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We analyze in detail how the scattering by nonmagnetic impurities affects the shape and amplitude of the
order parameter~OP! and the density of states in anisotropic superconductors in the framework of BCS theory.
Special attention is paid to the case when the OP is a mixture ofd ands waves changing its sign on the Fermi
surface. The critical temperature is shown to decay with the increase of the residual resistance according to the
power law. At zero temperature impurity scattering gives rise to a peculiar phase transition from a gapless
regime to a state with a finite gap in the quasiparticle spectrum.@S0163-1829~96!02342-9#

I. INTRODUCTION

Experimental study of the order parameter~OP! in high-
Tc superconductors Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O estab-
lished firmly two facts:

~1! The OP reverses its sign on the Fermi surface.
~2! The shape of the OP cannot be described exactly as a

d wave in a tetragonally symmetric crystal. In particular, its
angular average is not zero.

The first statement is supported by the Josephson tunnel-
ing experiment in the corner geometry.1 The second one has
been proven by thec-axis Josephson tunneling experiments2

and by the measurement of theTc dependence on residual
resistivity in the ion and radiation damaged Y-Ba-Cu-O and
Y12xPrxBa-Cu-O.

3

The physical reasons for the formation of such a complex
OP are still not clearly understood. The initial idea of the
antiferromagnon exchange4,5 was opposed by Schrieffer6

who indicated that this interaction is strongly suppressed at
the nesting vector. In a model taking into account phonon
and Coulomb interactions near extended van Hove singulari-
ties Abrikosov7 has found the sign reversal of the OP. To our
knowledge strong-coupling theories do not explain nontrivial
properties of the OP.

No matter what mechanism gives rise to this special shape
of the OP, its very existence leads to a number of physical
phenomena. The purpose of this article is to describe these
phenomena in some detail. As it will be demonstrated below,
an initially gapless excitation spectrum of a clean supercon-
ductor may acquire a gap due to the scattering of electrons
by nonmagnetic impurities.8,9,7,10 Thus, the layered aniso-
tropic superconductors are potentially predisposed to a sort
of phase transition at zero temperature. The latter may ex-
hibit itself, e.g., in the quasiparticle tunneling and the tem-
perature correction to the penetration depthl in single crys-
tals of Y-Ba-Cu-O doped by Pr or subject to the radiation
damage. The transmutation of the gapless behavior of these
quantities at small residual resistivity to the activated regime
as the residual resistivity increases would clearly signal this
transition.

We have established a close relationship between this
plausible phase transition just described and the breakdown
of superconductivity in the purelyd-wave case found in
Refs. 12 and 13. Namely, for an extendeds superconductor
close to ad superconductor, the value of the scattering rate
t! at the new transition point is close to the valuetc at the
breakdown point in thed superconductor. We argue below
that a weak violation of thed pairing takes place in the
Bi-Sr-Ca-Cu-O compound.

Another important phenomenon considered in our work is
a powerlike decay of the critical temperature induced by the
increase of the impurity scattering rate or the residual resis-
tance. It will be shown that the power exponent is expressed
in terms of the anisotropy coefficient~AC! k which is the
ratio of the angular average of the square of the OP to the
square of average of the OP. We find that the shape of the
OP changes with the impurity concentration.

It is worthwhile mentioning that the density of states
~DOS! and the energy gap are nonmonotonous functions of
the impurity scattering rate or the impurity concentration:
both have a maximum.

Having several overlappings with the above-mentioned
works, the present article differs from them by a more gen-
eral approach: we do not presume any special interaction.
This approach enabled us to discover a phenomenon missed
by other authors: the change of the OP shape with the impu-
rity concentration. We believe also that a more complete
description of the DOS and OP in the entire range of the
energy, concentration, and temperature, as well as the deri-
vation of Ginsburg-Landau equation presented below is im-
portant for comparison with the experiment. We carried out
our analysis within the Born approximation for the indi-
vidual impurity scattering, but the generalization of our
theory to the unitary limit is straightforward.

The main reason for thed-smixture in high-Tc supercon-
ductors is probably a small orthorhombic distortion which is
invariably present in the superconducting state~see Refs.
14–17!. Although the ratio of the lattice constants in plane is
close to 1 the orthorhombic anisotropy is strongly enhanced
in the electronic properties. The orthorhombic distortion is
especially weak in the Bi 2:2:1:2 compound.17 Therefore,
one can expect that this compound is well described as an
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almost d superconductor with a weak admixture of thes
wave. This conclusion is supported by angle-resolved photo-
emission spectroscopy measurements of the Fermi surface
and the gap anisotropy18 and by measurements of ac
conductivity.19 For this reason we present a thorough analy-
sis of this situation.

In the next section we give the general formulation of the
problem. In Sec. III the critical line and the behavior of the
OP near it is found. In Sec. IV we derive equations for the
amplitude of the OP and solve them in the vicinity of the
critical curve. In Sec. V we derive the Ginzburg-Landau
equations. In Sec. VI the OP and the DOS are found at zero
temperature. In particular we find the critical value of scat-
tering timet* at which the gap in the spectrum appears. A
brief report on part of the results has been published in Ref.
10.

II. GENERAL RELATIONSHIPS

The OP represents a spin-singlet state either for the
d-wave or for the s-wave pairing. We start with the
Abrikosov-Gor’kov equations20 for the electronic matrix
Green function~Nambu representation21! averaged over the
random ensemble of the elastic scatterers:

Ĝ5SG~p,i en! F†~p,i en!

F~p,i en! 2G~2p,2 i en!
D , ~1!

whereG(p,i en) andF(p,i en) are the normal and anomalous
Green functions, respectively,en5(2n11)pT stands for the
Matsubara frequencies, andp denotes the momentum. The
Dyson equation forĜ reads

Ĝ215Ĝ0
212Ŝ, ~2!

whereĜ0 is the Green tensor in a clean superconductor

Ĝ0
215S i en2j D*

D i en1j
D , ~3!

and the self-energyŜ is given by the following expression:

Ŝ~p,i en!5NiE w~p,p8!Ĝ~p8,i en!
d2p

~2p!2
. ~4!

Here j5(p2/2m)2m is the energy of a normal electron
counted from the Fermi level,Ni is the impurity concentra-
tion, w(p,p8) is the scattering probability. We consider the
two-dimensional system both for the simplicity and keeping
in mind applications to the high-Tc superconductivity. We
search for a solution of Eq.~2! in the following form:

Ĝ215S i ẽn2j D̃n*

D̃n i ẽn1j
D , ~5!

where bothẽn and D̃n depend on the polar anglew and the
integer n and obey the following nonlinear integral equa-
tions:

ẽn~w!2pNiE w~w,w8!
m~w8!ẽn~w8!dw8

Aẽn
2~w8!1D̃n

2~w8!
5en , ~6!

D̃n~w!2pNiE w~w,w8!
m~w8!D̃n~w8!dw8

Aẽ n
2~w8!1D̃n

2~w8!
5D~w!. ~7!

