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The effect of three types of "quartic" anisotropy energy (i.e., in the M term of the magnetic
Ginzburg-Landau free energy} on the polarization of the "spiral magnetic" state of Blount and
Varma is studied near the onset temperature. For a quartic anisotropy with uniaxial symmetry,
we find continuous polarization transitions from circular to elliptical and then to linear as the
strength of a uni-easy-axis anisotropy is increased. (No transition is found for the uni-hard-axis
ease. ) If the quartic anisotropy has cubic symmetry, we find a discontinuous transition directly be-
tween circular and linear, without going through an elliptic stage, when the sign of the anisotropy
energy is to favor the cubic axes. (The polarization stays circular at all strengths of the anisotropy
energy if the sign of the latter is to favor the body diagonals. ) Finally, we model the anisotropy in

primitive tetragonal ErRh484 with a quadratic anisotropy giving a hard c axis, plus a quartic an-

isotropy in the basal plane with a square symmetry. A first-order polarization transition directly
between circular and linear is also obtained for this case, when the quartic anisotropy favors the
principal axes in the basal plane. This last case studied provides a plausible explanation for the
linear polarization observed in the coexistence state of ErRh484.

I. INTRODUCTION AND SUMMARY

Using an isotropic Ginzburg-Landau theory to investi-
gate the interaction of superconductivity and fer-
romagnetism via the magnetic field 8, Blount and Var-
ma' predicted a new "spiral magnetic" (SM) state which
features a coexistence of superconductivity and a spiral-
ing spontaneous magnetization of a wave length much
longer than the lattice spacing. Assuming that the bare
superconducting transition temperature T, is substan-
tially higher than the bare ferromagnetic transition tern-
perature T 0, they found the SM state to occur in a tem-
perature range T,2&T& T„where T, is only slightly
below T o, and below T,2 a normal ferromagnetic state
becomes the most stable state. According to this theory,
either temperature region may or may not exist depend-
ing on the values of several material parameters that
have been introduced in the theory. The theory was
presumed to apply to such ternary "reentrant" supercon-
ductors as ErR.h&B~ (the primitive tetragonal kind) and
HoMo6S8, etc., and indeed in subsequent small-angle
neutron scattering experiments performed on powdered
samples of these materials, ' a peak was observed at a
small but finite wave number q which appears to be con-
sistent with the theory. Further experiments performed
on a single crystal of ErRh484, ' however, revealed that
this material has a tetragonal symmetry, is strongly an-
isotropic, and its oscillatory spontaneous magnetization
is confined to either of the two a axes in the tetragonal
basal plane, and therefore is linearly polarized. As for
HOMO6S8, 1t 1s known that this Chevrel-phase com-
pound has rhombohedral symmetry which may be
thought of as a slightly distorted cubic symmetry with
the distortion being a slight elongation along one of the

cubic diagonals. Neutron scattering and magnetic mea-
surements have determined that the trigonal axis is the
easy axis for magnetization, and q~~[110j. The coex-
istence state in this material is therefore also linearly po-
larized.

In order to accommodate these observed linear polar-
izations into the Blount-Varma theory, Greenside et al.
investigated in Ref. 8 the effect of a "quadratic" anisot-
ropy of the form —,'[a~~M, +a~( M„+M)] on the SM
phase. This form is to replace the isotropic term
2a

~

M
~

in the original isotropic magnetic-Ginzburg-
Landau free energy of Blount and Varma. For
ct~~

——a~~a(T/T'~ o
—1), ct~=ct~o(T/T o

—1), with T
Q T o, this form represents an anisotropic bare Curie
temperature. For T O=T O=T 0 but O. ~IO&a~o, this
form represents an anisotropic Curie constant for
T~ T o. Without the need to distinguish between the
two cases, Greenside et al. found that the circularly po-
larized (CP) SM state changed to an elliptically polarized
(EP) state and then to a linearly polarized (LP) state as
o,~~la~ was increased from unity to eventually exceed
=1.8, where the LP state sets in. Clearly their theory
applies to the regime T ~ T 0 & T'I 0, ~hereas for
T o ~ T g TII 0 the polarization must be trivially hnear
since only the z component of M can be nonzero in this
regime. For cubic materials, a,

