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The isospin- and momentum-dependent MDI interaction, which has been extensively used in intermediate-
energy heavy-ion reactions to study the properties of asymmetric nuclear matter, is extended to include the
nucleon-hyperon and hyperon-hyperon interactions by assuming the same density, momentum, and isospin
dependence as for the nucleon-nucleon interaction. The parameters in these interactions are determined from the
empirical hyperon single-particle potentials in symmetric nuclear matter at saturation density. The extended MDI
interaction is then used to study in the mean-field approximation the equation of state of hypernuclear matter and
also the properties of hybrid stars by including the phase transition from hypernuclear matter to quark matter
at high densities. In particular, the effects of attractive and repulsive �N interactions and different values of
symmetry energies on the hybrid star properties are investigated.
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I. INTRODUCTION

The study of in-medium baryon-baryon effective interac-
tions is one of the fundamental problems in nuclear physics.
Although significant progress has been made in understanding
the nucleon-nucleon interaction in the nuclear medium, our
knowledge of hyperon-nucleon and hyperon-hyperon inter-
actions in the nuclear medium is very limited. The latter is
important for understanding the properties of hypernuclei,
the equation of state (EOS) of dense baryonic matter, the
properties of compact stars in which hyperons are expected to
appear abundantly, and strangeness production in heavy-ion
collisions. Therefore, it is of great interest to develop an
effective model for hyperon-nucleon and hyperon-hyperon
interactions in the nuclear medium.

The in-medium single-particle potential of a nucleon gener-
ally depends not only on the nuclear density and its momentum
but also on its isospin. The isospin- and momentum-dependent
(MDI) interaction is such an effective nuclear interaction based
on the finite-range Gogny interaction [1]. This interaction
has recently been extensively used in studying the isospin-
and momentum-dependent effects in nuclear reactions and
the properties of neutron stars (for a recent review see
Ref. [2]). In particular, by using this interaction in the isospin-
dependent Boltzmann-Uheling-Ulenback (IBUU) transport
model with isospin-dependent in-medium nucleon-nucleon
scattering cross sections, a relatively stringent constraint on
the density dependence of the nuclear symmetry energy at
subsaturation densities was obtained from the isospin diffusion
data in intermediate-energy heavy-ion collisions [3–5]. The
resulting symmetry energy has been used to constrain the
neutron skin thickness of heavy nuclei [6] and the properties
of neutron stars [7–11] including the transition density, which
separates the liquid core from the inner crust of a neutron star,
and other properties of neutron stars by assuming that they
only consist of nucleons, electrons, and muons [12,13].

In this paper, we extend the MDI interaction to include
nucleon-hyperon and hyperon-hyperon interactions. This is
achieved by assuming that the nucleon-hyperon and hyperon-
hyperon interactions have the same density and momentum
dependence as the nucleon-nucleon interaction with the
interaction parameters fitted to known experimental data
at normal nuclear matter density. With this extended MDI
interaction, we then study, as an example, the properties of
hybrid stars that consist not only of an appreciable fraction
of hyperons but also possible quark matter in their dense
core [14–26]. For the hadron-quark phase transition, we use
the Gibbs construction [27,28] with the quark phase described
by a simple MIT bag model [16,29]. In particular, we study
the effects of attractive and repulsive �N interactions and
different symmetry energies on the properties of hybrid stars.
We note that there have been extensive studies on hybrid
stars based on various approaches, such as the relativistic
mean-field (RMF) model [30–34], Brueckner-Hartree-Fock
theroy [35–39], and phenomenological models [40,41].

This paper is organized as follows. In Sec. II, we describe
the method used in extending the MDI interaction to include
the hyperon-nucleon and hyperon-hyperon interactions. The
extended MDI interaction is then used in Sec. III A to study
the thermodynamical properties of hypernuclear matter and
its equilibrium conditions. The MIT bag model is used in
Sec. III B to describe the properties of the quark matter and in
Sec. III C to study the hadron-quark phase transition in dense
matter. In Sec. IV, we show and discuss the results on the
particle fractions in dense matter and its equation of state as
well as the mass-radius relation of hybrid stars in different
scenarios. A summary is given in Sec. V.

II. THE MDI INTERACTION WITH HYPERONS

The MDI interaction is an effective nuclear interaction
with its density and momentum dependence deduced from
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the phenomenological finite-range Gogny interaction [1]. In
the mean-field approximation, the potential energy density
in nuclear matter of density ρ and isospin asymmetry δ =
(ρn − ρp)/ρ with ρn and ρp being, respectively, the neutron
and proton densities, is given by

V (ρ, δ) = Au(x)ρnρp

ρ0
+ Al(x)

2ρ0

(
ρ2

n + ρ2
p

) + B

σ + 1

ρσ+1

ρσ
0

× (1 − xδ2) + 1

ρ0

∑
τ,τ ′

Cτ,τ ′

×
∫∫

d3pd3p′ fτ (�r, �p)fτ ′(�r, �p′)
1 + ( �p − �p′)2/�2

, (1)

where τ (τ ′) is the nucleon isospin, fτ (�r, �p) is the nucleon
phase distribution function, and ρ0 = 0.16 fm−3 is the satura-
tion density of normal nuclear matter. Values of the parameters
Au(x), Al(x), B, σ , �, Cl = Cτ,τ and Cu = Cτ,−τ can be found
in Refs. [1,4]. The parameter x, related to the coefficient of
the spin-exchange operator in the Gogny-Skyrme interactions,
is used to adjust the density dependence of the symmetry
energy away from the saturation density without changing
the properties of symmetric nuclear matter. At subsaturation
densities, its value has been constrained between 0 and −1
from the analysis of the isospin-diffusion and neutron-skin-
thickness data [3–5,42].

