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Connection between asymptotic normalization coefficients, subthreshold bound states,
and resonances
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We present here useful relations showing the connection between the asymptotic normalization coefficient
(ANC) and the fitting parameters & andR-matrix theory methods which are often used when analyzing low
energy experimental data. It is shown that the ANC of a subthreshold bound state defines the normalization of
both direct radiative capture leading to this state and resonance capture in which the state behaves like a
subthreshold resonance. A determination of the appropriate (§NBus offers an alternative method for
finding the strength of these types of capture reactions, both of which are important in nuclear astrophysics.
[S0556-28189)01006-1

PACS numbes): 24.30—v, 25.40.Lw, 26.30+k

I. INTRODUCTION the same state, but ifii) this state reveals itself as a reso-
nance, while in(iii) it acts as a real bound state. All three of
Nuclear excited states below the particle emission threshthese capture processes occur in nature and are important in
old typically undergoy decay to lower lying states. These determining reaction rates for nuclear astrophysics.
decays result in the initial states having their own natural |n previous paper$2—5] we have pointed out that the
width. In the case whery emission is the only open decay overall normalization of the cross section for a direct radia-
channel, the natural width, is typically ~eV. If a particle  tive capture reaction at low binding energy is entirely defined
bound excited state lies very close to the particle thresholdhy the asymptotic normalization coefficietANC) of the
the natural width can result in the tail of the wave functionfinal bound state wave function into the two-body channel
extending above the particle threshold. As a result of thigorresponding to the colliding particles. Below we show how
tail, the subthreshold bound state can behave like a resaee extend this to capture into subthreshold resonance states.
nance state in a capture reaction. Such states are often reypically the approaches used to analyze low energy experi-
ferred to as subthreshold resonance stii¢sand they can mental data in order to derive astrophysical factors aréthe
play an important role in determining reaction rates of inter-andR-matrix methods. We will present equations relating the
est in nuclear astrophysics. ANC to the residue of the pole corresponding to the sub-
Consider the capture of partidieby particlea at very low  threshold bound state in thé-matrix method and the re-
relative kinetic energyE and assume that there is a sub-duced width amplitude in thR-matrix method. In the case of
threshold bound statel in the systenc=(ab). There are a Breit-Wigner-type resonanéabove thresholdthe ANC is
three possible mechanisms by which the capture can occuelated to the resonance width. The equations given here
[1]: (i) direct radiative capture to the ground staie(ii)  have direct experimental implications and can be used in the
radiative capture to the ground state through the subthresholshalysis of experimental data. When analyzing data using the
resonance, andiii) direct radiative capture into the sub- K- or R-matrix methods, the parameters corresponding to the
threshold bound state with emission. subthreshold bound states can be fixed by measuring ANC'’s
Process(ii) corresponds to nonradiative capture of par-independently from transfer reactiopg5]. Also by measur-
ticle b into the subthreshold resonanck The excited state ing ANC’s one can simultaneously determine astrophysical
then undergoey decay to the ground state The energy of factors both for direct radiative capture to the subthreshold
the emitted photon is bound state and for capture to the subthreshold resonance.
The equations presented below are correct for scattering am-
plitudes inK- and R-matrix theory at negative energies, and
E,=E+e, (1 so they can be used to find the ANC by extrapolating elastic
scattering dat@phase shiftsto the pole corresponding to the
whereeg. is the binding energy of the ground state (ab). subthreshold bound stafi8].
Note that only one gamma is emitted in the process and it In what follows we use the system of units in whigh
occurs after capture into thel state. Proces§ii) results =c¢=1,
initially in a photon with energy

II. ASYMPTOTIC NORMALIZATION COEFFICIENT
E,=E+eq. 2)

We present first some useful equations for the ANC. Let
The subthreshold bound statd is then deexcited to the us consider a virtual decay of nuclexigito two nucleia and
ground statec by emitting a photon with energy.—e.;.  b. First we introduce the overlap functidmof the bound state
Note that in mechanism@) and(iii ) the capture occurs into wave functions of particles, a, andb:
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where for each nucleus is the bound state wave functiof,
are a set of internal coordinates including spin-isospin vari-
ables, and andM are the spin and spin projection. Alségs ~ whereb, ;_is the single-particle ANC defining the amplitude
the relative coordinate of the centers of mass of nuelend  of the tail of the bound state wave function at langewe

