfer-
ence device and its optical counterpart is that the elec-
trons are charged, and therefore the phases of the elec-
tron wave functions can be altered by changing an exter-
nal magnetic field, which results in a change of the fiuxes
threading through the holes of any multiply connected
circuit. Thus the dependence of T, (H) of any such cir-
cuit on the applied magnetic field vector is basically a
manifestation of the famous Aharonov-Bohm effect.

In this paper, therefore we will extend the study of Ref.
1 to several multicube superconducting circuits in order
to illustrate this trend of improved sensitivity. In order
to keep the cubic symmetry of the original single-cube
circuit of Ref. 1, for the purpose of facilitating compar-

ison of our current results with those presented there, we
have chosen to investigate only circuits that contain
n Xn X n cubes, forming a larger cube, with n =2, 4, and
6. As is already noted in Ref. 1, only the single-cube cir-
cuit is susceptible to exact analytic solution, which was
performed in Ref. 1. For any n X n X n cube circuits with
n ) 1, purely numerical approaches must be resorted to,
as we have done in this work. Since the amount of com-
puting time and effort grows steeply as n increases, we
have to limit this study to n =2, 4, and 6, and for n =4
and 6, we have studied the vicinity of one major peak of
T, (H) only. The decision to study only this much is
based on the following considerations: (1) As has been al-
ready explained in Ref. 1, most likely only the vicinities
of the major peaks of T, (H) are important in any practi-
cal applications; (2) the behaviors of T, (H) in the vicini-
ties of all of its major peaks are expected to be very simi-
lar to one another, and so the explicit presentation of one
of them should be sufficient to illustrate their generic be-
havior; (3) we found, somewhat unexpectedly, that the
behavior of T, (H) for n =6 is already quite sufficient to
clearly demonstrate the limiting behavior of the same for
an n X n X n cube circuit with n ~~. Of course, the nu-
merical predictions can certainly still be improved some-
what by studying even larger n values, which should be
pursued if it were indeed the precise quantitative behav-
ior of the n ~~ limit that we had wished to obtain as
our principal goal. Actually, since no laboratories to date
have been able to physically produce such a three-
dimensional superconducting circuit in the size range re-
quired for exhibiting the behavior studied in Ref. 1 and
here, we have thus judged that high numerical accuracy
for the n ~~ limit need not be taken as even one of the
principal goals of this study, especially in view of the cost
involved in computing time and effort in order to obtain
it. Instead, we feel that it is the qualitative change and
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the generic trend as n increases that we should concen-
trate on here as the most important goal of this study.
We conclude, therefore, that what we have studied and
presented in this paper should be already sufhcient for
this purpose. Of course, the computer programs that we
have written are for general n (.As a matter of fact, it is
written for the even more general case of n, Xn2Xn3
cube circuits). Thus larger values of n and/or other re-
gions of T, (H) can always be investigated in the future
using these programs when the need arises.

The theoretical foundation underlying the calculation
of the mean-field transition temperature T, (H) of a su-
perconducting network was laid in the works of de
Gennes and Alexander. It has already been extensively
reviewed in many previous works including Ref. 1. (See
Refs. 1 and 2 cited in Ref. 1 for many earlier experimen-
tal and theoretical references, respectively, in this
area. ) Thus we shall be very brief and mention below
only the points specific to this calculation: By an
n Xn Xn cube circuit we mean a circuit made of many
one-dimensional superconducting wire segments, all of
equal length a and cross-sectional area —the lateral di-
mensions of the wires are assumed to be small compared
with the temperature-dependent Ginzburg-Landau
coherence length g(T) of the superconducting material
used to make the wire segments. These wire segments
should be arranged in horizontal east-west, horizontal
north-south, and vertical directions —all of which will be
called links —joined at many nodes, in order to form a
three-dimensional wire framework. The structure should
form n cubes sharing nodes, edges, and faces between
neighboring cubes, and is in the shape of a larger cube. It
has (n+1) nodes denoted as (i, , i2, i3}, with each index

i„(with v= 1, 2, and 3) running from 0 to n The supe. r-
conducting pair-wave-function order parameter at these
nodes will be denoted as h~;;; ~, and together they form

the (n +1) components of a complex vector h, . At tem-
perature T= T, ( H ) these order-parameter values are all

infinitesimal, and are governed by a single linear matrix
equation. %riting this matrix equation as

