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Faceting via correlated disorder of a stochastically growing interface or domain boundary

Igor F. Lyuksyutov*

Department of Physics, Texas A&M University, College Station, Texas 77843-4242

H.-U. Everts
Institut für Theoretische Physik, Universita¨t Hannover, Appel Strasse 2, D-30167, Hannover, Germany

~Received 11 August 1997!

We consider a stochastically growing or evaporating interface in the presence of disorder which is correlated
in the direction normal to the interface. The growth or evaporation rate at randomly distributed disorder points
is assumed to be different from that of the rest of the interface. This model is of relevance not only to island
growth in overlayers, but also to the domain growth in an ultrathin magnetic film after reversal of the mag-
netization. For a growing one-dimensional interface or a moving domain wall in a magnetic film on a crystal
surface, this type of correlated disorder simulates the effect of, e.g., surface steps or grain boundaries on the
growth process while, for a growing or evaporating crystal surface, it describes the effect of screw dislocations
or of grain boundaries again. We show that, for interface dimensionsd51,2 during the growth~or evaporation!
of an initially flat interface, large-scale faceting develops, although on a small scale the interface is rough.
Exploiting the formal connection between the interface model and the model used in the problem of flux line
localization in a superconductor we show that correlated disorder localizes the flux line in the presence of point
disorder.@S0163-1829~98!03003-3#
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I. INTRODUCTION

Studies of crystal growth, equilibrium crystal shapes, e
date back to the beginning of this century~see, e.g., Ref. 1!.
Recently, a strong increase of theoretical activity in this fi
has been stimulated by the work of Kardar, Parisi, and Zh
~KPZ! on kinetic roughening.2 Many growth models can be
mapped onto the Kardar-Parisi-Zhang~KPZ! equation. A
well-known example is the so-called single-step mode3,4

which describes the stochastic growth of a one-dimensio
interface. General reviews on recent developments in
field can be found, e.g., in Refs. 6 and 7. Most of these wo
deal with the growth of three-dimensional structures~see
e.g., Refs. 8–10!. However, in recent years experimental o
servations using scanning tunneling microscopy have
revealed a large amount of interesting information about
growth of two-dimensional structures on surfaces~see, e.g.,
Refs. 8 and 11!. Another important area of application is
magnetic overlayer. The magnetization reversal in an ul
thin magnetic film proceeds via domain growth, and it can
shown~see, e.g., Refs. 12–14! that domain growth in a two-
dimensional~2D! Ising model at low temperatures is d
scribed by the single-step model.

No surface, regardless of how carefully it has been p
pared, is free of defects of different origin and dimension
ity ~point and linear!. The list includes impurities segregate
onto the surface, adsorbed impurities, excessive atoms o
crystal proper, steps, etc. At low temperatures, the mob
of these defects is extremely small, and they can be treate
frozen.15 These nonequilibrium defects give rise to vario
random fields on the crystalline surface. The lower the
mensionality of the system, the stronger the effects of fro
defects. Theoretically, the influence of frozen surface dis
der on the growth processes in overlayers remains virtu
unexplored.
570163-1829/98/57~3!/1957~6!/$15.00
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We study the growth of islands or of magnetic doma
on a substrate withcorrelated frozen disorder. In growing
overlayers this type of disorder can be caused by surf
steps or by grain boundaries. Disorder induces an inhomo
neous distribution of the growth probability on the surfac
In the case of an ultrathin magnetic film, surface steps
change the magnetic domain growth probability.16

We investigate the case of stochastic~kinetic! structure
growth, when the probability of the interface growth at
given point is fixed. To study this problem, we apply th
single-step model~see, e.g., Ref. 5! with additional corre-
lated disorder. This model can be described by the K
equation with an additional term which describes correla
disorder~see Ref. 17!. This last equation can be treated an
lytically by using renormalization group methods and by n
merical simulation.17 The aim is to obtain the growth profile
and the nonequilibrium island shape on, e.g., a stepped
strate.

