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ABSTRACT 

The use of whole building utility interval data for 

verifying energy savings from energy efficiency 

projects has become an attractive option as this data 

is increasingly available. Formal protocols, such as 

IPMVP Option C and ASHRAE Guideline 14, 

describe a whole building savings approach, but may 

require up to one full year of post-implementation 

data in order to claim annual energy savings. Many 

projects cannot absorb this long timeline.  

This paper builds on previous research and 

investigates strategies to reduce the required post-

implementation monitoring time. Five grocery energy 

efficiency projects were evaluated using whole 

building electric interval data to investigate how data 

resolution, monitoring period length and timing of 

the post-implementation monitoring period impact 

the accuracy of annualized savings estimates.  

 

INTRODUCTION 

The increasing availability of whole building 

utility interval data, through smart grid infrastructure 

or energy management systems, has made using this 

data an attractive option for verifying energy savings 

from energy efficiency programs. However, the 

approach for using interval meter data is not widely 

utilized, as timing constraints pose significant 

barriers for many projects. Strategies that reduce the 

required post-implementation monitoring length as 

well as evidence that demonstrates the impact on 

estimated savings are increasingly valuable. 

Due to timing constraints, many energy 

efficiency projects apply a normalized savings 

approach using less than a full year of data. The 

normalized approach involves the creation of 

baseline and post-installation energy regressions from 

measured data. Both regressions are then driven by a 

common data set, such as TMY temperature (Reddy 

2000). While there have been previous studies 

investigating the effect of data resolution and the 

impact of short term monitoring periods on savings 

accuracy, consensus on the “best” approach has not 

yet been achieved. 

Previous studies, which focused on large 

commercial buildings, have suggested that whole  

building regressions created with daily data provided 

better predictions of annual energy consumption than 

hourly or hour-of-day (HOD) models (Katipamula, 

1994). The validity of these models are often 

prescribed by presenting typical statistical indices 

such as the coefficient of determination (R
2
), 

coefficient of variation of the root mean square error 

(CVRMSE) and mean bias error (MBE). However, 

when regressions are developed using less than one 

year of data, extrapolation error can be significant 

and is not captured by these indices (Haberl, 1997). 

Hence, a model with great “goodness of fit” may not 

accurately predict the desired annual energy 

consumption (Reddy, 2000).  

One study has shown that models developed 

during the swing seasons produced the lowest 

average bias errors (Kissock, 1993).  The conclusions 

from the Kissock study, based on a mix of three 

office and university buildings, suggest that 

proximity of the swing season’s average temperature 

to the average annual temperature appears to 

influence the model’s predictive capability. Other 

studies suggest that the most reliable results occur 

when regressions are developed using data that 

includes as much of the annual temperature range as 

possible (Montgomery, 1991). ASHRAE is currently 

working on RP-1404, which investigates the impact 

of short-term monitored data, so additional guidance 

should be available soon. 

In the meantime, this paper describes the results 

from five grocery case studies using whole building 

interval data to determine electric savings for existing 

building commissioning (EBCx) projects.  The case 

studies are used to examine how the duration of the 

post-installation monitoring period affects the 

accuracy of annualized savings estimates. A 

comparison of daily, hourly and hour of day models 

was conducted to evaluate the impact of data 

resolution on model quality and accuracy. The 

influence of seasonality during the monitoring period 

was also investigated in an attempt to identify an 

optimal timeframe when the monitoring period is less 

than one complete year. Uncertainty metrics, such as 

confidence intervals, are used to establish a 

framework for determining optimal monitoring 

ESL-IC-11-10-15

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/79646728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

  2 

timeframes to achieve acceptable saving estimates. 

The percent savings range that can be accurately 

verified using interval meter data is also discussed.   

 

STATISTICAL METRICS 

The best way to evaluate a whole building 

energy savings approach has been a topic of research 

for some time. In regression analysis, which is a 

major component of the whole building approach, a 

few standard statistical metrics are often used: 

 

1. The coefficient of determination -R
2
  

2. The coefficient of variation of the root  

mean square error - CV(RMSE) 

3. Mean bias error – MBE 

 

These metrics can be found in any statistics text 

book, and there is ample discussion related to their 

use in a whole building savings approach in 

guidelines such as IPMVP-Volume 1 (2010) and in 

research papers such as Reddy (2000).  

In general, these metrics are heavily used to 

evaluate the “goodness of fit” of a particular 

regression. While these metrics are used to evaluate 

the quality of regressions, they do not necessarily 

provide an indicator of accuracy when the regression 

is used to extrapolate beyond the range of data 

collected in the monitoring period (Haberl, et al, 

1997).    

In this paper, these statistical metrics are used to 

initially evaluate the quality of the energy regressions 

and identify the parameters most responsible for 

driving energy use at the five stores. However, it’s 

recognized that poor regressions, defined by low R
2
 

and high CV(RMSE), may still produce “accurate” 

savings or at least savings that are good enough for 

some situations. Since many stakeholders may be 

concerned with accuracy more than precision or  

statements of statistical confidence, savings were 

calculated using a full year of baseline and post-

installation monitoring. The full year savings was 

used as a basis of comparison to evaluate accuracy 

throughout this research. 

