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We analyze in detail how the scattering by nonmagnetic impurities affects the shape and amplitude of the
order parametefOP) and the density of states in anisotropic superconductors in the framework of BCS theory.
Special attention is paid to the case when the OP is a mixtudeanids waves changing its sign on the Fermi
surface. The critical temperature is shown to decay with the increase of the residual resistance according to the
power law. At zero temperature impurity scattering gives rise to a peculiar phase transition from a gapless
regime to a state with a finite gap in the quasiparticle spectf&@163-18226)02342-9

I. INTRODUCTION We have established a close relationship between this
plausible phase transition just described and the breakdown
Experimental study of the order paramet&P) in high- ~ of superconductivity in the purelg-wave case found in
T. superconductors Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O estapRefs. 12 and 13. Namely, for an extendedupercondyctor
lished firmly two facts: close to ad superconductor, the value of the scattering rate
(1) The OP reverses its sign on the Fermi surface. 7, at the new transition point is close to the valieat the

: reakdown point in thel superconductor. We argue below
d (2) The shta?e of thﬁ oP canr;qt be d(;.\slcrllbed (i?(acltly ".ist at a weak violation of thel pairing takes place in the
wave in a tetragonally symmetric crystal. In particular, its g; s ca.cy-0 compound.

angular average is not zero. Another important phenomenon considered in our work is
The first statement is supported by the Josephson tunnej powerlike decay of the critical temperature induced by the

ing experiment in the corner geometrfhe second one has increase of the impurity scattering rate or the residual resis-
been proven by the-axis Josephson tunneling experiménts tance. It will be shown that the power exponent is expressed
and by the measurement of tfie dependence on residual in terms of the anisotropy coefficieAC) « which is the
resistivity in the ion and radiation damaged Y-Ba-Cu-O andratio of the angular average of the square of the OP to the
Y,_,PrBa-Cu-O° square of average of the OP. We find that the shape of the
The physical reasons for the formation of such a complexOP changeshwﬁhl the impurity corTcenLratlgn. v of
OP are still not clearly understood. The initial idea of the © gs')sa‘r’]"grtth:’e'neermengong;g rt1o?]tmtor?otoirc])i;yfuonctsigarisof
antiferromagnon exchang® was opposed by Schrieffer . : 9y 9ap . . 1> &
o L oo he impurity scattering rate or the impurity concentration:
who indicated that this interaction is strongly suppressed oth have a maximum
the nesting vector. In. a model taking into account phonor) Having several overlappings with the above-mentioned
and Coulomb interactions near extended van Hove singulariz,q

. X 7 : rks, the present article differs from them by a more gen-
ties Abrikosov has found the sign reversal of the OP. To our g4 approach: we do not presume any special interaction.

knowleglge strong-coupling theories do not explain nontrivialrpig approach enabled us to discover a phenomenon missed
properties of the OP. by other authors: the change of the OP shape with the impu-
No matter what mechanism gives rise to this special shapgty concentration. We believe also that a more complete
of the OP, its very existence leads to a number of physicaiescription of the DOS and OP in the entire range of the
phenomena. The purpose of this article is to describe thesgnergy, concentration, and temperature, as well as the deri-
phenomena in some detail. As it will be demonstrated belowyation of Ginsburg-Landau equation presented below is im-
an initially gapless excitation spectrum of a clean superconportant for comparison with the experiment. We carried out
ductor may acquire a gap due to the scattering of electronsur analysis within the Born approximation for the indi-
by nonmagnetic impuritie$® 1% Thus, the layered aniso- vidual impurity scattering, but the generalization of our
tropic superconductors are potentially predisposed to a sotheory to the unitary limit is straightforward.
of phase transition at zero temperature. The latter may ex- The main reason for thé-s mixture in highT, supercon-
hibit itself, e.g., in the quasiparticle tunneling and the tem-ductors is probably a small orthorhombic distortion which is
perature correction to the penetration depthn single crys- invariably present in the superconducting stédee Refs.
tals of Y-Ba-Cu-O doped by Pr or subject to the radiation14—17. Although the ratio of the lattice constants in plane is
damage. The transmutation of the gapless behavior of thes#ose to 1 the orthorhombic anisotropy is strongly enhanced
quantities at small residual resistivity to the activated regimen the electronic properties. The orthorhombic distortion is
as the residual resistivity increases would clearly signal thigspecially weak in the Bi 2:2:1:2 compouhdTherefore,
transition. one can expect that this compound is well described as an
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wave. This conclusion is supported by angle-resolved photo- En(qp)— aN; | w(e,¢’) —
emission spectroscopy measurements of the Fermi surface Ve 2(e")+A%e")
and the gap anisotropy and by measurements of ac

conductivity®® For this reason we present a thorough analy-Here m(¢)=\pg+(dpe/de)*/ve is the local effective
sis of this situation. mass. In contrast to the case of the isotropipairing, the

In the next section we give the general formulation of theratios of the renormalized to the bare frequeneiesand the
problem. In Sec. Il the critical line and the behavior of the corresponding order parametexg/A are not the same.
OP near it is found. In Sec. IV we derive equations for the Assuming thatn(¢) is a periodic function of its argument
amplitude of the OP and solve them in the vicinity of the it can be eliminated from the AG equations by means of the
critical curve. In Sec. V we derive the Ginzburg-Landaufollowing mapping:
equations. In Sec. VI the OP and the DOS are found at zero
temperature. In particular we find the critical value of scat- ~ ¢ R o
tering time 7, at which the gap in the spectrum appears. A ‘P(QD):ZWL m(¢")de (fo m(e")de
brief report on part of the results has been published in Ref.
10. This mapping is single valued providen( ¢) is positive in
the whole domain & ¢<27. We shall omit the tilde over
Il. GENERAL RELATIONSHIPS ¢ in the subsequent formulas having in mind that the latter
no longer represents a real polar angle in the momentum
The OP represents a spin-singlet state either for thgjane. Although this substitution does affect the angular de-
d-wave or for thes-wave pairing. We start with the pendence of the OP, it leaves the crystal symmetry intact. In
Abrikosov-Gor'kov equatiorfé for the electronic matrix the remaining part of the article we consider the isotropic
Green function(Nambu representatiéi’) averaged over the scattering onlyw( ¢, ') = const, which, of course, is invari-
random ensemble of the elastic scatterers: ant with respect to the above mapping. Then E6sand(7)
. G(pie,) Fl(piiey) are reduced to the following ones:

“lFpie) —o-p-ie) @ "gn< 1 >_

almostd superconductor with a weak admixture of tke f m(<p’)Zn(<p’)d<p’
=A(e). (1)