~

and o;~ are necessarily
equal. The important anisotropy to consider is then a
"quartic" anisotropy of the form —„'P'(M, +M~+M, ), to
be added to the isotropic term —,'P M . [The sum of
these two terms may also be written as

—,'(P +P')M4 ,'P'(M„'M2+M, 'M—,'+—M,', M,'),
and is therefore equivalent to the anisotxopy considered
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by Kuper er al. ] This raises the curious question as to
whether such a quartic anisotropy is also capable of in-
ducing a polarization transition of the type found
Greenside et a j. This Es the initial motivation of this
study, but we have extended our study to include the
efFect of a quartic anisotropy with a uniaxial symmetry
in order to reveal a difFerent type of quartic anisotropy
effect on the polarization transition, and we have also
modeled the anisotropy of the actual primitive-
tetragonal ErRh&B& within the Ginzburg-Landau ap-
proach used here, and then study its e6'ect on the polar-
ization transition of this type of material as the strength
of the anisotropy energy is increased. The purpose of
this last part of the study is to find a plausible explana-
tion why /inear polarization is actually observed in the
coexistence state in ErRh484, in spite of the fact that
T 0 and the magnetic susceptibility are both isotropic in
the tetragonal easy-basal plane of this material. Clearly
this question is not answered by the anisotropy effect
studied by Greenside er al. , since they have only con-
sidered the effect of an easy axis in the quadratic term of
the magnetic free energy. It is also clear that if the easy
axis is changed to a hard axis in their model without the
addition of any other anisotropy energy, the polarization
of the spiral magnetic state will remain circular (though
with q now confined to the hard axis), no matter what
the strength of this quadratic anisotropy. Thus, in order
to explain the linear polarization observed in this materi-
al we have modeled the anisotropy of this material by
adding to the quadratic hard-axis anisotropy described
above by a quartic anisotropy of square symmetry in the
tetragonal basal plane. Indeed within this model we 6nd
a direct first-order polarization transition from circular
to linear, as the strength of this quartic anisotropy is in-
creased, if its sign is to cause the magnetization to favor
either of the two a axes. %'e thus have obtained a plau-
sible explanation of the linear polarization observed in
the coexistence state of ErRh484, although we do not
claim that the model used here has been established as
the correct model for the anisotropy energy of this ma-
terial (i.e., more complex models consistent with the
crystal symmetry of this material can certainly be con-
structed). On the other hand, Chevrel-phase materials
such as HoMo6SS have a single strong easy axis along
the trigonal axis. It is clear then that the anisotropy
e8'ect studied by Greenside et al. can already explain the
linear polarization observed in this class of materials,
and no special consideration in this study is necessary
for these materials. (Actually it is the trivial case
T 0 g T ~T~~o which applies, so even the theory of
Greenside et al. is also not necessary for these materi-
als).

Thus, in this work, we have studied the effects of three
types of quartic anisotropy: (i) The uniaxial quartic an-
isotropy (case 1) is of the form —,'P'M, which is added to

4/3~M . It gives coIltllluolls polal'Izat1011 trRIisltlolls of
the form CP~EP~LP as P'/P is varied from 0 down
to —1 (thc stablhty 11IIllt). (011 tllc otlicr llalld, Ilo traI1-
sltloIl ls folllld fol p & 0.) (ll) Tllc qllRI tlc Rnlsotropy
with cubic symmetry (case 2) is of the form (P'/
4)(M„+M +M, ), again to be added to —,'P M . We

find a polarization transition of the form CP~LP
(unthout going through an EP stage), for which the first
derivative of the free energy with respect to P is discon-
tinuous, as P'/P is again lowered from 0 to —1.
(Again, no transition is found for P & 0.) Finally, (iii) we
study a quartic anisotropy with the symmetry of primi-
tive tetragonal ErRh484 (case 3), which is of the form
(P'/4)(M„+M» ). This is to be considered together with
the assumption that the z axis is hard (i.e., the onset
temperature for ferromagnetism in the z direction is
much lower than those for ferromagnetism in the x and

y directions). This case gives a phase transition very
similar to case 2 of the form CP~LP, again without go-
ing through an EP stage. (For P'&0, otherwise it is al-
ways CP.) Thus in terms of the standard nomenclature
we may term the transitions for cases 2 and 3 first-order
transitions, whereas the transitions for the uniaxial quar-
tic anisotropy, as well as for the quadratic anisotropy
analyzed by Greenside et al. , may be termed second-
order transitions. In all three cases, the critical value of
P'/P~ for entering linear polarization was found to be