 

SAVINGS ANALYSIS 

This section outlines the process for determining 

the regression model specifications.  Included is an 

analysis of possible driving variables and data 

resolution as well as an evaluation of what percent 

whole building savings can be validated using this 

approach. Annual electric savings are calculated 

using the avoided energy use method and are 

established as the “actual” savings throughout the 

paper. The normalized method is used to create 

annualized savings forming a comparison for shorter 

duration analysis in the next section.  

The five stores included in this study were 

located in California. Two different grocery chains 

were represented and the store locations were split 

between coastal and inland climates.   

Table 1 gives additional detail about each store 

including hours of operation, location, original 

project savings, and the percent whole building 

savings.  It should be noted that the original project 

savings were calculated using a deemed savings 

approach based on DEER
1
 (Database for Energy 

Efficient Resources). The original deemed savings 

ranged from 1.25% to 17.8%. 

 

Driving Variables and Data Resolution  

 Regressions for total energy use prior to project 

implementation were developed from one full year of 

baseline data using both hourly and daily data. 

Separate regressions were created for dry bulb 

temperature, wet bulb temperature, and relative 

humidity to determine the parameter most 

responsible for driving energy use in the grocery 

stores included in this research. Each regression was 

evaluated using three standard statistical indices: 

coefficient of determination - R
2
, coefficient of 

variation of the root mean square error - CV(RMSE) 

and mean bias error - MBE. A “best fit” regression is 

one that maximizes R
2 

while minimizing both 

CV(RMSE) and MBE. 

 Relative humidity resulted in highly scattered 

regressions which indicate humidity is not a main 

                                                           
1 DEER info can be found at www.energy.ca.gov/deer.  

Table 1.  Grocery Store Classification 

Grocery Store 
Chain 1 Chain 2 

Store 1 Store 2 Store 3 Store 4 Store 5 

Hours of operation 6 am – 11 pm 6 am – 11 pm 6 am – 11 pm 8 am – 10 pm 8 am – 10 pm 

Location 
Los Banos Fresno San Francisco San Mateo San Francisco 

Inland Coastal 

Implementation date 
June 

2009 

March 

2009 

October 

2008 

March 

2009 

January 

2010 

Deemed Savings (kWh) 357,750 113,893 199,686 38,000 30,400 

% whole building savings 17.8% 4.5% 9.4% 1.9% 1.25% 

ESL-IC-11-10-15

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011



 

  3 

driver for grocery store energy use. Dry bulb and wet 

bulb temperatures produced better fits which indicate 

they could be a main driver of energy use for grocery 

stores.  There was no significant statistical difference 

between the regressions created with dry bulb or wet 

bulb temperatures. Since dry bulb temperatures are 

more easily obtained, they are used throughout this 

paper.        

Store 4 and Store 5 had a significant difference 

between the occupied (8 am – 10 pm) and 

unoccupied (10 pm – 8 am) energy use (Figure 1).  

The red circle in Figure 1 is the unoccupied energy 

use and the black occupied energy use.   For these 

stores, two hourly regressions (occupied & 

unoccupied) were developed using dry bulb as the 

driving variable.  

 

 

Figure 1. Store 4 Hourly Energy Use 

 

The energy regressions of Store 1 and Store 2 

were linear change-point models, as indicated by 

Figure 2 and described by ASHRAE Research Project 

1050 (Kissock, 2003). Energy Explorer, a software 

tool developed by Kelly Kissock from the University 

of Dayton, Ohio was used to develop and analyze the 

hourly and daily change-point regressions for these 

stores. 

 
Figure 2. Example of Change Point 

 

 Table 2 and Table 3 summarize the statistical 

indices of the regressions for hourly and daily data, 

respectively, using dry bulb temperatures only.  Since 

the variation in energy use experienced from hour to 

hour is averaged across the day, the daily regressions 

have significantly higher R
2
 while CV(RMSE) is 

reduced by about half. Thus for all stores, regressions 

created with daily average data result in a better “fit” 

than regressions made with hourly data. This aligns 

with the International Performance Measurement and 

Verification Protocol (IPMVP) recommendation that 

hourly data be rolled into daily values and asserts the 

loss of resolution should not significantly increase the 

uncertainty of the results (IMPVP, 2009).   