Here m(w)5ApF21(dpF /dw)2/vF is the local effective
mass. In contrast to the case of the isotropics pairing, the
ratios of the renormalized to the bare frequenciesẽ/e and the
corresponding order parametersD̃n /D are not the same.

Assuming thatm(w) is a periodic function of its argument
it can be eliminated from the AG equations by means of the
following mapping:

w̃~w!52pE
0

w

m~w8!dw8S E
0

2p

m~w8!dw8D 21

. ~8!

This mapping is single valued providedm(w) is positive in
the whole domain 0<w,2p. We shall omit the tilde over
w in the subsequent formulas having in mind that the latter
no longer represents a real polar angle in the momentum
plane. Although this substitution does affect the angular de-
pendence of the OP, it leaves the crystal symmetry intact. In
the remaining part of the article we consider the isotropic
scattering only:w(w,w8)5const, which, of course, is invari-
ant with respect to the above mapping. Then Eqs.~6! and~7!
are reduced to the following ones:

ẽn2
ẽn
t K 1

Aẽn
21D̃n~w!2

L 5en , ~9!

D̃n~w!2
1

t K D̃n~w!

Aẽn
21D̃n~w!2

L 5D~w!. ~10!

Here angular brackets denote angular averaging:
^F&5*0

2pF(w)dw/(2p). The analysis of the above equa-
tions presented below is greatly simplified due to the fact
that the renormalized frequency remains angular indepen-
dent.

The order parameterD(w) satisfies the usual self-
consistency condition:

D~p!52 T(
n
E V~p,p8!F~p8,en!

d2p8

~2p!2
, ~11!

where V(p,p8) is the electronic interaction potential. The
integration overj in Eq. ~11! can be performed explicitly
giving the following result~the same mapping eliminating
effective mass should be employed here!:

D~w!5T(
n
E V~w,w8!

D̃n~w8!

Aẽn
21D̃n

2~w8!

dw8

2p
. ~12!

Equations~9!, ~10!, and~12! form a closed system determin-
ing D(w,T).

III. THE TRANSITION LINE

A. Linearization

The system Eqs.~9!, ~10!, and~12! are strongly nonlinear.
However they may be linearized near the transition line
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T5Tc(t). Indeed, neglectingD̃ in Eq. ~9! and leaving only
linear terms in Eq.~10! we get

ẽn5en1sgn~en!/t, ~13!

D̃n~w!2^D̃n~w!&/~ u ẽnut!5D~w!. ~14!

Averaging over angles both sides of Eq.~14! and employing
Eq. ~13!, we derive the following important relationship:

^D̃n&/u ẽnu5^D&/uenu. ~15!

It is analogous to the Abrikosov-Gor’kov relation20 for the
isotropic case, however it is valid only in the vicinity of
transition line and even there for the mean values only. Plug-
ging Eq.~15! into Eq. ~14! one can resolve it to findD̃:

D̃n5D1^D&/~ uenut!. ~16!

Then instead of Eq.~12! one obtains

D~w!5 f ~T,t!E V~w,w8!D~w8!dw81g~T,t!^D&V̄~w!,

~17!

whereV̄(w)5*V(w,w8)dw8 and

f ~T,t!5T(
n

1

uenu11/t
; g~T,t!5T(

n

1

uenu~11uenut!
.

~18!

Evaluating these functions one must keep in mind that sum-
mation is limited by the cutoff energyueu<ē. Assuming
ē@Tc we find

f ~T,t!5p21@ ln~ ē/2pT!2c~x11/2!#, ~19!

g~T,t!5p21@c~x11/2!2c~1/2!#, ~20!

wherex5(2pTt)21 andc(x) denotes the digamma func-
tion ~logarithmic derivative of the Euler gamma function!.
Below we analyze Eq.~17! for the d-wave and thes-wave
pairing in turn.

B. d-wave pairing

In the case ofd-wave pairing^D&50 due to the symme-
try constraint:D(w1p/2)52D(w), leading to a further
simplification of Eq.~17!,

D~w!5 f ~T,t!E V~w,w8!D~w8!dw8. ~21!

This is a linear homogeneous Fredholm equation which is
solvable and its solution is unique if and only ifD(w) and
f (T,t) match one of the eigenfunctions and one of the ei-
genvalues, respectively, of the linear integral operator:

V̂C~w!5E V~w,w8!C~w8!dw8. ~22!

The minimum of the free energy corresponds to the maximal
eigenvalue V0 and the corresponding wave function
C0(w). Thus, the equation for the transition temperature
Tc reads

f ~Tc ,t!5V0
21 . ~23!

Employing Eq.~23! one gets

ln~Tc0 /Tc!5c~x11/2!2c~1/2!, ~24!

where

Tc05~2gē/p!exp~2p/V0! ~25!

is the transition temperature for a clean superconductor and
g51.785expC, C is the Euler constant. At smallx ~small
concentration of impurities! Tc is close toTc0.

The critical temperatureTc is a monotonously decreasing
function of the scattering rate vanishing at

tc52g~pTc0!
215 ē21exp~p/V0!. ~26!

Indeed, at very smallTc and finite t the parameter
x5(2ptT)21 becomes large so that the digamma function
may be replaced by its logarithmic asymptotics:

c~x11/2!5 ln~x!11/~24x2!; x@1 ~27!

and consequently

f ~T,t!5
1

p
ln~ ēt !2

p

6
~Tt!2. ~28!

Plugging the above asymptotics into the criticality equation
~23! which is convenient to cast into the form

f ~Tc ,t!5 f ~Tc8 ,t8!,

one can analyze the behavior of the critical temperature as
the scattering rate increases approaching its critical value. In
the immediate vicinity of the latter the drop ofTc is gov-
erned by a square root law@this asymptotic is valid in a very
narrow interval of its argument. At (t2tc)/tc50.015 the
correction due to the higher-order terms reaches about 20%#

Tc /Tc05A6 ~t/tc21!/~2g!. ~29!

At t smaller thantc thed-wave pairing is totally suppressed.
The breakdown of thed-wave superconductivity due to elas-
tic scattering has been discussed earlier by Radtkeet al.,11

Monthoux and Pines,12 and by Borkowski and Hirschfeld.13

Notice that in the above analysis we did not rely on the
d-wave symmetry directly. An essential presumption
^D&50 is certainly a straightforward consequence of the
d-wave symmetry but, generally speaking, does not require
the former. On the other hand, one may hardly anticipate that
the average of the OP vanishes identically, if not enforced by
symmetry.

C. Extendeds-wave pairing

In the case ofs-wave pairing a formal solution of unre-
duced Eq.~17! reads

D~w,T,t!5g~T,t!^D&~12 f ~T,t!V̂!21V̄~w!. ~30!

Averaging Eq.~30! over the angle one finds the equation for
the critical line:

15g~T,t!^@12 f ~T,t!V̂#21V̄&. ~31!
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Equation~31! can be rewritten in the diagonal representation
of the operatorV̂:

15g~T,t!(
n

Vnu^Cn&u2

12 f ~T,t!Vn
, ~32!

where Vn and Cn denote the eigenvalues and the corre-
sponding eigenfunctions of the operatorV̂, respectively.

