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Faceting via correlated disorder of a stochastically growing interface or domain boundary
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We consider a stochastically growing or evaporating interface in the presence of disorder which is correlated
in the direction normal to the interface. The growth or evaporation rate at randomly distributed disorder points
is assumed to be different from that of the rest of the interface. This model is of relevance not only to island
growth in overlayers, but also to the domain growth in an ultrathin magnetic film after reversal of the mag-
netization. For a growing one-dimensional interface or a moving domain wall in a magnetic film on a crystal
surface, this type of correlated disorder simulates the effect of, e.g., surface steps or grain boundaries on the
growth process while, for a growing or evaporating crystal surface, it describes the effect of screw dislocations
or of grain boundaries again. We show that, for interface dimensiers 2 during the growttior evaporation
of an initially flat interface, large-scale faceting develops, although on a small scale the interface is rough.
Exploiting the formal connection between the interface model and the model used in the problem of flux line
localization in a superconductor we show that correlated disorder localizes the flux line in the presence of point
disorder.[S0163-182808)03003-3

[. INTRODUCTION We study the growth of islands or of magnetic domains
on a substrate witltorrelated frozen disorder. In growing
Studies of crystal growth, equilibrium crystal shapes, etc.pverlayers this type of disorder can be caused by surface
date back to the beginning of this centysge, e.g., Ref.)1  steps or by grain boundaries. Disorder induces an inhomoge-
Recently, a strong increase of theoretical activity in this fieldneous distribution of the growth probability on the surface.
has been stimulated by the work of Kardar, Parisi, and Zhantn the case of an ultrathin magnetic film, surface steps can
(KPZ2) on kinetic roughening.Many growth models can be change the magnetic domain growth probabitfty.
mapped onto the Kardar-Parisi-Zhafi§PZ) equation. A We investigate the case of stochadfikinetic) structure
well-known example is the so-called single-step mddiel growth, when the probability of the interface growth at a
which describes the stochastic growth of a one-dimensionajiven point is fixed. To study this problem, we apply the
interface. General reviews on recent developments in thgingle-step mode(see, e.g., Ref.)5with additional corre-
field can be found, e.g., in Refs. 6 and 7. Most of these Work%’ted disorder. This model can be described by the KPZ
deal with the growth of three-dimensional structufese equation with an additional term which describes correlated
e.g., Refs. 8—10However, in recent years experimental ob- gisorder(see Ref. 17, This last equation can be treated ana-
servations using scanning tunneling microscopy have alsﬂ/tically by using renormalization group methods and by nu-
revealed a large amount of interesting information about the e ica| simulatiort” The aim is to obtain the growth profile
growth of two-dlmensmnfil structures on surfa@ee_, €9 and the nonequilibrium island shape on, e.g., a stepped sub-
Refs. 8 and 1Jl Another important area of application is a strate.

magnetic overlayer. The magnetization reversal in an ultra* We generalize the approach develoned to describe two-

thin magnetic film proceeds via domain growth, and it can bedirn N ? nal island ar w?f?t high rdimpn ions. W it t

shown(see, e.g., Refs. 12—-1that domain growth in a two- ensional island gro o highe ensions. Ve use itto
describe bulk crystal growth or evaporation with correlated

dimensional(2D) Ising model at low temperatures is de- , :
scribed by the single-step model. disorder. In this case correlated disorder can be due to, e.g.,