We generalize the approach developed to describe t
dimensional island growth to higher dimensions. We use i
describe bulk crystal growth or evaporation with correlat
disorder. In this case correlated disorder can be due to,
screw dislocations or grain boundaries oriented normally
the surface. Nanoparticles which ‘‘float’’ on the surface du
ing growth or evaporation may also be an interesting real
tion of correlated disorder~see, e.g., Refs. 18 and 19!.

The growth of an interface in the presence of a sin
defect site has been considered in Ref. 17 for both 1D
2D interfaces. The general case of many defect sites ca
mapped onto the problem of a directed polymer or a flux l
in disordered media. The faceting phenomenon which is
main result of our study corresponds to flux line localizati
in a superconductor with so-called columnar~correlated! dis-
order. We discuss this relation briefly in Sec. V.
1957 © 1998 The American Physical Society
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1958 57IGOR F. LYUKSYUTOV AND H.-U. EVERTS
In Sec. II we introduce the model we use. I
renormalization-group~RG! analysis will be discussed in
Sec. III. There we also derive qualitative results from t
scaling analysis, and we establish useful relations wh
characterize interface faceting. Our analytic results are s
ported by numerical simulations which will be presented
Sec. IV.

II. MODEL

The simplest model to study the influence of correla
disorder is the single-step model~see, e.g., Refs. 3–5!, which
describes the stochastic growth of a one-dimensional in
face. In this model, the interface can grow by one unit cel
a given point with fixed probabilityp if both neighboring
cells are filled. Under this condition the growing surface ca
not develop overhangs~for a review, see Ref. 5!. To include
frozen disorder, we modify the single-step model by allo
ing the growth probabilityp to depend on the interface co
ordinate. In the continuum limit the kinetics of this model
described by the KPZ equation with an additional te
which represents the correlated disorder~see Ref. 17!. For
arbitrary dimensions, this modified KPZ equation has
form

]h

]t
5nDh1l~¹h!21h~x,t !1s~x!. ~1!

Hereh(x,t) is the height of the actual interface at the coo
dinatex of the flat surface,l is the interface tension, an
h(x,t) is a random growth probability. The effect of disord
which is correlated in the direction normal to the surface
contained in the growth rates(x), a time-independent ran
dom function of x. h(x,t) and s(x) are assumed to b
Gaussian distributed with zero mean and with the correla

h~x,t !h~x8,t8!52Ddd~x2x8!d~ t2t8!, ~2!

s~x!s~x8!52Cdd~x2x8!. ~3!

The parameterC is proportional to the linear defect densi
q, C}q. If the growth probability is the same for all point
of the growing interface, the interface position is describ
by the correlator~rough interface!

^@h~x,t !2h~x8,t8!#2&}ux2x8u2x f F ut2t8u

ux2x8uz
G , ~4!

where the exponentsx(d) and z(d) are known exactly in
d51, x5 1

2, andz5 3
2,

20 and numerically ind52, x50.387,
andz51.613.21 x(d) andz(d) are connected by the scalin
relation ~see, e.g., Ref. 21!

x1z52. ~5!

III. SCALING ANALYSIS

Renormalization-group treatment: To derive the
renormalization-group equations for Eq.~1! we use the ap-
proach which applied by Kardar, Parisi, and Zhang2 to the
KPZ equation. Using the standard procedure,2 we obtain the
following flow equations:
h
p-

d

r-
t

-

-

e

-

s

rs

d

d

dl
n5Fz221Ad

22d

4d
l2Gn, ~6!

d

dl
D5Fz2d22x1Ad

l2

4 GD, ~7!

d

dl
l5@z1x22#l, ~8!

d

dl
C5F2z22x2d1Ad

l2

4 GC. ~9!

HereAd5@2d21pd/2G(d/2)#21 andl25 l2D/2n3. The first
three RG equations coincide with those for the ordinary K
equation. The additional fourth equation describes the fl
of the amplitudeC of the correlated disorder under renorma
ization. The terms proportional toAd are the result of a first-
order expansion inl2. In this approximation there is no in
fluence of the correlated disorder on the renormalization
l, n, andD. Without the first-order corrections, Eqs.~6!–~9!
just express the scaling relations~see also Sec. II!. For the
known values of the exponentsx(d) and z(d), we have
(d/dl)C.0 for both d51 and 2. This means thats will
grow under renormalization, and will become of the sa
order of magnitude as the nonlinearl term at some scaler c .
For scales larger thanr c the ~first order! RG approach is no
longer applicable. The above considerations show thats is a
relevant variable. On large length scales it determines
behavior of the system in both two and one dimensions.