If impurity concentration is not too high, the sum in Eq.
~32! is dominated by a single term corresponding to the
maximal eigenvalueV0. The OP in this range of scattering
rate is proportional to the corresponding eigenfunction
D(w)}C0(w). The domain of 1/t, in which this single-
mode regime holds, extends from a clean limit 1/t!Tc0 to a
relatively high concentration of impurities exceeding the
critical value in the purelyd-wave case 1/tc5pTc0 /(2g). It
is limited by a strong inequalityu lntTc0u!pV0

21. The disper-
sion relation in this regime is similar to that in thed-wave
case:

f ~T,t!5V0
212u^C0&u2g~T,t!. ~33!

In spite of the similarity, a correction to thed-wave disper-
sion Eq. ~23! represented by the second term in the right-
hand side~rhs! of Eq. ~33! is extremely important, especially
in a vast region of moderately high concentrations starting
from 1/t@Tc0, where in conformity with the dispersion re-
lation Eq.~32! the decrease ofTc is governed by the power
law

Tc5Tc0~t/tc!
k21 ~34!

with the exponent determined by the ACk5u^C0&u22. The
AC may be expressed in another, more physically meaning-
ful way:

k5^uD2u&/u^D&u2. ~35!

If the admixture of thes-wave component to the dominating
d-wave OP is small, the boundary curve between the normal
and the superconducting phases clings to the analogous
curve in the purelyd-wave case. For this type of the OP, the
AC k@1. As a consequence, the powerlike drop ofTc be-
gins already in the vicinity of the critical value of scattering
rate 1/tc . The dependence ofTc on t for Tc!Tc0 may be
approximated by means of the following equation:

~pTctc!
2

6
1u^C0&u2lnS TcTc0

D5 log~t/tc!. ~36!

This equation provides a smooth interpolation between the
square root law Eq.~29! and the power law Eq.~34!.

Further increase of the scattering rate is accompanied by a
gradual transition from a single-mode to a multimode regime
and increasing deviation of theTc0 dependence ont from
the power law Eq.~34!. Nevertheless, the critical tempera-
ture may be expressed through the scattering time explicitly
everywhere in the dirty limit. By dirty limit we mean that the
scattering rate exceeds its critical value substantially. Ac-
cording to Eqs.~18! and ~19! the functionf (t,T) increases
monotonously witht and atTt!1 it does not depend on
temperature. It can be easily verified that the condition
t21@Tc implies t21@Tc0. Thus, in the dirty limit one gets

Tc5~2pt!21expF2S (
n

u^Cn&u2

Vn
212 ln~ ēt !/p

D 21G . ~37!

Finally, t reaches what we call the extra-dirty limit

1, lnēt!pV0
21 . ~38!

Even in this limit the OP does sustain its anisotropy, al-
though its profile is determined by the interaction in the sys-
tem without impurities:

D~w!}V̄~w!, ~39!

whereasTc is given by the following asymptotic expression:

Tc5~2 g/p!ē exp@2p/^V̄~w!&#~ ēt !k21, ~40!

wherek is given by Eq.~35!. To obtain the last result one
should expand Eq.~37! up to terms linear inVln(ēt). In
conformity with what was discussed above concerning a
weak deviation from thed-wave symmetry, the ACk be-
comes infinite when̂D&→0. Notice, however, that the AC
k in two formulas Eqs.~34! and ~40! do not coincide, al-
though they are determined by the same expression in terms
of the OP. The profile of the latter, however, varies strongly
as the scattering increases. If the admixture of thes wave is
small ~largek) the powerlike decay ofTc in the single-mode
regime @Eq. ~35!# does exist, if^C0&

2@ ēt. Otherwise the
extra-dirty regime starts at (tc2t)/tc@^C0&

2lnētc .
The powerlike tail Eq.~40! was derived by Hohenberg22

under the assumption of weak anisotropy. In this case a
single-mode regime prevails at an arbitrary scattering rate.
Another peculiarity of a weakly anisotropic system is that the
power law Eq.~40! spreads to the whole strong scattering
range:t21@tc

21 .
Summarizing, a critical temperature decreases with the

increase of the scattering rate in anisotropic layered super-
conductors. This suppression of superconductivity is more
pronounced the greater the anisotropy. The critical tempera-
ture lessens like a power of the scattering rate for
t21@tc

21 and for small and moderate values of the anisot-
ropy which may be characterized by the exponentk21, Eq.
~35!. It drops rapidly in the vicinity oft215tc

21 in an al-
mostd-wave superconductor. In the extra-dirty limitTc also
obeys the powerlike asymptotics Eq.~40!. This tail expands
into the whole domain of a moderate and a strong scattering
for weakly anisotropic superconductors.

Equation~40! may be interpreted as a direct relation be-
tween critical temperature and residual resistivity in the nor-
mal state provided the impurity doping or the radiation dam-
age does not significantly influence the number of carriers.
Accepting the Drude law for the residual resistivity one finds
Tc(r)}r12k. We have analyzed the experimental data for
Tc(r) in the Pr-doped and ion-damaged Y-Ba-Cu-O.3 Both
sets of data being in a reasonable agreement with each other
show thatTc(t) does not vanish up to the Ioffe-Regel limit
eFt'1, strongly implying that the average of the OP is fi-
nite. The value of AC evaluated on the basis of the above-
mentioned data isk5260.3 meaning that̂D&'0.7A^D2&.
Thus the shape of the OP deviates significantly from the
tetragonald wave.
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IV. THE ORDER PARAMETER

In the weak-coupling approximation the shape of the OP
can be determined from the linearized self-consistency equa-
tion whereas its amplitude can, in principle, be found from
the system of nonlinear AG equations and from the orthogo-
nality condition applied to the self-consistency equation.28,29

Let us start with an easier case of the purelyd-wave pairing.

A. d-wave pairing

One can rewrite Eq.~12! in the following way:

D~w!2 f ~T,t!E V~w,w8!D~w8!dw8

5T(
n
E V~w,w8!F 1

Aẽn
21D2~w8!

2
1

uenu11/tG
3D~w8!

dw8

2p
, ~41!

wheref (T,t) is defined by Eq.~18!. Since the latter factor is
logarithmically large it compensates the smallness ofuVu
making two terms in the lhs of the same order. On the other
hand the sum in the rhs of Eq.~41! is convergent which
allows to extend the summation from2` to `. Conse-
quently a characteristic magnitude of this term isuVu!1
times smaller thanD. Therefore in the leading approximation
Eq. ~50! becomes linear. Moreover, it coincides with Eq.
~17! for the critical line. Its solution reads

D~w!5Q0~T,t!C0~w!, ~42!

whereC0(w) is a normalized eigenfunction of the operator
V̂ determining the order parameter on the critical line. Aver-
aging both sides of Eq.~41! weighed with the same function
C0(w) one gets in the next approximation:

f ~Tc ,t!2 f ~T,t!5T(
n

F K C0
2~w!