-1

8

€En——\\ YTT/—/—/——— 9
whereG(p,ie,) andF(p,ie,) are the normal and anomalous "or \FE§+An(¢)2 ©
Green functions, respectively,=(2n+1)#T stands for the
Matsubara frequencies, apddenotes the momentum. The 1 A (o)

Dyson equation foG reads Kn(<p)— —<+> =A(p). (10
“ ~ ~ ANV 6§+An(¢’)2
G '=Gy'-3, )

) Here angular brackets denote angular averaging:
whereGy is the Green tensor in a clean superconductor (F)zfé”F(cp)d@/(Zw). The analysis of the above equa-
) tions presented below is greatly simplified due to the fact
&1 ie,—¢& A 3 that the renormalized frequency remains angular indepen-
ol A ie,+¢&)’ G dent.
. The order parameteA(¢) satisfies the usual self-
and the self-energy is given by the following expression: consistency condition:

- . A , dzp d2 ’
E(p,len)=NiJW(p,p )G(p :lfn)(zT)z- 4 A(p):zT; fV(p,p')F(p’,en)%z—, (11

Here ¢=(p/2m) - is the energy of a normal electron o re V(p,p') is the electronic interaction potential. The
counted frcam.the Fermi leveN; is the impurity concentra-  jyteqration overé in Eq. (11) can be performed explicitly
tion, w(p,p’) is the scattering probability. We consider the giying the following result(the same mapping eliminating
two-dimensional system both for the simplicity and keepinggffective mass should be employed here

in mind applications to the high; superconductivity. We
search for a solution of Eq2) in the following form: Zn(fp') do’

== 5. 12
2+ A3(') 2T

e T A<¢>=T§fvap,<p')
A, i€ té

élz( , (5)

Equationg9), (10), and(12) form a closed system determin-

where bothie, andA, depend on the polar angle and the N9 A(@.T).

integern and obey the following nonlinear integral equa-
tions: Ill. THE TRANSITION LINE

~ A. Linearization
m(e")en(e )de"

€n(@)— TrNif wW(e,@') €, (6 The system Eq<9), (10), and(12) are strongly nonlinear.

V(o) +02%(¢") However they may be linearized near the transition line
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T=T.(7). Indeed, neglecting in Eqg. (9) and leaving only f(Te,7)=Vo!. (23
linear terms in Eq(10) we get Employing Eq.(23) one gets
€n=entsgrien)/T, (13 IN(Teo/Te) = (X+1/2) — (1/2), (24)
(@)= (An(@))([El ) =A(e). (14 where
Averaging over angles both sides of Efj4) and employing Teo=(2yelm)exp — m/Vy) (25)

Eq. (13), we derive the following important relationship: . .
is the transition temperature for a clean superconductor and

<Zn>/|?n|=(A>/|€n|- (15  y=1.78=expC, C is the Euler constant. At smak (small
) ] , ) concentration of impuritigsT, is close toT .
It is analogous to the Abrikosov-Gor'kov relatfSnfor the The critical temperatur&, is a monotonously decreasing

isotropic case, however it is valid only in the vicinity of fynction of the scattering rate vanishing at
transition line and even there for the mean values only. Plug-

ging Eq.(15) into Eq.(14) one can resolve it to find: 7e=2y(mTeo) =€ texp(m/ Vo). (26)
T~ _ Indeed, at very smallT, and finite = the parameter
=A+ . c . .
An=A+(A) (el 7) (16) x=(277T) ! becomes large so that the digamma function
Then instead of Eq12) one obtains may be replaced by its logarithmic asymptotics:

— 1/2)=I 1/(24x?); x>1 2
Ae)=1(T,7) [ Vie.6)A (e de" +a(T () V(e), YO ENeFUEHa; el @D
17 and consequently

V(o) = / ! 1 7
whereV(¢)=/V(e.¢")de" and (T, 7= —In(en) = & (T2, (29)
1 1
f(T,=T2 ——= 9T.N=T2 ——=———1=- Plugging the above asymptotics into the criticality equation
n |en|+ 1T n |enl(1+]€n|7) hich i . . he f
(18) (23) which is convenient to cast into the form
Evaluating these functions one must keep in mind that sum- f(Te,n)=f(T,,7"),

mation is limited by the cutoff energye|<e. Assuming

& T, we find one can analyze the behavior of the critical temperature as

the scattering rate increases approaching its critical value. In

f(T,7)=m Y{In(el2nT)— p(x+1/2)], (19) the immediate vicinity of the latter the drop df; is gov-
erned by a square root lajthis asymptotic is valid in a very
o(T,7) =7 Y p(x+1/2) — ¢(1/2)], (200  narrow interval of its argument. Atrt-7.)/7.=0.015 the

correction due to the higher-order terms reaches abouf] 20%
wherex=(27T7) ! and ¢(x) denotes the digamma func-
tion (logarithmic derivative of the Euler gamma functjon T/ Teo=V6 (/7= 1)/(27). (29
Below we analyze Eq(17) for the d-wave and thes-wave

pairing in turn. At 7 smaller thanr. thed-wave pairing is totally suppressed.

The breakdown of thd-wave superconductivity due to elas-
tic scattering has been discussed earlier by Radtka.,*

B. d-wave pairing Monthoux and Pine¥ and by Borkowski and Hirschfeltf.

In the case ofl-wave pairing{A)=0 due to the symme- Notice that in the above analysis we did not rely on the
try constraint: A(¢+ 7/2)=—A(¢), leading to a further d-wave symmetry directly. An essential presumption
simplification of Eq.(17), (A)=0 is certainly a straightforward consequence of the

d-wave symmetry but, generally speaking, does not require
_ , / , the former. On the other hand, one may hardly anticipate that
Ale) f(T’T)f Vig.¢")A(e")dg". @) the average of the OP vanishes identically, if not enforced by

This is a linear homogeneous Fredholm equation which igymmetry.

solvable and its solution is unique if and onlyAf(¢) and

f(T,7) match one of the eigenfunctions and one of the ei-

genvalues, respectively, of the linear integral operator: In the case ok-wave pairing a formal solution of unre-
duced Eq.(17) reads