MA=0,

the matrix M must be (n+1) X(n+1) dimensional.
(That is, for n =2 it is 27X27, for n =4 it is 125X125,
and for n =6 it is 343 X 343, but for n =8—a case we did
not study —it mould be 729X729. The elements of M
are as follows: The diagonal matrix element

M~;;; ] [;;;] has the value —z[;, ,
- ]A,, where

A, —:cos[a/g(T)]. The parameter z~;;; ~
is the number

of nearest-neighbor nodes of the node (i&, iz, i3), and is
equal to 3 for a corner node (i.e., when all indices i are
equal to 0 or n); to 4 for any edge node (i.e., when only
two of the three indices are equal to 0 or n); to 5 for any
face node (i.e., when only one of the three indices is equal
to 0 or n); and to 6 for any interior node (i.e., when none
of the three indices is equal to 0 or n) The off-diagon. al
matrix element M(i„i2, i3), (j,,jz,j3) is nonzero only if
the nodes at (i, ,i2, i3) and (j„j2,j3) are nearest neigh-
bors. That is, only when

is satisfied. The precise values of the nonvanishing off-

diagonal matrix elements are dependent on the gauge
chosen to represent the external magnetic field. The
magnetic field is in an arbitrary direction relative to the
circuit, so it will be written as H=H(n„e +n e~+n, e, ),
where n„=sina cosP, n~

=si na sinP, and n„=cosP are
the directional cosines measured relative to the three
principal directions of the cubic circuit, and (a,p) is a
polar representation of the direction of the magnetic field

vector. The gauge is chosen such that the vector poten-
tial A has components A„=Hzn~, A~=H(xn, zn—„},
and A, =O. In this gauge the nonvanishing off-diagonal
matrix element M[. . . ] [

. .
] has the form

exp[iy[i3n~(i& —j&)+(i,n, i3n„)—(i2 —jz)]],
subject to

(2)

and y—=2n.@/@0, with @=Ha, and 40:—hc/2e being
the fiux quantum.

The temperature-dependent coherence length g(T) de-
pends on T as g(0)(1—T/T, o) ', where T,o is the
zero-field transition temperature of the superconducting
material used, as mell as that of the circuit. Thus to cal-
culate the field-dependent transition temperature T, (H)
of the circuit, one should solve for the largest value of A,

which can allow Eq. (1) to have a nontrivial solution.
[Note that Eq. (1) has the form M'h=ADh, where M'
has only the off-diagonal matrix elements of M, whereas
D is a diagonal matrix, but not an identity matrix. Thus
Eq. (1) is a generalized eigenvalue equation. ] We solve
this equation by starting at A, =l (corresponding to
T= T,o), which provides an upper bound to A, at all H,
and gradually lowering A, until the first root of detM is
found. %e find that the larger the value of n, the easier it
is to miss this first root, especially when the first two or
more roots are exactly or nearly degenerate. For such
cases it becomes particularly easy to skip these roots, and
to land on the next lower one, which, of course, gives a
false T, that is too low. We have not searched for better
approaches to handle this problem, since we find that
with suScient care we can uncover and remove all such
false solutions with the present approach. The calcula-
tion of detM is by a standard method, so we can omit its
details, and proceed directly to the presentation of the re-
sults.

%e first present our results for n =2—a case we have
studied in more detail because it does not cost us much
computing time and effort, and it allows us to present re-
sults in parallel to the results of Ref. 1 in order to facili-
tate comparison of the two circuits. In Figs. 1 —3, the a
dependence of (a/g) ~ (1—T, /T, o) is plotted for three
values of p, viz. , 0, tan '( —,')=18.43, and 45', and each
for six values of 4/40, viz. , —,', —,', —,', 1, 2, and 5. (As has
been explained in Ref. 1, we do not need to go beyond 90
in a, and 45' in p, for any circuit that has a cubic symme-
try. As a matter of fact, all qualitative features in Figs.
2—11 of Ref. 1 associated with the cubic symmetry of the
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single-cube circuit studied there are also present in the
present p ots o igs.1 f F' 1 —3 as they should be, since a
2 X 2 X 2 cube circuit has a cubic symmetry also.