Aẽn
21Q2C0~w!2

L
2

1

uenu11/tG , ~43!

which should be combined with a system

ẽn2K ẽn

tAẽn
21Q2C0

2~w!
L 5en ~44!

in order to determineQ(T,t). In the vicinity of the critical
line this system can be solved explicitly yielding:

ẽn5en1
sgn~en!

t S 12
Q2

2 ~ uenu11/t!2D . ~45!

Plugging this into Eq.~43! one obtains

f ~T,t!2 f ~Tc ,t!5
Q2

2
T(

n
H ^C0

4~w!&

~ uenu11/t!3

2
1

t~ uenu11/t!4 J , ~46!

which can be further rewritten using polygamma functions as
follows:

Q2

~4pTc!
2 52

ln~Tc /T!1c~xc11/2!2c~x11/2!

xcc
~3!~xc11/2!/31^C0

4~w!&c~2!~xc11/2!
,

~47!

wherex5(2pTt)21 andxc5(2pTct)
21, respectively, and

c (n) denotes thenth derivative of the digamma function. If
the concentration of impurities is sufficiently far from the
critical value, this expression is reduced to the following
one:

Q2

~4pTc!
2 52

Tc2T

Tc

3
12xcc

~1!~xc11/2!

xcc
~3!~xc11/2!/31^C0

4~w!&c~2!~xc11/2!
.

~48!

Care must be taken, however, when the scattering rate ap-
proaches the superconductivity breaking limit. SinceTc→0
the expansion~27! should be used together with the corre-
sponding expansions for the higher polygamma functions.
The result of this calculation accounting for the formula~29!
reads

Q2

~4p!2
5

Tc
2~t!2T2

24~^C0
4~w!&22/3!

. ~49!

The latter expression atTc2T!Tc matches the asymptotics
of Eq. ~48! at xc@1. Note that̂ C0

4(w)&>1.

B. Extendeds-wave pairing

It is convenient to rewrite Eq.~12! in the following form:

L̂~T,t!D~w!5T(
n
E V~w,w8!

dw8

2p H sn

Aẽn
21D̃n

2~w8!

2
^D&

uenu~tuenu11!
1F 1

Aẽn
21D̃n

2~w8!

2
1

uenu11/tGD~w8!J . ~50!

Here we have introduced a linear operator

L̂~T,t!5 Î2 f ~T,t!V̂2g~T,t!V̂P̂, ~51!

where Î and P̂ are the identity operator and the projector to
the rotational-invariant stateu0&, respectively. The scalar fac-
tors f (T,t) andg(T,t) are defined by Eq.~18!. Just as in the
d-wave case those are logarithmically large. Therefore one
can seek a solution of Eq.~50! perturbatively starting with a
linear approximation corresponding to Eq.~22!

D~w!5Q~T,t!x~w!1D~1!~w!, ~52!

wherex(w) is a null vector of the linear operatorL̂(Tc ,t)
proportional to expression~30!. The amplitudeQ(T,t) can
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be found from the orthogonality condition. To this end let us
project both parts of Eq.~50! onto the null vector of the
conjugated operator

Lc
†~t!5 Î2 f c~t!V̂2gc~t!P̂V̂.

Here and in what follows the subscriptc denotes correspond-
ing quantity evaluated at the critical temperatureTc(t). The
above-mentioned null vector up to normalization is given by
the following expression:

ux̃&5@ Î2 f c~t!V̂#21u0& ~53!

and must be orthogonal touD (1)(w)&. This condition com-
bined with a useful relation between the conjugated null vec-
tors

ux&5V̂ux̃&, ~54!

leads to the following transcendental equation for the ampli-
tudeQ:

~ f c2 f !^x2~w!&1~gc2g!^x~w!&2

5T(
n

H K x2

Aẽn
21D̃n

2 L 2
^x2&

uenu11/t

1S s̃nK x

Aẽn
21D̃n

2 L 2
^x&2

uenu~tuenu11!D J . ~55!

A new notations̃n has been introduced for the renormalized
sn as follows:

sn5Q~T,t!s̃n. ~56!

After this rescaling the only explicit dependence
on Q(T,t) left in Eq. ~55! is due to D̃n(w)
5Q(T,t)@x(w)1s̃n#. However, one should keep in mind
that the same dependence persists in the AG equations for
ẽn and s̃n .
Again the solution in the vicinity of the critical line can be

found explicitly:

ẽn5en1
sgn~en!

t S 12
Q2

2 uenu2
^x&2~112ent!1^x2&en

2t2

~11ent!2
D ,

~57!

s̃n5
^x&

uenut
2

Q2

2 tuenu3
^x&312^x&^x2&tuenu1^x3&t2uenu2

~11tuenu!2
.

~58!

Plugging this into Eq.~55! one gets

~ f c2 f !^x2&1~gc2g!^x&2

5
Q2Tt3

2 (
n

H ^x4&
~11tuenu!3

2
^x2&2

~11tuenu!4

1
4^x&^x3&

tuenu~11tuenu!3
1
2^x&2^x2&~21tuenu!
t2uenu2~11tuenu!4

1
^x&4

t3uenu3~11tuenu!3
J . ~59!

Let us denote

hk,l~x!5 (
n50

`

~n11/21x!2k~n11/2!2 l . ~60!

These functions can be easily expressed in terms of poly-
gamma functions. In particularhk,0(x)5(21)kc (k21)(x)/
(k21)!. Using these functions Eq.~59! can be rewritten in a
more concise fashion

^x2& lnS TTcD2~^x2&2^x&2!@gc2g~x!#

5
Q2

8~pTc!
2$^x

4&h3,02^x2&2xch4,014^x3&^x&xch3,1

12^x2&^x&2~xc
3h4,21xc

2h3,2!1^x&4xc
3h2,3%. ~61!

In the above formula we have omitted the argument of all the
functionshk,l(xc). In the isotropic limit (x51) this equation
reduces to the following one:

Q2

~4pTc!
2 52

2

c~2!~1/2!

Tc2T

Tc
'0.12

Tc2T

Tc
. ~62!

Here we have expanded the logarithm in (Tc2T)/Tc . The
same behavior is characteristic for the large scattering rate
regime provided that the angular average is not too small. If,
however, thed-wave symmetry breaking is weak, the as-
ymptotics are preceded by a significant crossover domain for
the scattering rates relatively close to 1/tc . Namely,

Q2

~4pTc!
2 5

^x&2ln~xc /x!2^x2&~x222xc
22!/24

~^x4&/22^x2&2/3!xc
221^x2&^x&22p2xc

212^x&4c~2!~1/2!/2
. ~63!
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If xc!(^x2&)1/2/^x&, the first term in the numerator and the
last two in the denominator may be neglected. In this fashion
Eq. ~63! is reduced to thed-wave-like behavior Eq.~49!. In
the opposite limit, however, the terms with the maximal
powers of^x&, both in the numerator and the denominator,
should only be retained. Note, that even in the extra-dirty
limit the OP does not become isotropic

D~w,T,t!'4.35A~Tc2T!TcV̄~w!^V̄&21. ~64!