C. Extended s-wave pairing

v =fv,'\1f'd'. 22 N
(€)= ] Vle.eD(eh)de (22 Ae, T, =g(T, (AL H(T,7V) V(g). (30
The minimum of the free energy corresponds to the maximaAveraging Eq.(30) over the angle one finds the equation for

eigenvalue V, and the corresponding wave function the critical line:
Po(¢). Thus, the equation for the transition temperature o
T, reads 1=g(T,{([1—f(T,7)V] V). (31)
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Equation(31) can be rewritten in the diagonal representation 2 |<‘1’n>|2 -1
of the operatoiV: T.=(2m7) texg — _ . (37
P e (2m7) n vn‘l—ln(eT)/w)
1=g(T, 71>, V”|<—wn>|2 (320  Finally, 7 reaches what we call the extra-dirty limit
TR 1-1(T, 1)V,
1<lner<mV,'. (38)

where V,, and ¥, denote the eigenvalues and the corre-

sponding eigenfunctions of the operatérrespectively. Even in this limit the OP does sustain its anisotropy, al-

If impurity concentration is not too high, the sum in Eq. though its profile is determined by the interaction in the sys-
(32) is dominated by a single term corresponding to thetem without impurities:

maximal eigenvalud/,. The OP in this range of scattering

rate is proportional to Fhe corre.spon(jing e_igenfunction A((p)o(v_((p), (39)
A(@)xV¥y(@). The domain of 14, in which this single-

mode regime holds, extends from a clean limit4/T.;toa  whereasT, is given by the following asymptotic expression:
relatively high concentration of impurities exceeding the o

critical value in the purelyl-wave case .= 7T.y/(27). It T=(2ylm)eexd — ml/{V(p))](er)< L, (40)

is limited by a strong inequalityin7To|<7V, ~. The disper- o _

sion relation in this regime is similar to that in tlewave =~ Wherex is given by Eq.(35). To obtain the last result one
case: should expand Eq(37) up to terms linear inVin(e7). In

conformity with what was discussed above concerning a
f(T,r)zvgl—|(1Ifo>|2g(T,7-). (33 weak deviation from thel-wave symmetry, the AGc be-
_ o . _ comes infinite wheqA)—0. Notice, however, that the AC
Ir] spite of the similarity, a correction to tm}wavg d|sper— x in two formulas Eqs(34) and (40) do not coincide, al-
sion Eq.(23) represented by the second term in the right-though they are determined by the same expression in terms
hand sidg(rhs) of Eq. (33) is extremely important, especially of the OP. The profile of the latter, however, varies strongly
in a vast region of moderately high concentrations startingys the scattering increases. If the admixture ofstiveave is
fro_m 1/m>To, where in conform_|ty with the dispersion re- small (large x) the powerlike decay of . in the single-mode
lation Eqg.(32) the decrease of. is governed by the power regime[Eq. (35)] does exist, if(¥o)2>er. Otherwise the
law extra-dirty regime starts atrf{— 7)/ 7> (W) %Iner,.
T T (e (34 The powerlike tail Eq(40) was derived by Hohenbefg
o= Teo(7/7c) under the assumption of weak anisotropy. In this case a
with the exponent determined by the A&=|(W,)| 2. The  single-mode regime prevails at an arbitrary scattering rate.
AC may be expressed in another, more physically meaningAnother peculiarity of a weakly anisotropic system is that the

ful way: power law Eq.(40) spreads to the whole strong scattering
range:r '>7_ 1.
k={|AZ|)|{A)|>. (35 Summarizing, a critical temperature decreases with the

increase of the scattering rate in anisotropic layered super-
onductors. This suppression of superconductivity is more
ronounced the greater the anisotropy. The critical tempera-
dre lessens like a power of the scattering rate for
7 *> 7.1 and for small and moderate values of the anisot-
ropy which may be characterized by the exponentl, Eq.
(35). It drops rapidly in the vicinity ofr *=7_" in an al-
mostd-wave superconductor. In the extra-dirty lindit also
obeys the powerlike asymptotics E40). This tail expands
(7T ore)? Te into the whole domain of a moderate and a strong scattering
T+ |<\If0)|2In(T—> =log(7/ 7). (36)  for weakly anisotropic superconductors.
c0 Equation(40) may be interpreted as a direct relation be-

This equation provides a smooth interpolation between th&veen critical temperature and residual resistivity in the nor-
square root law Eq29) and the power law Ed.34). mal state provided the impurity doping or the radiation dam-

Further increase of the scattering rate is accompanied by age does not significantly influence the number of carriers.
gradual transition from a single-mode to a multimode regimeAccepting the Drude law for the residual resistivity one finds
and increasing deviation of tHE., dependence om from  Tc(p)*p' *. We have analyzed the experimental data for
the power law Eq(34). Nevertheless, the critical tempera- T¢(p) in the Pr-doped and ion-damaged Y-Ba-Cd-8oth
ture may be expressed through the scattering time explicitlgets of data being in a reasonable agreement with each other
everywhere in the dirty limit. By dirty limit we mean that the show thatT(7) does not vanish up to the loffe-Regel limit
scattering rate exceeds its critical value substantially. Acer7~1, strongly implying that the average of the OP is fi-
cording to Eqs(18) and (19) the functionf(7,T) increases nite. The value of AC evaluated on the basis of the above-
monotonously withr and atTr<1 it does not depend on mentioned data is=2=+0.3 meaning thatA)~0.7\(A?).
temperature. It can be easily verified that the conditionThus the shape of the OP deviates significantly from the
7 1>T. implies 7~ 1>Tg,. Thus, in the dirty limit one gets tetragonald wave.

If the admixture of thes-wave component to the dominating
d-wave OP is small, the boundary curve between the norm
and the superconducting phases clings to the analogoq
curve in the purelyd-wave case. For this type of the OP, the
AC k>1. As a consequence, the powerlike dropTgfbe-
gins already in the vicinity of the critical value of scattering
rate 1/.. The dependence df, on 7 for T.<T;, may be
approximated by means of the following equation:
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IV. THE ORDER PARAMETER which can be further rewritten using polygamma functions as

In the weak-coupling approximation the shape of the OFIOHOWS:

can be determined fro_m the Iinea_rizeq self-consistency equa- 32 IN(To/T) + (X + 112) — h(x+ 1/12)
tion whereas its amplitude can, in principle, be found from 2= 7 € ,
the system of nonlinear AG equations and from the orthogo- (47Te) X' (X + 1/2)13+ (Wo(@)) (X +1/2)
nality condition applied to the self-consistency equafiofy. (47)
Let us start with an easier case of the purdiwave pairing.  wherex=(2 #T7) ! andx.= (2 #T.7) "1, respectively, and
" denotes thenth derivative of the digamma function. If

A. d-wave pairing the concentration of impurities is sufficiently far from the
One can rewrite Eq12) in the following way: g:itei}eal value, this expression is reduced to the following
A(@)—f(T,T)f Vig,¢")A(¢")de’ Q _ TT
(4nT)? T.
=T> fV(qo ®") . S 1—x PV (x.+1/2)
’ iAZo) e +1/ X c - :
“ AN el XD (e 11213+ (¥ 0)) 4P (xc+ 112)
, dg (48)
XA(e) 5 (41)

Care must be taken, however, when the scattering rate ap-
wheref(T, ) is defined by Eq(18). Since the latter factor is proaches the superconductivity breaking limit. Sifge-0
logarithmically large it compensates the smallness|\f  the expansior(27) should be used together with the corre-
making two terms in the Ihs of the same order. On the othegponding expansions for the higher polygamma functions.
hand the sum in the rhs of E¢41) is convergent which The result of this calculation accounting for the form(28)
allows to extend the summation fromeo to «. Conse- reads
quently a characteristic magnitude of this term|¥4<1
times smaller thanh. Therefore in the leading approximation Q? To(7)—T?

