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Density matrix expansion for the isospin- and momentum-dependent MDI interaction
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By assuming that the isospin- and momentum-dependent MDI interaction has a form similar to the Gogny-like
effective two-body interaction with a Yukawa finite-range term and the momentum dependence originates only
from the finite-range exchange interaction, we determine its parameters by comparing the predicted potential
energy density functional in uniform nuclear matter with what has been usually given and used extensively in
transport models for studying isospin effects in intermediate-energy heavy-ion collisions as well as in investigating
the properties of hot asymmetric nuclear matter and neutron star matter. We then use the density matrix expansion
to derive from the resulting finite-range exchange interaction an effective Skyrme-like zero-range interaction with
density-dependent parameters. As an application, we study the transition density and pressure at the inner edge
of neutron star crusts using the stability conditions derived from the linearized Vlasov equation for the neutron
star matter.
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I. INTRODUCTION

One of the phenomenological nucleon-nucleon interactions
that have been extensively used in transport models to
study heavy-ion collisions is the isospin- and momentum-
dependent MDI interaction [1]. By using this interaction in
the isospin-dependent Boltzmann-Uhling-Uhlenbeck (IBUU)
transport model, an extensive amount of work has been
carried out to study various isospin-sensitive observables in
intermediate-energy heavy-ion collisions (for recent reviews,
see Refs. [2,3]). From comparisons of the isospin diffusion
data from the National Superconducting Cyclotron Laboratory
(NSCL) at Michigan State University (MSU) for 124Sn + 112Sn
reactions at E = 50 MeV/nucleon [4] with results from the
IBUU model, a relatively stringent constraint on the density
dependence of the nuclear symmetry energy at subsaturation
densities has been obtained [5,6]. The resulting symmetry
energy has further been used to impose constraints on both the
parameters in the Skyrme effective interactions and the neutron
skin thickness of heavy nuclei [7]. The MDI interaction with
the constrained isospin dependence has also been used to study
the properties of hot asymmetric nuclear matter [8] as well
as those of neutron stars [9–14], including the transition density
that separates their liquid core from their inner crust [15]. New
constraints on the masses and radii of neutron stars were then
obtained from comparing the resulting crustal fraction of the
moment of inertia of neutron stars with that of the Vela pulsar
extracted from its glitches [15].

Although the momentum-dependent nuclear mean-field
potential or the energy density functional of uniform nuclear
matter was used in these applications of the MDI interaction,
the explicit form of the MDI interaction has never been given
in the literatures. It was, however, implicitly mentioned [1,16]
that this momentum-dependent nucleon mean-field potential
was constructed according to a Gogny-like interaction [17]
consisting of a zero-range Skyrme-like interaction [18] and
a finite-range Yukawa interaction as in the momentum-
dependent Yukawa interaction (MDYI) [16]. Similar to the

Gogny interaction, the momentum dependence in the nucleon
mean-field potential from the MDI interaction is then from
the contribution of the finite-range Yukawa interaction to the
exchange energy density of uniform nuclear matter. The effect
of the finite-range part of the MDI interaction in nonuniform
nuclear matter was in previous applications either neglected or
inconsistently included by using the average density-gradient
terms from the phenomenological Skyrme interactions. From a
comparison of the potential energy density functional obtained
from above assumed interaction with that used in previous
applications of the MDI interaction, we are able to find unique
relations among the parameters of this interaction and those
used in the potential energy density functional for uniform
nuclear matter.

As a first step to facilitate the consistent application of
the finite-range MDI interaction, it is of interest to derive
an effective zero-range interaction with density-dependent
parameters using the density matrix expansion first introduced
in Ref. [19]. As shown in Ref. [20] for other finite-range inter-
actions, corresponding zero-range interactions derived from
the density matrix expansion reproduce reasonably well in the
self-consistent Hartree-Fock approach the binding energies
and radii of nuclei obtained with the original interactions,
particularly if the density matrix expansion is used only
for the exchange energy from the finite-range interaction
[19,20]. In the present paper, we carry out such a study
as an attempt to include consistently the effect due to the
finite-range part of the MDI interaction. As an application,
we use the resulting interaction to study the transition density
and pressure in neutron stars and compare the results with
those from previous studies using the MDI interaction but
with inconsistent density-gradient coefficients [15,21].