A. The extended MDI interaction

To extend the MDI interaction for the nucleon-nucleon
(NN ) interaction to include the nucleon-hyperon (NY ) and
hyperon-hyperon (YY ) interactions, we assume that the latter

have the same density and momentum dependence as that
between two nucleons. The potential energy density of a
hypernuclear matter resulting from interactions between any
two baryons then has the following general form:

Vbb′ =
∑
τb,τ

′
b′

[
Abb′

2ρ0
ρτb

ρτ ′
b′ + A′

bb′

2ρ0
τbτb′ρτb

ρτ ′
b′

+ Bbb′

σ + 1

ρσ−1

ρσ
0

(
ρτb

ρτ ′
b′ − xτbτb′ρτb

ρτ ′
b′

)

+ Cτb,τ
′
b′

ρ0

∫∫
d3pd3p′ fτb

(�r, �p)fτ ′
b′ (�r, �p′)

1 + ( �p − �p′)2/�2

]
, (2)

where b (b′) denotes the baryon octet included in the present
study,(i.e., N , �, �, and �). We use the conventions that
τN = −1 for the neutron and 1 for the proton [43]; τ� = 0
for the �; τ� = −1 for the �−, 0 for the �0, and 1 for the
�+; and τ� = −1 for the �− and 1 for the �0. Here, the total
baryon density is now given by ρ = ∑

b

∑
τb

ρτb
, and fτb

(�r, �p)
is the phase-space distribution function of particle species τb.
The interaction parameters are denoted by Abb′ , A′

bb′ , Bbb′ , and
Cτb,τ

′
b
. If there are only nucleons, we can rewrite ANN = (Al +

Au)/2, A′
NN = (Al − Au)/2, BNN = B, and CτN,τ ′

N
= Cl for

τN = τ ′
N and = Cu for τN �= τ ′

N , which then reduce to the
original parameters in the MDI interaction for nucleons [1,4].
The parameter x is again used to model the isospin effect on
the interaction between two baryons, and its value is taken to
be 0 or −1 in the present study for all baryon pairs.

The single-particle potential for a baryon of species τb

in hypernuclear matter can then be obtained from the total
potential energy density of the hypernuclear matter, given by
VHP = (1/2)

∑
b,b′ Vbb′ , as

Uτb
(p) = δ

δρτb

VHP

=
∑

b′(b′ �=b)

∑
τ ′
b′

[
Abb′

2ρ0
ρτ ′

b′ + A′
bb′

2ρ0
τbτ

′
b′ρτ ′

b′ + Bbb′

σ + 1

ρσ−1

ρσ
0

(
ρτ ′

b′ − xτbτ
′
b′ρτ ′

b′

) + Cτb,τ
′
b′

ρ0

∫
d3p′ fτ ′

b′ (�r, �p′)

1 + ( �p − �p′)2/�2

]

+
∑
τ ′
b

[
Abb

ρ0
ρτ ′

b
+ A′

bb

ρ0
τbτ

′
bρτ ′

b
+ 2Bbb

σ + 1

ρσ−1

ρσ
0

(
ρτ ′

b
− xτbτ

′
bρτ ′

b

) + 2Cτb,τ
′
b

ρ0

∫
d3p′ fτ ′

b
(�r, �p′)

1 + ( �p − �p′)2/�2

]

+
∑
b′,b′ ′

⎡
⎣Bb′b′ ′

σ − 1

σ + 1

ρσ−2

ρσ
0

∑
τb′

∑
τ ′
b′ ′

(
ρτb′ ρτ ′

b′ ′ − xτb′τ ′
b′ ′ρτb′ ρτ ′

b′ ′

)⎤⎦ . (3)

For the interaction parameters Abb′ , A′
bb′ , Bbb′ , and Cτb,τ

′
b′

that involve hyperons, they can in principle be determined from
the nucleon-hyperon and hyperon-hyperon interactions in free
space. Because of the lack of hyperon-nucleon scattering
experiments, information on the hyperon-nucleon interactions
has been mainly obtained from the hyperon single-particle
potentials extracted empirically from studying � [44] as well
as � [45,46] and � [47] production in nuclear reactions.

Although this has led to extensive studies of the hyperon-
nucleon interaction in the past [48–50], the isospin and
momentum dependence of the hyperon-nucleon in-medium
interactions is still not very well determined, and the situation
is even worse for hyperon-hyperon interactions. We therefore
assume in the present study that Abb′ , A′

bb′ , Bbb′ , and Cτb,τ
′
b′

are all proportional to corresponding ones in the nucleon-
nucleon interaction. Specifically, for Abb′ , A′

bb′ , and Bbb′ ,
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TABLE I. Parameters for the MDI-Hyp-A and MDI-Hyp-R interactions with x = 0 and x = −1. All parameters except σ are in units of
MeV. A′

N�(A) and BN�(A) are for the MDI-Hyp-A interaction, and A′
N�(R) and BN�(R) are for the MDI-Hyp-R interaction. Other parameters

are the same for both interactions.

ANN AN� AN� AN� A�� A�� A�� A�� A�� A�� � σ

−108.28 −108.28 −108.28 −79.04 −68.21 −135.34 −135.34 −53.05 −108.28 −57.39 263.04 4/3

x A′
NN A′

N�(A) A′
N�(R) A′

N� A′
�� A′

�� A′
��

0 −12.29 −12.29 −28.65 −8.98 −6.02 −12.29 −6.52
−1 −103.45 −103.45 −241.04 −75.52 −50.69 −103.45 −54.83

BNN BN� BN�(A) BN�(R) BN� B�� B�� B�� B�� B�� B��

106.35 106.35 106.35 247.80 77.64 67.00 132.94 132.94 52.11 106.35 56.37

CτN ,τN
CτN ,−τN

CτN ,τ�
CτN ,−τ�

CτN ,τ�
CτN ,−τ�

Cτ�,τ�
Cτ�,−τ�

Cτ�,τ�
Cτ�,−τ�

Cτ�,τ�
Cτ�,−τ�

−11.70 −103.40 −11.70 −103.40 −8.54 −75.48 −5.73 −50.67 −11.70 −103.40 −6.20 −54.80