No surface, regardless of how carefully it has been preSCrew dislocations or _grain bqundaries oriented normally to
pared, is free of defects of different origin and dimensional-the surface. Nanoparticles which “float” on the surface dur-
ity (point and linear. The list includes impurities segregated iNg growth or evaporation may also be an interesting realiza-
onto the surface, adsorbed impurities, excessive atoms of tti@n of correlated disorde(see, e.g., Refs. 18 and)19
crystal proper, steps, etc. At low temperatures, the mobility The growth of an interface in the presence of a single
of these defects is extremely small, and they can be treated defect site has been considered in Ref. 17 for both 1D and
frozen!® These nonequilibrium defects give rise to various2D interfaces. The general case of many defect sites can be
random fields on the crystalline surface. The lower the di-mapped onto the problem of a directed polymer or a flux line
mensionality of the system, the stronger the effects of frozein disordered media. The faceting phenomenon which is the
defects. Theoretically, the influence of frozen surface disormain result of our study corresponds to flux line localization
der on the growth processes in overlayers remains virtuallyn a superconductor with so-called columiteorrelated dis-
unexplored. order. We discuss this relation briefly in Sec. V.
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In Sec. Il we introduce the model we use. Its
renormalization-group(RG) analysis will be discussed in
Sec. lll. There we also derive qualitative results from the
scaling analysis, and we establish useful relations which
characterize interface faceting. Our analytic results are sup- D=
ported by numerical simulations which will be presented in dl
Sec. IV.
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II. MODEL aih =tz x =2 ®
The simplest model to study the influence of correlated d

disorder is the single-step modske, e.g., Refs. 335which —C=

describes the stochastic growth of a one-dimensional inter- dl

face. In this model, the interface can grow by one unit cell atHereAd=[Zd‘lwd/zF(d/Z)]‘l and 2= \2D/24%. The first

a given point with fixed probabilityp if both neighboring ; . X )
cells are filled. Under this condition the growing surface can Nfee RG equations coincide with those for the ordinary KPZ

not develop overhangéor a review, see Ref.)5To include equation. The additional fourth equation describes the flow

frozen disorder, we modify the single-step model by allow-°f the amplitudeC of the correlated disorder under renormal-

ing the growth probability to depend on the interface co- ization. The tgrm;_p;oportipnal 8y a_re the result of a firs_t-
ordinate. In the continuum limit the kinetics of this model is ©"der €xpansion in. In this approximation there is no in-
described by the KPZ equation with an additional termfluence of the'correlated.dlsorder on the.renormahzauon of
which represents the correlated disordsee Ref. 1% For M ¥, andD. Without the first-order corrections, Eq§)—(9)

arbitrary dimensions, this modified KPZ equation has thdUSt express the scaling relatiofsee also Sec. )l For the
form known values of the exponentg(d) and z(d), we have

(d/d)C>0 for bothd=1 and 2. This means that will
Jh grow under renormalization, and will become of the same
e vAh+X(Vh)?+ 5(x,t) + o(X). (1) order of magnitude as the nonlineaterm at some scale. .
For scales larger thamn, the (first ordey RG approach is no
Hereh(x,t) is the height of the actual interface at the coor-longer applicable. The above considerations showdhiata
dinatex of the flat surface) is the interface tension, and relevant variable. On large length scales it determines the
n(x,t) is a random growth probability. The effect of disorder behavior of the system in both two and one dimensions.
which is correlated in the direction normal to the surface is Scaling analysisTo obtain results outside the range of
contained in the growth rate(x), a time-independent ran- validity of the RG approach we employ the phenomenologi-
dom function ofx. %(x,t) and o(x) are assumed to be cal scaling analysi¢see, Refs. 23, 22, and 1 TConsider a
Gaussian distributed with zero mean and with the correlatorgegion with characteristic scate From Eq.(4) we conclude
thath scales withr ashocrX, and the nonlinear term in the

)\2
22—2X—d+AdZ}C. 9)

() p(x’ 1) =2D&%x—x")8(t—t"), (2  modified KPZ equatiofiEq. (1)] as|Vh|?<r2x~2, According
to Eq. (3), the integral of the correlatar(x) o(x’') over the
o(X)a(x')=2C8%(x—x"). 3 interface is proportional td. Hence the disorder fielet(x)

scales with the distanaeasooc 3% ~92 j.e., it scales with

The paramete€ is proportional to the linear defect density a different exponent than the nonlinear term in E)
1