This paper is organized as follows. In Sec. II, we review
the isospin- and momentum-dependent MDI interaction and
determine its underlying nucleon-nucleon (NN) interaction
by fitting the energy density functional used in previous
applications of the MDI interaction. In Sec. III, the density
matrix expansion is then used to derive from the finite-range
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exchange interaction a zero-range effective interaction with
density-dependent parameters. The application of the resulting
interaction to study the transition density and pressure at the
inner edge of neutron star crusts is given in Sec. IV, using the
stability conditions that are derived from the linearized Vlasov
equation for the neutron star matter. Finally, the summary is
given in Sec. V. Details on the determination of the underlying
nucleon-nucleon interaction potential in the MDI interaction
and the application of the density matrix expansion to the
exchange energy of nuclear matter are given in Appendixes A
and B, respectively.

II. THE MDI INTERACTION

In applications of the momentum-dependent MDI inter-
action for studying isospin effects in intermediate-energy
heavy-ion collisions as well as the properties of hot asymmetric
nuclear matter and neutron star matter, one usually uses the
following potential energy density:

H (ρ, δ) = A1

2ρ0
ρ2 + A2

2ρ0
ρ2δ2 + B

σ + 1

ρσ+1

ρσ
0

(1 − xδ2)

+ 1

ρ0

∑
τ,τ ′

Cτ,τ ′

∫ ∫
d3pd3p′ fτ (�r, �p)fτ ′(�r, �p′)

1 + ( �p − �p′)2/�2
(1)

for infinite nuclear matter of density ρ and isospin asymmetry
δ = (ρn − ρp)/ρ, with ρn and ρp being, respectively, the
neutron and proton densities. In the above, τ (τ ′) is the
nucleon isospin; fτ (�r, �p) is the nucleon phase-space distri-
bution function at position �r; and ρ0 = 0.16 fm−3 is the
saturation density of normal nuclear matter. Values of the
parameters A1 = (Al + Au)/2, A2 = (Al − Au)/2, B, σ , �,
Cl = Cτ,τ , and Cu = Cτ,−τ can be found in Refs. [1,5]. For
symmetric nuclear matter, this interaction gives a binding
energy of −16 MeV per nucleon and an incompressibility
K0 of 212 MeV at saturation density.

The parameter x in Eq. (1) is used to model the density
dependence of the symmetry energy. Based on analyses
of the isospin diffusion in intermediate-energy heavy-ion
collisions and the neutron skin thickness of heavy nuclei
[4–6], the slope parameter L = 3ρ0[∂Esym(ρ)/∂ρ]ρ=ρ0 of the
symmetry energy has been constrained to L = 86 ± 25 MeV,
which corresponds to −1 < x < 0. More recent analyses of
experimental data on isospin diffusion, double n/p ratio,
and neutron skin thickness favor, however, a softer symmetry
energy of L = 58 ± 18 MeV [22–24].

The momentum dependence in the MDI interaction can
have a number of different origins. In addition to the finite-
range exchange term in the nucleon-nucleon interaction,
the intrinsic momentum dependence in the nucleon-nucleon
interaction and the effects of short-range nucleon-nucleon cor-
relations [25] can also contribute to its momentum dependence.
For simplicity, we assume in the present study that all of the
momentum dependence in the MDI interaction comes from the
finite-range exchange term. In this case, the explicit form for
the MDI interaction can be obtained from the energy density
given in Eq. (1) by assuming that the interaction potential
between two nucleons located at �r1 and �r2 has a form similar

to the Gogny interaction [1,17] but with its Gaussian form in
the finite-range term replaced by a Yukawa form, that is,

v(�r1, �r2) = 1

6
t3(1 + x3Pσ )ρα

( �r1 + �r2

2

)
δ(�r1 − �r2)

+ (W + BPσ − HPτ − MPσPτ )
e−µ|�r1−�r2|

|�r1 − �r2| . (2)

In the above equation, the first term is the density-dependent
zero-range interaction, which can be considered as an effective
three-body interaction, whereas the second term is the density-
independent finite-range interaction. In terms of this nucleon-
nucleon interaction, the total potential energy of a nuclear
system can be calculated from

E = 1

2

∑
i,j

〈ij |v(1 − PrPσPτ )|ij 〉, (3)

where

|i〉 = |ir iσ iτ 〉 (4)

is the quantum state of nucleon i with the spatial state ir , the
spin state iσ , and the isospin state iτ , and Pr , Pσ , and Pτ are,
respectively, the space, spin, and isospin exchange operators.