CN� CN�0 C�� C�� C�� C�0� C�0�

−57.55 −57.55 −36.26 −71.94 −71.94 −28.20 −57.55

we assume

Abb′ = fbb′ANN,

A′
bb′ = fbb′A′

NN, (4)

Bbb′ = fbb′BNN,

and for Cτb,τ
′
b′ we assume

Cτb,τ
′
b′ =

⎧⎪⎨
⎪⎩

fbb′ Cl+Cu

2 (τb or τ ′
b′ = 0),

fbb′Cl (τb = τ ′
b′ �= 0),

fbb′Cu (τb �= τ ′
b′ �= 0),

with � and �0 treated differently.
We determine the values of fbb′ by fitting the empirical

potential U
(b′)
b of baryon b at rest in a medium consisting of

baryon species b′. For hyperons in symmetric nuclear matter
at saturation density, their potentials are

U
(N)
� (ρN = ρ0) = −30 MeV (5)

for the � potential from the analysis of (π+,K+) and
(K−, π−) reactions on nuclei [51,52] and

U
(N)
� (ρN = ρ0) = −18 MeV (6)

for the � potential from the analysis of (�,4
� H ) [53] and

(K−,K+) [54,55] reactions. This leads to the values fN� = 1
and fN� = 0.73. For the � hyperon, its potential was taken to
be attractive in earlier studies [45], but more recent analyses
indicate that it is repulsive in the nuclear medium [56–60]. In
the present work, we consider both the attractive and repulsive
cases

U
(N)
� (ρN = ρ0) = ±30 MeV. (7)

By setting fN� = 1 we get an attractive �N interaction,
and this is called MDI-Hyp-A in the following. To obtain a
repulsive �N interaction, called MDI-Hyp-R in the following,
we adjust the values of positive and negative terms in
the single-particle potential by setting BN� = 2.33BNN and
A′

N� = 2.33A′
NN without changing other parameters as in

the case of the MDI-Hyp-A interaction. A similar method of
changing an attractive �N interaction to a repulsive one was
used in the RMF calculation [31] by changing the coupling

constants of ω and ρ mesons. For the hyperon-hyperon
interaction, the parameters are fitted according to [61]

U
(Y ′)
Y (ρY ′ = ρ0) ∼ −40 MeV, (8)

which gives the strength of the hyperon-hyperon interactions
as f�� = 0.63, f�� = 1.25, f�� = 1.25, f�� = 0.49, f�� =
1, and f�� = 0.53. Detailed values of the parameters are listed
in Table I. These parametrizations can be viewed as a baseline
for studying the properties of hypernuclear matter, and more
sophisticated treatments are left for future work after the in-
medium properties of hyperons are better understood. It will
be shown in the following that many interesting results can
already be obtained even with these simple parametrizations.

B. Single-particle potentials

An important quantity related to the interaction of a particle
in the nuclear medium is its single-particle potential as given
by Eq. (3), which is also needed later in our study of the
properties of neutron stars. The single-particle potential of a
particle depends not only on the density of the medium but
also on the momentum of the particle. In this section, we show
and discuss the single-particle potentials of both nucleons and
hyperons in nuclear matter obtained from the extended MDI
interaction.

We first show in Fig. 1 the single-particle potential of
a particle at rest in symmetric nuclear matter as a function
of density. Although the nucleon potential is more attractive
at normal density than those of hyperons, it becomes more
repulsive than the hyperon potentials above about five times
normal nuclear density, including the � potential that is
attractive at normal density. For the � potential that is repulsive
at normal density, it becomes more repulsive as the density
increases and becomes slightly attractive only at very low
densities. Comparing our results with those from other models
given in Ref. [62] (and references therein), we see that the
single-particle potentials of � and � are close to those
from the chiral effective field theory [63], but they are more
repulsive than those based on the G-matrix calculations using
the soft-core Nijmegen model or the Jülich meson-exchange
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FIG. 1. (Color online) Single-particle potentials for particles at
rest in symmetric nuclear matter as functions of density.

model for the free hyperon-nucleon interactions, particularly
at high densities.

The single-particle potential of a particle from the extended
MDI interaction also depends on its momentum. Figure 2
shows the momentum dependence of the single-particle
potentials for both nucleons and hyperons in symmetric
nuclear matter at saturation density. Again, results using both
attractive and repulsive �N interactions (i.e., MDI-Hyp-A
and MDI-Hyp-R) are shown for comparison. Also indicated in
the figure is the Fermi momentum of nucleons. For nucleons,
the single-particle potential from the MDI interaction is
consistent with the Schrödinger equivalent potential obtained
by Hama and co-workers from nucleon-nucleus scattering
data [64,65] up to nucleon momentum of 500 MeV. For
hyperons, the momentum dependence of their single-particle
potentials from the extended MDI interaction is similar to
that obtained from the G-matrix calculations based on the
free Nijmegen NY interaction [37]. Both show an increase
with increasing momentum and are similar at low momenta as
both are constrained by available experimental data. They are,
however, slightly different at high momenta. The momentum
dependence of NY and YY interactions thus remains an

FIG. 2. (Color online) Single-particle potentials in symmetric
nuclear matter at saturation density ρ0 as functions of particle
momentum. The Schrödinger equivalent potential obtained by Hama
and co-workers [64,65] from the nucleon-nucleus scattering data
is shown by stars for comparison. �(A) and �(R) are for the
MDI-Hyp-A and MDI-Hyp-R interactions, respectively.

FIG. 3. (Color online) Symmetry potentials of nucleons and �

and � hyperons in asymmetric nuclear matter at saturation density
ρ = ρ0. �(A) and �(R) are for the MDI-Hyp-A and MDI-Hyp-R
interactions, respectively.

open question, especially at high momenta. Also, the density
dependence of the high-momentum behavior of the mean-field
potential is poorly known. Since the maximum Fermi momenta
of nucleons and hyperons reached in hybrid stars are not very
high, the incorrect nucleon potential and the uncertainty of
hyperon potentials at high momenta given by the extended
MDI interaction are thus not expected to affect significantly
the properties of cold hypernuclear matter considered in the
present study.