The chosen values for /33 and 4/4o in the present Figs.
1 —3 form a subset of the choices in Fig .

the readers can compare the corresponding curvesso e
presented in these two sets of figures in order to
some feeling on the effect of increasing n from 1 to 2, i.e.,
from a sing e-cu e circu'l - b rcuit to a 2X2X2 cube circuit.

R fMore precisely, one should compare 'g . RFi s. 2 and 7 o Re .
1 with Fig. 1 here, Figs. 4 and 9 of Ref. 1 with Fig. 2
here, and igs. anF . 4 d 11 of Ref. 1 with Fig. 3 here. One

f this comparison that, except for the appear-can see rom & is c
ance of additional minor features as well as sp i ing
some peaks in (1—T, /T, o) (or troughs in T, /T, o), the

eneral behavior is basically the same in the correspon-
f th t o circuits. This is not surprising

since the basic interference paths of the single-cube cir-

of (a/g}'~(l —T, /T, o) fo.r a 2X2X2 cube su-FIG. 1. Plot o a
or 19=0 and for sixerconducting circuit as a function of o. for 19= an

values of 4/4o, viz. , 4, —,', 4, 1, 2, an . is

a sin le-'
h F' 2 nd 7 of Ref. 1, which are for a sing e-compared with Figs. an

cube superconducting circuit.

0.25

4/4 =5.0„I I I I I

0 20 30 40 50 60 70 80

a (deg)

FIG. 3. Same as Fig. I except that P=4 '. '

g=45'. This fi ure should
be compared with Figs. 6 and 1 1 of Ref. 1.

10 90

1.0

0.8-
0

E 06-
I

n=cos '(3/7), P=tan '(1/3)
(n =S/7, n =2/7, n =S/7)

0,4-

U

0.2-:

cuit are also present in any multicube circuits, whereas

T /T p is clearly due to the appearance of aof additional
minor pea s cause y ck d b onstructive interference between
those interference paths which enclose larger areas, an

m used to be. )therefore they can appear where a minimum use
It is important to note here, howeve,r that an im ortant
qualitative c ange ue oh d to the increase of n is not revea e
clearly in these plots, and it will be made clear only w en
we present igs. anF' . 6 d 7 but first we will present Figs. 4

0.8

P=18.43' 2.0

/ 0.75

0.0
0.0 3.5

I

7.0 10.5 14.0 17.5 21.0 24.5 28.0

o 0.6-

I

0.4-

0.0 '

0
I

10
I

20 30
4 I

40 50

a (deg)

I

60
I

70 80 90

FIG. 2. Same as Fig. 1 except that ~—~+= tan '( —') = 18.43'.

This figure should be compared with g .Fi s. 4 and 9 of Ref. 1.

FIG. 4. The solid line is a plot of (a/g} ( 1 —V yr„) fora
2X2X2 cube superconducting circuit asit as a function of 4/40,

h cial choice of the polar angles a and P as given,for t e specia c
e a lied magnet-h' h

'
ch that the directional cosines of t e app ie

ic field are in the rational ratios 6:2:3. This curve s ou

12 of Ref. 1, and is the corresponding plot or a sing e-

perconducting circuit. oB th curves are seen to be periodic with

d 7 essentially because if a single-cube circuit is

not frustrated at all at a certain applied magnetic e v

e circuit of the same elementarythen so must be any multicu e circui
hcube dimension. However, the deta'iled minor features in t e

solid curve are i eren rd'6' t from those in the dotted curve as ex-

pected, because a 2X2X2 cube superconducting circuit as
in le-cube circuit.more interference paths than a s'

g



46 PHASE BOUNDARY OF SEVERAL MULTICUBE. . . 5451

and 5 in order to complete our comparison with Ref. 1:
In these two figures we coinpare the 4/40 dependence of
(a/g) cc(1—T, /T, o) for a 2X2X2 cube circuit and a
single-cube circuit, at two special choices of the direc-
tions of H. These two choices of the directions of H are
exactly those made in the Figs. 12 and 13 of Ref. 1, and
so we can directly transfer the results in those two figures
into the present two figures as dotted lines, whereas the
solid lines in these figures are the corresponding results
calculated here for a 2X2X2 cube circuit. (We will not
make a similar comparison with the Fig. 14 of Ref. 1, be-
cause that case is not much different from the second case
studied here. ) Thus in Fig. 4 the polar angles of H are
fixed at a=cos '( —,'), and @=tan '(

