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Isospin-dependent pion in-medium effects on the charged-pion ratio in heavy ion collisions
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Using results from the chiral perturbation theory for the s-wave interaction and the �-resonance model for the
p-wave interaction of pions with nucleons, we evaluated the spectral functions of pions in asymmetric nuclear
matter with unequal proton and neutron densities. We find that in hot dense neutron-rich matter the strength
of the spectral function of positively charged pions at low energies is somewhat larger than that of negatively
charged pions. In a thermal model, this isospin-dependent effect slightly reduces the ratio of negatively charged
to positively charged pions that are produced in heavy ion collisions induced by radioactive beams. The relevance
of our results to the determination of the nuclear symmetry energy from the measured ratio of negatively to
positively charged pions produced in heavy ion collisions is discussed.
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I. INTRODUCTION

The nuclear symmetry energy is the energy needed per
nucleon to convert all protons in a symmetric nuclear matter to
neutrons. Knowledge on the density dependence of the nuclear
symmetry energy is important for understanding the dynamics
of heavy ion collisions induced by radioactive beams, the
structure of exotic nuclei with large neutron or proton excess,
and many important issues in nuclear astrophysics [1–4]. At
normal nuclear matter density, the nuclear symmetry energy
has long been known to have a value of about 30 MeV
from fitting the binding energies of atomic nuclei with the
liquid-drop mass formula. Somewhat stringent constraints on
the nuclear symmetry energy below the normal nuclear density
were also obtained during the past few years from studies of
the isospin diffusion [5–8] and isoscaling [9] in heavy-ion
reactions, the size of neutron skin in heavy nuclei [10], and
the isotope dependence of the giant monopole resonances
in even-A Sn isotopes [11]. For nuclear symmetry energy
at high densities, transport model studies showed that the
ratio of negatively to positively charged pions produced in
heavy ion collisions with neutron-rich nuclei is sensitive to its
stiffness [12–14] and there was an attempt [15] to extract the
symmetry energy at suprasaturation densities from the FOPI
data on the π−/π+ ratio in central heavy ion collisions at
SIS/GSI [16].

The transport model used in Refs. [12,13,15] neglects,
however, medium effects on pions, although it includes
those on nucleons and produced � resonances through their
isospin-dependent mean-field potentials and scattering cross
sections. It is well known that pions interact strongly in
a nuclear medium as a result of their p-wave interactions
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through couplings to the nucleon-particle–nucleon-hole and
�-particle–nucleon-hole (�-hole) excitations, leading to the
softening of their dispersion relations or increased strength of
their spectral functions at low energies [17–22]. Furthermore, it
was shown in Ref. [23] that, in asymmetric nuclear matter with
different proton and neutron fractions, these medium effects
depend on the charge of the pion. Including the p-wave, pion
medium effects in the transport model was previously shown
to enhance the production of low-energy pions in high-energy
heavy ion collisions, although it does not affect the total pion
yield [24,25]. Properties of pions in the nuclear medium are
also modified by their s-wave interactions with nucleons.
Studies based on chiral perturbation theory showed that, in
asymmetric nuclear matter, this effect also depends on the
charge of the pion [26], leading to different in-medium masses
for negatively and positively charged pions. Since pions
of different charges are modified differently in asymmetric
nuclear matter, it is of interest to study how such isospin-
dependent medium effects will affect the ratio of negatively to
positively charged pions produced in heavy ion collisions.

This article is organized as follows. We first evaluate in
Sec. II the spectral functions of pions and delta-resonances
in hot dense asymmetric nuclear matter. Using these spectral
functions, we then study in Sec. III the charged pion ratio in
a thermal model and compare the results with the available
experimental data. We conclude with a summary in Sec. IV.

II. MEDIUM EFFECTS

A. Pion in-medium properties

Pions in nuclear medium acquire self-energies through their
s-wave and p-wave interactions. In asymmetric nuclear matter,
the pion self-energy further depends on the charge of the pion.