It is known that both proton and neutron single-particle
potentials in asymmetric nuclear matter of unequal proton
and neutron densities are approximately linear in the isospin
asymmetry δ of the matter. Whether this is also the case
for hyperons is not clear in the literature. For the extended
MDI interaction introduced in the present study, such a linear
dependence on isospin asymmetry, however, also holds for �

and � hyperons. The single-particle potential of a particle in
asymmetric nuclear matter can thus be written in general as
Uτb

(ρ, δ) ≈ Uτb
(ρ, δ = 0) − τbU

b
sym(ρ)δ in terms of the sym-

metry potential Ub
sym(ρ), defined by UN

sym(ρ) = [Un(ρ, δ) −
Up(ρ, δ)]/2δ, U�

sym(ρ) = [U�−(ρ, δ) − U�+(ρ, δ)]/2δ, and
U�

sym(ρ) = [U�− (ρ, δ) − U�0 (ρ, δ)]/2δ for the nucleon and
� and � hyperons, respectively. From the single-particle
potentials of nucleons and � and � hyperons in asymmetric
nuclear matter at normal nuclear matter density and of
isospin asymmetry δ = 0.2, we have calculated their symmetry
potentials using these definitions. In Fig. 3, the momentum
dependence of these symmetry potentials are compared. All
symmetry potentials are seen to decrease with increasing
momentum. At zero momentum, the symmetry potentials of
the nucleon and the � are about 34 and 12 MeV, respectively,
and for the � hyperon they are 17 MeV for an attractive �N

interaction and 9 MeV for a repulsive one.
Although the symmetry potentials at normal nuclear density

are independent of the value of x, which is used in the MDI
interaction to model the stiffness of nuclear symmetry energy
at densities different from the normal density, this is not the
case at other densities. This is demonstrated in Fig. 4 for the
symmetry potentials of the nucleon and the � hyperon and
the � hyperon in asymmetric nuclear matter at density ρ = 3ρ0
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FIG. 4. (Color online) Symmetry potentials of nucleons and �

and � hyperons in asymmetric nuclear matter at density ρ = 3ρ0.
�(A) and �(R) are for the MDI-Hyp-A and MDI-Hyp-R interactions,
respectively. Note that different scales are used for x = 0 (left panel)
and x = −1 (right panel).

for the two symmetry energy parameters x = 0 and x = −1.
For x = 0, the symmetry potentials at zero momentum are 53
and 19 MeV for the nucleon and the � hyperon, respectively,
and for the � hyperon they are 26 MeV with the MDI-Hyp-A
interaction and 2 MeV with the MDI-Hyp-R interaction. These
values are changed to 174 and 63 MeV for the nucleon and the
� hyperon, respectively, and for the � hyperon to 87 MeV for
the MDI-Hyp-A interaction and 143 MeV for the MDI-Hyp-R
interaction for the case of x = −1. As noted in Ref. [66], the
charged � baryon ratio in heavy-ion collisions can be used as
a probe to constrain the nuclear symmetry energy (potential) at
densities larger than 3ρ0. It will be very interesting to see how
the symmetry potentials of � and � hyperons in nuclear matter
affect the charged � hyperon ratio and the charged � hyperon
ratio in heavy-ion collisions induced by neutron-rich nuclei.
This is important for determining the high-density behavior of
the nuclear symmetry energy using these ratios in heavy-ion
collisions. The extended MDI interaction with hyperons is
therefore useful for studying the nuclear symmetry energy
(potential) at ρ > 3ρ0 in the transport model calculation for
heavy-ion collisions.

III. EQUILIBRIUM CONDITIONS AND
THERMODYNAMICAL RELATIONS IN DENSE

MATTER

The extended MDI interaction is also useful for studying
the properties of a hybrid star that is expected to have a quark
core at high densities, a mixed phase of quarks and hadrons at
moderate densities, and a hadron phase at low densities. We
review in this section the β-equilibrium, charge neutrality, and
baryon number conservation conditions of such matter.

A. The hadron phase

In the hadron phase of a hybrid star, the matter consists
of nucleons, hyperons, and leptons. For leptons, we include

both electrons and muons with their masses taken to be 0 and
106 MeV, respectively. At equilibrium, these particles satisfy
following baryon number conservation, charge neutrality, and
β-equilibrium conditions:∑

i

ρibi = ρ, (9)

∑
i

ρiqi = 0, (10)

µi = µH
b bi − µH

c qi. (11)

Here, qi and bi are, respectively, the charge and baryon
numbers of particle species i, where i can be nucleons,
hyperons, or leptons, and their density and chemical potential
are denoted, respectively, by ρi and µi . The total baryon
density of the hadron phase is denoted by ρ, and µH

b and µH
c

are, respectively, the baryon and charge chemical potentials of
the hadron phase.

By taking into account their interactions in the mean-field
approximation, the chemical potential of baryon species τb is
given by

µτb

(
pFτb

) = mτb
+ p2

Fτb

2mτb

+ Uτb

(
pFτb

)
, (12)

where pFτb
is their Fermi momentum, and Uτb

and mτb

are, respectively, the single-particle potential and mass of
the baryon. For leptons (l = µ, e) their chemical potential
is given by µl = (m2

l + p2
F l)

1/2 with pFl = (3π2ρl)1/3 being
their Fermi momentum. The relative abundances of various
hadrons and leptons for a given total baryon density are then
obtained by solving these equations.