b, r=r/r, j., m;_are the total angular momentum of particle easily derive, from Eqs4), (7), and(9),

b and its projection in the nucleus=(ab), I., m;_are the (S )2=5

orbital angular momentum of the relative motion of particles ablcl abl

a_ and. b m_ the t_>ound statec=(ab) and |t_s_ pI’OjeCtIE)n, The ANC is related to the residue of the elastic scattering
(11my jomy|jzms) is a Clebsch-Gordan coefficienty m (1) amplitude in the so-called direct pole in the energy plane
is a spherical harmonic, anqbylcjc(r) is the radial overlap corresponding to the bound state. To show this we introduce

function which includes the antisymmetrization factor due tothe transition matrix7, which is related to th& matrix as
identical nucleons. The summation ovgrandj. is carried S—1-7T (11
out over the values allowed by angular momentum and parity - '
conservation in the virtual process-a+Db. Since the radial
overlap function is not a solution of the ScHinger equa-
tion, it is approximated by a model wave function of the
bound statee=(ab) as follows:

(10

e lele’

The diagonal partialSmatrix element is given byS;;
=exp(d4), whered; is the full scattering phase shift in the
partial wavel which includes the Coulomb scattering phase
shift o also. Thus in our approach tH& and 7 matrices
4) include the Coulomb phase shift if it is nonzero. Note that
usually the Coulomb rescattering is singled out — i.e., only
. . the Coulomb-modified nuclear phase shift is considered —
Here ¢y, () is the bound state wave function for the rela- ;¢ e take into account the total scattering phase shift. Let
tive motion ofa andb which can be calculated, for example, us consider now the elastic scattering-b—a+b. Let j
in the shell model or resonating group method and is normalstand for the channel+b. If a andb can form the bound
ized by statec=(ab) with binding energys, and relative orbital
angular momentunh (for simplicity we omit the subscript
fwdr fz@ﬁ (D=1, (5) inl), t.hen the glastic scattering amplitudg has a pole corre-
0 cele sponding to this bound state in ttéh partial wave at the
relative kinetic energy of particlesandb, E= —¢.. In the
Sabij, is the spectroscopic factor of the configurati@b)  momentum plane it corresponds to the pol&ai ., where

with quantum numbersk,, j. in nucleusc. It is defined asthe E= k2/2u41, With k being the relative momentum of particles

c _cl2
lab1,j.(F) = Sabl j Pngl.i (M)

norm of the radial overlap functiofv,4] a andb. Near this pole the partial elastic transition amplitude
Tj; in thelth partial wave can be written in the forf8]
Sablj,= fo drrils, 'cic(r)]z' (6) k—ixe Ic|?

(12

T =~ (- 1)fie! g =
The asymptotic normalization coefficiefigmcjC defining
the amplitude of the tail of the radial overlap function

av1 (1) [7.4]is given by

Thus the ANC simultaneously defines the normalization of
the tail of the overlap function and the residue in the pole
corresponding to the bound state of the partial elastic transi-
tion amplitude. This connection follows from the particle
r>Rn W nc,lc+1/2(2"abr) conservation law in nonrelativistic quantum mechan&ls

15 (N — Cgblcjc r , (7)

Ill. K-MATRIX APPROACH AND THE ANC
whereRy, is the nuclear interaction radius betwegandb,
W_ 7,CJCH,Z(ZKCr) is the Whittaker function describing the
asymptotic behavior of the bound state wave function of two
charged particlesg.= V2 e IS the wave number of the
bound state=(ab), w,;, is the reduced mass of particlas
andb, and nKC=ZaZb,uab/KC is the Coulomb parameter of

the bound stategb). The ANC is related to the nuclear where the final nucleushas an excited bound state which is
vertex constanGg‘IbICjC by [7,2] very close to the threshold fa+b. For convenience, we

A. Relating the ANC to the pole residue for the subthreshold
bound state and the resonance width

Consider the radiative capture process

atb—c+y, (13
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assume that the constituent particéeandb in channelc are Dy
spinless. We also assume that there are no close resonances T :2ipj2.—2.
at low relative kinetic energ§ between particles andb. QM+"““I'DN2
Then we need to take into account only two chanpaltsd y,
which correspond to channedstb andc+ vy, respectively.