1. Pion-nucleon s-wave interaction

The contribution of the pion-nucleon s-wave interaction
to the pion self-energy was calculated in Ref. [26] up to the
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two-loop order in chiral perturbation theory. In asymmetric
nuclear matter of proton density ρp and neutron density ρn,
the resulting pion self-energy depends on the charge of the
pion and for π−, π+, and π0, their self-energies due to the
s-wave interactions are given, respectively, by

�−
s (ρp, ρn) = ρn[T −

πN − T +
πN ] − ρp[T −

πN + T +
πN ]

+�−
rel(ρp, ρn) + �−

cor(ρp, ρn),

�+
s (ρp, ρn) = �−

s (ρn, ρp),

�0
s (ρp, ρn) = −(ρp + ρn)T +

πN + �0
cor(ρp, ρn). (1)

Here, T ± are the isospin-even and isospin-odd πN s-wave
scattering T -matrices, which are given by the one-loop con-
tribution in chiral perturbation theory and have the empirical
values T −

πN ≈ 1.847 and T +
πN ≈ −0.045 fm extracted from the

energy shift and width of the 1s level in the pionic H atom.
The term �−

rel is due to the relativistic correction, whereas the
terms �−

cor and �0
cor are the contributions from the two-loop

order in chiral perturbation theory. Their expressions can be
found in Ref. [26], where it is also shown that in nuclear
matter of density ρ = 0.165 fm−3 and isospin asymmetry
δ = (ρn − ρp)/(ρn + ρp) = 0.2, such as in the interior of a
Pb nucleus, changes of the pion masses due to their s-wave
interactions are �mπ− = 13.8, �mπ+ = −1.2, and �mπ0 =
6.1 MeV. Compared to their masses in free space, the π−
mass increases whereas the π+ mass decreases in neutron-rich
nuclear matter.

2. Pion-nucleon p-wave interaction

For the p-wave interactions of pions in nuclear matter, we
consider only the dominant �-hole excitations as in Ref. [27],
as the contribution from the nucleon particle-hole excitations
is known to be small. For a pion of isospin state mt , energy ω,
and momentum k in a hot nuclear medium at temperature T ,
its self-energy due to the p-wave interaction is then given by

�
mt

0 ≈ 4

3

(
f�

mπ

)2

k2F 2
π (k)

∑
mτ ,mT

∣∣∣∣∣
〈

3

2
mT

∣∣∣∣∣1 mt

1

2
mτ

〉∣∣∣∣∣
2

×
∫

d3p

(2π )3

1

e(mN +p2/2mN +U
mτ
N −µB−2mτ µQ)/T + 1

×
(

1

ω − ω+
mT

+ 1

−ω − ω−
mT

)
, (2)

with

ω±
mT

≈ m� + U
mT

� + (�k ± �p)2

2m�

− i
�

mT

�

2

−mN − U
mτ

N − p2

2mN

.

In the above equation, m� � 1232 MeV is the mass of �

resonance; f� � 3.5 is the πN� coupling constant, and
Fπ (k) = [1 + 0.6(k2/m2

π )]−1/2 [28] is the πN� form factor
determined by fitting the decay width � 118 MeV of �

resonance in free space. The summation in Eq. (2) is over
the nucleon isospin state mτ and the � resonance isospin state

mT ; and the factor 〈 3
2 mT |1 mt

1
2 mτ 〉 is the Clebsch-Gordan

coefficient from the isospin coupling of a pion with nucleon
and � resonance. The momentum integration is over that
of nucleons in the nuclear matter given by a Fermi-Dirac
distribution with µB and µQ being, respectively, the baryon
and charge chemical potentials determined by charge and
baryon number conservations; U

mτ

N is the mean-field potential
of nucleons of isospin state mτ in nuclear matter; and �

mT

� and
U

mT

� are, respectively, the width and mean-field potential of �

resonance of isospin state mT .
For the nucleon mean-field potential U

mτ

N , we use that from
the momentum-independent (MID) interaction [1]