Scaling analysis: To obtain results outside the range
validity of the RG approach we employ the phenomenolo
cal scaling analysis~see, Refs. 23, 22, and 17!. Consider a
region with characteristic scaler . From Eq.~4! we conclude
that h scales withr ash}r x, and the nonlinear term in the
modified KPZ equation@Eq. ~1!# asu¹hu2}r 2x22. According
to Eq. ~3!, the integral of the correlators(x)s(x8) over the
interface is proportional toq. Hence the disorder fields(x)
scales with the distancer ass}q1/2r 2d/2, i.e., it scales with
a different exponent than the nonlinear term in Eq.~1!.
Without correlated disorder,x takes the valuesx5 1

2 and
x.0.387 ford51 and 2, respectively. Using these values
the exponent of the nonlinear term, one sees that for b
dimensionalities the scaling dimension of the fields(x) is
smaller than that of the nonlinear term. This indicates that
both 1D and 2D interfaces the correlated disorder determ
the long-distance behavior of the systems.

Next we derive a useful relation between thetypical fluc-
tuationof the interface growth velocity and the concentrati
of correlated disorderq. First we find the characteristic sca
r c at which the nonlinear term and the correlated disor
term become of the same order. This length is of the orde
the size of transition region between facets. Equating
above expressions for the scale dependences of the nonl
term and the disorder fields(x), we find

r c}q21/~424x2d!. ~10!

The value ofr c in Eq. ~10! determines the scale of a typica
fluctuation due to thes term in the modified KPZ equation
For a 1D interface, Eq.~10! yields r c}q21. Substituting Eq.
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57 1959FACETING VIA CORRELATED DISORDER OFA . . .
~10! into Eq. ~1!, we find the magnitude of thetypical fluc-
tuation of the interface growth velocity:

dV}q1/2r c
2d/2}q2~12x!/~424x2d!. ~11!

The fluctuationdV is caused by thes field, i.e., it is due to
time-independent fluctuations in the distribution of the d
fects. For a 1D interface, Eq.~11! predicts thatdV}q. We
use this relation to check the results of our numerical sim
lation.

In earlier work,23 the above phenomenological scaling a
proach was applied to the problem of flux line localization
2D systems with competing thermal fluctuations and lin
disorder. The results obtained23 in this manner are confirme
by exact calculations for the problem of localization of a 1
quantum particle in a random potential~see Ref. 24!.

IV. NUMERICAL SIMULATION

We have studied the inhomogeneous surface growth
~111! dimensions numerically. Simulations were perform
on the single-step model3 using multisite coding techniques
The growth process is implemented by selecting the site
the 1D lattice on which the particles are deposited from
sufficiently large set of random numbers. Correlated defe
are introduced by taking the growth ratep to be 1 on a
fractionq of randomly chosen sites of the 1D lattice whilep

is varied through the valuesp5 1
8,

1
4,

1
2,

3
4,

7
8 for the remaining

lattice sites. The defect concentrations which have been

sidered areq5 1
32,

1
16,

1
8,

1
4,

1
2,

3
4,

7
8, and 15

16. The simulation
time t ~number of updates per site in the growth model!, is
typically between 104 and 43106 in our simulations of the
faceting and between 104 and 105 in our calculations of the
mean facet slope. The length of the system, i.e., the num
of growth points, is typically between 103 and 3.23104, and
up to 106 in exceptional cases.

In Fig. 1 we show the profile heightH(x) for a periodic

array of defects with concentrationq5 1
2. The data have bee

generated with a growth ratep5 1
2 on the nondefect sites

Figure 2 shows the profile heightH(x) obtained under the

FIG. 1. Height profileH(x) for periodically distributed corre-

lated defects with concentrationq5
1
2, and growth probability

p5
1
2.
-

-

-

r

in

of
a
ts

n-

er

same growth conditions (q5 1
2, p5 1

2), but for arandomar-
ray of correlated defects. The profile shown in Fig. 2 is
average over 16 realizations of stochastic growth. By co
paring Figs. 1 and 2, the effect of randomness becomes
vious: it induces facet formation in the height profile.