—,'), giving the direc-
tional cosines n =

—,', n = —',, and n, =
—,', which are all in

rational ratios. For this choice T, can rise to T,p, and
therefore (a/g) a-(1 —T, /T, o) can drop to zero, when-
ever 4/40 is equal to a multiple of 7—the common
denominator of the directional cosines, since the Aux
components through the elementary squares in all three
principal directions of any single- or multicube circuits
will all be integer multiples of the Aux quantum, and no
frustration would be present in any closed loops in such
circuits. This explains the periodic structure of period 7
in both the solid line and the dotted line plotted in this
figure, but it is also clear from this figure that not all of
the minor maxima and minima in the two curves are lo-
cated at the same 4/40, because they can arise from
larger interference loops which are not all shared by the
two circuits. Next, in Fig. 5 the polar angles of H are
fixed at u =cos '( Q—', ), and P= tan '( —,

' ), giving the
directional cosines n, = I/1/2, n = I/+8, and n, =Q-';,
which are no longer all in rational ratios. It is then no
longer possible for T, to rise to T,p at any finite value of
H or 4/4p, and the curves plotted are then no longer
periodic. Nevertheless, the solid line and the dotted line

show much similarity, in the sense that all of the major
dips in these two curves are located at the same values of
H or 4 /4p. These minima must have arisen from the
same interference paths which exist in both circuits. Of
course some minor minima and maxima in these two
curves do not happen at the same 4/+p, and the solid
curve has more fine structure than the dotted curve, for
the same reason as has been given above in association
with the similar features in the two curves plotted in Fig.
4

The comparisons made in Figs. 4 and 5 lead us to
essentially the same conclusion as the comparisons made
in Figs. 1 —3, Uiz. , in order to clearly reveal the qualitative
change and the general trend as n increases, we need to
go to the next two plots: Figs. 6 and 7. In these figures
we concentrate on the vicinity of one isolated major peak
of T, /T, o [i.e., one major minimum in

(a/g) cc (1—T, /T, )0), and study it in detail. We choose
to study the same peak the vicinity of which was present-
ed in a three-dimensional plot in Fig. 15 of Ref. 1. This
peak corresponds to 4/@0=14, a=cos '( —,')=64.62',
and P=tan '( —,') =18.43'. Here we choose to not present
a three-dimensional plot, but to present two two-
dimensional cross-sectional plots, in order to reveal more
quantitative details. In Fig. 6, we hold P=tan '( —,') con-
stant, and plot (a/() against a over a 10' range covering
the point a =cos '( —,

' ). In Fig. 7, we hold instead
a=cos '( —', ) constant, and plot (a/g) against P over a
10' range covering the point P=tan '( —,

' ). Together they
reveal the detailed behavior of a single, major, three-
dimensional peak of T, (a,P) [shown as a major minimum
of (a/g) cc(1—T, /T, o)]. In these two figures, we have
not only presented our result for n =2, but we have ex-
tended our calculation to n =4 and n =6 as well, and we
have also presented in these figures our earlier result for
n =1, so that an important qualitative trend as n in-
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FICx. 5. Same as Fig. 4 except that the directional cosines are
now in the partially rational ratios 2:1:&3. Again the solid line
should be compared with the dotted line, which is reproduced
from Fig. 13 of Ref. 1. Note that the beatlike structure in that
figure is slightly less visible in this figure, although it should still
be present according to theoretical understanding, probably be-
cause of the more complex dependence of T, on the magnetic
field for the present case.

FIG. 6. plot of (a/g)2 ~ (1 —T, /T, c) of n X n X n cube super-
conducting circuits, with n = 1, 2, 4, and 6, as a function of a in

a 10' range covering the point a=cos '( —,')=64.62', for fixed

values of P=tan '( —')=18.43' and 4/Ac=14. The only major

dip in this figure corresponds to the major peak located near the
center of Fig. 13 of Ref. 1. Important additional comments
about this figure are given in the caption for Fig. 7.
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) =18.43'. This figure and Fig. 6 together

provide two cutout views of a three-dimensional profile of a ma-

jor peak of T, (H) as a function of the two polar angles a and p
describing the direction of the magnetic field H, with the magni-
tude of H held at one of the special values for which a major
peak of T, can be obtained at certain values of a and p. (These
values are given in the caption of Fig. 6) The curves plotted in
these two figures reveal the gradual change of the profile of this

major peak as n is increased from 1 toward infinity, i.e., from a
single-cube superconducting circuit toward an infinite, three-
dimensional, cubic superconducting network. This behavior is
believed to be generic among all major peaks of T, (H) of such
circuits.