The transition matrix has two-components; which corre- ;
number corresponding to the subthreshold bound sthte

sponds to the elastic scatteriag-b—a+b andT,; which ;
corresponds to the radiative captufe) to the ground state 1ij &/S0 has a pole corresponding to the ground stateboft
we do not consider it as we assume that it is quite far from

through the subthreshold resonance. For simplicity we con*
sider only two bound states in the systeab], the ground the subthreshold bound state. We now show how to relate the

state and the excited subthreshold bound state. Sigeés residue ofTj; in the pole corresponding to the subthreshold
significantly smaller tharT; , one can write bound state to the ANC. To do this, we mus_t extrapolgfe
to the bound state pole located on the physical sheet df the
. ”i plane atk=i«,, i.e., to the positive imaginary axis in the
Ty=2IPP T K (14 complexk plane or to the negative real axis in tEeplane.
it Since; is a modulus ofp?, it is not an analytic function,
Kij and when extrapolated down to negative energigs; 0 at
Tjj =2ipj2m- (15  E=<0. However, Eq(16) shows thap? is an analytic func-
Hithi tion in thek plane. If we write

(20

As has been indicated, the elastic transition matrix element
T;; has a pole ak=ix¢; wherexc; = V2uapecr is the wave

i

The diagonal elements;, p,,, and u; of the diagonal ma-

2_ 2o
tricesp and u in channelg and y are given by pi=e""pu,, (21
T(l+ip+1) then it becomes clear why the Coulomb scattering, given by
p; =g~ (T/2)san Rek T K +2, (16)  exp(day), was included inT;; since without this factorp?
' would not be analytic and its extrapolation to negative ener-
wi=|pi|? 17) gies would lead to the wrong residisee the Appendix
e Thus atE<0 we get
p, =k 12, (18) Dy,
_ _ Tjj=2ip?=. (22)
Here n=Z2Z,Z, /K is the Coulomb parametdris the rela- Qwm

tive orbital angular momentum of particlesandb in chan- Y th le of .. at i ds to th
nelj, k, is the momentum of the photon emitted during the ence the pole ol j; at negalive energy corresponas 1o the

transition from the subthreshold bound stat® the ground zero ofQy . Itis convenient to represent the rafigy, /Qu
state, andl, is its multipolarity. Since we consider only as a sum of pole terms plus a backgros)d
Rek>0, even when extrapolating to the bound state fole

=limRek — +0+i Imk, we can take sgn Re=1. E_ . Jor . (23
Let us consider the partial elemeRy in the partial wave Qu = k2—kf I

| where particlesa andb form the subthreshold bound state

cl. The excited bound state close to threshold has a widtfThen

caused by itgy transition to lower lying bound states. At low

relative energie& in channelj, the subthreshold bound state k<o ) M g2

can be “seen” by the incident particle i.e., it can be cap- T = lej)\z_:l 212 +B;, (24)

tured into the subthreshold bound state of nucleuss a - A

resonance state with subsequentransition to the bound whereg?, is the pole residue. Note that some but not all of

state. The matrix element describing the capture to the suqhe poles in the expansid@d) correspond to bound states in

threshold resonance 1S given by Ea4). . c[9]. Let \=1 correspond to the subthreshold bound state
For certain classes of local nuclear potentials, khea- 5 o2 o
cl. Then, ak“—ki= — kg,

trix is a real symmetric matrix. Moreover, the matrix ele-

ments of theK matrix are analytic functions dé® at k?=0 22 )
. . . . cl

with a branch cut on part of the negative real axis and with T  ~ 2ip? Y1

isolated poles on the cut in the compl&x plane[9,10. Il kaerKgl'

Since the matrix elementk;; and K,; are meromorphic

functions ofk? except for the cut, we present them in the Recall that the elastic transition amplitudig near the pole

(25

Padeform corresponding to the bound state was given by @Q).
Comparing Egs(25) and (12) we find the relationship be-
PN, Dy, tweeng,; and the ANC. Fok—i k.1,
K=o, KiTa, (19
M M , L1+, ,+1) i
Al ¢ H +
where Py, Dy, Qy are polynomials oNth order in thek? pj =€ T (iker) ™% (26)

plane. Consider first the transition matrix elem&gt. Tak-

ing into account the Padearametrization oK;; , we get Hence



ko =iy I+ 7, +1)]2
¢ : Nk ) g
- ~ _ lalm7, . cl 2| cl
Ty (=1 I Kel} ke
(27)
with the expression fog.,
1 (112