Figure 3 displays the deviationDH(x) of the profile
height H(x) from its mean valueH̄(x), for one particular
realization of the correlated disorder averaged over runs w
different realizations of stochastic growth~i.e., with different
sets of random numbers! for three different times, namely
for t151.63104 ~dotted line! ~averaged over 128 indepen
dent runs!, t251.283105 ~dashed line! ~averaged over 16
independent runs!, and t35106 ~continuous line! ~averaged
over four independent runs!. As before, the growth rate on

the nondefect sites isp5 1
2, and the defect concentration

q5 1
2. The fluctuation inDH(x) decreases with increasin

FIG. 2. Height profileH(x) for randomlydistributed correlated

defects with the same concentrationq5
1
2, and the same growth

probability p5
1
2 as in Fig.1. The height profile is averaged over

realizations of stochastic growth.

FIG. 3. Height profileDH(x) for one realization of linear dis-

order (q5
1
2, p5

1
2) and different length of the runs:t51.63104

~dotted line! ~averaged over 128 realizations of stochastic grow!
for t51.283105 ~dashed line! ~averaged over 16 realizations o
stochastic growth! and for t5106 ~continuous line! ~averaged over
four realizations of stochastic growth!.
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1960 57IGOR F. LYUKSYUTOV AND H.-U. EVERTS
simulation times, so that only a few realizations of stocha
growth~independent runs! are necessary fort5106. In Fig. 3
it is seen that for sufficiently long simulation times the typ
cal size of the transition region between the facets is m
smaller than the distance between neighboring pro
minima. This is true for all values ofp andq which we have
considered.

The results shown in Fig. 3 suggest thatDH(x) increases
approximately linearly with the distance from a local heig
minimum. Furthermore, in the vicinity of a local height min
mum the slope«p5dDH(x0)/dx0 of theDH(x) curves does
not vary significantly with the simulation timet or the total
height H. To check these features, we computed the m
facet slope«p different growth ratesp and for different con-
centrationsq. For given values ofp and q the simulation
has been repeated for up to 512 realizations of the correl
disorder. For each realization of the disorder an average
up to 64 independent growth runs~i.e., runs with indepen-
dent sets of random numbers! has been taken. For fixed va
ues of the growth ratep the mean facet slope«p varies
approximately linearly with the concentrationq in the limit
of small q. This is seen in Fig. 4, where we show the av
age facet slope«p as a function of the defect concentrationq

from simulations with the values of growth probabilityp5 1
2.

Figure 5 displays a further check on the validity of the line
dependence of the average facet slope on the defect con
tration, «p(q)}q. Values for«p(2q) and «p(q) obtained

from simulations with growth ratesp5 1
2,

1
4,

1
8, and3

4 for the
nondefect sites are plotted against each other. The data
lapse on the theoretically predicted line«p(2q)52«p(q) is
satisfactory.

The simulations reveal a qualitative picture of the facet
of the 1D interface. Atypical fluctuationin the distribution
of the correlated defects creates a transition region betw
facets, i.e., a local minimum in the height profile, with
typical widthr c . Suppose that at a timet0 there are only two
height minima with distance 2X0 between them. The lowe
one has the lower growth rate. Thus, the height differe
between two minima will grow with timet until the height
difference reaches the maximum value compatible w
«p(q)X0. At this moment of time (t1) the higher minimum
will simply disappear. One can repeat thisGedankenexperi-

FIG. 4. Average facet slope«p as a function of concentrationq

of correlated disorder forp5
1
2.
ic

h
e

t

n

ed
er
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r
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ol-

g

en

e
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ment for any number of minima, with the result that wi
increasing time the number of minima decreases. Figur
nicely illustrates this faceting process. We assume that
velocity differenceDV between two points is almost con
stant, and is of the order of the typical velocity fluctuatio
DV'dV. Then«pX0'dV(t12t0). In our numerical model
the units of time and distance are the same, i.e.,X05t12t0
and dV'«p}q. This supports the results of our renorma
ization group and scaling analysis. Indeed, according to
~11! the typicalvariation of the growth velocitydV is pro-
portional toq.