Eg. (50) becomes linear. Moreover, it coincides with Eq. (477)2:24(<\I/g(¢)>_2/3)' (49
(17) for the critical line. Its solution reads

The latter expression 8t.— T<T. matches the asymptotics

A(@)=Qo(T, 1) Wo(e), (42 of Eq. (48) atx,>1. Note that W(¢))=1.
whereW(¢) is a normalized eigenfunction of the operator B
V determining the order parameter on the critical line. Aver- B. Extendeds-wave pairing

aging both sides of Eq41) weighed with the same function |t is convenient to rewrite Eq12) in the following form:
Ty(¢) one gets in the next approximation:

R do’ n
< V() > LT =T JV<<p,<p'> ‘P[ i

f(Te,n)—f(T,n)=T —_ 21 2 N2( 1
( [ T) ( T) ; En+Q2qf0(§D)2 \/En+An(QD )
(4) 1
1 - + =
EPEETL 43 leal(rlenl +1) | @24+ 2A2(p")
which should be combined with a system
A(e") . (50

~ e+ 1r
I R R— - (44)
€n r F2—2_€n+Q2q,O((P) €n Here we have introduced a linear operator

in order to determin&(T, ). In the vicinity of the critical L(T,n) =1—f(T,)V—g(T,7)VP, (51)
line this system can be solved explicitly yielding: . ~
) wherel and P are the identity operator and the projector to
_ Q ) (45) the rotational-invariant stat@), respectively. The scalar fac-
2(|ep| +1i7)2%)" torsf(T,7) andg(T, ) are defined by Eq18). Just as in the
. . . d-wave case those are logarithmically large. Therefore one
Plugging this into Eq(43) one obtains can seek a solution of E¢50) perturbatively starting with a
<\I,g(¢)> linear approximation corresponding to Eg2)

~ Sgr(fn)

€n= €p

T

B @ [_
(01T =5 T2 | Jef+um? A(@)=Q(T, x(@)+AM (o), (52

1

S S (a6 “Wherex(e) is a null vector of the linear operatr(T,, 7)
7(| €l + 1))

proportional to expressio(80). The amplitudeQ(T,7) can
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be found from the orthogonality condition. To this end let usPlugging this into Eq(55) one gets
project both parts of Eq(50) onto the null vector of the
conjugated operator

(fc_ f)<X2>+(gc_g)<X>2
Li(n)=1—f(r)V—g.(7)PV.

2T7'3 4 2\2
Here and in what follows the subscriptienotes correspond- =Q 5 Z (1+<X| ) Ik —(1iX|> &
ing quantity evaluated at the critical temperatlig€r). The n Tl€n Tl€n
?hbeo:c/(t)ali(r)nvarr:téogfsrgsslli(;/r?.ctor up to normalization is given by 40003 200X 2+ 1| &)
R . R 7'|6n|(:|-""r|6n|)3 7'2|5n|2(1+7'|6n|)4
0 =[1-f(r)VI0) (53 ()
and must be orthogonal ta*)(¢)). This condition com- AP en|)3}' ®9
bined with a useful relation between the conjugated null vec-
tors
Let us denote
X)=VIX), (54)
leads to the following transcendental equation for the ampli- i 1(X) = Z (n+1/2+x) "X (n+1/27". (60)
tude Q: n=0
(o= H){(x2(@))+(ge—9){x(@))? These functions can be easily expressed in terms of poly-
gamma functions. In particulain, o(x) = (— 1)* < D(x)/
xX° (x? (k—1)!. Using these functions E@59) can be rewritten in a
=T > Newe “Te+1r more concise fashion
n n

+

- x (x)?
fiz — . (5H
n< \/E§+Aﬁ> |€nl (7] €n +1) ]
A new notationo,, has been introduced for the renormalized

as follows: <
o :W{<X4)h3,0—<)(2)2xch4,0+ 4x*)(xX)xchs 1
C

<X2>|n<-|—lc) (X = ()9~ 9(x)]

0,=Q(T, 7)o (56)
+2<X2><X>2(X2h4,2"‘ X§h3,2)+<X>4X§h2,3}- (61)

After this rescaling the only explicit dependence

on Q(T.7) left in Eq. (55 is due 1o Au(@) gnctionsh, (x,). In the isotropic limit = 1) this equation
=Q(T,7)[x(¢)+ 0,]. However, one should keep in mind reduces tok’{éecz‘(.)llowing one:p =1) q
that the same dependence persists in the AG equations for

In the above formula we have omitted the argument of all the

€, ando,.
Again the solution in the vicinity of the critical line can be )
found explicitly: Q _ 2 T T 0 1,,Tc_T 62)
(4nTe)? PR T T T
- S en) Q® (M (L+2en)+(xD)err
a=ent— —|173 lenl? (1+€,7)? ’ Here we have expanded the logarithm iR, € T)/T.. The
(57 same behavior is characteristic for the large scattering rate
regime provided that the angular average is not too small. If,
~ Q@ (200 el +H(xP) renl? however, thed-wave symmetry breaking is weak, the as-
I Telr 27€n (1+ 7]€y|)? ' ymptotics are preceded by a significant crossover domain for

(58  the scattering rates relatively close ta-J1/ Namely,

Q* (X)2IN(X6/X) = (X)X 2=x; ?)/24
(47T (2= (xA3)xe “+ (XA (x)22mxg = (x)* D (11212