¥, Cx 9. If the growth probability is the same for all points Without correlated disordery takes the valueg=1 and

of the growing interface, the interface position is described _ _ ; ; ;
by the correlatorrough interface ¥=0.387 ford=1 and 2, respectively. Using these values in

the exponent of the nonlinear term, one sees that for both

—t dimensionalities the scaling dimension of the fiet@x) is
([h(x,t) — (X' ") ]2) e |x— X |2Xf | | ) (4y  smaller than that of the nonlinear term. This indicates that for
[x—x"|* both 1D and 2D interfaces the correlated disorder determines

. the long-distance behavior of the systems.
where thel exponersngo(d) and z(d) are known exactly in Next we derive a useful relation between tipical fluc-
d=1,x=3 aznldz= 2.~ and numerically id=2, x=0.387,  yationof the interface growth velocity and the concentration
andz=1.613"" x(d) andz(d) are connected by the scaling of correlated disorded. First we find the characteristic scale
relation (see, e.g., Ref. 21 r. at which the nonlinear term and the correlated disorder
term become of the same order. This length is of the order of

xtz=2. (5 the size of transition region between facets. Equating the
above expressions for the scale dependences of the nonlinear
. SCALING ANALYSIS term and the disorder field(x), we find
Renormalization-group treatment To derive the Fooc ™ WA—4x-d), (10)

renormalization-group equations for Ed.) we use the ap-

proach which applied by Kardar, Parisi, and Zhamgthe  The value ofr . in Eq. (10) determines the scale of a typical
KPZ equation. Using the standard procedtivee obtain the fluctuation due to ther term in the modified KPZ equation.
following flow equations: For a 1D interface, Eq10) yieldsr =9~ 1. Substituting Eq.
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FIG. 1. Height profileH(x) for periodically distributed corre- FIG. 2. Height profileH(x) for randomlydistributed correlated
lated defects with concentratiot=3, and growth probability —defects with the same concentratidh=3, and the same growth
p= % probability p= % as in Fig.1. The height profile is averaged over 16

realizations of stochastic growth.
(10) into Eqg. (1), we find the magnitude of thiypical fluc-

tuation of the interface growth velocity: same growth conditions= 3, p=3), but for arandomar-

SV Q91/zrc—d/2oc 921 0/(4—4y—d) (11) ray of correlated defgcts_. The profile shqwn in Fig. 2 is an
average over 16 realizations of stochastic growth. By com-
The fluctuationdV is caused by the field, i.e., it is due to  Paring Figs. 1 and 2, the effect of randomness becomes ob-
time-independent fluctuations in the distribution of the de-vious: it induces facet formation in the height profile.

fects. For a 1D interface, Eq11) predicts thatsVee 9. We Figure 3 displays the deviatioAH(x) of the profile
use this relation to check the results of our numerical simuheight H(x) from its mean valueH(x), for one particular
lation. realization of the correlated disorder averaged over runs with

In earlier work?® the above phenomenological scaling ap-different realizations of stochastic growdite., with different
proach was applied to the problem of flux line localization insets of random numbersor three different times, namely,
2D systems with competing thermal fluctuations and lineaffor t;=1.6x 10" (dotted ling (averaged over 128 indepen-
disorder. The results obtairfédn this manner are confirmed dent rung, t,=1.28<10° (dashed ling (averaged over 16
by exact calculations for the problem of localization of a 1Dindependent runsandt;=10° (continuous ling (averaged

guantum particle in a random potentigee Ref. 2} over four independent rupsAs before, the growth rate on
the nondefect sites ip= 3, and the defect concentration is
IV. NUMERICAL SIMULATION ¥=3. The fluctuation inAH(x) decreases with increasing

We have studied the inhomogeneous surface growth in
(1+1) dimensions numerically. Simulations were performed
on the single-step modelising multisite coding techniques. 400
The growth process is implemented by selecting the sites 0 s
the 1D lattice on which the particles are deposited from a
sufficiently large set of random numbers. Correlated defects