U
mτ

N (ρB, δlike) = α

(
ρB

ρ0

)
+ β

(
ρB

ρ0

)γ

+ Umτ

asy (ρB, δlike),

(3)

with

Umτ

asy (ρB, δlike)

= −4

{
F (x)

(
ρB

ρ0

)
+ [18.6 − F (x)]

(
ρB

ρ0

)G(x)
}

mτδlike

+ [18.6 − F (x)][G(x) − 1]

(
ρB

ρ0

)G(x)

δlike
2, (4)

being the nucleon symmetry potential. The parameters α =
−293.4 MeV, β = 240.1 MeV, and γ = 1.216 are chosen to
give a compressibility of 212 MeV and a binding energy
per nucleon of −16 MeV for symmetric nuclear matter
at saturation or normal nuclear density ρ0 = 0.16 fm−3.
The nucleon symmetry potential Umτ

asy (ρB, δlike) depends on
the baryon density ρB = ρn + ρp + ρ�− + ρ

�0 + ρ�+ + ρ�++
and the isospin asymmetry δlike = (ρn − ρp + ρ�− − ρ�++ +
ρ

�0/3 − ρ�+/3)/ρB of asymmetric hadronic matter, which is
a generalization of the isospin asymmetry δ usually defined
for asymmetric nuclear matter without � resonances [12].
The nucleon mean-field potential also depends on the stiffness
of nuclear symmetry energy through the parameter x via
the functions F (x) and G(x). We consider the three cases
of x = 0, x = 0.5, and x = 1 with corresponding values
F (x = 0) = 129.98 and G(x = 0) = 1.059, F (x = 0.5) =
85.54 and G(x = 0.5) = 1.212, and F (x = 1) = 107.23 and
G(x = 1) = 1.246. The resulting nuclear symmetry energy
becomes increasingly softer as the value of x increases, with
x = 1 giving a nuclear symmetry energy that becomes negative
at about three times the normal nuclear matter density as shown
in Fig. 1. These symmetry energies reflect the uncertainties in
the theoretical predictions on the stiffness of nuclear symmetry
energy at high densities.

For the mean-field potentials of � resonances, their
isoscalar potentials are assumed to be the same as those of
nucleons and their symmetry potentials are taken to be the
average of those for neutrons and protons with the weighting
factors depending on the charge state of � resonances [28]
U�++

asy = U
p
asy, U�+

asy = 2
3U

p
asy + 1

3Un
asy, U�0

asy = 1
3U

p
asy + 2

3Un
asy,

and U�−
asy = Un

asy.
Including the short-range �-hole repulsive interaction via

the Migdal parameter g′, which has values 1/3 � g′ � 0.6
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ρ

ρ ρ

FIG. 1. (Color online) Nuclear symmetry energies as functions
of nuclear density from the MID interaction for different values of
the symmetry energy parameter x.

[17–22], modifies the pion self-energy due to the p-wave
interaction to

�mt

p = �
mt

0

1 − g′�mt

0

/
k2

. (5)

3. Pion spectral function

In terms of the pion self-energies �mτ
s and �mτ

p due to
the pion-nucleon s-wave and p-wave interactions in nuclear
medium, the pion in-medium propagator is given by

Dmt (ω, k) = 1

ω2 − k2 − m2
π − �

mt
s − �

mt
p (ω, k)

. (6)

The pion spectral function Smt
π (ω, k) is related to the imaginary

part of the pion in-medium propagator through

Smt

π (ω, k) = − 1

π
Im Dmt (ω, k). (7)

B. Delta resonance in-medium properties

The modification of the pion properties in the nuclear
medium affects the decay width and mass distribution of �

resonances. For a � resonance of isospin state mT and mass
M and at rest in nuclear matter, its decay width is given by [27]

�
mT

� (M)

≈ −2
∑

mτ ,mt

∣∣∣∣∣
〈

3

2
mT

∣∣∣∣∣1 mt

1

2
mτ

〉∣∣∣∣∣
2

×
∫

d3k
(2π )3

(
f�

mπ

)2

F 2
π (k)

[
1

z−1
π e(ω−mtµQ)/T − 1

+ 1

]

×
[

1 − 1

e(mN +k2/2mN +U
mτ
N −µB−2mτ µQ)/T + 1

]

× Im

{
k2

3

Dmt (ω, k)[
1 − g′�mt

0 (ω, k)
/
k2

]2 + g′2 �mt
p (ω, k)

k2

}
.