(63
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If xc<((x?))Y4(x), the first term in the numerator and the ) 1
last two in the denominator may be neglected. In this fashion A(p.d,€,)=A (P,Q)erf G(p',en)G(—p'+q,
Eq. (63) is reduced to thel-wave-like behavior Eq(49). In

the opposite limit, however, the terms with the maximal dp’

powers of(x), both in the numerator and the denominator, —en)A(p’,q,en)(z—W)g, (69)
should only be retained. Note, that even in the extra-dirty

limit the OP does not become isotropic where v=[8(£)d3p/(27°) is the normal density of states

on the Fermi surface. The integration ovein Eq. (69) is
A(@,T,T)~4.35\/WV(¢)(V>’1. (64) readily performed with the following result:

V. GINSBURG-LANDAU EQUATION JG(pvfn)G(—Pqu,—fn)df: , (70

[€,|—ivq/2
Several workers discussed a phenomenological Ginzbur
Landau(GL) equation for thed wave and mixed stat€.In

this section we derive the GL equation in the framework of

Yherev is the local velocity on the Fermi surface. We derive
the following equation forA:

the BCS theory for an anisotropic superconductor with im- 1 [ A(p',q,7,) dQ’

- s . . ) At P’.4,7n)
purities. An analogous derivation for a clean anisotropic su Ap,g,en)=AT(p,g)+— | —— —. (7))
perconductor has been presented by Gorkov and ™) [€&|—iv'g/2 v

e 4
Melik-Barkhudarov: The momentunp in Eq. (71) belongs to the Fermi surface

In the previous section we have already completed the nd the integration is carried out over the Fermi surface as
necessary calculations concerning the fourth-order termé 9

Here we present the results for the anisotropic gradie ell. The reduced verteA is analogous to the modified gap

T . . y .
terms. We begin with the self-consistency equation in the® ntroduced by Abrikosov and Gor'kov. Expanding Green
coordinate representation: functions up to the second orderdn we deduce a modified

equation forA:

A(xy)=V(x,y)F(xy,t=0), (65) ) 1 dQ’
A(p,g.€n)=A (p,q)+mf A" @) 7~
where the overline means the averaging over the random n

impurity configurations. We need this average calculated in .0p !
the lowest(linear order in the amplitude of the OP and up to - = 3f A(p'.9,€n)v 05—
. 47v€,) v
the second order in the center-of-mass momentum. In the
linear approximation and for a fixed configuration of impu- (72
rities

In the lowest approximation iq we recover the previously
- found solution:
FT=GoATG,. (66)
(A7)

T€

A%(p,en)=A"(p)+ (73

Here Gy(p,€)=Go(—p,—€). The averaging over the ran-
dom field can be performed employing the Abrikosov- y
Gorkov technique. In particular, leaving only linear in  With the accuracy up to the second ordemji follows,
terms, we get

AT d.
o _ A(p,q,en)=AT(p)+%—Wﬂﬁgﬂ((vavﬂAU
FT(x,x"en)Zf Go(X,Y,€n)AT(Y,2)Go(z,X’, — €,)dydz. (vavﬁ>(AT>
(67) +T : (74)

After averaging over the random impurity potential, the Equation(65) can be transformed into the following form:
Green functions and their products do not depend on the

center-of-mass coordinate, bif does in general. It is con- N S — d.05 - :
venient to consider the Fourier transform Bf(x,x,e;) 2 —[(T.DVA +g(T, V(A >_W[h3,OV(UaUBA )
which depends on the relative momentpnand the center- . _
of-mass momentung. Keeping only the ladderlike graphs, +xch3,1V(vav5)(AT>+xch3,lv<vavBAT)
we obtain oL T "
+Xehs V(v 0 g)(AT)], (79
F'(p,q,e,)=G(p,e,)G(—p+0q,— €,) AP, €n), wheref, g, andh,, have been defined earlier by E¢$9),

(68) (20), (60). Let us note that we omit the arguments of the
functionshy (x;). The solution of this equation can be fac-
whereG(p, e,) = (i'e,— £€) ! is the averaged Green function torized as before:
ande,= e,+sgn(e,)/ 7. The reduced verteX obeys the fol-
lowing equation: A'(p,q,T,7)=®(q,T, ) x(p). (76)
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Here ®(q,T,7) is the center-of-mass wave function, which
is the wave function in the GL theory, andq) is the solu-
tion of the zero-approximation linear equation, defined by

SERGEI V. POKROVSKY AND VALERY L. POKROVSKY

m(¢)

v(e,<p)=TImj GR(€,¢,0)dé. (83

the formulas(53) and(54). We would like to emphasize that The retarded Green function is the analytic continuation of
the GL wave functiond feels the symmetry of the function the Matsubara Green function defined by Es):

x only in a rather implicit way.
ForT slightly smaller tharT . from the orthogonality con-
dition we find

[(f= (X)) + (9~ 9)(X)*~ Lapdalp]®=0, (77)

i?R( €)

= , 84
(e)—Ai(e,0)— & (89

GR(e.& 0)=2
€R

whereeg(€) andZR(e,qp) are related to the above Matsubara

functions

where the tensof,; is defined as follows:

1
Lap= 15,372 (Nadvat px®) + 2Xchs v 0 px)(X)

Rim=in(n); Asine)=A(ne), (89
by virtue of the analytic continuation from the imaginary

axis to the real one in the complex plane of the variable

+X§h3,2<vavﬁ><x>2)- (78)

The analyticity of the retarded Green function Eg4) is

guaranteed provided

The tensor{,s up to a factor coincides with the inverse
effective mass tensor in the GL equati(mil)a”g, which in
turn is associated with the Pippard kerr@@),; connecting
the electric curreni, and the vector potentidd, :

Im{x(€) = Ar(€,¢)}>0. (86)

After the integration ove€ in Eq. (83) with the Green func-

tion given by Eq.(84) one finds

_ 4e? )
Jo= = Quphs; Qa,B:T(m )aﬁ|q)|' (79

In the clean limit only the first term in Eq78) is substantial
and we arrive at the result by Gorkov and
Melik-Barkhudarov?* (v,vzx?). In the extra-dirty limit
only the term with(x)? matters. Then 1),z (v 40 ).
Finally, combining the results of the previous section with

the results of the calculations just completed we can write

down the full GL equation as follows:

ad+bd|®|*+¢,30,,0=0, (80)
where{,; is defined above and
T-T, 1
= ) Y6
a=— 1+(1 K)z,/fc } (81)

1
O BT {Oxhao=(x*)*xcha ot 40 (X Xeha 1

+ 203 (X2 (x3a 2+ X2h3 ) + (x)*x3h, 3. (82

Here k=(x?)/{x)? is the anisotropy coefficient.