94 =— ICI?, (28)

cl FZ(I +1+ 77Kcl)

following from Egs.(12) and (27). Thus the residue of the
closest pole oK;; is proportional to the corresponding ANC.
Although we assumed that particlagndb are spinless, Eq.
(28) is valid also for particles with nonzero spins. Allowing
for spin, the ANC and the residug.; also depend on the
total angular momenturjy; of particleb in the bound state

(in jj coupling or on the spin channdin LS coupling.
Consider nowT

. 1
Tr=21P,P, Qum /Py, +ip(Dn, /Py @9
Once again we introduce the pole expansion for
S 9nd
_ _ YNICA
Kyj—PNl/QM—zl e +B,. (30

At small k2, , wherek?=— «2,, andk?—0, we can use the

one pole approximation giving

k?2—0

. 0519c1
T, = 2ipjp, —

- (31)
k2+'<§1+'l/~j9§1

Comparing this equation with the Breit-Wigner amplitude,

we find the relationship between the partial widtfy of the
subthreshold resonance seen by the incident patticleE
>0 and the residugg1 in the K-matrix approach:

cl(E)— 9c1
1 k 21
Mab\ Kc1

while the y width of the subthreshold resonantce andg,,
are related by

LT +in+ 1)\

2
NEEEE

(32

I (E)=2k%" g2, (33

wherek,, is the momentum of the photon emitted during the
transition from the subthreshold bound state to the groun
statec. The total width of the subthreshold resonance at posi-

tive energies is
P(E)=Tc(BE)+ T (E))~Tci(E). (34)

Thus the total width of the subthreshold resonande>ad is
proportional to|C|?.
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We can now find the behavior of the cross section for
capture to the subthreshold resonanceEat0. The cross
section for this capture is given by

:Uvab

o1,= (2|+1) T2 (35)
r,r
=(21+1) = (36)
k2 (E+eg)2+T2 /4
k 21
=(21+1) —)
Mabk Kc1

ool T +in+1)]|2

“€ AT+ 1 g,

Ir.|CJ?
(E+e¢)?+T2,/4

(37

E=0 K
~ (21+1)—=
Map

)2|+1

1
—e~ 27y

E

(D, r.|c|?
T2(1+1+ 7, ) (E+sc)?

(38

Hence the astrophysical factor Bt~0 behaves as

E—0 2
T Ke1
E€?™0y, ~ (21+1)—
Map

(7uey r.|c|?
T2(1+1+ 7, ) (E+s)?

S(E)=

)2|+l

(39

Thus we have shown that the ANC of the subthreshold
bound state defines the overall normalization of the cross
section and therefore the astrophysical factor for the capture
into the subthreshold resonancekat>-0. Usually when fit-
ting low energy experimental data in thematrix approach,

the one pole approximation is not sufficient. Nevertheless,
the main fitting parameteg.; can be fixed from an indepen-
dent measurement of the ANC.

B. Subthreshold bound state, ANC, and the scattering length

Consider now the relationship between the ANC and the
cattering length assuming that there is a subthreshold
wave (=0) bound statecl. The scattering amplitude is

related toT;; by

1

1= 7 i Vi (40

Consider now the behavior digj atk—0:
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k—0

£~

_ K.
i~ e T it —2—

1+ uiKjj
2
9c1

~—e T2t -
k2+’<§1+iﬂjg§1

(41)

We used in Eq(41) the single-pole approximation fdq

N 2
k=0 gcl

K (42

i~ L2, 2
ke+ kg,

Approximation(42) is valid atk?’—0 and small enoughﬁl.
At k—0,

k—0 2

. C . 9e1
fi; ~ —e?o0e ("N|(in+1)[2—=-. (43)
Kc1
The quantity
2
. (44)
Kc1
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wherer is the channel radius, an@,(k,rg) andF,(k,ro)
are the singulafat the origin and regular solutions of the
radial Schrdinger equation with a pure Coulomb potential at
E>0, i.e.,

G (k,rg)+iF(k,rg)
Gi(k,ro)—iF(k,ro)’

e?d= (49)

The elastic scattering amplitude is given by the sum of two
terms,
— — t
Ty =1-8; =T+ Ty, (50

WhereTJ(JP"t) is the potential scattering amplitude afg is
the so-called resonance scattering amplitude which is