In terms of the densities of various particles, the total energy
density of the hadron phase can be written as

εH = VH + VL, (13)

where VH and VL are the contributions from baryons and
leptons, respectively. The former can be written as

VH = VHP + VHK + VHM, (14)

where VHP = (1/2)
∑

b,b′ Vbb′ is the potential energy density
of baryons with Vbb′ calculated from Eq. (2), and VHK and VHM

are, respectively, the kinetic energy and mass contributions
given by

VHK =
∑

b

∑
τb

p5
Fτb

10π2mτb

, (15)

VHM =
∑

b

∑
τb

ρτb
mτb

. (16)

The contribution VL from leptons is calculated by treating
them as a free Fermi gas, that is,

VL = Ve + Vµ,

Ve = p4
Fe

4π2
,

Vµ = 1

4π2

[
pFµµ3

µ − 1

2
m2

µpFµµµ − 1

2
m4

µ ln

(
pFµ + µµ

mµ

)]
.

(17)
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The pressure of the hadron phase is obtained from the
thermodynamical relation

P H = PH + PL =
(∑

b

∑
τb

µτb
ρτb

− VH

)

+
(∑

l

µlρl − VL

)
, (18)

where b and l run over all species of baryons and leptons,
respectively. We note that the thermodynamical consistency
condition

P H = ρ2 d(εH/ρ)

dρ
(19)

is satisfied.

B. The quark phase

As the nuclear matter density increases, such as in the core
of neutron stars, not only do hyperons appear but also quark
matter could exist [15]. To take into consideration possible
transition between the hadronic matter and the quark matter,
we follow many previous studies to use in the present study
the MIT bag model [16,29] to describe the cold quark matter
that might exist in the dense core of neutron stars.

For the quark phase consisting of quarks and leptons, the
baryon number conservation and charge neutrality conditions
are given by expressions similar to Eqs. (9) and (10) with
i denoting now quarks and leptons. For the β-equilibrium
condition in the quark phase, it is given by µi = µ

Q
b bi − µQ

c qi

with µ
Q
b and µQ

c being the baryon and charge chemical
potentials of the quark phase, respectively.

The total energy density and pressure of the quark phase
can be calculated from

εQ = VQ + VL, (20)

P Q = PQ + PL, (21)

where VQ and PQ are the energy density and pressure of
quarks, which can be calculated from the MIT bag model
as described in the following, and VL and PL are the energy
density and pressure of leptons given by the same expressions
as those in the hadron phase.

At zero temperature, the density ρf , chemical potential µf ,
and energy density Vf of quarks of flavor f = u, d, s in the
quark matter are given, respectively, by

ρf = p3
Ff

π2
,

µf =
√

m2
f + p2

Ff ,

Vf = 3

4π2

[
pFf µ3

f − 1

2
m2

f pFf µf − 1

2
m4

f ln

(
pFf + µf

mf

)]
,

(22)

where pFf is the Fermi momentum of quarks of flavor f . For
the quark masses, they are taken to be mu = md = 0 and ms =

150 MeV. In the bag model, the energy density is modified by
a bag constant B, resulting in an energy density given by

VQ =
∑
f

Vf + B. (23)

This leads to the following pressure for the quark matter:

PQ =
∑
f

µf ρf − VQ = ρ2 d(VQ/ρ)

dρ
, (24)

where ρ is the total baryon density of the quark phase,

ρ = 1

3

∑
f

ρf . (25)

C. The hadron-quark phase transition

The hadron-quark phase transition leads to a mixed phase
of hadronic and quark matter, which is usually described by
the Gibbs conditions [27,28]

T H = T Q, P H = P Q,
(26)

µb = µH
b = µ

Q
b , µc = µH

c = µQ
c .

The Gibbs conditions for the chemical potentials can also be
expressed as

µu = 1
3µn − 2

3µe,
(27)

µd = µs = 1
3µn + 1

3µe.

Since only the case of zero temperature is considered in this
paper, the first condition in Eq. (26) is always satisfied. To
solve these equations, we follow the method of Ref. [28].
In this method, one first calculates the pressure of the hadron
phase at a series of baryon densities. From the known chemical
potentials µn and µe of hadronic matter at these densities,
one then calculates the pressure of the quark matter that is
in chemical equilibrium with corresponding hadronic matter,
that is, with the quark chemical potentials µu, µd, and µs

determined by the two relations in Eq. (27). The hadronic
baryon density at which the two pressures are the same is
then the low-density boundary of the hadron-quark phase
transition. As an illustration, we show in Fig. 5 the results
for the case of the symmetry energy parameter x = 0 and the
bag constant B1/4 = 180 MeV. The solid line is the density
dependence of the pressure of the hadron phase calculated
using the model described in Sec. III A; the dash-dotted line is
the pressure of the quark matter that is in chemical equilibrium
with the hadronic matter as a function of the baryon density
of the hadronic matter. The low-density boundary of the
hadron-quark phase transition is indicated by the intersection
of the solid line and the dash-dotted line.

Above this low-density boundary, the dense matter enters
the mixed phase, in which the hadron phase and the quark
phase satisfy following chemical equilibrium, mechanical
equilibrium, baryon number conservation, and charge neu-
trality conditions:

µbbi − µcqi = µi,

P H = P Q,
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ρ ρ

FIG. 5. (Color online) Pressure as functions of baryon density
ρ for the hadron phase (solid line), mixed phase (dotted line), and
quark phase (dashed line). The pressure of the quark matter that is in
chemical equilibrium with the hadronic matter as a function of the
baryon density of the hadronic matter is denoted by the dash-dotted
line, whose intersection with the solid line gives the low-density
boundary of the hadron-quark phase transition.

(1 − Y )
∑

b

∑
τb

ρτb
+ Y

3

∑
f

ρf = ρ,

(1 − Y )
∑

b

∑
τb

ρτb
qτb

+ Y

3

∑
f

ρf qf +
∑

l

ρlql = 0, (28)

where i runs over baryons, leptons, and quarks, and Y is the
baryon number fraction of the quark phase. We note that in
the mixed phase the total charge is zero and the leptons play
an important role in maintaining the charge neutrality and β-
equilibrium conditions. The total energy density and pressure
of the mixed phase are calculated according to

εM = (1 − Y )VH + YVQ + VL,
(29)

P M = (1 − Y )PH + YPQ + PL.