 

Avoided Energy Use 

The avoided energy use method involves the 

creation of a baseline regression using a full year of 

monitored data prior to implementation. Then the 

actual outside air temperatures recorded during the 

Table 2. Statistical Metrics for the Hourly Regression Models 

Statistical 

Index 

 

Store 1 Store 2 Store 3 Store 4: 

Unoccupied 

Store 4: 

Occupied 

Store 5: 

Unoccupied 

Store 5: 

Occupied 

Model used Linear Change 

point 

Linear Change 

point 

Linear 

regression 

Linear 

regression 

Linear 

regression 

Linear 

regression 

Linear 

regression 

R2 0.79 0.75 0.24 0.03 0.41 0.019 0.18 

CV(RMSE) 5.3% 6.1% 4.6% 25.1% 8.6% 25.71% 9.02% 

MBE 0% 0% 0% 0% 0% 0% 0% 
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year following the conclusion of energy efficiency 

implementation were used in the regressions to create 

an adjusted baseline for each store. The adjusted 

baseline is a prediction of how the building would 

have operated if the energy efficient change was not 

implemented. The difference between the adjusted 

baseline and measured post-installation energy use is 

the avoided energy use, or the closest attempt to 

“measure” energy savings (Equation 1). The avoided 

energy use is used as the basis of comparison when 

evaluating the predictive accuracy of regressions 

developed with less than 1 year of data later in the 

research.   

Electric savings for each store was calculated 

using both hourly and daily data driven by dry bulb 

temperatures, but as the daily data was previously 

shown to be a better fit, only daily data is reported in 

Table 4.  

Equation 1 

Energy Savings =  

Adjusted baseline – Post installation Energy Use  

  

Comparing the savings for each store in Table 4 

to the deemed project savings shows the three stores 

in Chain 1 used more energy (less savings) and the 

two stores in Chain 2 used less energy (more savings) 

than originally calculated.  It is important to note that 

the original deemed savings were determined using a 

measure by measure approach. The avoided energy 

use is a whole building approach that captures 

everything occurring downstream from the main  

 

utility meter. All interactions between individual 

measures as well as other energy influencing changes 

to the building or its operation during the monitoring 

period will influence the savings determined using 

this approach. The differences between the deemed 

savings and the whole building approach illustrate the 

importance of tracking any changes that occur in the 

building during the monitoring timeframe (both pre 

and post). This is especially true when the attribution 

of savings to a particular measure, project or program 

is required by the stakeholders. 

  

Smallest Percent Savings Detectable Using a Whole-

Building Approach 

One of the main barriers preventing the adoption 

of a whole building approach is the understanding of 

what percent whole building savings is required in 

order to accurately verify savings. While there has 

been discussion in the industry, consensus has not 

been reached. ASHRAE Guideline 14 states savings 

greater than 10% of whole building consumption are 

required, but this number is based on the historical 

approach of using monthly utility data. Other 

research implies that savings of at least 5% of 

building consumption can be detected when greater 

resolution data, such as interval meter data, is used to 

create the energy regressions (Katipamula, 1994). 

In order to have high confidence that a project 

has achieved the estimated energy savings, the actual 

energy use in the post-implementation period should 

be statistically different from the adjusted baseline.  

In this application, this means that the actual energy 

Table 3. Statistical Metrics for the Daily Regression Models 

Statistical Index 

 

Store 1 Store 2 Store 3 Store 4 

 

Store 5 

 

Model Used Linear change 

point 

Linear change 

point 

Linear 

regression 

Linear 

regression 

Linear 

regression 

R2 0.92 0.94 0.25 0.6 0.35 

CV(RMSE) 2.8% 2.7% 3.1% 3.9% 3.15% 

MBE -0.005% 0.1% 0% 0% 0% 

Table 4. Avoided Energy Use Results* 

Store Avoided Energy Use (kWh) % whole building savings Deemed Savings 

Store 1 285,630 14.3% 17.8% 

Store 2 94,597 3.8% 4.5% 

Store 3 106,747 5.3% 9.4% 

Store 4 101,908 5.0% 1.9% 

Store 5 166,374 6.9% 1.25% 

*The whole building results are used as the basis of comparison for the remainder of this paper. 
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use in the post-implementation period should be 

outside the uncertainty bands of the adjusted 

baseline.  A visual way to depict this is shown in 

Figure 3, where the uncertainty in the adjusted 

baseline is depicted with dotted lines. The uncertainty 

was calculated according to Equation 

90% confidence level.  

Equation 2 

�������	���	
�	��	 � �� ∗ �
Where, 

SE = Standard Error of the regression 

z score= The critical value of a distribution based on 

the degrees of freedom and significance level.

 

In Figure 3, the actual post-implementation 

energy use, shown in green, is clearly outside the 

uncertainty band of the adjusted baseline

avoided energy use method can be 

statistical confidence in this case. However, in 

4 the actual energy use overlaps with the uncertainty 

in the adjusted baseline.  In this case, 

not statistically different from the adjusted energy use 

and our confidence that the estimated energy savings 

was achieved is low. 