3 but for case 1 there is another critical value at 0,
where EP degenerates into CP. Strictly speaking, this is
not a polarization transition since the CP phase exists
for only a single value of P' rather than a finite range. (0
is also a critical value for cases 1 and 2 in another sense:
The directions of q and M change discontinuously
without changing the circular polarization as P' changes
sign from 0 to 0+.) The favored directions for q and
M at each value of P'/P are given in the subsequent
sections and summarized in a table.

Our method of study is based on a near-onset analysis
developed previously by one of us, ' which is valid only
for T, —Tg~T, . This restriction greatly reduces the
amount of numerical work needed, and permits us to ob-
tain a complete analysis of the polarization transition in-
volved, and the preferred directions for the magnetiza-
tion M and the wave vector q for the whole range of the
anisotropy parameter —1&P'/P & ao. In Ref. 10 this
analysis was used to study the LP state in the limit of
very strong anisotropy to render this state more stable
than either the (CP) SM state, or the EP state. Here the
analysis is generalized to allow for circular or elliptical
polarization. We note that if the condition T, —T « T,
were not assumed, the oscillatory magnetization of the
LP and EP states would be strongly anharmonic, and
must be obtained by numerically solving a coupled set of
nonlinear differential equations with periodic boundary
conditions. This is possible but very time consuming,
especially for case 2, since we wish to determine the
directions of q and M by minimizing the total free ener-
gy. (This problem does not exist in the work of Ref. 8,
which is why it can treat lower temperatures. ) Thus we
have avoided this by confining this study to the vicinity
of the onset temperature. %e feel that sacri6cing a wid-
er validity range of temperature for a much simpler
analysis is worthwhile, since there is no experimental in-
dication that a polarization transition can be induced by
a mere change of temperature, and for ErRh484 and
HoMo6SS the coexistence state only occurs in a very nar-
row temperature range anyway. In Ref. 10 an investiga-
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tion was also made of the possible occurence of a more
complex doubly periodic structure with negative result.
%'e have not done the same here mainly because me do
not yet know how to do that analysis correctly for a gen-
eral polarization (i.e., we do not yet know how to per-
ceive the most general polarization for a doubly periodic
state). Thus, in this study we have confined the magneti-
zation to have a single wave vector q, and only analyze
the equilibrium polarization of this singly periodic state
at each strength of the anisotropy energy.

Before we close this section, we would like to mention
some additional experimental facts that are relevant to
this study. %'e have already mentioned that HoMo6SS
has a rhombohedral symmetry, with M being LP along
the trigonal (111)axis, and q~~[110]. It has been stressed
in the literature that even a 70-kG applied 6eld can not
induce a full moment perpendicular to the easy axis, " so
this material appears to be quite uniaxial, even though a
quartic anisotropy term may still be important in quanti-
tatively determining the free energy of this material.

Another Chevrel-phase compound, HoMosSes, has
very similar properties. It also has a nearly cubic sym-
metry with, in fact, a slightly stronger distortion, and it
also exhibits an oscillatory magnetic phase which coex-
ists with superconductivity but with no reentrant behav-
ior. However, there is some evidence that this material
may be less uniaxial. For example, the small™angle neu-
tron scattering intensity for this material peaks at a finite
wave vector q with a temperature dependence which can
actually be understood in terms of the theory of the CP
SM phase, ' and yet according to Greenside et al. the
temperature dependence of q for thc LP phase should be
substantially stronger than for the CP SM phase. Thus
it may very well be true that the anisotropy for this ma-
terial is more of thc cubic symmetry type than uniaxial,
although the ultimate test lies in further experiments.