As shown in Appendix A, where the detailed derivation
of Eq. (1) from Eq. (2) is given, the first and second terms
in Eq. (1) come from the direct contribution [the first term of
Eq. (3)] of the finite-range term in the NN interaction. The third
term in Eq. (1) is simply from the contribution of the zero-range
term. Although different density-dependent zero-range terms
can lead to different symmetry energies and/or potentials [26],
we use in the present study the one in the standard Skyrme
interaction [27]. The momentum-dependent terms in Eq. (1)
come from the exchange contribution [the second term of
Eq. (3)] of the finite-range interaction. Comparison of the
resulting energy density functional with Eq. (1) leads to
the following unique relations among the eight parameters in
the NN interaction and those in the energy density functional
of Eq. (1):

t3 = 16B

(σ + 1)ρσ
0

, (5)

x3 = 3x − 1

2
, (6)

α = σ − 1, (7)

µ = �, (8)

W = �2

3πρ0
(A1 − A2 + Cl − Cu), (9)

B = �2

6πρ0
(−A1 + A2 − 4Cl + 4Cu), (10)

H = �2

3πρ0
(−2A2 − Cu), (11)

M = �2

3πρ0
(A2 + 2Cu). (12)

It is seen that the symmetry energy parameter x is related
to the coefficient of the spin exchange term in the density-
dependent zero-range interaction, whereas the width � in the
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momentum dependence is related to the range of the finite-
range interaction.

In the original MDI interaction [1], the symmetry energy
parameter x can only have the value of 0 or 1. To get a larger
range of density dependence for the symmetry energy while
fixing the value of Esym(ρ0) = 30.5 MeV, the parameters Al

and Au have been expressed as [5]

Al = −120.57 + x
2B

σ + 1
, Au = −95.98 − x

2B

σ + 1
, (13)

which results in the x dependence of A2. Therefore, with this
constraint the x dependence also appears in the finite-range
direct interaction.

III. THE DENSITY MATRIX EXPANSION

Although the contribution of a finite-range interaction to the
direct energy density of nuclear matter can be treated exactly,
it is numerically challenging to evaluate its contribution to
the exchange energy density. The latter can be, however, ap-
proximated by that from a Skyrme-like zero-range interaction
using the density-matrix expansion of Ref. [19]. As shown in
Appendix B, the resulting exchange energy density from the
finite-range interaction at position �r in a nuclear system can
be expressed in terms of densities ρn and ρp as well as kinetic
energy densities τn and τp as

HE
SL(�r) = A[ρn(�r), ρp(�r)]

+B[ρn(�r), ρp(�r)]τn(�r) + B[ρp(�r), ρn(�r)]τp(�r)

+C[ρn(�r), ρp(�r)]|∇ρn(�r)|2
+C[ρp(�r), ρn(�r)]|∇ρp(�r)|2
+D[ρn(�r), ρp(�r)]∇ρn(�r) · ∇ρp(�r), (14)

where

A(ρn, ρp) = VNM(ρn, ρp) − 3

5
(3π2)2/3

[
ρ5/3

n B(ρn, ρp)

+ ρ5/3
p B(ρp, ρn)

]
, (15)

B(ρn, ρp) = −2[ρnV
L(ρn) + ρpV U (ρp, ρn)], (16)

C(ρn, ρp) = −∂F (ρn, ρp)

∂ρn

, (17)

D(ρn, ρp) = −∂F (ρn, ρp)

∂ρp

− ∂F (ρp, ρn)

∂ρn

. (18)

In above equations, VNM(ρn, ρp) is the potential energy density
of infinite nuclear matter from the finite-range exchange
interaction [i.e. the momentum-dependent terms in Eq. (1)]
and is given by

VNM(ρn, ρp) = ρ2
nV

L
NM(ρn) + ρ2

pV L
NM(ρp)

+ 2ρnρpV U
NM(ρn, ρp), (19)

with

V L
NM(ρτ ) = 1

2

(
M + H

2
− B − W

2

)

×
∫

d3sρ2
SL(kτ s)

e−µs

s
, (20)

FIG. 1. (Color online) Dependence of A(ρn, ρp), B(ρn, ρp),
C(ρn, ρp), and D(ρn, ρp) on ρn and ρp at subsaturation densities.

V U
NM (ρτ , ρτ ′ ) = 1

2

(
M + H

2

)

×
∫

d3sρSL(kτ s)ρSL(kτ ′s)
e−µs

s
. (21)

Other terms are defined as

V L(ρτ ) = 1

2

(
M + H

2
− B − W

2

)

×
∫

d3ss2ρSL(kτ s)g(kτ s)
e−µs

s
, (22)

V U (ρτ , ρτ ′ ) = 1

2

(
M + H

2

)

×
∫

d3ss2ρSL(kτ s)g(kτ ′s)
e−µs

s
, (23)

where

ρSL(kτ s) = 3

kτ s
j1(kτ s), (24)

g(kτ s) = 35

2(kτ s)3
j3(kτ s), (25)

with j1 and j3 being, respectively, the first- and third-order
spherical Bessel functions and kτ = (3π2ρτ )1/3 the Fermi
momentum. For the function F (ρn, ρp), it is defined as

F (ρn, ρp) = 1
2V L(ρn)ρn + 1

2V U (ρp, ρn)ρp. (26)

In Fig. 1, we show the dependence of A(ρn, ρp), B(ρn, ρp),
C(ρn, ρp), and D(ρn, ρp) on ρn and ρp at subsaturation
densities. It is seen that A(ρn, ρp) and D(ρn, ρp) are sym-
metric in ρn and ρp, while B(ρn, ρp) and C(ρn, ρp) are
not. Furthermore, the density dependences of B(ρn, ρp),
C(ρn, ρp), and D(ρn, ρp) are strong at low densities but weak
near the saturation density. As these functions are from the
exchange contribution of the finite-range interaction, they are
independent of x.