V. GINSBURG-LANDAU EQUATION

Several workers discussed a phenomenological Ginzburg-
Landau~GL! equation for thed wave and mixed state.23 In
this section we derive the GL equation in the framework of
the BCS theory for an anisotropic superconductor with im-
purities. An analogous derivation for a clean anisotropic su-
perconductor has been presented by Gor’kov and
Melik-Barkhudarov.24

In the previous section we have already completed the
necessary calculations concerning the fourth-order terms.
Here we present the results for the anisotropic gradient
terms. We begin with the self-consistency equation in the
coordinate representation:

D~x,y!5V~x,y!F~x,y,t50!, ~65!

where the overline means the averaging over the random
impurity configurations. We need this average calculated in
the lowest~linear! order in the amplitude of the OP and up to
the second order in the center-of-mass momentum. In the
linear approximation and for a fixed configuration of impu-
rities

F†5G̃0D
†G0 . ~66!

Here G̃0(p,e)5G0(2p,2e). The averaging over the ran-
dom field can be performed employing the Abrikosov-
Gor’kov technique. In particular, leaving only linear inD
terms, we get

F†~x,x8,en!5E G̃0~x,y,en!D
†~y,z!G0~z,x8,2en!dydz.

~67!

After averaging over the random impurity potential, the
Green functions and their products do not depend on the
center-of-mass coordinate, butD† does in general. It is con-
venient to consider the Fourier transform ofF†(x,x8,en)
which depends on the relative momentump and the center-
of-mass momentumq. Keeping only the ladderlike graphs,
we obtain

F†~p,q,en!5G~p,en!G~2p1q,2en!L~p,q,en!,
~68!

whereG(p,en)5( i ẽn2j)21 is the averaged Green function
andẽn5en1sgn(en)/t. The reduced vertexL obeys the fol-
lowing equation:

L~p,q,en!5D†~p,q!1
1

4pntE G~p8,en!G~2p81q,

2en!L~p8,q,en!
d3p8

~2p!3
, ~69!

wheren5*d(j)d3p/(2p3) is the normal density of states
on the Fermi surface. The integration overj in Eq. ~69! is
readily performed with the following result:

E G~p,en!G~2p1q,2en!dj5
p

u ẽnu2 ivq/2
, ~70!

wherev is the local velocity on the Fermi surface. We derive
the following equation forL:

L~p,q,en!5D†~p,q!1
1

tnE L~p8,q,h̃n!

u ẽnu2 iv8q/2

dV8

v8
. ~71!

The momentump in Eq. ~71! belongs to the Fermi surface
and the integration is carried out over the Fermi surface as
well. The reduced vertexL is analogous to the modified gap
D̃† introduced by Abrikosov and Gor’kov. Expanding Green
functions up to the second order inq, we deduce a modified
equation forL:

L~p,q,en!5D†~p,q!1
1

tnu ẽnu
E L~p8,q!

dV8

v8

2
qaqb

4tnu ẽnu3
E L~p8,q,en!va8vb8

dV8

v8
.

~72!

In the lowest approximation inq we recover the previously
found solution:

L0~p,en!5D†~p!1
^D†&
ten

. ~73!

With the accuracy up to the second order inq it follows,

L~p,q,en!5D†~p!1
^D†&
ten

2
qaqb

4tu ẽnu2en
S ^vavbD†&

1
^vavb&^D†&

ent
D . ~74!

Equation~65! can be transformed into the following form:

D†5 f ~T,t!V̂D†1g~T,t!V̄^D†&2
qaqb

16p3T2
@h3,0V̂~vavbD†!

1xch3,1V̂~vavb!^D†&1xch3,1V̄^vavbD†&

1xc
2h3,2V̄^vavb&^D†&#, ~75!

where f , g, andhk,l have been defined earlier by Eqs.~19!,
~20!, ~60!. Let us note that we omit the arguments of the
functionshk,l(xc). The solution of this equation can be fac-
torized as before:

D†~p,q,T,t!5F~q,T,t!x~p!. ~76!
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HereF(q,T,t) is the center-of-mass wave function, which
is the wave function in the GL theory, andx(q) is the solu-
tion of the zero-approximation linear equation, defined by
the formulas~53! and~54!. We would like to emphasize that
the GL wave functionF feels the symmetry of the function
x only in a rather implicit way.

ForT slightly smaller thanTc from the orthogonality con-
dition we find

@~ f2 f c!^x
2&1~g2gc!^x&22zabqaqb#F50, ~77!

where the tensorzab is defined as follows:

zab5
1

16p3T2
~h3,0̂ vavbx2&12xch3,1̂ vavbx&^x&

1xc
2h3,2̂ vavb&^x&2!. ~78!

The tensorzab up to a factor coincides with the inverse
effective mass tensor in the GL equation (m21)a,b , which in
turn is associated with the Pippard kernelQab connecting
the electric currentj a and the vector potentialAa :

j a52QabAb ; Qa,b5
4e2

c
~m21!abuFu2. ~79!

In the clean limit only the first term in Eq.~78! is substantial
and we arrive at the result by Gor’kov and
Melik-Barkhudarov:24 ^vavbx2&. In the extra-dirty limit
only the term with^x&2 matters. Then (m21)ab}^vavb&.
Finally, combining the results of the previous section with
the results of the calculations just completed we can write
down the full GL equation as follows:

aF1bFuFu21zab]a]bF50, ~80!

wherezab is defined above and

a5
T2Tc
Tc

F11S 12
1

k Dcc
~1!G , ~81!

b5
1

8~pTc!
2^x2&

$^x4&h3,02^x2&2xch4,014^x3&^x&xch3,1

12^x2&^x&2~xc
3h4,21xc

2h3,2!1^x&4xc
3h2,3%. ~82!

Herek5^x2&/^x&2 is the anisotropy coefficient.

VI. THE ORDER PARAMETER AND THE DENSITY
OF STATES AT T50

A. Sign reversal of the order parameter and phase transition
in scattering rate

Let us study Eqs.~9!–~11! at a temperature equal to zero.
In this case the summation in Eq.~11! should be replaced by
integration over the continuous variableen→h and the do-
main of functionsh̃(h) andD̃(w,h) extends into the whole
positive half-axis of the same variable. We are interested in
the behavior of the above functions ath→0. The values
h̃0[h̃(0) and D̃0(w)[D̃(w,0) determine the density of
states~DOS! on the Fermi surface, vanishing, ifh̃(0)50.
Namely,

n~e,w!5
m~w!

p
ImE GR~e,j,w!dj. ~83!

The retarded Green function is the analytic continuation of
the Matsubara Green function defined by Eq.~5!:

GR~e,j,w!5
i ẽR~e!