creases can be clearly revealed here: Namely, a typical
major peak of T, /T, o will change froin being round and
paraboloidlike at n =1 to becoming more and more
pointed and cone-shaped as n increases. As a matter of
fact, it is clear from these two figures that the result for
n =6 has essentially revealed the limiting behavior of an
n X n X n cube circuit with n ~ oo, namely the T,(a,P)
surface will be rather smooth at its troughs (contrary to
the low-n cases where the troughs will show v-shaped
valleys —see Fig. 15 of Ref. 1), whereas its major maxima
will be cone-shaped, with pointed tips, as we have already
noted. This change of the qualitative behavior of the ma-
jor peaks of T, (H) is already projected in Ref. 1 based on
our knowledge of two-dimensional circuits and networks,
but it is explicitly confirmed here. This confirmation is
very important since any applications of such circuits will
most likely be relying only on the behavior of their T, (H )

near one of such major peaks —see Ref. 1 for elaboration
of this point —and a pointed cone-shaped peak will mean
that the value of T, (H) will drop linearly with the devia-
tion of' the magnitude and direction of the external
magnetic-field vector from the optimum values to set T,
at one of such peak values, instead of quadratically as for
the low-n circuits. This clearly can improve the sensitivi-

ty of any device that is based on the major-peak behavior

of T, (H) of such circuits, as we have asserted in the be-
ginning of this paper based on the analogy with the be-
havior of double-slit interferometers and gratings. How-
ever, the analogy clearly cannot carry us as far as we
have done here with an explicit calculation. For exam-
ple, the analogy clearly does not allow us see this
quadratic-to-linear change of the dependence of T,(a,P)
of such circuits at any of its major peaks as n is increased
from 1 to ~. Another point strongly suggested by the re-
sults of this study —although we did not provide a
rigorous proof —is that the phase boundary T, (H) of an

infinite three dim-ensional superconducting network is a
continuous fractal hypersurface in four dimensions, i.e.,
in the space of (T„H„,H, H, ) or (T„H,a,P). This con-
clusion is actually an expected generalization of the well-
known result for some time that the phase boundary
T, (H) of a two dimens-ional infinite superconducting net-
work in a perpendicular magnetic field H is a continuous
fractal curve with self-similar structures. '

In summary, we have in this work extended a previous
calculation of the phase boundary T, (H) of a single-cube
superconducting circuit to several multicube supercon-
ducting circuits in the overall shape of a larger cube. Our
results have quantified an earlier qualitative projection
made in Ref. 1 which was based on an analogy: Namely,
the major peaks of T, (H) of a n Xn Xn cube supercon-
ducting circuits will become more and more cone shaped
with a pointed tip if n is increased to approach infinity, in
contrast with the major peaks of a small-n circuit which
are round and paraboloidlike. This means that for such
large-n circuits, T, (H) will drop essentially linearly from
its peak value of T,o as either the magnitude or the direc-
tion of the applied magnetic-field vector is moved slightly
away froin their optimal values which preset the T, (H)
of such a circuit to one of its major peak values. (That a
magnitude change from such an optimal value can pro-
duce such a change was already revealed in previous
studies of two-dimensional circuits and networks. )

This property should imply high sensitivity for device ap-
plications of such large-n circuits to determine the orien-
tation of an instrument, or to measure the magnitude and
direction of an external weak magnetic field. Note that in
a known nonuniform external magnetic field, such cir-
cuits can in principle also be used to determine sensitively
position in three-dimensional space, although this last po-
tential application may not be as practical as the other
applications suggested. As far as physics is concerned,
what we have studied here is an interesting way to exhibit
the Aharonov-Bohm effect. Our results also establish
with reasonable certainty that the phase boundary T, (H)
of an infinite three-dimensional superconducting network
is a continuous fracta/ hypersurface in a four-dimensional
space.

One of us (C.R.H. ) would like to acknowledge partial
support from the Texas Center for Superconductivity at
the University of Houston.
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