044311-3



JUN XU AND CHE MING KO PHYSICAL REVIEW C 82, 044311 (2010)

IV. APPLICATION: TRANSITION DENSITY AND
PRESSURE IN NEUTRON STARS

The explicit form of the finite-range NN interaction and
the Skyrme-like zero-range interaction with density-dependent
parameters derived in previous sections make it convenient to
use the MDI interaction for a wider range of studies. In this
section, we discuss its application in studying the transition
density and pressure at the inner edge of neutron star crusts
based on the stability conditions that are derived from the
linearized Vlasov equation for the neutron star matter.

A. The single-particle Hamiltonian

The single-particle Hamiltonian for a nucleon can be
obtained from minimizing the total energy of a nuclear system
with respect to its wave function. For a neutron, it is given by

hn = −∇ ·
(

h̄2

2m	
n

∇
)

+ Un(ρn, ρp) (27)

with the neutron effective mass

h̄2

2m	
n

= h̄2

2m
+ B(ρn, ρp) (28)

and the potential

Un(ρn, ρp) = Uρ
n (ρn, ρp) + UD

n (ρn, ρp) + UE
n (ρn, ρp), (29)

where

Uρ
n (ρn, ρp) = ∂H0(ρn, ρp)

∂ρn

(30)

is the contribution from the zero-range interaction with

H0(ρn, ρp) = 1
24 t3ρ

α
[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

n + ρ2
p

)]
(31)

being the corresponding energy density, and

UD
n (ρn, ρp) =

(
W + B

2
− H − M

2

) ∫
d3r ′ρn(�r ′)

e−µ|�r−�r ′ |
|�r − �r ′|

+
(

W + B

2

) ∫
d3r ′ρp(�r ′)

e−µ|�r−�r ′|

|�r − �r ′| (32)

UE
n (ρn, ρp) = ∂A(ρn, ρp)

∂ρn

+ ∂B(ρn, ρp)

∂ρn

τn

+ ∂B(ρp, ρn)

∂ρn

τp − ∂C(ρn, ρp)

∂ρn

(∇ρn)2

+
(

∂C(ρp, ρn)

∂ρn

− ∂D(ρn, ρp)

∂ρp

)
(∇ρp)2

− 2
∂C(ρn, ρp)

∂ρp

∇ρn · ∇ρp − 2C(ρn, ρp)∇2ρn

−D(ρn, ρp)∇2ρp (33)

are the direct and exchange contributions from the finite-range
interaction, respectively. Expressing the kinetic energy density
in the exchange potential in terms of the density via the

extended Thomas-Fermi (ETF) approximation [28,29]

τq = aρ5/3
q + b

(∇ρq)2

ρq

+ c∇2ρq, q = n, p, (34)

where a = 3
5 (3π2)2/3, b = 1/36 and c = 1/3, the neutron

potential can then be written as

Un = U 0
n + UD

n + U∇
n , (35)

where

U 0
n (ρn, ρp) = Uρ

n (ρn, ρp) + ∂A(ρn, ρp)

∂ρn

+ a
∂B(ρn, ρp)

∂ρn

ρ5/3
n

+ a
∂B(ρp, ρn)

∂ρn

ρ5/3
p , (36)

U∇
n (ρn, ρp) = Gnn1

n (∇ρn)2 + Gpp1
n (∇ρp)2 + Gnp

n ∇ρn · ∇ρp

+Gnn2
n ∇2ρn + Gpp2

n ∇2ρp, (37)

with

Gnn1
n (ρn, ρp) = −∂C(ρn, ρp)

∂ρn

+ b

ρn

∂B(ρn, ρp)

∂ρn

, (38)

Gpp1
n (ρn, ρp) = ∂C(ρp, ρn)

∂ρn

− ∂D(ρn, ρp)

∂ρp

+ b

ρp

∂B(ρp, ρn)

∂ρn

, (39)

Gnp
n (ρn, ρp) = −2

∂C(ρn, ρp)

∂ρp

, (40)