 

Figure 3. Store with a statistical difference 

between the adjusted baseline and post

installation data 

Figure 4. Store without a statistical difference 

between the adjusted baseline a

installation data 

 5 

implementation period should be 

of the adjusted 

baseline.  A visual way to depict this is shown in 

, where the uncertainty in the adjusted 

. The uncertainty 

Equation 2 and at the 

�	��	� 

al value of a distribution based on 

the degrees of freedom and significance level.  

implementation 

, is clearly outside the 

of the adjusted baseline.  Thus, the 

avoided energy use method can be used with 

However, in Figure 

the actual energy use overlaps with the uncertainty 

 the savings is 

not statistically different from the adjusted energy use 

the estimated energy savings 

 
Store with a statistical difference 

between the adjusted baseline and post-

 
Store without a statistical difference 

between the adjusted baseline and post-

Figures like these were created fo

are not shown. Store 1 and Store 5 savings

outside the uncertainty of the adjusted baseline, thus 

can be confidently verified using this approach.  

When calculated using a 90% 

Store 3 and Store 4 has some overlap with the 

uncertainty of the adjusted baseline.

Not all projects or programs require 

level of statistical confidence in the final savings. If a 

lower confidence interval is acceptable, 

the uncertainty band around the baseline narrow

Narrow uncertainty bands make it easier for the 

actual post-installation energy use to fall outside the 

bands, thus making the adjusted baseline and post

installation data statistically differe

confidence level, Store 3 and

confidently verified.   

It’s important to note that the statistical 

difference is a statement of confidence, not 

necessarily an indicator of the accuracy of the final

savings estimate. Store 2 provides a fairly clear 

example related to the confidence v

issue. Note that the variation, CV(RMSE), 

2’s daily baseline model is approximately 3%

3). The savings from this particular store 

avoided energy use method falls just under 4%, 

which is barely larger than the variation

As shown by Figure 4, the post

energy use falls within the uncertainty bands. 

Therefore, there is no statistically 

difference between the adjusted baseline and post

implementation and no statistical 

whole building savings for this project. 

whole building savings approach estimated 94,597 

kWh of savings which is fairly close to the original 

measure by measure deemed savings of 113,893 

kWh.  While we can’t state with certa

savings are statistically valid, the savings estimates 

may be “good enough” for many project 

stakeholders. 

Specific project requirements

by stakeholders, and many stakeholders will

require the high level of certainty

preceding section.  For example, 

14 states for whole building savings 

the baseline model should have a CV(

than 20% (ASHRAE, 2002).  While only one of these 

stores had savings above 10%, the CV(

stores are considerably lower than 20%

Furthermore, the Regional Technical Forum

stipulates the estimated energy savings must 

20% of the actual savings (

                                                          
2 The RTF is an advisory committee in the Pacific Northwest 

charged with developing standards to verify and evaluate 

conservation savings. 

Figures like these were created for each store but 

Store 1 and Store 5 savings are 

he adjusted baseline, thus 

can be confidently verified using this approach.  

 confidence interval, 

has some overlap with the 

baseline. 

Not all projects or programs require such a high 

level of statistical confidence in the final savings. If a 

acceptable, such as 80%, 

the uncertainty band around the baseline narrows. 

Narrow uncertainty bands make it easier for the 

installation energy use to fall outside the 

bands, thus making the adjusted baseline and post-

installation data statistically different. At the 80% 

confidence level, Store 3 and Store 4 can be 

It’s important to note that the statistical 

difference is a statement of confidence, not 

the accuracy of the final 

vides a fairly clear 

confidence versus accuracy 

CV(RMSE), of Store 

baseline model is approximately 3% (Table 

. The savings from this particular store using the 

falls just under 4%, 

barely larger than the variation of the model. 

, the post-implementation 

energy use falls within the uncertainty bands. 

statistically significant 

adjusted baseline and post-

statistical confidence in the 

whole building savings for this project. However, the 

approach estimated 94,597 

close to the original 

measure by measure deemed savings of 113,893 

While we can’t state with certainty Store 2’s 

savings are statistically valid, the savings estimates 

may be “good enough” for many project 

requirements will vary greatly 

and many stakeholders will not 

ertainty presented in the 

For example, ASHRAE Guideline 

building savings greater than 10% 

baseline model should have a CV(RMSE) of less 

While only one of these 

stores had savings above 10%, the CV(RMSE) for all 

stores are considerably lower than 20% (Table 3). 

Furthermore, the Regional Technical Forum (RTF)
2
 

stipulates the estimated energy savings must be ± 

(Regional Technical 

                   
The RTF is an advisory committee in the Pacific Northwest 

charged with developing standards to verify and evaluate 
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Forum, 2011).  Table 5 shows that the uncertainty of 

the savings for both the hourly and daily models is 

significantly below this threshold for these five case 

studies when using a full year of data.   

Therefore, when adopting a whole building 

approach, the expected percent whole building 

savings, the amount of variation present in the 

baseline, and the desired accuracy of the results 

should be considered. Stores with higher (>10%) 

percent whole building savings can achieve relatively 

high certainty with either hourly or daily data.  Stores 

with lower percent whole building savings that 

require high certainty may need another approach. 

Hour of Day (HOD) models are one possible strategy 

to improve the certainty of lower savings projects.   