It is obvious that we have a pure hadron phase for Y = 0 and
a pure quark phase for Y = 1. For the case of the symmetry
energy parameter x = 0 and the bag constant B1/4 = 180 MeV
considered here, the pressure of the mixed phase as a function
of the baryon density obtained from solving Eq. (28) is shown
in Fig. 5 by the dotted line. The mixed phase starts at the
low-density boundary of the hadron-quark phase transition
and ends at the high-density boundary of the hadron-quark
phase transition when the matter is purely quark matter, whose
pressure is calculated using the model described in Sec. III B
and is shown by the dashed line in Fig. 5 as a function of the
baryon density.

There is a recent study based on the relativistic mean-field
model for the hadron phase and the MIT bag model for the
quark phase to compare the behavior of the mixed phase in
the Gibbs construction with that in the Maxwell construction,
which does not require the same charge chemical potential for
the hadronic matter and quark matter in the mixed phase [67].
The pressure of the mixed phase in the Maxwell construction
is found to be constant with respect to its baryon density, which
is in contrast with the increasing pressure of the mixed phase
with increasing baryon density in the Gibbs construction as
seen in Fig. 5. It is worthwhile to point out that although the

charge neutrality condition in Eq. (28) is satisfied globally, it
is violated in each phase. A more realistic equation of state
of the mixed phase can be obtained from the Wigner-Seitz
cell calculation by taking into account Coulomb and surface
effects. The equation of state of the mixed phase obtained from
this approach lies between those from the Gibbs and Maxwell
constructions. The latter can thus be viewed as two extreme
cases corresponding to certain values of the surface tension
parameter in the Wigner-Seitz cell calculation [68,69].

IV. RESULTS AND DISCUSSION

In this section, we use the extended MDI (MDI-Hyp)
interaction to study the equation of state and the relative
particle fractions in charge-neutral and β-stable hypernuclear
matter. Including the hadron-quark phase transition in the
hypernuclear matter, we further study the mass-radius relation
of hybrid stars. Results from different values of the symmetry
energy parameter x, the bag constant, and attractive and
repulsive �N interactions are compared.

A. Hypernuclear matter

Using the extended MDI interaction with hyperons (MDI-
Hyp), we have studied the particle fractions in hypernuclear
matter as functions of the baryon density. The results are shown
in Fig. 6 for MDI-Hyp-A [(a) with x = 0 and (b) with x = −1]
and MDI-Hyp-R [(c) with x = 0 and (d) with x = −1]
interactions. The density dependence of corresponding particle
chemical potentials is shown in Fig. 7. It is seen that the
effect of hyperons is more pronounced at higher densities,
and the appearance of hyperons prevents the neutron chemical
potential from increasing too fast. Similar to the results from
other works, the � hyperon appears at a baryon density of
about 3ρ0. For the � hyperon, the density at which it appears
depends on the sign of the �N interaction. For the attractive

Ξ
ΣΞ

Σ
Λ

Σ

µ
Ξ

Σ
ΞΣ

ΛΣ

µ

ΞΞΛµ

ρ ρ

ΞΞΛµ

FIG. 6. (Color online) Particle fractions in hypernuclear matter
for the MDI-Hyp interaction with x = 0 [(a) and (c)] and x = −1
[(b) and (d)] as well as with attractive [(a) and (b)] and repulsive
[(c) and (d)] �N interactions.
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FIG. 7. (Color online) Same as Fig. 6 for the chemical potentials
in hypernuclear matter.

MDI-Hyp-A interaction, it appears at about 2ρ0, whereas
for the repulsive MDI-Hyp-R interaction, it does not appear
until very high densities owing to the rapid increase of the
chemical potentials of � hyperons with increasing total baryon
density as shown in Fig. 7, making it difficult to satisfy the
β-equilibrium condition at small baryon densities. This result
is similar to that reported in the literature [31,40]. Also, with
the value x = −1, corresponding to a stiffer symmetry energy,
the fractions of leptons are lower at subsaturation densities
but higher at higher densities, which results in a larger charge
chemical potential at higher densities and the appearance of
negatively (positively) charged hyperons at a lower (higher)
density. A stiffer symmetry energy also increases the neutron
chemical potential and thus leads to larger total hyperon
fractions at higher densities. Since the total charge of the
hypernuclear matter is conserved, an increase in the fraction of
negatively charged hyperons results in an increasing fraction
of protons and decreasing fraction of leptons. We note that for
the MDI-Hyp-R interaction and at a density of 10ρ0, about
50% of the particle fraction is made up by hyperons, and the
fraction of � particles is larger than that of protons at high
densities.

In Fig. 8, we show the equation of state of nuclear matter
from the MDI interaction with x = 0 and x = −1 and of
hypernuclear matter from the MDI-Hyp-A and MDI-Hyp-R
interactions. It is seen that the EOS is softened when hyperons
are present as compared to the EOSs of pure nuclear matter. We
note that the EOS at moderate densities plays an important role
in determining the maximum mass of neutron stars. Without
hyperons, the EOS at moderate densities is stiffer for smaller
value of x, whereas it becomes stiffer for larger value of x

when hyperons are included, especially for a repulsive �N

interaction. As shown in Fig. 6, a stiffer symmetry energy
leads to a larger number of hyperons, which results in a softer
EOS as a result of the lower pressure owing to the presence
of more degrees of freedom, and the effect of hyperons on the
EOS is smaller for a soft symmetry energy, as fewer hyperons
are then present in the hypernuclear matter. However, the
symmetry energy contribution to the pressure of hypernuclear
matter is larger for x = −1 than for x = 0. As a result,

ε 

FIG. 8. (Color online) Equation of state of pure nuclear matter
and hypernuclear matter from the MDI-Hyp interaction with x = 0
and x = −1 as well as with attractive (upper panel) and repulsive
(lower panel) �N interactions.

the EOS of hypernuclear matter shows similar stiffness for
different symmetry energy parameters. Furthermore, the EOS
from the MDI-Hyp-R interaction is stiffer than that from the
MDI-Hyp-A interaction, as � particles do not appear in the
former case as shown in Fig. 6. Our results thus show that
hypernuclear matter has a stiffer (softer) EOS at lower densities
but a softer (stiffer) EOS at moderate densities with a stiffer
(softer) nuclear symmetry energy. We note that the results from
both x = 0 and x = −1 are consistent with the constraints on
the nuclear equation of state obtained from the analysis of the
collective flow data in heavy-ion collisions [70].