ẽR
2~e!2D̃R

2~e,w!2j2
, ~84!

whereẽR(e) andD̃R(e,w) are related to the above Matsubara
functions

ẽR~ ih!5 i h̃~h!; D̃R~ ih,w!5D̃~h,w!, ~85!

by virtue of the analytic continuation from the imaginary
axis to the real one in the complex plane of the variablee.
The analyticity of the retarded Green function Eq.~84! is
guaranteed provided

Im$ẽR~e!6D̃R~e,w!%.0. ~86!

After the integration overj in Eq. ~83! with the Green func-
tion given by Eq.~84! one finds

ns~e,w!5nn~e,w!ReH ẽ

Aẽ22D̃2~e,w!
J . ~87!

In particular, the following relation is valid fore50 ~on the
Fermi level!:

n0~w!5nn~w!
h̃0

Ah̃0
21D̃0

2~w!
. ~88!

Here the subscript 0 denotesh50. Averaging the above
relation over the anglew and using the first of the AG equa-
tions ~9! one gets@let us remind the reader that averaging in
the AG equations~9!,~10! is performed with the weight
m(w)#

^ns~w!&5h̃0t^nn~w!&. ~89!

Now we are in position to prove the following three state-
ments concerning the DOS on the Fermi surface:

Proposition 1:Let ^D(w)&Þ0 andD(w) does not change
its sign on the Fermi surface. Thenh̃050 for anyt.

Proposition 2:Let ^D(w)&Þ0 but D(w) is a sign alter-
nating function of the anglew. Thenh̃050 for 1/t.1/t! but
h̃0.0 for 1/t,1/t!. The equation fort! as a functional of
D(w) is derived below and reads

^D~w!/~D~w!11/t!!&50. ~90!

The above equation fort! should be supplemented by the
self-consistency and the AG equations~11,93,94! with
t5t!.

Proposition 3: If the OP possessesd symmetry, then
h̃0.0 for any 1/t<1/tc52eg(pTc0)

21. Before proceeding
to the proof let us remark that, according to Eq.~9!, the
following separation of variables takes place:

D̃~w,h!5D~w!1s~h!. ~91!

Let us define a function
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F~ h̃,s,t![12
1

t
^$@D~w!1s~h!#21h̃~h!2%21/2& ~92!

in order to rewrite the AG equations in a more convenient
form:

h5h̃F~ h̃,s,t!, ~93!

sF~ h̃,s,t!5
1

t
^D~w!$@D~w!1s#21h̃2%21/2&. ~94!

The first proposition stems from Eqs.~92!,~93!,~94! straight-
forwardly. Indeed, leth̃0[h̃(0)Þ0, then it follows from
Eq. ~93! thatF(h̃0,s0 ,t)50 wheres0[s(h50). The lat-
ter implies that the rhs of Eq.~94! should vanish for
h̃5h̃0 ,s5s0. This is impossible, however, ifD(w) does
not reverse its sign. Hence, even ifD(w) has nodes but is
non-negative in the whole domain 0<w,2p ~the case stud-
ied in Ref. 13!, h̃(0)50.

To prove the second statement we study, first, the limit of
small impurity concentration (^D&@1/t). After rewriting Eq.
~94! as

s5
1

t
^@D~w!1s#$@D~w!1s#21h̃2%21/2&, ~95!

it becomes evident thats5O(1/t). ~The integral overw is
always finite even ath̃050. Moreover the result is always
less than unity!. In other words, renormalization of the OP is
small. In particular, its nodes remain almost at their original
locations. However, the frequency renormalization is not
small due to the logarithmic divergence of the term propor-
tional to 1/t in the rhs of Eq.~92! at h̃(h)50. A closer
examination of the functionh(h̃) @inverse toh̃(h)#, which
can be extracted from Eq.~93!, shows that it departs from the
coordinate origin with an infinite negative derivative and,
after reaching its minimum, crosses the abscissa axis at
h̃05DL8exp(2tDI8/2). Here

1/D I851/uD18u11/uD28u;

lnDL85
uD18u lnuD18u1uD28u lnuD28u

uD18u1uD28u

andD1,28 denote the derivatives of the order parameter at its
nodes. Among the two roots, onlyh̃0Þ0 resides on the
physical sheet.25 Thus the first part of statement~2! is
proved.

In the opposite, dirty limit (1/t@Tc0) the asymptotic so-
lution of Eqs.~93!,~94! reads

h̃~h!5hH 11
1

t
@^D&21h2#21/2J , ~96!

s~h!5
1

t
^D&@^D&21h2#21/2. ~97!

This quasi-isotropic solution reminding us of Anderson theo-
rem is basically the leading term in the expansion of the AG
equations in small amplitude of the OP. However in the vi-
cinity of h50 this expansion is tricky. In fact it is possible at
all due to a strong renormalization of the OP:

s(h50)51/t. With increasingh the values drops sharply
reaching its asymptoticŝD&/(th) at ^D&!h!1/t whereas
h̃(h) grows rapidly in the same interval ofh reaching the
level of 1/t. The rapid variations of these two parameters
compensate each other in such a way that

r2[h̃21^D̃2&>1/t2.

Assuming that the variable part of the OP
Dvar(w)[D(w)2^D& is small with respect to scattering rate

1/t@uDvar~w!u,

in the whole domain ofw one arrives at the following equa-
tion for r:

r2
1

t F11
^Dvar

2 &
2r2

S 123
^D̃&2

r2
D G5Ah21^D&2. ~98!

At this point we neglect the contribution proportional to the
^Dvar

2 & assuming that the scattering rate is large enough so
that the following strong inequality holds:

^D&@^Dvar
2 &t. ~99!

The latter conjecture can be verified straightforwardly as fol-
lows. Plugging the solution in question into Eq.~11! at
T50 we derive the following quasilinear equation:28

pD~w!5 ln~tē !V̂D~w!2 ln~t^D&!V̄~w!^D&. ~100!

Assuming thatV0ln(tē)!1, whereV0 is the the maximal
eigenvalue of the operatorV̂, as previously, its solution can
be found explicitly:

D~w!5^D&
V̄~w!

^V̄&
; ^D&5

2

t
~tē !kexp~2p/^V̄&!. ~101!

From Eqs. ~96!,~97! it follows that h̃050 and
s(0)51/t@D. Since the renormalized OPD̃(w) does not
have any nodes, no divergence can arise in Eq.~93!. In this
way self-consistency of the obtained solution is guaranteed.

Let us prove the third statement. Due tod symmetry
s[0 and only one of the AG equations remains:

h̃S 12
1

t K 1

Ah̃21D2 L D 5h. ~102!

Considerh as a function ofh̃. According to the prescription
Eq. ~85! we are interested in analytic continuation of the
reciprocal functionh̃(h). The latter must be single valued
and span the half-axis 0,h,`. It is straightforward to
check that the derivative of this function is equal to2` at
h̃50 and is equal to11 at h̃→`. Therefore,h(h̃) has at
least one positive rooth̃0. Performing the analytical continu-
ation one should start from a large positiveh corresponding
to the upper half-plane of energy and move continuously
along the curveh(h̃) ~imaginary axis of energy! until the
valueh50 is reached. The corresponding valueh̃0[h̃(0)
has been proven to be positive. This concludes the proof of
proposition~3!.