V. CONNECTION TO FLUX LINE LOCALIZATION

The problem of a growing interface profile can be mapp
onto the problem of the ground state of a directed polyme
of a flux line ~FL! in a disordered medium. The modifie
Kardar-Parizi-Zhang equation, Eq.~1!, can be transformed
into the imaginary-time Schro¨dinger equation

]W~x,t !

]t
5nDW~x,t !1

@h~x,t !1s~x!#

l
W~x,t !, ~12!

where the ‘‘wave function’’ has the form

W~x,t !5expS 2
l

n
h~x,t ! D . ~13!

The solution of Eq.~12! can be written as

W~x,t !5E
0,0

x,t

Dy

3expH 2
1

2nE0

t

dzF1

2S dy

dzD
2

2l@h~y,z!1s~y!#G J .

~14!

After a suitable change of the independent variables Eq.~14!
can be considered as the partition function of a system
scribed by the Hamiltonian

FIG. 5. Average facet slope«p(2q) at double concentration 2q
of correlated disorder vs«p(q) for different values of the paramete

p ~growth rate!: p5
1
2,

1
4,

1
8,

3
4,

7
8.
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57 1961FACETING VIA CORRELATED DISORDER OFA . . .
H5E dzF e

2S dx

dzD
2

1h~x,z!1s~x!G . ~15!

Here x(z) can be alternatively interpreted as the positi
vector of a directed polymer or of a flux line as a function
z. e is the line tension,h(x,z) is a quenched random poin
potential, ands(x) is a correlated~independent onz) ran-
dom potential. The point and correlated~linear! random po-
tentials are assumed to be Gaussian distributed, with m
zero and with correlators as defined in Eq.~3!. In this map-
ping the mean value of the height^h(x,t)& corresponds to
the free energy of the polymer or of the flux line:

^h~x,t !&52 K n

l
lnW~x,t !L . ~16!

We briefly discuss the mapping of the results obtained
Sec. IV in terms of flux line localization. First, we consid
the mapping rules for the case of numerical simulations
this mapping the growth rate,p corresponds to the relativ
strength of the correlated disorder and the point disord
Small values ofp correspond to the relatively strong corr
lated disorder, and small values of (12p) correspond to
weak correlated disorder.5,17 The lengthL of the FL, mea-
sured in units of updates per site, corresponds to the tim
the growth model.

Without the last term the Hamiltonian, Eq.~15!, describes
the fluctuations of a single FL subject only to point disord
This problem has been studied in detail~see e.g., Ref. 20!.
The energy per unit length«pd of a FL scales with its trans
verse extensionr as «pd}r 222/z, where the roughening ex
ponentz (z51/z) is known exactly ind51 @z52/3 ~Ref.
20!# and numerically ind52 @z50.620 ~Ref. 21!#. To de-
scribe FL localization phenomena we repeat the phenom
logical scaling analysis used above~see Refs. 23, 22, an
17!. For the case of correlated disorder the interaction ene
per unit length of the FL« ld scales with the transverse e
tensionr as« ld}ACr 2d/2. Both«pd and« ld scale withr with
the same exponent at some dimensionalitydc . Comparing
«pd and « ld one finds for the dimensionalitydc
54@12z(dc)#/z(dc). For dimensionalitiesd,dc a single
FL is localized by typical fluctuations of the correlated d
order. From the same scaling relations, for the localizat
length one obtainsr c}qg̃, where g̃52/(41d24/z). The
localization length corresponds to the width of the transit
region between facets in the growth problem. For the pinn
energy one has «p}qb where b5dg/252d(1
21/z)/(41d24/z), and b51 for d51, and b55.42 for
d52. The pinning energy corresponds to the slope of
height profile in the growth problem. For pure thermal flu

tuation with z5 1
2, one hasb52d/(42d), and dc54.22 In

the limit of vanishing strength of the correlated disorder,
a large scale the above result does not depend on the d
of the disorder potential.25