_— V(E)
S —2i(¢— o))
Ti= e R-(&E-BrE] Y
In the above equation, tHe matrix is

2

Yea
R = , 52
! ; EC)\_E ( )

whereE., are the poles of th& matrix andy,, is the re-
duced width of thexth level. If the energy of the subthresh-

is nothing but the scattering length. Taking into account Eqold bound state is very close to threshold and the incident
(28) we derive the relationship between the scattering lengtienergyE— 0, we can use the one-levigimatrix approxima-

and the ANC:

1 1

a=————"|C
K(Z:l F2(1+ 7IK01)

(49)

IV. R-MATRIX APPROACH AND THE ANC

tion which leads to

W(E) v2,

Eq—E—[A(E)—B+iV(E)]va
(53

Tij=—2ie 2~

i

A priori the poles of theR matrix do not coincide with the
poles of theS matrix. However, if we choose the boundary

Below we present some useful equations relating ANC’scondition parameteB,=A,(— e;), then the level shift of

and paramerters in th&-matrix method. Although the the subthreshold bound state disappe&ig=—e.; [13],
R-matrix method was developed for analysis of resonancend Eq.(53) reduces to

reactions, the reduced width of th® matrix, which corre-

sponds to the subthreshold resonance, can be related to
ANC's of the subthreshold bound states. Let us consider the
elastic scatteringa+b—a+b at k—0 assuming the pres-

ence of the subthreshold bound state We note that the
elastic scatteringsmatrix element in channgl is given by
(11,12

S —-2idi-a) 1R —[A(E)—B,—iV(E)]
i~ € 1R —[A(E) =B, +IV(E)]’

(46)

whereR, is theR matrix for thel th partial waveA,(E) is the
Thomas shiftB, is the energy-independeRtmatrix bound-
ary condition constant, and (E) is given by

VI(E)=kroP(E). (47)
P,(E) is the penetration factor which is given by
1
Pi(E) (48)

" GAk,ro)+F2(kiro)

V(E) ¥4,
—&c1— E_iV|(E)A7"c1'

Tjj=—2ie_2i(¢'_g') (54)

where the effective reduced width of the subthreshold bound
state is

7’51
1+ y2[dA(E)/dE]|g-

Vo= : (55)

T €
Next we extrapolate Ed54) down to the bound state pole at
E= —¢.1. The factor),(E) can be written as

1

WV(E)=kr : .
! %1GI(K,ro) +iF (Ko o) 2

(56)

This is not an analytic function. As we did when considering
the K matrix, we take),(E)=0 atE<O0 in the denominator,
sinceV|(E) is the imaginary part of the logarithmic deriva-
tive of the wave function which is real at negative energies.
However, in the numerator we have
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1 W2 anl,|+1/2(2Kc1ro)

e 2(#—o)Y (E)=kr : — 72 :i
I(E) 020G, (kiro)+iF (K.rg) ]2 I'c1=2V(E)y5, MabM

CI*
(64)

(57 Thus the only model dependence of the subthreshold reso-
nance partial width comes through the channel radjus

Since the normalization of the radiative capture cross sec-
tions in casesgii) and(iii) is defined byg2,~|C|?, we have
shown that in both cases the overall normalization of the
cross section is defined by the same quantity — the ANC for
the subthreshold bound state.

=krgp————,
UM (k1)1

where
U (k) =(—1)'e™W_;, |, 1o —i2krg).  (58)

u,‘”(k,ro) is an analytic function in the entire complex
plane, k| <, except ak=0 [14]. Hence we can extrapolate
Eqg. (54) down to the subthreshold bound state pole, bypass-
ing the singular poink=0. At negative energies near this
pole, we get We found above the relationship between the ANC and
the width of the subthreshold resonance in tke and

V. ANC AND THE WIDTH OF THE ABOVE
THRESHOLD RESONANCE

k—ikes _ o Y R-matrix methods. However, the ANC is also directly related
T = 2i pap(—1)'€' ke > v . to the width of a resonance which is above threshold. We
W=, 1+ ud2Keafo) K71 Ker will give this relationship for a Breit-Wigner resonance lo-
(59 cated atE, =Ey—iI'/2 (I'/Ey<1). The partialSmatrix ele-
ment near the isolated Breit-Wigner resonance is given by
Comparing Eqgs(12) and(59) gives [18]
*
- 1 w2 nkc1,|+1/2(2'<c1r0) Sj<(k)=e2i ww' (65)
Y= CJ2. (60) (k—ko) (k+kr)

2pap o

i ) . where the partial scattering phase shiftis a smooth func-
From Eqgs.(28) and(60) we find the relationship between the tion of energy near the resonance and real at keahd k,
residue in the pole of the subthreshold bound stdtén the ~Ko— i (pap/2ko)T. At k—k,

K-matrix method andy; [13]:
S kkikr—A' + 66
ggl . 1 (”)2 o ,;/2 jj( ) = k—kr gjj » (66)
- .