The reentrant superconductor ErRh~84 is, on the oth-
er hand, tetragonal with the c-axis basis vector nearly
1.4 times longer than the a-axes basis vectors. ' In Rcf.
4, it was shown that the c-axis magnetization is linear in
the driving magnetic 6cld even at 0.43 K. This fact es-
tablishes that T'0] is much lower than T'"0 and T'

o for
this material, In Ref. 5, it was shown that the magneti-
zation is linearly polarized in either of the two
equivalent a axes in the tetragonal basal plane, and that
the q vector of the coexistence state observed is essen-

I

tia1ly at 45 with the c-axis in either of the two
equivalent ac planes. In this work we try to understand
the former but not the latter, at least in the sense of ex-
plaining it with a physically reasonable model. Since our
model is by no means established or unique, we urge the
experimentalists to perform the appropriate experiments
in order to see whether the basal plane magnetic proper-
ties of this material can be understood in terms of such
an anisotropy energy model and thereby check the valid-
ity of this work concerning this material.

II. GINZBURG-LANDAU FREE-ENERGY
FUNCTIONAL WITH QUARTIC ANISOTROPY

%e consider the e6'ect of adding to the isotropic
Ginzburg-Landau free-energy functional for ferromag-
netic superconductors [i.e., Eq. (1) of Ref. 10] the follow-

ing quartic anisotropy energy terms:

—M, (case 1),P'
(la)

I—(M„+M~+M, ) (case 2), (lb)

I—(M„+M') (case 3), (lc)

where for case three we also change the quadratic term
—,'aM to —,'[a~~M, +ai(M„+M„)],with a~~ finite and also

&0 and ai~0 as T~T 0 (—:T 0). Since our study is
confined to the vicinity of the onset temperature, the
efkct of this change is to simply let M —=M„+M~, and
continue to use the isotropic form —,'aM, where cx now

clearly stands for ai. We assume that P &0 and
neglect the

~

M
~

term in this work as a simple model
for this effect. Since the magnetization is to be in a gen-
eral direction, we can write

(i =x,y, z) .

It is trivial to see that (in the notations of Ref. 10)

(P'/4)M „
F,ok

So the magnetic part of the reduced free-energy func-
tional now becomes [compare with Eq. (6) of Ref. 10]

T

for case 1

bV, „„;,=(p/v) J d x 2At +At—+2(
~

%At
~

+(P /P )X ~ (At„+At +At, ) for case 2 ~

(At„+JR)for ca, se 3

where A, =A, +A, +At for cases 1 and 2 and
Ak =A,„+A~ for case 3.

III. RIGHT-AT-ONSET ANALYSIS

The addition of a quartic anisotropy energy term and
the extension to a general direction of magnetization in

the Ginzburg-Landau free-energy functional mill actually
lead to the same conclusions for the right-at-onset
analysis as in Ref. 10 as we will show below. After vary-
ing hV with respect to f, S, and At (with notations of
Ref. 10), the additional anisotropy term only gives rise
to some cubic terms in JK, and therefore does not appear
in the linearized equations. However, now that At and
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o=—[(vg) '+i)2]q +'9i —v (6)

After taking a scalar product of both sides with q, Eq.
(5) simply becomes

(o + 1)(q At )=0, (7)

which implies that either o+1=0 or AIJ. q. We can
now distinguish between two types of solutions:

A. Longitudinal: (AIIq}

We have from Eq. (7)

0+1=0, (8)

and therefore

v =[(vg) +2)2]q +rii+1 . (9)

This is trivially minimized by the choice of q =0 with
the resulting onset temperature too low to be of interest
here. [Remember that v =vo (1—T/T 0) and T=T,
here. ]

8. Transverse: {Alq)

Equation (5) then becomes

(q +1)sr+1=0, (10)

g are in general directions, we obtain the following
equation in place of Eq. (14) of Ref. 10:

—q(q os)+q crAf, +(o +1)At =0,
with

1—
Trn 0

= o'[rI +2[( 0) '+i) 1'"—[( g) '+9 ]I

(12)

Note that no third mixed situation can occur since as
long as q &&0 then o+1=0 and Eq. (5) implies ~llq.