The simulation yields a qualitative picture of FL localiz
tion. A typical fluctuation in the distribution of the linea
defects localizes the FL in a strip with widthr c . The ener-
gies of suchtypical energy minima are distributed with som
density r(E), and among them there is a lowest one,
absolute minimum~the energy spectrum is bounded fro
below!. The variation of the FL energyV(x) of a short FL
f

an

n

n

r.

in

.

o-

y

n

n
g

e
-

n
ails

e

reflects this energy spectrum. Indeed, the energy differe
between two localized states grows linearly with the
length, and at some critical length it will be larger than t
additional energy need to overcome the barrier between th
localized states. This process manifests itself in Fig. 3:
number of pronounced minima ofV(x) decreases as th
length of the FL increases, until only the state with lowe
energy survives~see Fig. 3!.

VI. DISCUSSION

The following comments concern experimental realiz
tions of the model systems discussed in the previous
tions.

Magnetization reversal in ultrathin magnetic films: The
magnetic degrees of freedom of ultrathin magnetic films c
be modelled by the Ising model. Domain growth in the Isi
model has been discussed by many authors,12–14 and it has
been shown that the single-step model applies to this p
lem for low temperatures. In this case steps with fluctuat
distance between them can play the role of the correla
disorder. The magnetic domain imaging technique~see, e.g.,
Refs. 26 and 27! has a resolution of up to 20 nm which
comparable with domain-wall width. Therefore, with th
technique it should be possible study the influence of co
lated disorder~steps! on the domain boundary profile, and t
check our prediction of domain boundary faceting.

Faceting of a two-dimensional interface:Numerical simu-
lations have been performed for the case of a o
dimensional interface only. However, the qualitative pictu
of faceting phenomena developed in Sec. IV applies to b
one- and two-dimensional interfaces. Therefore we exp
the faceting phenomenon also to occur in the growth o
two-dimensional surface with correlated defects. One of
possible experimental realization of correlated disorder i
nanoparticle on the growing surface. In fact, in their study
the growth of a Si~001! surface, the authors of Refs. 18 an
19 observed the formation of pyramids consisting of fo
facets on the background of a roughly growing surface. T
formation of pyramids has been attributed to nanosize
fects created during the growth procedure.

Diffusion and faceting: Stochastic growth models negle
the lateral diffusion. We outline briefly the conditions und
which the faceting phenomenon remains in the presenc
lateral diffusion. One can neglect lateral diffusion if the flu
of particles due to lateral diffusion is much smaller than fl
due to the growth process. Suppose that the driving forc
the lateral diffusion is proportional to the surface slope«.
Then from the Einstein relation the corresponding curr
Jl}(Dl /T)«. The incoming fluxJG'p1(12p)q. The con-
dition of the validity of the stochastic growth assumption
JG@Jl . The diffusion constantD5D0exp(2Ea /T), where
Ea is the diffusion activation energy. By changing the tem
perature one can always tune to the stochastic growth
gime.

VII. CONCLUSION

To conclude, we have shown that, during the growth
evaporation of an initially flat surface, large-scale faceti
develops under the influence of disorder which is correla



b

i
e
t

a

i
n

ence

.
k
-

98

1962 57IGOR F. LYUKSYUTOV AND H.-U. EVERTS
in the direction normal to the surface. For a sample of ar
trary size only two~for a 1D interface! or four ~for a 2D
interface with cubic symmetry! facets survive after a suffi-
ciently long time. In the latter case the interface has
pyramid-shaped profile. The phenomenological scal
analysis in combination with numerical simulations provid
a simple description of the faceting phenomenon, and i
predicted to occur for dimensionalitiesd51 and 2. Owing to
the connection between the models describing interf
growth in d dimensions on the one hand, and the groun
state conformation of a directed polymer or of a flux line
a superconductor ind11 dimensions on the other, we ca
e

y

.

i-

a
ng
s
is

ce
d-
n

conclude that these last systems are localized in the pres
of both point disorder and correlated disorder.
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