B. The hadron-quark phase transition

At higher densities in the core of a neutron star, a transition
from hadron matter to quark matter is expected to occur. Here
we only consider the hadron-quark phase transition for the
repulsive �N interaction as it is more consistent with the
latest empirical information [56–60]. In Fig. 9, we display
the particle fractions of each species in the presence of a
hadron-quark phase transition, with the hadron phase from the
MDI-Hyp-R interaction with x = 0 and x = −1 and the quark
phase from the MIT bag model with bag constants B1/4 = 180
and 170 MeV. The particle fractions are weighted by the baryon
number and corresponding phase fraction. It is seen that for
B1/4 = 180 MeV, the phase transition begins at a density of
0.35 fm−3 and ends at a density of 1.38 fm−3 for x = 0, and
it begins at a density of 0.26 fm−3 and ends at a density
of 1.38 fm−3 for x = −1, whereas for B1/4 = 170 MeV it
begins at a density of 0.21 fm−3 and ends at a density of
1.05 fm−3 for x = 0, and it begins at a density of 0.18 fm−3 and
ends at a density of 1.05 fm−3 for x = −1. The hadron-quark
phase transition thus happens at lower baryon number density
for a stiffer symmetry energy and for a smaller value of B,
whereas the density at which the hadron-quark phase transition
ends seems to depend only on the value of B but not much
on the value of the symmetry energy parameter x. With a
smaller value of the bag constant, the hadron-quark phase
transition both begins and ends earlier. It is also seen that d
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Λµ Λµ

Λµ

ρ ρ

Λµ

FIG. 9. (Color online) Particle fractions in hypernuclear matter
with the presence of hadron-quark phase transition from the MDI-
Hyp-R interaction with x = 0 [(a) and (c)] and x = −1 [(b) and (d)]
for the hadron phase and the MIT bag model for the quark phase.
Results from B1/4 = 180 MeV [(a) and (b)] and 170 MeV [(c) and
(d)] are shown for comparison.

and s quarks occupy a larger fraction than u quarks in the
mixed phase because of their negative charges, so the lepton
fraction decreases while the proton fraction increases when
the hadron-quark phase transition occurs. Furthermore, only
� hyperons (i.e., no other hyperons) appear in the mixed phase
in our model. The fraction of � hyperons is, however, sensitive
to the value of the bag constant B, and with a smaller value of
B its fraction becomes smaller.

The equations of state in the presence of the hadron-quark
phase transition are shown in Fig. 10 with B1/4 = 180 and
170 MeV. Our results show that the equations of state of
the mixed phase and the quark phase are both softened in
comparison with a pure hadron phase. The difference between
the results from x = 0 and x = −1 is not large except for the
different starting density of the hadron-quark phase transition.
Since the EOS is more sensitive to the value of bag constant
than to the value of x when the quark degrees of freedom
are introduced, the bag constant B is thus the main parameter
in determining the EOS of dense matter, as reported in other
work [22]. The energy density at the end of the hadron-quark
phase transition is about 1.2 GeV/fm3 for B1/4 = 180 MeV
and about 1.6 GeV/fm3 for B1/4 = 170 MeV, with the
former closer to the value of about 1 GeV/fm3 obtained
from the lattice QCD calculation [71] and extracted from
heavy-ion collision experiments [72]. Compared with the EOS
constrained by the collective flow data in heavy-ion collisions
[70], our results from both values of bag constants satisfy the
empirical constraint.

C. Hybrid stars

In this section, we use the MDI-Hyp interaction to study
the properties of static hybrid stars with spherically symmetric
mass distributions. In particular, we calculate the mass-radius
relation of a hybrid stars using the Tolman-Oppenheimer-

ε

FIG. 10. (Color online) Same as Fig. 9 for the equation of state.

Volkoff (TOV) equation [73,74]

dP

dr
= − (ε + P )(mg + 4πr3P )

r(r − 2mg)
, (30)

where mg is the gravitational mass inside the radius r of the
hybrid star given by

dmg

dr
= 4πr2ε(r), (31)

with ε(r) being the energy density. These equations are solved
by starting from a central energy density ε(r = 0) ≡ εc and
integrating outward until the pressure on the surface of the
hybrid star defined by r = R vanishes [i.e, P (R) = 0]. This
gives the radius R, and the total gravitational mass of a hybrid
star is then given by M = mg(R).

In our calculations, the hybrid star is divided into three
parts from the center to the surface: the liquid core, the inner
crust, and the outer crust as in our previous work [12,13].
The liquid core is assumed to be of hypernuclear matter
or with the hadron-quark phase transition, and the resulting
equations of state shown in previous sections are used. In the
inner crust, a parametrized EOS of P = a + bε4/3 is used
as in the previous treatment [12,13]. The outer crust usually
consists of heavy nuclei and an electron gas, where we use
the Baym, Pethick, and Sutherland EOS [75]. The transition
density ρt between the liquid core and the inner crust has been
consistently determined in our previous work [12,13], and for
the density that distinguishes the edge of the inner crust and
the outer crust, we take it to be ρout = 2.46 × 10−4 fm−3. The
parameters a and b can then be determined by the pressures
and energy densities at ρt and ρout.