VI. THE ORDER PARAMETER AND THE DENSITY
OF STATES AT T=0

A. Sign reversal of the order parameter and phase transition
in scattering rate

Let us study Eqs(9)—(11) at a temperature equal to zero.
In this case the summation in E{.1) should be replaced by
integration over the continuous variabig— » and the do-

main of functionsz(7) andK(go, 7) extends into the whole

€

VE—R%(e, )

In particular, the following relation is valid for=0 (on the
Fermi leve):

VS(E,(,D):VH(E,(p)RQ{ } . (87)

7o
vol@)= Vn(QD)W-
0 0

Here the subscript 0 denotes=0. Averaging the above
relation over the angle and using the first of the AG equa-
tions (9) one getdlet us remind the reader that averaging in
the AG equations(9),(10) is performed with the weight

m(¢)]

(88)

(vs(@)) :A7;07'< Vn((P)>- (89

Now we are in position to prove the following three state-
ments concerning the DOS on the Fermi surface:

Proposition 1:Let (A(¢))# 0 andA(¢) does not change
its sign on the Fermi surface. Thep=0 for any r.

Proposition 2:Let (A(¢))#0 butA(¢) is a sign alter-
nating function of the angle. Then%,=0 for 1/7>1/r, but
70>0 for 1/r<1/7,. The equation forr, as a functional of
A(¢) is derived below and reads

(A(e)/(A(g)+1/7,))=0.

The above equation far, should be supplemented by the
self-consistency and the AG equatiort$1,93,94 with
T=T,.

Proposition 3: If the OP possessed symmetry, then
70>0 for any 1k<1/7.=2e"(7T) 1. Before proceeding

(90

positive half-axis of the same variable. We are interested iff® the proof let us remark that, according to E8), the

the behavior of the above functions gt-0. The values
Mo=7(0) and Ay(¢)=A(¢,0) determine the density of
states(DOS) on the Fermi surface, vanishing, #(0)=0.
Namely,

following separation of variables takes place:

Ale,m)=A()+ (7). (91)

Let us define a function
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_ 1 _ o(n=0)=1/7. With increasingy the values drops sharply
F(,0,m=1-—({[A(¢)+0( mP+7(m?3 ) (92 reaching its asymptotickA )/ (7) at (A)< p<1/r whereas
7(7) grows rapidly in the same interval of reaching the
in order to rewrite the AG equations in a more convenientievel of 1/r. The rapid variations of these two parameters
form: compensate each other in such a way that

’Y]:ﬁﬁF(’;]‘,O',T), (93) p25ﬁ7;2+<K2>>1/7'2.

_ 1 _ Assuming that the variable part of the OP
a'F(n,U,T)I;(A((p){[A((,D)‘FO']Z‘F 77119 (99 Avale)=A(e)—(A) is small with respect to scattering rate

The first proposition stems from Eq€2),(93),(94) straight- 17> |Avad @),
forwardly. Indeed, lefo=7%(0)#0, then it follows from

= in the whole domain ofp one arrives at the following equa-
Eq. (93) that F(7q,0(,7) =0 whereoy=0(7=0). The lat-

S , tion for p:
ter implies that the rhs of Eq(94) should vanish for
n="70,0=0. This is impossible, however, i(¢) does 1 (AZ) A)2
not reverse its sign. Hence, evenAf¢) has nodes but is p——|1+ va 1—3< z =+ {(A)2. (99
non-negative in the whole domainQp<<27r (the case stud- P P
ied in Ref. 13, 7(0)=0. At this point we neglect the contribution proportional to the

To prove the second statement we study, first, the limit of A2, ) assuming that the scattering rate is large enough so
small impurity concentration{(A)>1/7). After rewriting Eq.  that the following strong inequality holds:
(94) as
(Ay>(AZ 7. (99

O'IE([A((p) +ol{[A(¢)+0)?+ 7% Y3, (95  The latter conjecture can be verified straightforwardly as fol-
T lows. Plugging the solution in question into E(ll) at
it becomes evident that=0(1/7). (The integral overp is ~ T=0 we derive the following quasilinear equatith:
always finite even aty,=0. Moreover the result is always -

less than unity. In other words, renormalization of the OP is mA(¢)=In(7€)VA(¢)—In(7(A))V(p)(A). (100

smal!. In particular, its nodes remain almost at thgw Or'g'nalAssuming thatV,In(7e)<1, whereV, is the the maximal
locations. However, the frequency renormalization is not -

small due to the logarithmic divergence of the term propor—e'genv‘"‘Iue of the operatf, as previously, its solution can

tional to 1/ in the rhs of Eq.(92) at 7(#%)=0. A closer be found explicitly:

examination of the functiom(7) [inverse to7( )], which i 5

can be extracted from E¢93), shows that it departs fromthe 5 ()=(A) ﬁ. (A)==(7e)"exp(— al(V)). (101)
T

coordinate origin with an infinite negative derivative and, (V) '

after reaching its minimum, crosses the abscissa axis at , I hat e q
Fo=Alexp(—A![2). Here From Egs. (96),(97) it follows that 7,=0 an

o(0)=1/m>A. Since the renormalized O§(¢) does not

VA =1A+ 1A% have any nodes, no divergence can arise in(B§). In this
way self-consistency of the obtained solution is guaranteed.
|A]|In|A|+]ALIn|A Let us prove the third statement. Due do symmetry
InA/ = ; ; o=0 and only one of the AG equations remains:
|AL[+]A)]
and A, denote the derivatives of the order parameter at its . 1 1 B (102
nodes. Among the two roots, only,+#0 resides on the K T\ 72+ A2 -7
physical sheet® Thus the first part of statemen®) is
proved. Considery as a function ofy. According to the prescription
In the opposite, dirty limit (1#>T,) the asymptotic so- Ed. (85 we are irEerested in analytic continuation of the
lution of Eqgs.(93),(94) reads reciprocal functionn(#). The latter must be single valued

and span the half-axis Qn<ce. It is straightforward to
- 1 2. o1 check that the derivative of this function is equal-teo at
n(m) =1+ ;[<A> + ] ’ (96) 7=0 and is equal tor 1 at p—<. Therefore,n(7) has at
least one positive rodk,. Performing the analytical continu-
1 ation one should start from a large positiyecorresponding
o 77)I;<A>[<A>2+ 7] (97)  to the upper half-plane of energy and move continuously
along the curven(7) (imaginary axis of energyuntil the
This quasi-isotropic solution reminding us of Anderson theo-value »=0 is reached. The corresponding valjg=7(0)
rem is basically the leading term in the expansion of the AGhas been proven to be positive. This concludes the proof of
equations in small amplitude of the OP. However in the vi-proposition(3).
cinity of =0 this expansion is tricky. In fact it is possible at ~ Summarizing,7,#0 in a clean superconductor and it
all due to a strong renormalization of the OP: vanishes when a scattering rate substantially excdggls
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Hence, there should exist some special valuerefr, at It is interesting to note that whereas equatigr 0 can al-
which 7, first turns into zero. SinCﬁ(0)|T:T*:1/T*, the  ways be satisfied wite=0 corresponding ta;=0 another

value of 7, can be found as a functional af(¢) by means hontrivial solution
of Eq. (90). (This general proof has been given in our A
work.1° For special situations the fact of appearance of the _ &)
e ; . . cosy > (110
gap at a finite impurity concentration has been found earlier (A%

in Refs. 8, 9, and 7. We becRame aware of these articles aft%rrises provided the lhs of the above equation is less than
the submission of our wotR and did not cite them. We