(8)

In the above equation, the first term in the last line is due to
the decay of the � resonance to the pion, but corrected by the
contact interaction at the πN� vertex, while the second term
contains the contribution from its decay to the �-hole state
without coupling to the pion. The two temperature-dependent
factors in the momentum integral take into account,
respectively, the Bose enhancement for the pion and the
Pauli blocking of the nucleon. To include a possible chemical
nonequilibrium effect, a fugacity parameter zπ is introduced
for pions. The pion energy ω is determined from energy
conservation M + U

mT

� = ω + mN + k2/2mN + U
mτ

N . The
resulting mass distribution of � resonances is then given by

P�(M) = A
�

mT

� (M)
/

2

(M − m�)2 + �
mT

�

2
(M)

/
4
, (9)

where A is a normalization constant to ensure the integration
of P�(M) over M is 1.

C. Results

Equations (2), (6), and (8) are solved self-consistently to
obtain the pion spectral functions and the mass distributions
of � resonances in asymmetric nuclear matter. The results
obtained with the Migdal parameter g′ = 1/3 are illustrated in
Figs. 2 and 3 for an asymmetric nuclear matter of isospin
asymmetry δlike � 0.135, twice the normal nuclear matter
density ρB = 2ρ0, temperature T � 43.6 MeV, and chemical
potentials µB � 942 and µQ � −18.5 MeV, corresponding
to those to be used in the thermal model and also similar to
those reached in the isospin-dependent Boltzmann-Uehling-
Uhlenbeck (IBUU) transport model with the nuclear symmetry
energy x = 1 for central Au + Au collisions at the beam
energy of 0.4 A GeV [15]. Shown in Fig. 2 are the pion
spectral functions as functions of pion energy for different
values of the pion momentum. It is seen that for low pion
momenta the spectral function at low energies has a larger

π

π

ω
π

       δ

   ρ ρ

π

π π

π
π
π

FIG. 2. (Color online) Spectral functions of pions in asymmetric
nuclear matter of density 2ρ0 and isospin asymmetry δlike = 0.135
as functions of pion energy for different pion momenta of (a) mπ ,
(b) 2mπ , (c) 3mπ , and (d) 4mπ . All are calculated with the Migdal
parameter g′ = 1/3.
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∆
∆
ρ ρ δ

FIG. 3. (Color online) Mass distributions of � resonances at rest
in asymmetric nuclear matter of density 2ρ0 and isospin asymmetry
δlike = 0.135. The solid line corresponds to that in free space. The
distributions near the threshold and at the peak are enlarged in the
insets.

strength for π+ (dashed line) than for π0 (solid line), which
has a strength larger than that for π− (dotted line) and
this behavior is reversed at high pion energies. Figure 3
shows the mass distributions of � resonances at rest in
asymmetric nuclear matter as functions of mass. One sees
that it is similar to that in free space (solid line) as a result of
the cancellation between the pion in-medium effects, which
enhance the strength at low masses and the Pauli-blocking of
the nucleon from delta decay, which reduces the strength at
low masses. This is consistent with the observed similar energy
dependence of the photo-proton and photo-nucleus absorption
cross sections around the � resonance [29]. Furthermore,
whereas the strength around the peak of the � resonance mass
distribution decreases with increasing charge of � resonance
due to nonzero isospin asymmetry of the nuclear medium
that near the threshold increases with increasing � resonance
charge. We note that the pion-nucleon s-wave and p-wave
interactions have opposite effects on the in-medium properties
of pions and delta resonances. While the pion-nucleon s-wave
interaction increases the π− mass and reduces the π+ mass,
the pion-nucleon p-wave interaction softens the dispersion
relation of π− more than that of π+. As a result, including only
medium effects due to the pion-nucleon p-wave interaction
will lead to an opposite result (i.e., for low momentum pions
the spectral function at low energies has a larger strength for
π− than for π+) although the strength around the peak of the
� resonance mass distribution still decreases with increasing
charge of � resonance.