 

Hour-of-Day Models 

Hour-of-day models involve sorting the data 

from each monitoring period by the specific hour, 

then creating a separate energy regression for each 

hour. This process can quickly become quite 

cumbersome as it results in a minimum of 48 separate 

regressions when comparing baseline and post-

installation operation. However, HOD models have 

the potential to account for variability in building 

loads, such as those created by occupancy 

(Katipamula, 1994). 

HOD models were created for Stores 3, 4, and 5 

using linear regressions. The combined standard error 

was calculated according to procedures described in 

IPMVP Appendix B (2009) and Equation 3. 
 

Equation 3
 

2

00:24

2

00:2

2

00:1 ...* SESESENSEtotal +++=     

Where: 

 

( )

pn

YY

SE n

i

−

−

=

∑
2

ˆ

 
N = the number of savings results with the same 

Standard Error that are added together 

p = number of independent variables in the regression 

equation 

 n = the number of samples 

 

Table 6 illustrates the significant reduction in the 

uncertainty achieved by using HOD models. This 

reduction in uncertainty tightens the error bands 

around the adjusted baseline, further reducing the 

amount of overlap between the actual and adjusted 

baseline energy use.  Using HOD models in Store 3 

and Store 4 allows the savings to be more confidently 

verified. 

Table 6. Hourly, Daily, and HOD error 
 Store 3 Store 4 Store 5 

Hourly Error 

(kWh) 

1,045 3,262 4,018 

Daily Error 

(kWh) 

3,408 4,222 3,999 

HOD Error 

(kWh) 

848 1,325 1,490 

 

While hour-of-day models improved the 

precision of the regressions, HOD models did not 

improve the accuracy of the savings. Table 7 shows 

that the HOD models predicted roughly the same 

avoided energy use as both the hourly and daily 

models. The CV(RMSE) was calculated for all 24 

regressions for each store, but are not shown. In all 

five cases, the CV(RMSE) for the HOD models was 

better than hourly models and close to the 

CV(RMSE) for the daily models. In these case 

studies, the HOD models improve the confidence in 

the savings but do not ensure more accurate results. 

Table 7. Comparison of Annual Savings 

Calculated from Hourly, Daily, and HOD 

Models 
 Store 3 Store 4 Store 5 

Hourly Avoided 

Energy Use (kWh) 

107,018 102,038 169,112 

Daily Avoided 

Energy Use (kWh) 

106,747 101,908 166,374 

HOD Avoided 

Energy Use (kWh) 

106,680 101,576 166,167 

 

 

 

 

Table 5. Uncertainty in the Avoided Savings for each Store 
 

Store 1 Store 2 Store 3 Store 4 Store 5 

Avoided Savings (kWh) 285,630 94,597 106,747 101,908 166,374 

Hourly Error (kWh) 1,145 1,655 1,045 3,262 4,018 

Daily Error (kWh) 3,164 3,321 3,408 4,222 3,999 
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Normalized Savings 

Normalized savings are calculated using separate 

regressions for the baseline and post-installation 

periods. Each regression is then driven with a 

common dataset, such as TMY temperature data. 

Formal procedures, such as IPMVP, require 

monitoring for the duration of claimed savings. As 

such, annual savings require one year of post-

installation monitoring.   

The intent of this study is to create normalized 

savings using less than one year of data to ascertain 

how much the monitoring time can be reduced while 

still achieving accurate savings. 

For each store, both hourly and daily regressions 

using one full year of post implementation data were 

developed for total energy use based on dry bulb 

temperatures. Daily average dry bulb temperatures 

obtained from TMY3 were used to drive both the 

baseline and the post implementation models. The 

results are shown in Table 8. Uncertainty resulting 

from both the baseline and post-implementation 

regressions was combined in the savings analysis 

(Effinger, et al, 2008). 

The avoided energy use method is driven by 

actual measured values during the post monitoring 

period while the normalized method uses TMY3 

temperatures, which are averaged over several years. 

The slight difference observed between the final 

savings values of the normalized method and avoided 

energy use method is expected. 

 

Table 8. Normalized Savings Results 
Store Savings (kWh) % whole building savings 

Store 1 278,843 14.0% 

Store 2 96,648 3.8% 

Store 3 105,989 5.0% 

Store 4 101,873 5.0% 

Store 5 168,294 6.9% 

 

OBSERVATIONS 

Shorter Duration Monitoring Period 

Regressions using 9 months, 6 months, and 3 

months of data after each store’s implementation date 

were developed. Annualized savings for each store 

were calculated using the regressions created with the 

shorter duration post-installation data. The baseline 

regressions all used the full 12 months of pre-EBCx 

data.  

Figure 5 shows that as the duration of the 

monitoring period decreases, in general, the accuracy 

of the savings also decreases. The stores with higher 

percent whole building savings (Store 1 and Store 5) 

can have shorter monitoring periods and still produce 

savings relatively close to the avoided energy use 

benchmark.  However, as the percent whole building 

savings decreases (Store 3 and Store 4) a longer 

monitoring period is required to produce accurate 

savings. Thus, depending on the desired level of 

accuracy and the amount of whole building savings, 9 

months and 6 months of monitored data could 

suffice.  In most cases, the accuracy in the savings for 

3 months of monitoring would be too low to produce 

acceptable savings. 