500

200

are introduced by taking the growth rapeto be 1 on a L
H . . . (= o -,
fraction ¥ of randomly chosen sites of the 1D lattice while & ,[<
11137 T

is varied through the valugs=3, 7, 3, 7, 5 for the remaining

lattice sites. The defect concentrations which have been con

sidered ared=5, =, 1,3, 3,2, & and £. The simulation

time t (number of updates per site in the growth moded
typically between 19 and 4x 10° in our simulations of the -400
faceting and between f@nd 18 in our calculations of the o0 , , , ,
mean facet slope. The length of the system, i.e., the numbe 0 1000 2000 3000 4000
of growth points, is typically between i@nd 3.2<10*, and _ _ o _ _
up to 16 in exceptional cases. FIG. 3. Height profileAH(x) for one realization of linear dis-
In Fig. 1 we show the profile heigtt(x) for a periodic ~ order (9=3 p=3) and different length of the rung=1.6x 10"

. . 1 (dotted ling (averaged over 128 realizations of stochastic growth
array of defects with concentratiah=3. The data have been for t=1.28<10° (dashed ling (averaged over 16 realizations of

generated with a growth rate=3 on the nondefect sites. stochastic growthand fort=10f (continuous ling (averaged over
Figure 2 shows the profile heiglht(x) obtained under the four realizations of stochastic growth

-300
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FIG. 4. Average facet slope, as a function of concentratiof

FIG. 5. Average facet slo 219) at double concentration®
of correlated disorder fop= 3. g P&, (29)

of correlated disorder vs,( ) for different values of the parameter

simulation times, so that only a few realizations of stochastid® (9rowth ratg: p=3,3,5,3, 5

growth (independent runsare necessary far=1CP. In Fig. 3 o _ )

it is seen that for sufficiently long simulation times the typi- ment for any number of minima, with the result that with

cal size of the transition region between the facets is muckicreasing time the number of minima decreases. Figure 3

smaller than the distance between neighboring prof”éucely |IIu§trates this faceting process. We assume that the

minima. This is true for all values gf and9 which we have Vvelocity differenceAV between two points is almost con-

considered. stant, and is of the order of the typical velocity fluctuation:
The results shown in Fig. 3 suggest thati(x) increases AV~6V. Theng Xy~ 6V(t;—to). In our numerical model

approximately linearly with the distance from a local heightthe units of time and distance are the same, Xg=t;—tg

minimum. Furthermore, in the vicinity of a local height mini- @nd 8V~&,> 9. This supports the results of our renormal-

mum the slope ,=dAH (x,)/dx, of the AH(x) curves does ization group and _sc_almg analysis. Indeed, _accor_dlng to Eq.

not vary significantly with the simulation timeor the total ~ (11) the typicalvariation of the growth velocitysV is pro-

height H. To check these features, we computed the meaRortional tod.

facet slopes, different growth rateg and for different con-

centrationsd. For given values op and 9 the simulation V. CONNECTION TO FLUX LINE LOCALIZATION

has been repeated for up to 512 realizations of the correlated o i

disorder. For each realization of the disorder an average over |he problem of a growing interface profile can be mapped

up to 64 independent growth rurise., runs with indepen- onto the pfoblem of the ground state of a directed polyr_n_er or

dent sets of random numbgisas been taken. For fixed val- Of @ flux line (FL) in a disordered medium. The modified

ues of the growth rate the mean facet slope, varies Kardar-Parizi-Zhang equation, E(l), can be transformed

approximately linearly with the concentratiahin the limit Nt the imaginary-time Schadinger equation

of small ¥. This is seen in Fig. 4, where we show the aver-

age facet slope, as a function of the defect concentratin WX PAW(X.1) + [7(xD)+0o(X)] WixD), (12)

from simulations with the values of growth probabiljty-= 3. at A
Figure 5 displays a further check on the validity of the ImearWhere the “wave function” has the form
dependence of the average facet slope on the defect concen-
tration, e (9) = 9. Values forey(29) and () obtained

A
from simulations with growth ratgs=3, 3, 3, and: for the W(x,t)= exr{ - ;h(x,t)

nondefect sites are plotted against each other. The data col-
lapse on the theoretically predicted ling(29) =2¢,(9) IS The solution of Eq(12) can be written as
satisfactory.