Gnn2
n (ρn, ρp) = −2C(ρn, ρp) + c

∂B(ρn, ρp)

∂ρn

, (41)

Gpp2
n (ρn, ρp) = −D(ρn, ρp) + c

∂B(ρp, ρn)

∂ρn

. (42)

Similarly, the proton single-particle Hamiltonian is

hp = hn(n ↔ p) + UCD
p + UCE

p , (43)

where the first term hn(n ↔ p) is due to the nuclear interaction
and is obtained from Eq. (27) by interchanging the neutron and
proton symbols; the second term UCD

p is the direct Coulomb
potential given by

UCD
p = e2

∫
ρp(�r ′) − ρe(�r ′)

|�r − �r ′| d3r ′; (44)

and the last term UCE
p is the exchange Coulomb potential

which in the first order of the density matrix expansion [19] is
given by

UCE
p = −e2

(
3

π

)1/3

ρ1/3
p . (45)

B. The Vlasov equation for the neutron star matter

The Vlasov equation has been widely used in studying
the collective density fluctuation and spinodal instability in
nuclear matter (see Ref. [30] for a recent review). For a β-stable
and charge-neutral npe matter, the Vlasov equation can be
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written as

∂fq(�r, �p, t)

∂t
+ �vq · ∇�rfq(�r, �p, t) − ∇�rUq · ∇ �pfq(�r, �p, t) = 0

(46)

in terms of the Wigner function for particle type q = n, p, e

fq(�r, �p, t) = 1

(2π )3

∑
i

∫
φqi

(
�r − �s

2
, t

)

×φ	
qi

(
�r + �s

2
, t

)
ei �p·�sd3s, (47)

where φqi is the wave function of ith particle of type q. In
Eq. (46), �vq = �p/(m	

q
2 + p2)1/2 denotes the particle velocity

and m	
e = me.

To study the density fluctuation caused by a collective mode
with frequency ω and wavevector �k in the nuclear matter, we
follow the standard procedure [30] by writing

fq(�r, �p, t) = f 0
q ( �p) + δfq(�r, �p, t) (48)

with

δfq(�r, �p, t) = δf̃q( �p)e−iωt+i�k·�r . (49)

As the momentum dependence of the Wigner function is
mainly from f 0

q ( �p), we have ∇�pfq(�r, �p, t) ≈ ∇�pf 0
q ( �p) and

can thus rewrite the Vlasov equation [Eq. (46)] as

−iωδfq + �vq · (i�k)δfq − ∂f 0
q

∂εq

∇�pεq ·
( ∑

q ′

δUq

δρq ′
∇�rρq ′

)
= 0,

(50)

where εq is the single-particle energy. Using ∇�pεq = �vq and
writing ρq(�r, t) = ρ0

q + δρq(�r, t) with

δρq(�r, t) = 2

(2π )3

∫
δfq(�r, �p, t) d3p, (51)

which has the same time and spatial dependence as δfq (�r, �p, t),
Eq. (50) can be rewritten as

δfq = −∂f 0
q

∂εq

( ∑
q ′

δUq

δρq ′
δρq ′

) �k · �vq

ω − �k · �vq

. (52)

By substituting the above equation into Eq. (51), we obtain in
the low-temperature limit

δρq ≈ 1

2π2

∫ pF
q

0

(
−∂f 0

q

∂εq

)
p2dp

∫ 1

−1

cos θd(cos θ )

sq − cos θ

×
(∑

q ′

δUq

δρq ′
δρq ′

)
, (53)

with sq = ω/kvF
q and vF

q = pF
q /(m	

q
2 + pF

q

2
)1/2 being the

Fermi velocity. Carrying out the angular integration leads to
the usual Lindhard function

Lq =
∫ 1

−1

cos θd(cos θ )

sq − cos θ
= −2 + sq ln

(
sq + 1

sq − 1

)
. (54)

In the low-temperature limit, the momentum integration can
be approximately evaluated as

Xq = 1

2π2

∫ pF
q

0

(
−∂f 0

q

∂εq

)
p2dp ≈ pF

q m	
q

2π2

[
1 − π2

24

(
T

εF
q

)2
]

(55)

for q = n, p, with εF
q ≈ pF

q

2/
2m	

q and

Xe ≈ µ2
e

2π2

[
1 + π2

3

(
T

µe

)2
]

(56)

for electrons, where µe ≈ pF
e is the electron chemical

potential.
For the factor

∑
q ′

δUq

δρq′ δρq ′ in Eq. (53), there are the

local contribution δU 0
n , the direct contribution δUD

n from the
finite-range interaction, and the gradient contribution δU∇

n

from the finite-range exchange interaction using the density
matrix expansion. In the case of neutrons, they are given by