IV. JUST-BKLO%-ONSET ANALYSIS

%e now consider temperature T slightly away from
T„with

I

T T,
I
«—T, . The only significant change in

the non-linear variational equations appears in the varia-
tion of b, V with respect to At. After putting
JK=JKO+5AI, , neglecting terms to higher than first or-
der in 5& and simplifying it by using the equation for
Ato which is defined in Ref. 10, we find that for case 2,
Eq. (20c) of Ref. 10 is changed to

which implies

l
v '=[(v4) '+~2]q'+ni+

(q +1)

This is identical to Eq. (15) of Ref. 10 so the minimiza-
tion of it with respect to q gives the same onset tempera-
ture T, as before:

v, 5'„+(vg) V25AI„+(5$„5'„)—r—li5&„+2)2V RH„=(v, . v)A—IO„+v, AID (Ato„+JN02 +AID, )

+2ili5fAIO„—2i12V (5fVAto„)+v, 2 3 (13)

(The x component is given here; the y and z components
follow by cyclic permutation. ) For case 1 the last term
occurs only for the z equation. For case 3 the z equation
is discarded and AID, is set to zero in the other two
equations. Multiplying Eq. (13) by AID, , averaging it
over space, and using

TS
v~ —V =vo (14)

T 0

(5f(q', +~,AI,'+~,
I
VAt,

I

') ) =p,'P, (AI', &',

where 5f is the same as defined in Ref. 10, and

(AI4 ) please 1 i(AI2)2

we finally obtain

(18a)

(18c)

and ( ) to denote spatial averaging, we obtain

2
T-T

Tmo

(AI „AI ) —2(5f((g+r)i~0+ l2 I
VWD I ))

(AI.,') =P, (AI', &', (16)

By adding similar equations for the y and z components
and introducing structural constants p„ l32, and p,„;~

(T, —T)/(T 0—T, )
At,') =

Pi+(P'/l3 )P..;,. (Pv)'P2—
&aniso = I ~a~niso r I anis~o r Or Paniso j

above, pi and p2 are of course the same as Eqs. (23a) and
(23b) of Ref. 1, so only P,„;, is new. Eq. (19) should be
compared with Eq. (24) of Ref. 1. We will, however,
neglect the (pv) p2 term in the following analysis be-
cause this term is most likely very small for actual ma-
terials. If the q, and g2 terms do not dominate in the
definition for p2 then p2=q, &10 . ' We have also
estimated that (pv) & 100. ' Since the product (pv) p2
is only Inarginally finite positive it will not change the
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qualitative behavior of the model and only a6'ect the
quantitative results roughly at the one percent level.
This changes the denominator of Eq. (25) in Ref. 1 to
give

&so 1

I &.o I

where 2)F=pi+(p'/p )p,„; . It is therefore clear that
minimizing the free-energy density is completely
equivalent to minimizing 2)F.

Ato =xA(,o „+yAt~ +zoo, . (22)

At() ——e,A, , +e2AI, .

In this notation we can write

(23)

If we define q to point in a direction (8,$~) we can
define basis vectors e, and e2 as e& ———x sinP~+y cosP~
and ei ———x cosp cos8 —y sing cos8 +z sin8, so that

e, , ez, and q form a right-handed coordinate system.
Since Ato is transverse we can always resolve it as

V. THE EXPRESSION FOR 2)p

We can resolve Ato to have components along the x, y,
and z axes. Since we are limiting ourselves to only singly
periodic structures, we can set

4(
I

A/, , I
'+

I
JM, , I

')'+2(A. /+At', )(Al, +Alii)

4(
I
JM, I'+

IAIDO

I

')'

(24)

o=Ato, e'q'+~o, e and

I

„„,) (~ IAti I'+&
I
Ate I'+& IAti

I'IAIDO

I
'+DX

IAIDO

I'+EX IA12 I'+FX')
4(

I
At i I

'+
I
Ati

I

'}'

where A, 8, C, D, F., and F are complicated functions of 8 and P~ and

X =JK,JK2 +AiAt, , ,

We can now write 2)F in terms of the magnetization basis amplitudes At, and At2:

(25}

(26)

SF——[4(
I
AI, I

'+
I
At,

I
'}'+2(At', +P(22)(Al f'+A12'}

+6 (~ IAIil'+& IAtil'+C IAt& I'IA11 I'

+DX
I Ati I

'+EX
I Ati

I
'+FX')]/4(

I
Ati

I

'+
I Atz I

'}' «ase 2 o»y} (27)

For a quartic anisotropy energy with cubic symmetry, SF was minimized numerically. However, the case of uniaxi-
al anisotropy is soluble analytically and we present it here 6rst to give the reader a feeling of how this problem is at-
tacked mathematically.