 

 
Figure 5. Shorter Duration Savings Results. 

  The implementation date appeared to affect the 

accuracy of annualized savings. For instance, Store 3 

had an implementation date in October. The shorter 

duration monitoring, in this case, occurred over the 

winter and consistently over predicted energy use as 

compared to avoided savings.  However, Store 4 had 

an implementation date in March with shorter 

duration monitoring occurring over the summer.  In 

this case, energy use was under predicted as 

compared to the avoided savings. 

 As shown in Figure 5, the savings for Store 2 

appeared significantly different than the avoided 

energy use method when monitoring periods were 

reduced to six months or less. Investigation into these 

differences yielded an interesting finding. The 

baseline data for this store was represented by a 4-

parameter change point model. Neither the 6-month 

nor the 3-month regressions had an identifiable 

change-point and were instead described by a basic 

linear regression. The comparison of a linear post-

model with a change-point baseline model artificially 

inflated the savings and the amount of error.  An 

important conclusion from the Store 2 analysis is 

when a building operating profile follows a change-

point in the baseline, enough data should be collected 

in the post-installation period to identify the post 

implementation change-point.  

 

Framework for Optimal Monitoring Period 

 To establish a framework for determining 

optimal monitoring timeframes, post-installation 

regression models using the data from three month 

seasons and six month combination of seasons (Table 

9) were developed for each store.  With each of these 

eight season’s regression models, annualized savings 
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were calculated using the normalized savings 

method.  The annualized savings were then compared 

to the avoided savings according to Equation 4. 

Table 9. Definition of Seasons 

Season Months 

Summer June – August 

Winter December – February 

Fall September - November 

Spring March – May 

Spring - Summer March – August 

Summer – Fall June – November 

Fall – Winter September – February 

Winter – Spring December - May 

 

Equation 4 

%	�����	���� =
��	������� − �������

�������
 

 

 We evaluated the seasonality regressions using 

low desired accuracy, defined as ± 20% difference in 

Equation 4, and high desired accuracy, defined as 

±10% difference in Equation 4.  The results are 

shown in Figure 6 through Figure 10. In these 

Figures, the avoided energy use is the red square on 

the left and the green dots represent each season’s 

annualized savings.  The black horizontal lines are 

20% from the avoided energy use and the yellow 

horizontal lines are 10% from the avoided energy 

use.  Even though Store 2 did not have statistically 

significant savings, there were several monitoring 

periods where the results could be considered “good 

enough” based on this analysis. 

 Seasons whose dots fall within the horizontal 

lines correspond to seasons where the annualized 

savings produce acceptable results.  As expected, 

fewer seasons’ annualized savings fall within the low 

accuracy (±10%) horizontal bars. 

 

 

 

Figure 6. Store 1 Seasonality Results 

 

Figure 7. Store 2 Seasonality Results 
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Figure 8. Store 3 Seasonality Results 

 

Figure 9. Store 4 Seasonality Results 

 

Figure 10. Store 5 Seasonality Results 
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     To compare results across stores, Table 10 is a 

matrix of the stores and seasons.  Seasons that fall 

within 20% of the stores’ avoided savings are shaded 

green, while seasons that are marginal are shaded 

yellow.  The first thing to note is that for Store 2 

virtually no three or six month monitoring periods 

produced acceptable results.  In cases like this, where 

savings are low, nine months or a full year of 

monitoring would be recommended. Looking across 

the other stores, the sixth month period of Summer – 

Fall produced the best results.  The six month periods 

of Spring – Summer and Fall – Winter also produced 

acceptable results. Several three month monitoring 

periods occasionally produce acceptable accuracy but 

the extreme seasons of Summer and Winter were not 

as likely as swing seasons to meet the accuracy 

requirements.    

     Table 11 is the same matrix for higher accuracy.  

Seasons that fall within 10% of the stores’ avoided 

savings are shaded green, while seasons that are 

marginal are shaded yellow.  To meet this higher 

accuracy requirement most of these stores need six 

months of post monitored data.  The six month period 

of Spring – Summer produced the most accurate 

results.   

     No matter what accuracy is desired, the higher the  

actual savings resulting from the project, the less 

impact duration and timing of the monitoring period 

appears to have on the optimal monitoring timeframe.  

For the projects with lower percent whole building 

savings, if higher accuracy is desired, a longer 

monitoring period may be required to produce 

acceptable results unless more energy savings can be 

achieved through additional implemented measures. 