δU 0
n = ∂U 0

n

∂ρn

δρn + ∂U 0
n

∂ρp

δρp, (57)

δUD
n =

(
W + B

2
− H − M

2

)
4π

k2 + µ2
δρn

+
(

W + B

2

)
4π

k2 + µ2
δρp, (58)

δU∇
n = −k2(Gnn2

n δρn + Gpp2
n δρp

)
, (59)

after neglecting higher-order terms in δρq . In the long-
wavelength case, the finite-range direct contribution can be
rewritten as

δUD
n ≈ ∂UD0

n

∂ρn

δρn + ∂UD0
n

∂ρp

δρp − k2
(
GnnD

n δρn + GppD
n δρp

)
(60)

with

∂UD0
n

∂ρn

= 4π

µ2

(
W + B

2
− H − M

2

)
, (61)

∂UD0
n

∂ρp

= 4π

µ2

(
W + B

2

)
, (62)

GnnD
n = 4π

µ4

(
W + B

2
− H − M

2

)
, (63)

GppD
n = 4π

µ4

(
W + B

2

)
. (64)

For protons, there are additional direct and exchange Coulomb
contributions given, respectively, by

δUCD
p = 4πe2

k2
(δρp − δρe), (65)

δUCE
p = −1

3
e2

(
3

π

)1/3

ρ−2/3
p δρp. (66)

For electrons, there are only direct and exchange Coulomb
contributions to

∑
q ′

δUq

δρq′ δρq ′ .
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After linearizing the Vlasov equation, the collective density
fluctuation δρq then satisfies the equation

Cf (δρn, δρp, δρe)T = 0, (67)

with

Cf =

⎛
⎜⎜⎜⎝

XnLn

( ∂U 0
n

∂ρn
+ ∂UD0

n

∂ρn

) − 1 XnLn

( ∂U 0
n

∂ρp
+ ∂UD0

n

∂ρp

)
0

XpLp

( ∂U 0
p

∂ρn
+ ∂UD0

p

∂ρn

)
XpLp

( ∂U 0
p

∂ρp
+ ∂UD0

p

∂ρp

) − 1 0

0 0 −1

⎞
⎟⎟⎟⎠

− k2

⎛
⎜⎝

XnLn

(
GnnD

n + Gnn2
n

)
XnLn

(
G

ppD
n + G

pp2
n

)
0

XpLp

(
GnnD

p + Gnn2
p

)
XpLp

(
G

ppD
p + G

pp2
p

)
0

0 0 0

⎞
⎟⎠ +

⎛
⎜⎜⎝

0 0 0

0 XpLp

(
4πe2

k2 + δUCE
p

δρp

) − 4πe2

k2 XpLp

0 − 4πe2

k2 XeLe XeLe

(
4πe2

k2 + δUCE
e

δρe

)
⎞
⎟⎟⎠. (68)

We note that the three terms in the above equation are due to,
respectively, the bulk, the density gradient, and the Coulomb
contribution.

C. The transition density in neutron stars

Nontrivial solutions of Eq. (67) are obtained when
|Cf | = 0, which also determines the dispersion relation ω(k)
of the collective density fluctuation. The transition density
in a neutron star is the density at which the collective
density fluctuation would grow exponentially, resulting in the
instability of the neutron star matter, and this happens when the
frequency ω becomes imaginary. To determine the condition
for this to occur, we let sq = −iνq (νq > 0) and rewrite
the Lindhard function as Lq = −2 + 2νq arctan(1/νq). Since
the values of Lq are −2 < Lq < 0, the critical values Ln =
Lp = Le = −2, corresponding to νq = 0, then determine the
spinodal boundary of the system when they are substituted
into |Cf | = 0. Expanding the nucleon and electron densities
at low temperatures according to

ρe ≈ µ3
e

3π2

[
1 + π2

(
T

µe

)2
]

, (69)

ρq ≈
(
2m	

qε
F
q

)3/2

3π2

[
1 + π2

8

(
T

εF
q

)2
]

, q = n, p, (70)

we obtain from Eqs. (55) and (56) the following relations:

1/2Xe = ∂µe/∂ρe, (71)

1/2Xq = ∂εF
q

/
∂ρq. (72)

The bulk contribution in Eq. (68) in the low-temperature limit
can thus be rewritten as

−8

⎛
⎜⎝

Xn(∂µn/∂ρn) Xn(∂µn/∂ρp) 0

Xp(∂µp/∂ρn) Xp(∂µp/∂ρp) 0

0 0 Xe(∂µe/∂ρe)

⎞
⎟⎠ . (73)

Denoting the effective density-gradient coefficients as

Dnn = −GnnD
n − Gnn2

n , (74)