. o . ! unity. This second solution provides a clear manifestation of
regret this omission and use this opportunity to restore th(,[=he Gor'kov-Kalugin phenomenon

priority.) As mentioned earlier two asymptotic solutions match

each other in the crossover domain
B. Weakly broken d-wave symmetry

Here we consider the case of a small admixture of the (A)<p<l/r.
s-wave to the dominand-wave OP. It means that the ratio The relation between two parameters within this interval
(A)?/{A?) is small. As we argued above, we expect that thereads
gap appears at, close to the critical value for the pure
d-superconductor.. Therefore, we study the behavior of (W(A%)7/2) (/12— a) =(A). (111
the OP and DOS in the vicinity of.. We conjecture that
1/7?>(A%)>(A). More specifically, suppose théd) is of
the same order or less thath?)7. In this situation
7%+ o®=1/7% and, though each of these quantities may vary e .
rapidly in the vicinity of =0, the sum of their squares A(¢)=V(¢)J cosx(n)dn+VA(e)
remains almost constant. This motivates us to introduce new 0
variables as follows:

The expansion of the self-consistency equation up to the sec-
ond order in the amplitude of the OP gives

X f?sinza( NIW(7n)+ /7] dy— (3/2)\A/A2(<p)
7=(W+1/7)sina; o=(W+1/r)cosx. (103 0

The AG equations rewritten in terms of these new variables X J?Sinza(n)COSa( M[W( )+ 1] 2dy
and expanded over a small ratio(¢)/(W+ 1/7) take the 0
following form: -
+(1/2)VA3( o)
_ (A)cosw  (A?)7(1+3cos)| .
sine| WH ey~ aarwnz )~ (104 X f}inza<n)—1+5co§<2<p>[ww>+1/7]‘3dn.
(A)cose  (A?)7(1+3cos) (112
cos| Wit W T A1+ W) Employing Egs.(106), (107), (108, (109, and (111) the

) integration overy in Eq. (112 can be performed and explic-
_ (4 (A%9rcom (105 itly with the following result:
(1+W7)  (1+Wr)? "~

1 - —
These equations can be solved approximately at small andi(¢)~ —In(e7)VA(¢)
large » and two asymptotic solutions can be matched in the
crossover region. Aty>(A?)r the variableW coincides

. . . ne v . 1— 2tar(Bl2)| (A%
with % in the leading approximation. Another variable =—V(¢)|{A)In A B
a— /2 asymptotically. Up to the first approximation one . (A)7
finds sin(23)
<[5
aZW/Z—V%, (106 1. 5 1
T —;VA[<A>T,8—<A>2T2(€—COSG+ §co§,8”
w07 10 1
=W A w2 (1079 — 4TS, (113

At small »<1/7 the variableW becomes small, and once | here
again the solution can be found in a parametric form

(114

w2 if (=1
n={(A)tana—(A?)7 sina, (108 BI[

arcsiny if (<1
W=sina[(A)tanae— (3/2(A?) 7 sina]. (109  and
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{=(A)(A%) 7, (115 -1\

x(o,7)= ( | — —|n(€T)V) V() (122
If the scattering rate is close to its pair-breaking value in the m
purely d-wave case one can use a single-mode approximayhich determines the angular dependence of the OP:

tion. _

whereW () is a normalized eigenfunction of the operator ON€ can easily derive the following expression for its ampli-
V corresponding to its maximal eigenvalue. Then Bd.3) tude[the notation for the amplitude has been modified since

is reduced to the following: x(¢,7) is not normalized

L |2 tar(Bl2) 3  sin2gB A=2 T
In(7/7)=—(¥g)2In TUg0r QT(‘I’O>(§,B— > ) Q(7) <x> exp( <X>)- (124

, o5 1 ., 1 5 The form factor may be expressed in terms of the eigen-
+Q°| g~ 7(Wo)—cosB+ z(coB)”|, (117 valuesV, and the orthonormal eigenfunctiolis,(¢) of the

whereg is defined by Eq(114) with operatorV' as follows:

(Vo) _S v tn@)
(=152 (118 x(@)=2 | Vy'=Zin(en) | (¥n)¥n(e). (129
The scattering rate 1/, where the gapless regime termi- In the vicinity of =7, one can retain the only pole corre-
nates, corresponds t6=1. Thus, sponding to the maximal eigenvaldg. Then,
1 37 5 2
__ 2 2 Taphy 2T 2 (W o) Vo(p) 7T<‘I’0>
In(7, /79)=—(Wo)?| In(2KWo)?) —~ ZHW§)— =+ 6). we) = O OE ()=
n(7./7) (7 /7'
(119
. . . 2<\If >2
This value separates two different regimes of the OP behav- (x?)= 0 (126)
ior with respect to the scattering rate. In the close vicinity of [In(re/7)]%

this point the amplitud®) is a linear function ofr— 7,: Plugging this approximation into Eq124), one returns to

Eqg.(121). In the extra-dirty regime |@)<vgl and the form

= - T 120 factor reaches an independent pasymptotics:
Q Q*_AT*<\I,0> T, ’ ( ) p o y p .
whereQ, =(V¥y)/r, and x(e.1)=Vig). (127
Both the mean value of the OP and its quadratic variation are
<\I'4) 3_77_2 exponentially small in this limit but their ratio is equal to
T2 3 V(@) N(VZ(9)).

Surprisingly, despite different functional dependence of

Q(7) above and below the transition potiy, this amplitude

is continuous together with its derivative. We concentrate our analysis of the DOS dependence on
Since the amplitude of the OP grows rapidly when theenergy and angle on the most interesting situation when the

scattering rate diminishes, the nonlogarithmic term in EqOP in the clean superconductor reverses its sign. In the in-

(117) becomes important already in the nearest vicinity oftervale<A ., the function may be fairly approximated by

the critical point 1#,. The logarithmic and quartic terms the following expression:

balance each other exactly at the scattering rate equal to _ .