In Fig. 11, we show the mass-radius (M-R) and mass-
central density (M-ρc) relations of hybrid stars from the
EOS of hypernuclear matter without the hadron-quark phase
transition as obtained here based on the MDI-Hyp interaction.
Results using both attractive and repulsive �N interactions are
shown, and the results from a pure nucleonic approach without
hyperons are also shown for comparison. The maximum mass
obtained with hyperons in hybrid stars is seen to be smaller as
the EOS of the hypernuclear matter is softer than that of the
nuclear matter. The equations of state at moderate densities
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ρ

Σ

Σ

FIG. 11. (Color online) The hybrid star mass as a function of
radius (left panel) and central density (right panel) based on the
MDI-Hyp interaction with x = 0 and x = −1. Results from attractive
and repulsive �N interactions are shown for comparison. Results
from a pure nucleonic approach are also displayed.

play an important role in determining the maximum mass, as
the M-ρc relation shows that the neutron star mass cannot
increase even when the central density reaches a very high
value. The mass is larger when a repulsive �N interaction
is used as a result of the smaller number of degrees of
freedom and stiffer EOS, as discussed in the previous section.
For smaller values of ρc a stiffer symmetry energy gives
a larger mass as the nuclear matter dominates this density
range, and the results are thus the same as those in our
previous work [12,13]. With larger ρc, the effect due to the
nuclear symmetry energy is small, and the mass from x = 0
is similar to that from x = −1 because of the opposing effects
from the symmetry pressure and the fraction of hyperons on
the equation of state. The maximum mass obtained with an
attractive �N interaction is 1.59M� for x = 0 and 1.57M�
for x = −1, where M� is the solar mass. With a repulsive �N

interaction the maximum mass increases to 1.65M� for x = 0
and 1.67M� for x = −1. Our results thus differ from those of
many previous works [38,39] that limit the maximum mass of
hybrid stars from reaching the canonical value of 1.4M�. In
our model, the radius of a hybrid star with a mass of 1.4M� is
11.2 km for x = 0 and 11.9 km for x = −1 for an attractive
�N interaction and 11.9 km for x = 0 and 13.2 km for x = −1
for a repulsive �N interaction, respectively.

In Fig. 12, the M-R and M-ρc relations are displayed for
hybrid stars with the hadron-quark phase transition in their
liquid core. Again, results from the hadron phase with x = 0
and x = −1 and the quark phase with B1/4 = 180 MeV and
B1/4 = 170 MeV are shown, and those from a pure nucleonic
approach are also shown for comparison. The maximum mass
for B1/4 = 180 MeV is 1.50M� for x = 0 and 1.46M� for
x = −1, and for B1/4 = 170 MeV it is 1.46M� for x = 0 and
1.45M� for x = −1, respectively. The radius of a standard
neutron star with a mass of 1.4M� is 11.0 km for x = 0 and
10.8 km for x = −1 for B1/4 = 180 MeV and 10.2 km for
x = 0 and 10.0 km for x = −1 for B1/4 = 170 MeV. If we
further reduce the value of B, the hadron-quark phase transition
would happen at an even lower density, and the maximum mass
for the hybrid star would correspond to a larger central density

ρ

FIG. 12. (Color online) The hybrid star mass as a function of
radius (left panel) and central density (right panel) in the presence
of the hadron-quark phase transition. Results from the MDI-Hyp-R
interaction for the hadron phase with x = 0 and x = −1 and the MIT
bag model for the quark phase with B1/4 = 180 and 170 MeV are
shown for comparison. Results from a pure nucleonic approach are
also displayed.

and a smaller radius. These results are obtained with the Gibbs
construction for the hadron-quark phase transition. With the
Maxwell construction, the radius of a maximum-mass hybrid
star would be larger. Within our model, both treatments of the
phase transition give, however, reasonable masses and radii
for hybrid stars.

Finally, we note that the original MDI interaction does not
lead to the violation of causality in β-stable npeµ matter up
to 10ρ0 as shown in Fig. 2(d) in Ref. [13]. Since the EOS of
neutron star matter is softened by the presence of hyperons and
quarks, the causality condition is still satisfied for the extended
MDI interaction used in the present study, and this is confirmed
by explicit calculations.

V. SUMMARY

We have extended the MDI interaction for the nucleon-
nucleon effective interaction in the nuclear medium to include
the nucleon-hyperon and hyperon-hyperon interactions by
assuming that they have the same density and momentum
dependence as that for the nucleon-nucleon interaction. The
parameters were determined by fitting the empirical hyperon
single-particle potentials in symmetric nuclear matter at its
saturation density. As an example for the application of the
extended MDI interaction, we investigated the properties of
hybrid stars that include not only the hyperon degree of
freedom but also that of quarks by taking into account the
phase transition between the hadron and quark phases. Our
results indicate that the extended MDI interaction can give a
reasonable description of the hypernuclear matter. We found
that the EOS of the hypernuclear matter is much softer than
that of pure nuclear matter and that it becomes even softer if
the hadron-quark phase transition is included. The masses and
radii of hybrid stars were also studied with these equations
of state, and they were found to remain reasonable after
including hyperons and the hadron-quark phase transition. We
have also studied the effects of attractive and repulsive �N

interactions and different symmetry energies on the hybrid
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star properties. The results show that the appearance of the
� hyperon in hybrid stars depends sensitively on the sign of
the �N interaction with a repulsive �N interaction giving a
higher critical density for the appearance of � hyperons. In
addition, a stiffer symmetry energy usually leads to a larger
fraction of hyperons in the hypernuclear matter. We further
found that both the low-density boundary of the hadron-quark
phase transition and the EOS at high densities in hybrid stars
are more sensitive to the bag constant than to the stiffness of the
nuclear symmetry energy at high densities. This extended MDI
interaction, which gives isospin- and momentum-dependent
in-medium effective interactions for the baryon octet, will
also be very useful in transport models that simulate heavy-ion
reactions in future radioactive beam facilities, particularly at
the FAIR/GSI energies.
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