VI. QUARTIC ANISOTROPY WITH UNIAXIAI. SYMMETRY (CASE 1}

To study a uniaxial anisotropy, we can assume q=xsin8 +zcosOq without loss of generality, and e, =y,
e2 x cosHq +z sineq, with z being along the anisotropy axis. Then the reduced anisotropy energy after spacial
averaging is simply

so

I I

6
I

Af,o, I
=6

I
JK1 sin8

m m

(28)

4( IAI,
I

+ IAI
I

}1+2(At,+At&)(At; +At&i)+6 IAtil sin 8

4(IA, , f +IA12I )
(29)

Let At, =JKocosae ', and JH2 JKosina, e ——'. This leads
to

sin (y, —y2) = l. A further minimization with respect to
sin a then leads to

t

SF=———siii (2cx ) sill ( y i
—y1 ) + slil ct

2 2 2
(30} sna =

OPt g tsin cx (31)

where A'=3(p'/p )sin 8~. Minimization of 2)F with

respect to (y, —y2) clearly leads to (y, —yz) =m. /2,
which is meaningful only for A'& —2. If 2'~ —2, we
must take sin a, ,=1. This gives
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minSF =——, (for A' & —2),3 2

2 3'+4 (32)

minBF ———+ (for A'& —2) .
3

2 2

Equations (32) and (33) together represent a single mono
tonically increasing function of A'. This allows us to
divide the physical region of p'/p, viz. , p'/p & —1,
into three regions.

Region I. —1&p'/p ( ——', . Since 3p'/p & A'&0
here, the minimum SF with respect to 8, is at
A '=3p'/p & —2 for 8q =90', giving sin a = 1 with
2)~ ———',[1+(p'/p )]. The solution is LP with At paral-
lel to z, and q in any direction perpendicular to z.

Region II. ——', &P'/P &0. Here again 3P'/P
& A'&0, so the minimum Xlz is at A'=3p'/p & —2,
which gives 8q =90' and sin a~,~, ~

——2/[3(P'/P )+&]& 1

corresponding to EP. In fact, as p'/p goes from 0 to
——'„ the polarization changes continuously from CP to
LP. On this interval 2)F ——[g+9(p'/p )]/
[8+6(p'/p )]. In this state, M spirals in a plane paral-
lel to z, and q is perpendicular to this plane.

Region III. p'/p & 0. In this region 0 & A
'

&3p'/p, the minimum of 2)F is at A'=0 which im-
plies 8 =O. As a result sin o:(opt) 2 implying CP and
2)~ =1. Here, At spirals in the plane perpendicular to z,
and q is therefore along z. Combining the three regions
gives the behavior of the free-energy denominator for the
case of uniaxial anisotropy energy as given in Fig. 1.
Note that for this case the polarization phase transition
in the negative p'/p region is such that SF and its first
derivative are continuous functions of p'/p

FIG. 1. Plot of free-energy denominator vs anisotropy
strength for three types of quartic anisotropy energy.

VII. QUARTIC ANISOTROPY WITH
CUBIC SYMMKTRY (CASK 2)

Of course we will actually use the decomposition Eq.
(23}to solve this case. As in the previous case we set

At, =At()( cosP)e (35)

At2=At()( sinP)e

Then Eq. (27) simplifies to

(36)

Now we return to the full cubic anisotropy, Eq. (lb).
The reduced anisotropy energy after spatial averaging is

I

( IAtoq, I + IAtoq, I + IAtoq,

2)~= —', ——,
' sinz(2p) sin (y, —y2)+ —',(p'/p )[A cos p+8 sin p+C cos psin p

+2D cos(} i
—pi) cos pslnp+2E cos(pi —1'2}sin pcosp

+4F cos (1 i
—fi}cos psili p] . (37)

%'e can only minimize this expression numerically.
(First with respect to yi —yz and p, and then with
respect to 8 and P .) We find a phase transition in po-
larization at p /p = ——,. The polarization is CP for
p'/p between 0 and —

—,', but it suddenly chooses LP at
and remains so down to the physical limit of

P'/P = —1. The physical region P'/P & —1 can
therefore again be divided into three regions as given
below.