1/7.. Below this value of 1# the quartic term dominates (€)= 1noexp(—i 6+ 6 tand), (128

over the logarithmic one and the OP soon follows the squar

root law, characteristic for the purelg-wave case. At

C. Angular and energy dependence of the DOS

fhere is defined by equation

<7, and (r,~ T)/r*><‘1'9>zlr_1<‘lfo)*2 the logarithmic term 9 exp( 0 tand)/cost= A )el (47,). (129
becomes dominant resulting in the powerlike dependence:
This result matches another approximate expression valid in
(W) (Po)™? the interval 1#<<e :
Q=" (T* : (121) N LY R R
e=€ertlo(€), O\€)=— —
oo NE—A%P)

In the strong-scattering regime the single-mode approxi- (130
mation breaks down. Fortunately, it may be replaced by a
quasilinear approximation. The only term in the rhs of Eg.where ¢, denotes the position of the OP nod#(e) corre-
(113 essential in this regime is a logarithmic one. Accordingsponds to the value ak(¢) equal toe at e<A o and is
to Egs.(114), (115 B= w/2 for smallr. Let us introduce the equal to ¢, Otherwise. Further we consider a simplest
“form factor” A(¢) with only one extremum in the interval<0¢< /4.
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Equation (130 is invalid in a close vicinity of the point a special case of an extendsewvave system close to a
e=Anax, Where instead of the logarithmic singularity dis- d-wave one,r, is close tor,. We argued that this situation
played by this equation a finite maximum of(e) of the s relevant to Bi2:2:1:2 and presented a thorough description
magnitude InfA7,,) occurs. Plugging these results into Eq. of the temperature, the energy, and the scattering rate depen-

(87) one calculates the DOS: dence of the OP and the DOS. In particular we found that the
5 ) 2300 OP is continuous together with its derivativezat 7,.
vs(€, ) o(e)A%(P)I[A(P)—€]™, 0<e<A(4) In extendeds superconductor$. decreases with the scat-
vn(e, @) elNee—A(9)?, A(p)<e. tering rate, and its decay is governed by the power law

(131) 7 1. This behavior is consistent with the experimehts.
Analyzing these experiments we were able to estimate the
AC k=2 for Y-Ba-Cu-O. It would be interesting to perform
analagous measurements for other copper-oxide supercon-

. . 2 ductors. In the extra-dirty limit the energy gap becomes iso-
€=A(¢). Far from the peak it decreaseseige”—A*. Note tropic in accordance with the Anderson theorem whereas the

that v,(#) has its own anisotropy. WhemA reaches the : . .
order of unity the peak becomes broader and graduall deQP remains anisotropic.
y P 9 y In the BCS approximation the OP is factorizable. In a

creases. . _ . .
Now we will find the DOS in the extra-dirty limit. Plug- pured superconductor its shape is invariant at any available
' temperature and scattering rate and only its amplitude

ging the analytical continuation of Eq&6), (97) into gen- ; . )
eral Eq.(87) we find that formally the ratiav,/v,, depends changes with these parameters. In an anisotregigpercon-

on ¢, but this dependence is very weak in the extra-dirtquCtor the OP shape does depend on the impurity concentra-

limit, since A(¢) <(A)/(7/e?—(A)?) as soon agr<1. In tion in general, but if the latter is fixed, the former does not
the leading order ovek 7 this ratio coincides with its isotro- d€pend on the temperature. When the impurity scattering rate
is either very small or very large the OP profile becomes

Its analysis shows that the DOS is of the order of
vs~vnlTAg for e<A(¢). It possesses a peak of the width
1/7A} and of the height~(7A()Y? in the vicinity of

ic limit:
P independent on scattering, but the two limiting shapes are
ve(€, ) e{ € ] different.
= T (132 We studied the angular, energy and scattering rate depen-
2_ 2 ’
va(€ @) e—(4) dence of the DOS. The latter, being finite at the Fermi level

Thus, the ratio of superconducting and normal densities ofor 7> 7., turns to zero forr<7,. For clean superconductors

states does not depend on angle in the extra-dirty limit. Thigt low temperatures the DOS has a sharp peadak(¢).

is a generalization of the Anderson theof8rfor an aniso- ~ This peak is smeared by the temperature and scattering, but it

tropic normal DOS. We also have found the criterion of va-sharpens again in extendedsuperconductors at<r,.

lidity of the Anderson isotropization: it works in the extra- A GL equation for an arbitrary value of scattering rate and

dirty limit. general shape of the OP in a clean system was derived. The
It is clear now that the thermodynamics of thesuper-  impurity-dependent part of the coefficiemtt the linear term

conductor in the extra-dirty limit will be the same as theis proportional to I-1/«, providing an alternative opportu-

thermodynamics of the isotropic superconductor, though théity to find the valuex from the experiment. The cubic term

density of states remains anisotropic. has a complicated impurity dependence. It grows rapidly in
dirty superconductors{I.o0<1) being proportional tar 1.

The gradient term is characterized by the inverse effective
mass tensof ,; which posesses the full crystal symmetry. In
We developed a consistent BCS theory of the OP andhe clean superconductors it is determined by the average
DOS for essentially anisotropic superconductors with the(szauB> in accordance with the old result by Gor’kov and
emphasis on theé-wave superconductors and the extendedMelik-Barkhudaro?* In the dirty case it decreases dsg
s-wave superconductors with elastic impurities. Our interestc 7(v v 5){ x*)/{x?).
in this class of superconducting materials was stimulated by Since the interaction in the highs superconductors is not
experiments. The OP anisotropy, usually weak in naturalveak it is interesting to discuss to what extent the results of
low-temperature superconductors, becomes strong in higlour work are model dependent. It is clear that the factoriz-
T. superconductors because the coherence length is small ability of the OP is tightly associated with the weak cou-
them. When the OP reverses its sign on the Fermi surface gling. On the other hand, if the OP is small, our results are
new class of impurity-driven phase transitions emerges astable since the interaction is effectively small. This remark
zero temperature. Id superconductors the OP vanishesapplies, in particular, to the impurity-driven phase transi-
above a certain value of the scattering rate, 1An extended tions, especially for an extendedsuperconductor close to a
s superconductors the OP is not totally suppressed, insteatl superconductor, and to the powerlike tails of the critical
the energy gap opens at some critical scattering raie Ebr  curveT.(1/7), and to the energy gap isotropization.
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