III. CHARGED PION RATIO IN HOT DENSE
ASYMMETRIC NUCLEAR MATTER

To see the isospin-dependent pion in-medium effects on
the π−/π+ ratio in heavy ion collisions, we use a thermal
model, which assumes that pions are in thermal equilibrium
with nucleons and � resonances [30]. The density of particle

species i is then given by

ρi ≈ gi

∫
d3k

(2π )3
dωni Si(ω, k)

1

z−1
i e(ω−BiµB−QiµQ)/T ± 1

.

(10)

In the above equation, gi , Bi , Qi , and zi are the degeneracy,
baryon number, charge, and fugacity of the particle. The
exponent ni is 2 for pions and 1 for nucleons and � resonances.
For pions, we use the spectral functions Smt

π (ω, k) calculated
previously. For the spectral functions of � resonances, we
neglect their momentum dependence and thus replace the
integration over energy ω by that over mass M . The ω

in the Fermi-Dirac distribution for � resonances is then
simply ω = M + k2/2M + U

mT

� . For nucleons, their spectral
functions are taken to be delta functions if we neglect the
imaginary part of their self-energies S

mτ

N (ω, k) = δ(ω − mN −
k2/2mN − U

mτ

N ).
According to studies based on transport models [12,15,24],

the total number of pions and � resonances in heavy ion
collisions reaches a maximum value when the colliding
matter achieves the maximum density and remains essentially
constant during the expansion of the matter. For Au +
Au collisions at the beam energy of 0.4 A GeV, for which
the π−/π+ ratio was measured by the FOPI Collaboration
at GSI [16], the IBUU transport model gives a maximum
density that is about twice the normal nuclear matter density
and is insensitive to the stiffness of the nuclear symmetry
energy, as it is mainly determined by the isoscalar part of the
nuclear equation of state [15]. We thus use this density in
the thermal model. The temperature in the thermal model is
determined by fitting the measured pion to nucleon ratio, which
is about 0.014 including pions and nucleons from decays of
� resonances [16], without medium effects and with unity
fugacity parameters for all particles and the value is T �
43.6 MeV. The assumption that pions and � resonances are
in chemical equilibrium is consistent with the short chemical
equilibration times estimated from the pion and � resonance
production rates. The isospin asymmetry of the hadronic
matter is then taken to be δlike � 0.080, 0.106, and 0.143,
corresponding to net charge densities of 0.920ρ0, 0.894ρ0,
and 0.857ρ0, for the three symmetry energies given by x = 0,
0.5, and 1, respectively, to reproduce the π−/π+ ratios of
2.20, 2.40, and 2.60 predicted by the IBUU transport model of
Ref. [15] using corresponding symmetry energies without pion
in-medium effects. Since medium effects enhance the pion and
� resonance densities, to maintain same pion to nucleon ratio
as the measured one requires fugacity parameters for pions
and � resonances to be less than 1. Also, the pion in-medium
effects were shown to affect only slightly the pion and the
� resonance abundance [24], indicating that both pions and
� resonances are out of chemical equilibrium with nucleons
when medium effects are included, as expected from estimated
increasing pion and � resonance chemical equilibration times
as a result of medium effects. Because of the small number
of pions (about 0.3%) and � (about 1.1%) resonances in the
matter, the density, temperature, and net charge density of
the hadronic matter are expected to remain unchanged when
pion in-medium effects are introduced. They lead to, however,
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π
π

∞

FIG. 4. (Color online) The π−/π+ ratio in Au + Au collisions
at the beam energy of 0.4 A GeV for different values of nuclear
symmetry energy parameter (x = 0, 0.5, and 1) and the Migdal
parameter g′ = 1/3, 0.4, 0.5, and 0.6. Results for g′ = ∞ correspond
to the case without the pion in-medium effects.

a slight reduction of the isospin asymmetry to δlike � 0.073,
0.098, and 0.135 for the three symmetry energies, given by
x = 0, 0.5, and 1, respectively. We note that with the fugacity
of nucleons kept at zN = 1, the fugacity parameters of about
zπ = 0.0855 and z� = 0.459 are needed for the symmetry
energy given by x = 1 to keep the total number of pions as
well as that of � resonances the same as in the case without
pion in-medium effects and that the required values for the
fugacity parameters are similar for the other two symmetry
energies considered here.