The simulations reveal a qualitative picture of the faceting .t
of the 1D interface. Atypical fluctuationin the distribution W(x,t)=f Dy
of the correlated defects creates a transition region between 0.0
facets, i.e., a local minimum in the height profile, with a p{ 1

X ex f

. (13

t 2
typical widthr .. Suppose that at a tirtg there are only two dz E( ﬂ) — N n(y,z)+ o'(y)]H )
height minima with distance 2, between them. The lower 2vjo |2\dz

one has the lower growth rate. Thus, the height difference (14)
between two minima will grow with timeé until the height

difference reaches the maximum value compatible withAfter a suitable change of the independent variables(E4.
gp(19)Xo. At this moment of time {;) the higher minimum  can be considered as the partition function of a system de-
will simply disappear. One can repeat tlBedankerexperi-  scribed by the Hamiltonian
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e/ dx reflects this energy spectrum. Indeed, the energy difference

H= j dz E(d_z : (15  between two localized states grows linearly with the FL
length, and at some critical length it will be larger than the
Here x(z) can be alternatively interpreted as the positionadditional energy need to overcome the barrier between these
vector of a directed polymer or of a flux line as a function of localized states. This process manifests itself in Fig. 3: the
z. € is the line tensiong(x,z) is a quenched random point number of pronounced minima of(x) decreases as the
potential, ando(x) is a correlatedindependent orz) ran-  length of the FL increases, until only the state with lowest
dom potential. The point and correlatdihear) random po-  energy survivegsee Fig. 3.
tentials are assumed to be Gaussian distributed, with mean
zero and with correlators as defined in E8). In this map-
ping the mean value of the heigfin(x,t)) corresponds to

VI. DISCUSSION

the free energy of the polymer or of the flux line: The following comments concern experimental realiza-
tions of the model systems discussed in the previous sec-
V .
(h(x,t))=—<—InW(x,t)> . (1) tons. , _ o
A Magnetization reversal in ultrathin magnetic filmghe

agnetic degrees of freedom of ultrathin magnetic films can
e modelled by the Ising model. Domain growth in the Ising
odel has been discussed by many author¥,and it has
een shown that the single-step model applies to this prob-
IJem for low temperatures. In this case steps with fluctuating
distance between them can play the role of the correlated
disorder. The magnetic domain imaging techni¢see, e.g.,
Refs. 26 and 27has a resolution of up to 20 nm which is
omparable with domain-wall width. Therefore, with this
echnique it should be possible study the influence of corre-
lated disordeXsteps on the domain boundary profile, and to
check our prediction of domain boundary faceting.

Faceting of a two-dimensional interfacumerical simu-
lations have been performed for the case of a one-
dimensional interface only. However, the qualitative picture
of faceting phenomena developed in Sec. IV applies to both
one- and two-dimensional interfaces. Therefore we expect
the faceting phenomenon also to occur in the growth of a
%wo-dimensional surface with correlated defects. One of the