Region I. —1 &p /p~ (—3. We find q favoiing
whole xy, yz, and zx planes. When q favors the cubic yz
and zx planes, p=0 which implies that the magnetiza-
tion is all At, from Eq. (35). When q favors the cubic xy
plane, p=qr/2 which implies that the magnetization is
all At2 from Eq. (36). In both situations, At turns out to

be along a cubic axis and q is in the plane perpendicular
to At but otherwise undetermined. In this region the
minimum value is SF= —',(1+p'/p ).

Region II. —-', (P'/P &0. We find minimum 2)F's
for q along any of the principal axes, At is CP in the
principal plane i q, and the minimum value is 2)~
=1+,'P'/P-

Region III. p'/p &0. We find minimum 2)F's at
q=(111) and its equivalent in the other octants. The
qualitative behavior of the solution remains the same for
all positive values of p'/p, and is CP with At in the
plane perpendicular to q. Here the minimum is
2)F ——1+—,'p'/p . Figure 1 shows the behavior of 2)~ in
each of the three regions.
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VIII. ANISOTROPY MODEL FOR ErRh484 (CASE 3)

We now consider the anisotropy of ErRh484. Here,
the z axis is the hard axis with a much lower T'0 so the
magnetization is con6ned to the x-y plane, The quartic
anisotropy energy for this case is, after spatial averaging,

I

( l~o4,.1'+ 1~os,, I')

Here no new coordinate system is needed, and we can
directly work with Ao „and Ato . We need to mini-
mize

&F=f4( I~oq, I
+ I~~y I ] +2(~oq, +~o4y)(~o, +~o,y)

+6 tl~oq, I + I~oq, I )l/4(I~o4, I + I~o,, (39)

Now let Ao „—Ato( cog)e
=JKo( sing)e '. This leads to

2)F = 1+ + ( cos p+ sin p)
1 3P' 4 . 4

+ cos2(y„—y ) cos {()sining .

Since cos (( sin (( is nonnegative for all P, we can im-
mediately minimize 2)F with respect to the relative phase

y, —y to give

(40)

7x 7y (41)

2)F ——1+ —+ ( cos p+ sin p) —cos (t) sin p .4 4 1 1

IX. CGNCI. USIQNS

%'e have analyzed the e8ect of adding three types of
quartic anisotropy energy (called cases 1, 2, and 3} on
the polarization of the spiral magnetic coexistence state
of superconductivity and ferromagnetisID. This state
was originally proposed by Blount and Varma based on
an isotronic Ginzburg-Landau-type theory, and previous-
ly only the e8ect of a quadradic anisotropy energy on
this state has been analyzed.

In case 1, the quartic anisotropy has a uniaxial sym-

A further minimization of 2)F with respect to p indicates
CP (i.e., sin P= cos P= —,') if P'/P~ & ——', . lf, however,
—1 & P'/P & ——,', the magnetization is LP (i.e.,
sin /=0 or 1). We can divide the physical range of
P'/P into two regions.

Region I. —1&P'/P & ——', . The polarization is LP
with the magnetization along either of the x and y axes
and the wave vector q in any direction perpendicular to
the magnetization. On this interval 2)F =—',(1+p'/p ).

Region II. p'/p & —2/3. The polarization is CP
with q in the z direction. On this interval, 2)F=1
+3p'/4p . The behavior of SF for the two regions is
shown in Fig. 1. Note that there is a first order polar-
ization phase transition at P /P

metry. We find only circular polarization for the uni-
hard-axis subcase, but for the uni-easy-axis subcase, con-
tinuous polarization transitions from rircular to elliptic
to linear are found as the strength of anisotropy is in-
creased. The transition from elliptical polarization to
linear is a genuine second-order transition, whereas the
circular polarization is nmrely a limiting case of the el-
liptic polarization as the strength of anisotropy goes to
zero, which does not correspond to a genuine phase
transition. For this case and the next two cases, we have
also determined the optimum directions of magnetiza-
tion M and wave vector q at each value of the anisotro-
py strength.