Dnp = −GppD
n − Gpp2

n , (75)

Dpn = −GnnD
p − Gnn2

p , (76)

Dpp = −GppD
p − Gpp2

p , (77)

we then obtain the same expressions for determining the
spinodal boundary of npe matter as in the so-called dynamical
approach [15,31–33], if the Coulomb exchange terms are
neglected. In particular, in the long-wavelength limit, the
spinodal boundary is determined by the vanishing point of

Vdyn(k) = |Cf |Lq=−2

XnXqXe(∂µn/∂ρn)
≈ V0 + βk2 + 4πe2

k2 + k2
TF

,

(78)

where

V0 = ∂µp

∂ρp

− (∂µp/∂ρn)2

∂µn/∂ρn

+ δUCE
p

δρp

, (79)

β = Dpp + (Dnp + Dpn)ζ + Dnnζ
2, (80)

FIG. 2. (Color online) Density dependence of effective density-
gradient coefficients from different values of x for symmetric
nuclear matter. The finite-range direct and exchange contributions are
compared, and the value extracted by Oyamatsu [34] is also shown.
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ζ = −∂µp/∂ρn

∂µn/∂ρn

, (81)

k2
TF = 4πe2(

∂µe/∂ρe + δUCE
e

/
δρe

) . (82)

To find the upper limit of the spinodal boundary for all possible
wave vectors, we first find the minimum value of Vdyn given
by

Vdyn = V0 + 2(4πe2β)1/2 − βk2
TF, (83)

which occurs when k2 = (4πe2/β)1/2 − k2
T F . The density that

makes Eq. (83) vanish then determines the spinodal boundary
in the neutron star matter or the transition density at the inner
edge of neutron star crusts.

In Fig. 2, we show the density dependence of effective
density-gradient coefficients from different values of x for
symmetric nuclear matter. It is seen that the contribution from
the finite-range direct interaction is much larger than that from
the finite-range exchange interaction. Also, Dnn decreases
while Dnp increases with increasing value of x. Furthermore,
Dnn = Dpp and Dnp = Dpn for symmetric nuclear matter,
whereas all four D’s have different values for asymmetric
nuclear matter. The density-gradient coefficients extracted
from the MDI interaction are, however, much larger than the
value of 132 ± 12 MeV fm5 shown in the figure that was used
by Oyamatsu [34] to fit the nuclear radii and is also consistent
with the average value from different Skymre interactions. We
note that the large density-gradient coefficients in the presence
study are due to our assumption that all of the momentum
dependence in the MDI interaction comes from the finite-range
exchange term.

In Fig. 3, we compare the transition density and pressure
in this study with those from previous calculations [15,21]
that use the value of 132 MeV fm5 from Ref. [34] for
the density-gradient coefficients and neglect the exchange
Coulomb interaction. It is seen that the present results are
smaller than previous ones for neutron star temperatures
T = 0 and 1 MeV. We note that including the exchange
Coulomb term for protons slightly increases ρt while the

FIG. 3. (Color online) The transition density ρt and pressure Pt at
the inner edge of neutron star crust as functions of the slope parameter
L for T = 0 and 1 MeV. Previous results [15,21] based on density-
gradient terms from Ref. [34] are also shown for comparison.

larger density-gradient coefficients make ρt smaller. From
the latest constraint L = 58 ± 18 MeV on the density slope
of the nuclear symmetry energy, the transition density and
pressure are constrained within 0.050 < ρt < 0.071 fm−3 and
0.12 < Pt < 0.31 MeV/fm3 for T = 0 MeV, and 0.038 <

ρt < 0.070 fm−3 and 0.06 < Pt < 0.30 MeV/fm3 for T =
1 MeV in the present study. Although the transition density is
smaller at fixed L compared to our previous results [15], which
leads to a smaller crustal fraction of the moment of inertia for
neutron stars and an even stricter constraint on the masses and
radii of neutron stars, the upper limit values of ρt and Pt are
larger because of the smaller values of L. The final constraint
on the neutron star mass-radius (MR) relation is expected to
be similar to that in the previous work [15].