ossible experimental realization of correlated disorder is a

anoparticle on the growing surface. In fact, in their study of
. —dr . _ the growth of a S001) surface, the authors of Refs. 18 and
tensionr asejq VCr 7% Bothe g ande,q scale withr with 19 ghqerved the formation of pyramids consisting of four
the same exponent at some dimensionality Comparing  facets on the background of a roughly growing surface. The
epa and ey one finds for the dimensionalityde  formation of pyramids has been attributed to nanosize de-
=4[1-(d;)]/{(dc). For dimensionalitiesi<d. a single  ¢oots created during the growth procedure.
FL is localized by typical fluctuations of the correlated dis- bt sion and facetingStochastic growth models neglect
order. From the same scaling relations, for the localizationg |ateral diffusion. We outline briefly the conditions under
length one obtains .« 37, where y=2/(4+d—4/{). The  which the faceting phenomenon remains in the presence of
localization length corresponds to the width of the transitionjateral diffusion. One can neglect lateral diffusion if the flux
region between facets in the growth problem. For the pinningf particles due to lateral diffusion is much smaller than flux
energy one has g,x9¥” where B=dy/2=2d(1  due to the growth process. Suppose that the driving force in
—1/{)/(4+d—4/7), and B=1 for d=1, and 3=5.42 for  the lateral diffusion is proportional to the surface slape
d=2. The pinning energy corresponds to the slope of therhen from the Einstein relation the corresponding current
height profile in the growth problem. For pure thermal fluc- J,o<(D,/T)e. The incoming fluxig~p-+ (1—p) ¥. The con-
tuation with =%, one hasg=2d/(4—d), andd,=4.2? In  dition of the validity of the stochastic growth assumption is

the limit of vanishing strength of the correlated disorder, ondc>J;. The diffusion constanD =D qexp(~E,/T), where

a large scale the above result does not depend on the detalfs is the diffusion activation energy. By changing the tem-

of the disorder potentiaf perature one can always tune to the stochastic growth re-
The simulation yields a qualitative picture of FL localiza- gime.

tion. A typical fluctuation in the distribution of the linear

dgfects Iocallzgs the FL in a strip W|th.wu_:it13. Thg ener- VIl. CONCLUSION

gies of suchypical energy minima are distributed with some

density p(E), and among them there is a lowest one, the To conclude, we have shown that, during the growth or

absolute minimum(the energy spectrum is bounded from evaporation of an initially flat surface, large-scale faceting

below). The variation of the FL energy(x) of a short FL  develops under the influence of disorder which is correlated

We briefly discuss the mapping of the results obtained i
Sec. IV in terms of flux line localization. First, we consider
the mapping rules for the case of numerical simulations. |
this mapping the growth ratg corresponds to the relative
strength of the correlated disorder and the point disorde
Small values ofp correspond to the relatively strong corre-
lated disorder, and small values of ) correspond to
weak correlated disordért’ The lengthL of the FL, mea-
sured in units of updates per site, corresponds to the time i
the growth model.

Without the last term the Hamiltonian, E@.5), describes
the fluctuations of a single FL subject only to point disorder.
This problem has been studied in det@ke e.g., Ref. 20
The energy per unit length, of a FL scales with its trans-
verse extensiom asepqr? 2%, where the roughening ex-
ponent{ ({=1/z) is known exactly ind=1 [{=2/3 (Ref.
20)] and numerically ind=2 [{=0.620(Ref. 2J]. To de-
scribe FL localization phenomena we repeat the phenomen
logical scaling analysis used aboysee Refs. 23, 22, and
17). For the case of correlated disorder the interaction energ
per unit length of the Fle 4 scales with the transverse ex-
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in the direction normal to the surface. For a sample of arbiconclude that these last systems are localized in the presence
trary size only two(for a 1D interface or four (for a 2D  of both point disorder and correlated disorder.

interface with cubic symmetjyfacets survive after a suffi-
ciently long time. In the latter case the interface has a
pyramid-shaped profile. The phenomenological scaling
analysis in combination with numerical simulations provides We benefited from discussions with L.-H. Tang, G.V.
a simple description of the faceting phenomenon, and it idJimin, and T. Nattermann. We wish especially to thank
predicted to occur for dimensionalities=1 and 2. Owingto L.-H. Tang for help with simulation. The work was sup-
the connection between the models describing interfacgorted by the Niedersasische Ministerium fu Wissen-
growth ind dimensions on the one hand, and the groundschaft and Kultur. One of ud.F.L.) was partly supported by
state conformation of a directed polymer or of a flux line in SFB 341, by U.S. DOE Grant No. DE-FG03-96ER 45598
a superconductor id+1 dimensions on the other, we can and by NSF Grant No. DMR 9705 182.
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