In case 2, the quartic anisotropy has a cubic symme-
try. Again, only circular polarization is obtained if the
sign of the anisotropy energy is to work against the cu-
bic axes, but when the cubic axes are favored, we find a
direct polarization transition from circular to linear
without going through an intermediate elliptic stage.
This transition is a genuine 6rst-order transition.

Finally, case 3 is to emulate the actual anisotropy of
primitive tetragonal Erkh484. A quartic anisotropy of
square symmetry in the tetragonal basal (xy) plane is
combined with the assumption that the bare Curie tem-
perature is much lower for magnetization in the hard
tetragonal c or z axis. Since this study is con6ned to the
vicinity of the onset temperature of the coexistence state,
this case reduces simply to the two-dimensional analog
of the previous case. The conclusion is also found to be
very similar, in that a discontinuous circular to linear
polarization transition is found at a 6nite strength of the
anisotropy energy within its stability limit, if the sign of
the anisotropy is to favor the tetragonal a axes.

In cases 1 and 2, but not in case 3, a more obvious
transition is also found as the anisotropy energy changes
its sign, where the polarization does not change (i.e.
remains circular on both sides), but the optimum direc-
tions of M and q change discontinuously. The behavior
of all three cases is summarized in Table I.

One behavior of our results can be easily understood,
which brings contact with an earlier work. For
p'/p ~ ——,'for all three cases we find that 2)F
=—,'[(P +P'/)9 ). This gives exactly the free-energy re-
sult of Ref. 10 for the linearly polarized plane-wave-like
structure but with P there replaced by P +P' here, as
it should be, since the P there is the eQectiue coeScient
of —,'M, .
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TABLE I. Summary of the e8'ect of three types of quartic anisotropy energy on the "spiral magnetic" coexistence state of super-

conductivity and ferromagnetism, where CP, EP, and LP denote circular, elliptic, and linear polarizations, respectively.

Case 1 Case 2 Case 3 (for ErRh484)

Quadratic

Anisotropy

Quartic
anisotropy

Polarization
phase transition

Region I
—1 &P'/P, .& —=',

-'P'(M')

second order
LP
M//z

qi z

,' f3'(M„'—+M4+M,')

first order
LP
M~~i or j or z

q in the plane i M

(z)
O'm =&mO

Tm0

with Tmo &~ Tmo

—,'P'(M„'+M,')

first order
LP
M(fz or j
q in the plane iM

~F' ~ 1+
P?l

1+
m

Region II
—

—,
' (P'/P„, (0

EP
M spirals in

a plane ~(z

qiM plane

cp
M spirals in

the plane iq
q along a cubic axis

CP
M spirals in
the xy plane

4+3

3
SF——1+——

4 p

3 I

SF—1 +
4 p

Region III
P'/P )0

CP
M spirals in

the plane iz

CP
M spirals in

the plane iq
q along a cubic diagonal

,SF ——1+—--1 P'

2 P

CP
M spirals in
the xy plane

SI.' —1 + 3 P'

It is interesting to note that the present theory pre-
dicts that a circularly polarized spiral magnetic state can
persist for a finite range of the quartic anisotropy energy
strength„when it has three equivalent mutuajly orthogo-
nal easy axes, since for the single-easy-axis case the state
will turn elliptically polarized at an infinitesimal anisot-
ropy strength. Another interesting prediction of this
work is that the polarization remains circular for any
strength of the quartic anisotropy as long as it has a cu-
bic symmetry and favors eight easy directions along the
cubic diagonals. Finally, and most importantly, we have
presented in this work a simple anisotropy model which
can explain why linear polarization Inay occur in the
coexistence state of primitive tetragonal ErRh484. The

present work also shows that ferromagnetic supercon-
ductors with a cubic symmetry have some special in-
terest, but unfortunately, only antiferromagnetic super-
conductors with a cubic symmetry have been found so
far"
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