Summarizing,h̃0Þ0 in a clean superconductor and it
vanishes when a scattering rate substantially exceedsTc0.
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Hence, there should exist some special value oft5t! at
which h̃0 first turns into zero. Sinces(0)ut5t!

51/t!, the

value oft! can be found as a functional ofD(f) by means
of Eq. ~90!. ~This general proof has been given in our
work.10 For special situations the fact of appearance of the
gap at a finite impurity concentration has been found earlier
in Refs. 8, 9, and 7. We became aware of these articles after
the submission of our work10 and did not cite them. We
regret this omission and use this opportunity to restore the
priority.!

B. Weakly broken d-wave symmetry

Here we consider the case of a small admixture of the
s-wave to the dominantd-wave OP. It means that the ratio
^D&2/^D2& is small. As we argued above, we expect that the
gap appears att! close to the critical value for the pure
d-superconductortc . Therefore, we study the behavior of
the OP and DOS in the vicinity oftc . We conjecture that
1/t2@^D2&@^D&. More specifically, suppose that^D& is of
the same order or less than̂D2&t. In this situation
h̃21s2>1/t2 and, though each of these quantities may vary
rapidly in the vicinity of h50, the sum of their squares
remains almost constant. This motivates us to introduce new
variables as follows:

h̃5~W11/t!sina; s5~W11/t!cosa. ~103!

The AG equations rewritten in terms of these new variables
and expanded over a small ratioD(w)/(W11/t) take the
following form:

sinaSW1
^D&cosa

~11Wt!
2

^D2&t~113cos2a!

4~11Wt!2 D5h, ~104!

cosaSW1
^D&cosa

~11Wt!
2

^D2&t~113cos2a!

4~11Wt!2 D
5

^D&
~11Wt!

2
^D2&t cosa

~11Wt!2
. ~105!

These equations can be solved approximately at small and
largeh and two asymptotic solutions can be matched in the
crossover region. Ath@^D2&t the variableW coincides
with h in the leading approximation. Another variable
a→p/2 asymptotically. Up to the first approximation one
finds

a5p/22
^D&

W~11Wt!
, ~106!

h5W1
^D2&t

2~11Wt!2
. ~107!

At small h!1/t the variableW becomes small, and once
again the solution can be found in a parametric form

h5^D&tana2^D2&t sina, ~108!

W5sina@^D&tana2~3/2!^D2&t sina#. ~109!

It is interesting to note that whereas equationh50 can al-
ways be satisfied witha50 corresponding toh̃50 another
nontrivial solution

cosa5
^D&

^D2&t
~110!

arises provided the lhs of the above equation is less than
unity. This second solution provides a clear manifestation of
the Gor’kov-Kalugin phenomenon.

As mentioned earlier two asymptotic solutions match
each other in the crossover domain

^D&!h!1/t.

The relation between two parameters within this interval
reads

~W1^D2&t/2!~p/22a!5^D&. ~111!

The expansion of the self-consistency equation up to the sec-
ond order in the amplitude of the OP gives

D~w!5V̄~w!E
0

ē
cosa~h!dh1V̂D~w!

3E
0

ē
sin2a~h!@W~h!11/t#21dh2~3/2!V̂D2~w!

3E
0

ē
sin2a~h!cosa~h!@W~h!11/t#22dh

1~1/2!V̂D3~w!

3E
0

ē
sin2a~h!2115cos2~2w!@W~h!11/t#23dh.

~112!

Employing Eqs.~106!, ~107!, ~108!, ~109!, and ~111! the
integration overh in Eq. ~112! can be performed and explic-
itly with the following result:

D~w!2
1

p
ln~ ēt !V̄D~w!

5
1

p
V̄~w!F ^D& lnU2 tan~b/2!

^D&t
U2^D2&t

2

3S b2
sin~2b!

2 D G
2
1

p
V̂DF ^D&tb2^D&2t2S 562cosb1

1

3
cos3b D G

2
1

4p
t2V̂D3, ~113!

where

b5H p/2 if z>1

arcsinz if z,1
~114!

and
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z5^D&/^D2&t. ~115!

If the scattering rate is close to its pair-breaking value in the
purely d-wave case one can use a single-mode approxima-
tion.

D~w,t!5Q~t!C0~w!, ~116!

whereC0(w) is a normalized eigenfunction of the operator
V̂ corresponding to its maximal eigenvalue. Then Eq.~113!
is reduced to the following:

ln~t/tc!52^C0&
2lnU2 tan~b/2!

^C0&Qt U2Qt^C0&S 32b2
sin2b

2 D
1Q2t2S 562

1

4
^C0

4&2cosb1
1

3
~cosb!3D , ~117!

whereb is defined by Eq.~114! with

z5
^C0&
Qt

. ~118!

The scattering rate 1/t!, where the gapless regime termi-
nates, corresponds toz51. Thus,

ln~t! /tc!52^C0&
2S ln~2/̂ C0&

2!2
1

4
^C0

4&2
3p

4
1
5

6D .
~119!

This value separates two different regimes of the OP behav-
ior with respect to the scattering rate. In the close vicinity of
this point the amplitudeQ is a linear function oft2t!:

Q2Q!5
1

At!^C0&

t2t!

t!
, ~120!

whereQ!5^C0&/t! and

A5
1

2
^C0

4&1
3p

4
2
2

3
.

Surprisingly, despite different functional dependence of
Q(t) above and below the transition pointt!, this amplitude
is continuous together with its derivative.

Since the amplitude of the OP grows rapidly when the
scattering rate diminishes, the nonlogarithmic term in Eq.
~117! becomes important already in the nearest vicinity of
the critical point 1/t!. The logarithmic and quartic terms
balance each other exactly at the scattering rate equal to
1/tc . Below this value of 1/t the quartic term dominates
over the logarithmic one and the OP soon follows the square
root law, characteristic for the purelyd-wave case. At
t,t! and (t!2t)/t!@^C0&

2ln^C0&
22 the logarithmic term

becomes dominant resulting in the powerlike dependence:

Q5
^C0&

t S t

t!
D ^C0&22

. ~121!

In the strong-scattering regime the single-mode approxi-
mation breaks down. Fortunately, it may be replaced by a
quasilinear approximation. The only term in the rhs of Eq.
~113! essential in this regime is a logarithmic one. According
to Eqs.~114!, ~115! b5p/2 for smallt. Let us introduce the
‘‘form factor’’

x~w,t!5S Î2 1

p
ln~ ēt !V̂D 21

V̄~w! ~122!

which determines the angular dependence of the OP:

D~w,t!5Q̃~t!x~w,t!. ~123!

One can easily derive the following expression for its ampli-
tude@the notation for the amplitude has been modified since
x(w,t) is not normalized#:

Q̃~t!5
2

t
^x&21expS 2

p

^x& D . ~124!