  

Temperature Analysis 

 The results from the seasonality investigation 

were analyzed in an attempt to identify measureable 

parameters that clearly indicate how much data is 

required to produce accurate results. First, we tested 

the suggestion from Kissock that proximity of the 

data set’s average temperature to the average annual 

temperature appears to influence the model’s 

predictive capability. For each store, the Spring and 

the combination of Spring – Summer seasons had 

average temperatures closest to the average annual 

temperatures.  However, for the five case studies in 

this analysis, the Fall and Spring – Summer seasons 

predicted savings that were closest to the actual 

avoided energy use.  Thus, the proximity of the data 

set’s average temperature to the average annual 

temperature does not appear to predict the best results 

Table 10. Lower accuracy (± 20 %) seasonality results 

Store 1: Los Banos 

14.3% 

Store 2: Fresno 

3.8% 

Store 3: San 

Francisco 

5.3% 

Store 4: San 

Mateo 

5.0% 

Store 5: San 

Francisco 

6.9% 

Summer 2.4% -50.0% 56.8% 6.3% -56.7% 

Winter 5.9% 148.6% -45.8% -41.8% 85.8% 

Fall  3.6% 35.6% -2.9% 23.0% 19.5% 

Spring -16.3% 116.0% -30.6% 17.4% 6.2% 

Spring-Summer 1.0% 34.0% -1.4% 9.9% -14.9% 

Summer-Fall 4.1% -3.8% 18.6% 14.8% -20.7% 

Fall-Winter 5.0% 23.5% -5.6% -6.0% 21.3% 

Winter-Spring -15.8% 91.1% -29.8% 1.4% 30.6%  

 

Table 11. Higher accuracy (± 10%) seasonality results 

  

Store 1: Los 

Banos 

14.3% 

Store 2: Fresno 

3.8% 

Store 3: San 

Francisco 

5.3% 

Store 4: San 

Mateo 

5.0% 

Store 5: San 

Francisco 

6.9% 

Summer 2.4% -50.0% 56.8% 6.3% -56.7% 

Winter 5.9% 148.6% -45.8% -41.8% 85.8% 

Fall  3.6% 35.6% -2.9% 23.0% 19.5% 

Spring -16.3% 116.0% -30.6% 17.4% 6.2% 

Spring-Summer 1.0% 34.0% -1.4% 9.9% -14.9% 

Summer-Fall 4.1% -3.8% 18.6% 14.8% -20.7% 

Fall-Winter 5.0% 23.5% -5.6% -6.0% 21.3% 

Winter-Spring -15.8% 91.1% -29.8% 1.4% 30.6% 
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on its own.      

 Next, the range of temperatures experienced in 

each season was evaluated, as suggested by 

Montgomery (1991).  Fall and all of the six month 

periods captured a majority (>75%) of the annual 

temperature range.  This does have some correlation 

with Fall and Spring – Summer seasons producing 

results closest to the actual avoided energy savings.  

However, the range of temperatures alone also does 

not appear to predict the best results, as savings 

predicted by Winter – Spring were often very 

different from actual avoided energy savings.   

 While definitive conclusions should not be 

drawn from such a small sample set, it appears within 

these case studies that a combination of the proximity 

of average temperature and the range of temperature 

experienced in the monitoring period might predict 

the best results. For instance, while the average 

Spring temperatures were always close to the average 

TMY temperatures, Spring almost never covers the 

majority of the typical annual temperature range.  

The converse is true with Winter-Spring.  The 

average period is never closest to the average TMY, 

but always included the majority of the range.  The 

best predictive season, Spring – Summer, has average 

temperatures closest to the average TMY and 

includes the majority of the range of temperatures.        

 

CONCLUSIONS 

Based on the research from these five case 

studies, we were able to make general conclusions for 

the grocery sector in the following areas: 

• Key driving variables for regression analysis 

• Best fit model types 

• Percent savings that are statistically valid to 

use a whole building analysis approach 

• Determining post-period duration and timing 

 

The analysis of dry bulb temperature, wet bulb 

temperature, and relative humidity as possible driving 

variables for grocery stores showed that either wet 

bulb or dry bulb temperatures could be used as the 

primary driving variable. Since it’s easier to obtain 

dry bulb than wet bulb temperature, dry bulb 

temperature was used in this analysis.  Wet-bulb may 

play a greater roll in more humid climates, or when 

the refrigeration equipment is water-cooled instead of 

air-cooled.  

The evaluation of hourly, daily, and HOD models 

showed daily models produce better regressions than 

hourly models without a significant increase in 

uncertainty of the savings.  Compared with hourly 

and daily models, HOD models were shown to 

reduce the uncertainty in the savings but did not 

result in higher accuracy. 

The proximity of the average temperature of the 

shorter data set was compared to the average 

temperature of TMY data to further evaluate the 

theories that close proximity would produce the best 

predictors. However, for these case studies, that was 

not the case. It appears that some interaction between 

being near the average annual temperature and 

capturing a full range of TMY temperature is 

important, although more case studies should be 

conducted to make definitive conclusions.   