Results on the π−/π+ ratio in Au + Au collisions at
the beam energy of 0.4 A GeV are shown in Fig. 4. With
the value g′ = 1/3 for the Migdal parameter, values for the
π−/π+ ratio are 2.12, 2.30, and 2.47 for the three symmetry
energy parameters x = 0, 0.5, and 1, respectively, which are
slightly smaller than corresponding values for the case without
including the pion in-medium effects as shown by those for
g′ = ∞ in Fig. 4. The measured π−/π+ ratio of about 3 by
the FOPI Collaboration, shown in Fig. 4 by the dash-dotted
line together with the error bar, which without the inclusion
of the pion in-medium effects in the IBUU model favors a
nuclear symmetry energy softer than the one given by x = 1,
thus requires an even softer one after including the isospin-
dependent pion in-medium effects. Figure 4 further shows
results obtained with larger values of g′ = 0.4, 0.5, and 0.6
for the Migdal parameter. It is seen that the isospin-dependent
pion in-medium effects in these cases are not much different
from the case of g′ = 1/3, indicating that the pion abundance
in hot dense asymmetric nuclear matter is affected more by
the s-wave, which does not depend on g′, than by the p-wave
interaction between pion and nucleon.

IV. SUMMARY

In summary, we studied the dependence of the pion spectral
function in asymmetric nuclear matter on the charge of the
pion by using results from the chiral perturbation theory for
the pion-nucleon s-wave interaction and from the �-hole
model for the pion-nucleon p-wave interaction. Because of
increasing π− and decreasing π+ in-medium masses due to
the pion-nucleon s-wave interaction in neutron-rich matter, the
strength of π+ spectral function at low energies is somewhat
larger than that of π− spectral function and the strength
around the peak of the � resonance mass distribution decreases
while that near the threshold increases with increasing charge
of the � resonance. In a thermal model that assumes that
nucleons, pions, and � resonances produced in heavy ion
collisions are in thermal but not chemical equilibrium, with
the latter needed to maintain the final pion to nucleon
ratio, the π−/π+ ratio is slightly reduced in comparison
with the case without pion in-medium effects. Taking into
consideration of the isospin-dependent pion in-medium effects
in the transport model thus will have some, albeit not very
significant, effects on the extraction of the nuclear symmetry
energy from measured π−/π+ ratio. However, the predicted
π−/π+ ratio for a given parametrization of the symmetry
energy can be quite different in different transport models.
For example, it was shown in Ref. [14] that the π−/π+
ratio in hot dense nuclear matter increases with increasing
stiffness of the nuclear symmetry energy at high densities if the
latter is parameterized using the relativistic mean-field model,
opposite to the results from the IBUU model [15], which
shows a decreasing π−/π+ ratio with increasing stiffness of
the nuclear symmetry energy. Also, it was recently shown in
an improved isospin-dependent quantum molecular dynamic
(ImIQMD) model that the measured π−/π+ ratio from the
FOPI Collaboration is consistent with a nuclear symmetry
energy that is even stiffer than the one corresponding to the
symmetry energy parameter x = 0 in the MDI interaction [31],
contradictory to the conclusion from the IBUU model [15] that
a symmetry energy softer than x = 1 is needed to reproduce
the measured π−/π+ ratio. Further theoretical work is thus
needed to understand the relation between the π−/π+ ratio
and the behavior of the nuclear symmetry energy at high
densities in the transport model description of heavy ion
collisions.
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