2mab ki T2(1+1+ 79, ) W2 o414 2Ke1T0) ¢

whereg;; is the regular function dt=k; . The residue of the
(61 S matrix in the resonance pole in leading ordep to terms
of order=TI'/2E,) is
The relationship between the ANC and the dimensionless
effective reduced width amplitudé,; of the subthreshold  2in(kg) Mab
bound statecl is A= —1em e Ko L (67)

~> ~s To. o ) One can also use the Gamow wave functign(r), which
01= tan'o¥er = 5 W= vkcf'+1/2(2"°1r°)|c| - (62 i5 a regular solution of the radial Scluinger equation de-
scribing the relative motion of particles and b interacting
This result coincides with Eq16) in Ref.[15] and Eq.(7) in via the sum of the nuclegr and Coulomb potentials at reso-
Ref. [16] if one takes into account that the normalization "@nce energg,, to describe the resonance. The asymptotic
factor N; (N,) in [15—17 is given by (for the one-channel behavior ofyy (r) at large distances is

case
r—oo ei(kr"_ 7y In 2K r)

1 P (r) ~ by ———. (68)
Nf: 2 dA /d ’ (63)
1+ valdA(B) E]|E:*fc1 Here b, is the single-particle ANC of the Gamow function
and n,=Z,Zyuap/K, . Using the regularization procedure
and the dimensionless reduced width amplitufﬁ introduced by Baz', Zel'dovich, and Perelomov for reso-

=2uapr 372, - Note, however, that the ANC is model inde- nance statef8], the Gamow wave function can be normal-
pendent while the effective reduced width; depends on ized to 1 by
the channel radius,.

Having y.; expressed in terms of the ANC, the partial lim fmdr r2 efﬁrzl/,ﬁ (H=1. (69)
width of the subthreshold resonanck atE>0 is given by B—+0J0 '
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The relationship between the residue of Bienatrix in the  corresponding to the subthreshold bound siéie Equation

resonance pole can also be written[ 29] (27) gives the correct behavior of the elastic scattering am-
_ 2 plitude at negative energies. Also we have shdw)] that
A=—i(=1)bf. (70 peripheral nucleon transfer reactions are a useful tool to ex-

tract ANC's for bound states. Equati¢n2) shows that trans-
fer reactions to resonance states also can be used to extract
directly the widths of the resonances.

Comparing Egs(67) and(70) gives[19]

b~ (—1)' e? koL 2o (71)
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Clzw(— 1) eZiV|(ko)’LIL(_:‘)br. (72) APPENDIX

If we formally use u;=|p;|? instead ofpj2 in Eq. (25
VI. CONCLUSION when extrapolating to the subthreshold bound state, we get
different results for the residues in that bound state pole. Let

We have presented equations relating the ANC of the subys consider for simplicity =0. At E>0 from Eq.(16) we
threshold bound state with the residue of tHematrix  derive

method in the pole corresponding to this bound state and

with the reduced width in th&-matrix method. In the pres- Ty
ence of the subthreshold bound state, there are two possible  u;=|p;|?=|e”"72I'(i p+1)k¥42= > .
mechanisms of capture, direct capture to the subthreshold erm—1

bound state and capture to the subthreshold resonance. It (A1)

follows from Egs.(28), (32), and (60) that the ANC of the gy aniating Eq(AL) to negative energies, we derive
subthreshold bound state defines the overall normalization of

the cross sections and, hence, the astrophysical factors for _ T,
both capture mechanisms. Thus by independently measuring pi=irKe AL P (A2)
the ANC for the subthreshold bound state, one can calculate SIN(77,c,,)

the astrophysical factors for both capture mechanisms. ) ) ] ] )
Several techniques are available to determine ANC'’s. Onélowever, the extrapolation gfj to negative energies gives

of the ways to extract them is to extrapolate the experimental 2 - imp. 12

phase shift to the pole of the elastic scattering amplitude Py =1 Ke1 €77l (”Kc1+1)' (A3)
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