  Previous guidelines and existing research 

generally stipulate a whole building approach be used 

only in projects where percent savings are greater 

than 10%.  One store had 14% savings, which were 

statistically significant at 90% confidence.  Three 

stores had savings around 5%, which were 

statistically significant at 80% confidence.  One store 

had lower savings (3.8%) which did not meet 

statistical confidence levels.  However, as compared 

to original deemed savings, the savings estimated by 

the whole building approach were fairly accurate.     

The case studies analyzed in this paper showed a 

strong interdependency between the percent whole 

building savings and desired accuracy on the optimal 

monitoring timeframes to achieve acceptable savings 

estimates. For instance, for projects with higher 

percent whole building savings (~10%) that desire 

lower accuracy (±20%), any season produced 

acceptable savings. However, if higher accuracy 

(±10%) is desired the best monitoring period is the 

six month period between March and August.  Some 

three month seasons (Summer, Winter, and Fall) and 

other six month seasons (Summer – Fall and Fall – 

Winter) produce acceptable savings.   

Considering monitoring duration and timing is 

more important when analyzing projects with lower 

percent whole building savings (~5%). Shorter 

duration monitoring is possible if lower accuracy is 

acceptable. The best monitoring period is the six 

month period between March and August.  Swing 

seasons (Spring and Fall) also produced acceptable 

results. However, if higher accuracy is required, the 

six month period of Spring – Summer (March to 

August) is the only time that consistently produced 

acceptable savings across all stores. If shorter 

monitoring duration and higher accuracy is desired, it 

is recommended that additional energy efficiency 

measures be installed to increase the percent whole 

building savings so the results can be statistically 

valid.  

 This study made progress towards examining 

the feasibility of whole building energy savings 

verification using interval meter data for the grocery 

sector.  For the grocery sector, as well as other 

building sectors, wide-spread adoption of the whole 

building approach for savings verification will 
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require more evidence that demonstrates how much 

data is required and when the data should be 

collected to produce sufficiently accurate results.   

More data from additional climate zones would 

be required to make universal conclusions. The 

climate zones captured in this study included mild 

coastal regions and hotter inland regions of 

California. It’s unknown whether the observations in 

this research would apply to climates with more 

extreme conditions. 

The case studies and overarching analysis 

presented here gives reason to believe that, with 

proper model specification and statistical analysis, 

this approach can gain significant traction for cost-

effectively verifying savings in commercial 

buildings.  

 

REFERENCES 

ASHRAE 2002. ASHRAE Guideline 14-2002.  

Measurement of Energy and Demand Savings. 

Atlanta: American Society of Heating, 

Refrigerating and Air-Conditioning Engineers, 

Inc. 

California Commissioning Collaborative (CCC), 

2008.  Using Interval Data Energy Models: 

IPMVP Options B and C.  Guidelines for 

Verifying Existing Building Commissioning 

Project Savings. 

Effinger, M., Anthony, J., Webster, L., 2009. Case 

Stuides in Using Whole Building Interval Data to 

Determine Annualized Electrical Savings.  

ICEBO Conference, 2009. 

Fels, M.F. (Ed.) 1986.  Special Issue devoted to 

Measure Engergy Savings, The Princeton 

Scorkeeping Method (PRISM).  Energy and 

Buildings 9(1) and 9(2). 

Haberl, J.A., Reddy, A.,  Elleson, J. 1997. 

Determining Long-Term Performance  of Cool 

Storage Systems from Short-Term Tests. 

ASHRAE Reseasrch Project 1004. 

IPMVP. 2010. International Performance 

Measurement and Verification Protocol, Volume 

1.  Efficiency Valuation Organization. 

Katipamula, S., Reddy, T.A., Claridge, D.E., 1994. 

Effect of Time Resolution on Statistical 

Modeling of Cooling Energy Use in Large 

Commercial Buildings.  ASHRAE Transactions. 

Kissock, J.K., Reddy, T.A., Fletcher, D., Claridge, 

D.E., 1993.  The Effect of Short Data Periods on 

the Annual Prediction Accuracy of Temperature-

Dependent regression Models of Commercial 

Building Energy Use.  Joint Solar Engineering 

Conference, ASME 1993. 

Kissock, J.K., Haberl, J.K., Claridge, D.E., 2003. 

Inverse Modeling Toolkit: Numerical 

Algorithms. ASHRAE Transactions, Volume 

109, Part 2. 

Katipamula, S., Reddy, T.A., Claridge, D.E., 1995.  

Bias in Predicting Annual Energy Use in 

Commercial Buildings with Regression Models 

Developed from Short Data Sets.  Joint Solar 

Engineering Conference, 1995. 

Montgomery, D.C, 1991. Design and Analysis of 

Experiments, Third Edition, John Wiley and 

Sons, New York. 

Reddy, T.A., Claridge, D.E.,  2000. Uncertainty of 

“Measured” Energy Savings from Statistical 

Baseline Models.  HVAC&R Research 

Regional Technical Forum, 2011.  Guidelines for the 

Development and Maintenance of RTF Savings 

Estimation Methods.

 

ESL-IC-11-10-15

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011