The form factor may be expressed in terms of the eigen-
valuesVn and the orthonormal eigenfunctionsCn(w) of the
operatorV̂ as follows:

x~w!5(
n

SVn
212

1

p
ln~ ēt ! D 21

^Cn&Cn~w!. ~125!

In the vicinity of t5tc one can retain the only pole corre-
sponding to the maximal eigenvalueV0. Then,

x~w!5
p^C0&C0~w!

ln~tc /t!
; ^x&5

p^C0&
2

ln~tc /t!
;

^x2&5
p2^C0&

2

@ ln~tc /t!#2
. ~126!

Plugging this approximation into Eq.~124!, one returns to
Eq. ~121!. In the extra-dirty regime ln(ēt)!V0

21 and the form
factor reaches an independent ont asymptotics:

x~w,t!5V̄~w!. ~127!

Both the mean value of the OP and its quadratic variation are
exponentially small in this limit but their ratio is equal to

^V̄(w)&/A^V̄2(w)&.

C. Angular and energy dependence of the DOS

We concentrate our analysis of the DOS dependence on
energy and angle on the most interesting situation when the
OP in the clean superconductor reverses its sign. In the in-
tervale!Dmax the functionh̃ may be fairly approximated by
the following expression:

ẽ~e !5 ı̇h0exp~2 iu1u tanu!, ~128!

whereu is defined by equation

u exp~u tanu!/cosu5ptD08e/~4h0!. ~129!

This result matches another approximate expression valid in
the interval 1/t!e :

ẽ5e1 is~e!; s~e!5
4e

ptEf0

f~e! df

Ae22D2~f!
,

~130!

wheref0 denotes the position of the OP node,f(e) corre-
sponds to the value ofD(f) equal toe at e,Dmax and is
equal tofmax otherwise. Further we consider a simplest
D(f) with only one extremum in the interval 0,f,p/4.
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Equation ~130! is invalid in a close vicinity of the point
e5Dmax, where instead of the logarithmic singularity dis-
played by this equation a finite maximum ofs(e) of the
magnitude ln(tDmax9 ) occurs. Plugging these results into Eq.
~87! one calculates the DOS:

ns~e,f!

nn~e,f!
5H s~e!D2~f!/@D2~f!2e2#3/2, 0,e,D~f!

e/Ae22D~f!2, D~f!,e.
~131!

Its analysis shows that the DOS is of the order of
ns;nn /tD08 for e,D(f). It possesses a peak of the width
1/tD08 and of the height;(tD08)

1/2 in the vicinity of
e5D(f). Far from the peak it decreases ase/Ae22D2. Note
that nn(f) has its own anisotropy. WhentD08 reaches the
order of unity the peak becomes broader and gradually de-
creases.

Now we will find the DOS in the extra-dirty limit. Plug-
ging the analytical continuation of Eqs.~96!, ~97! into gen-
eral Eq.~87! we find that formally the rations /nn depends
on f, but this dependence is very weak in the extra-dirty
limit, sinceD(f)!^D&/(tAe22^D&2) as soon aset!1. In
the leading order overDt this ratio coincides with its isotro-
pic limit:

ns~e,f!

nn~e,f!
5ReH e

Ae22^D&2
J . ~132!

Thus, the ratio of superconducting and normal densities of
states does not depend on angle in the extra-dirty limit. This
is a generalization of the Anderson theorem30 for an aniso-
tropic normal DOS. We also have found the criterion of va-
lidity of the Anderson isotropization: it works in the extra-
dirty limit.

It is clear now that the thermodynamics of thes super-
conductor in the extra-dirty limit will be the same as the
thermodynamics of the isotropic superconductor, though the
density of states remains anisotropic.

VII. CONCLUSIONS

We developed a consistent BCS theory of the OP and
DOS for essentially anisotropic superconductors with the
emphasis on thed-wave superconductors and the extended
s-wave superconductors with elastic impurities. Our interest
in this class of superconducting materials was stimulated by
experiments. The OP anisotropy, usually weak in natural
low-temperature superconductors, becomes strong in high-
Tc superconductors because the coherence length is small in
them. When the OP reverses its sign on the Fermi surface a
new class of impurity-driven phase transitions emerges at
zero temperature. Ind superconductors the OP vanishes
above a certain value of the scattering rate 1/tc . In extended
s superconductors the OP is not totally suppressed, instead
the energy gap opens at some critical scattering rate 1/t!. For

a special case of an extendeds-wave system close to a
d-wave one,t! is close totc . We argued that this situation
is relevant to Bi2:2:1:2 and presented a thorough description
of the temperature, the energy, and the scattering rate depen-
dence of the OP and the DOS. In particular we found that the
OP is continuous together with its derivative att5t!.

In extendeds superconductorsTc decreases with the scat-
tering rate, and its decay is governed by the power law
tk21. This behavior is consistent with the experiments.3

Analyzing these experiments we were able to estimate the
AC k'2 for Y-Ba-Cu-O. It would be interesting to perform
analagous measurements for other copper-oxide supercon-
ductors. In the extra-dirty limit the energy gap becomes iso-
tropic in accordance with the Anderson theorem whereas the
OP remains anisotropic.

In the BCS approximation the OP is factorizable. In a
pured superconductor its shape is invariant at any available
temperature and scattering rate and only its amplitude
changes with these parameters. In an anisotropics supercon-
ductor the OP shape does depend on the impurity concentra-
tion in general, but if the latter is fixed, the former does not
depend on the temperature. When the impurity scattering rate
is either very small or very large the OP profile becomes
independent on scattering, but the two limiting shapes are
different.

We studied the angular, energy and scattering rate depen-
dence of the DOS. The latter, being finite at the Fermi level
for t.t!, turns to zero fort,t!. For clean superconductors
at low temperatures the DOS has a sharp peak ate5D(w).
This peak is smeared by the temperature and scattering, but it
sharpens again in extendeds superconductors att,t!.

A GL equation for an arbitrary value of scattering rate and
general shape of the OP in a clean system was derived. The
impurity-dependent part of the coefficienta at the linear term
is proportional to 121/k, providing an alternative opportu-
nity to find the valuek from the experiment. The cubic term
has a complicated impurity dependence. It grows rapidly in
dirty superconductors (tTc0!1) being proportional tot21.
The gradient term is characterized by the inverse effective
mass tensorzab which posesses the full crystal symmetry. In
the clean superconductors it is determined by the average
^D2vavb& in accordance with the old result by Gor’kov and
Melik-Barkhudarov.24 In the dirty case it decreases aszab
}t^vavb&^x4&/^x2&.

Since the interaction in the high-Tc superconductors is not
weak it is interesting to discuss to what extent the results of
our work are model dependent. It is clear that the factoriz-
ability of the OP is tightly associated with the weak cou-
pling. On the other hand, if the OP is small, our results are
stable since the interaction is effectively small. This remark
applies, in particular, to the impurity-driven phase transi-
tions, especially for an extendeds superconductor close to a
d superconductor, and to the powerlike tails of the critical
curveTc(1/t), and to the energy gap isotropization.
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