V. SUMMARY

Assuming that the momentum dependence in the MDI
interaction is entirely due to the finite-range exchange term
in the nucleon-nucleon interaction, we have identified the
NN interaction potential that underlies the MDI interaction,
which has been extensively used in studying isospin effects
in intermediate-energy heavy-ion collisions as well as the
properties of hot nuclear matter and neutron star matter through
the resulting potential energy density in infinite nuclear matter.
Using the density matrix expansion, we have obtained an
effective zero-range Skyrme-like interaction with density-
dependent parameters from the finite-range exchange interac-
tion. Compared to the density-gradient coefficients extracted
by Oyamatsu [34] and the average value from different Skyrme
interactions, the values from the MDI interaction are much
larger. Since the momentum dependence in the MDI interac-
tion could also come from the intrinsic momentum dependence
in the elementary nucleon-nucleon interaction or be induced
by the effects of short-range nucleon-nucleon correlations, we
have thus overestimated the effect of the finite-range exchange
term. As an application, the resulting interaction is used to
determine the transition density and pressure at the inner
edge of neutron star crusts based on the linearized Vlasov
equation for the neutron star matter. Fortunately, the instability
of neutron star matter is dominated by the bulk properties of
nuclear matter; the large density-gradient coefficients due to
the finite-range interaction do not much reduce the transition
density and pressure in neutron stars.
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APPENDIX A: FROM THE NN INTERACTION TO THE
POTENTIAL ENERGY DENSITY

The two-particle state |ij 〉 in Eq. (3) contains the spatial,
spin, and isospin parts as

|ij 〉 = |ir iσ iτ jrjσ jτ 〉 = |irjr〉|iσ jσ 〉|iτ jτ 〉. (A1)
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For the inner product of the spatial state, we have

∑
i,j

〈irjr |irjr〉 =
∑
i,j

∫
〈irjr |�r1�r2〉〈�r1�r2|irjr〉d3r1d

3r2

=
∑
i,j

∫
φ	

i (�r1)φ	
j (�r2)φi(�r1)φj (�r2) d3r1d

3r2

=
∫

ρ(�r1)ρ(�r2) d3r1d
3r2 (A2)

with φi(�r) = 〈�r|ir〉 being the space wave function for particle
i and the density ρ(�r) = ∑

i φ
	
i (�r)φi(�r), and

∑
i,j

〈irjr |jr ir〉 =
∑
i,j

∫
〈irjr |�r1�r2〉〈�r1�r2|jr ir〉d3r1d

3r2

=
∑
i,j

∫
φ	

i (�r1)φ	
j (�r2)φj (�r1)φi(�r2) d3r1d

3r2

=
∫

ρ(�r1, �r2)ρ(�r2, �r1) d3r1d
3r2 (A3)

with the off-diagonal density ρ(�r1, �r2) = ∑
i φ

	
i (�r1)φi(�r2),

which reduces to the density when �r1 = �r2.
For the zero-range term v0 = 1

6 t3(1 + x3Pσ )ρα( �r1+�r2
2 )

δ(�r1 − �r2) in the MDI interaction, its direct contribution to the
energy can be calculated using the fact that Pσ = 1/2 when
considering the inner product of the spin state in spin saturated
matter, and the result is

ED
0 = 1

2

∑
i,j

〈ij |v0|ij 〉

= t3

12

∫
d3r1d

3r2ρ(�r1)ρ(�r2)ρα

( �r1 + �r2

2

)

× δ(�r1 − �r2)
(

1 + x3

2

)
=

∫
d3rHD

0 (�r) (A4)

with

HD
0 = t3

12

(
1 + x3

2

)
ρα+2. (A5)

Its exchange contribution

EE
0 = 1

2

∑
i,j

〈ij |v0(−PrPσPτ )|ij 〉 (A6)

can be evaluated by using (1 + x3Pσ )(−PσPτ ) = −Pσ Pτ −
x3Pτ and replacing Pτ by δiτ ,jτ

when considering the inner
product of the isospin state, and the result is

EE
0 = − t3

12

∫
d3r1d

3r2ρ(�r1, �r2)ρ(�r2, �r1)ρα

( �r1 + �r2

2

)

× δ(�r1 − �r2)

(
1

2
+ x3

)
1 + δ2

2

=
∫

d3rHE
0 (�r) (A7)

with

HE
0 = − t3

12

(
1

2
+ x3

)
ρα+2 1 + δ2

2
, (A8)

and δ is the isospin asymmetry. The total contribution of the
zero-range interaction to the potential energy density is thus

H0 = HD
0 + HE

0 = t3

16
ρα+2

(
1 − 1 + 2x3

3
δ2

)
. (A9)

Comparing it with Eq. (1) leads to Eqs. (5)–(7).
For the contribution from the finite-range interaction in

Eq. (2) to the energy, we use in the exchange term the rela-
tion (W + BPσ − HPτ − MPσPτ )(−PσPτ ) = M + HPσ −
BPτ − WPσ Pτ to obtain the following total contribution to
the potential energy:

Er = 1

2

∫
d3r1d

3r2

{
[ρn(�r1)ρn(�r2) + ρp(�r1)ρp(�r2)]

×
(

W + B

2
− H − M

2

)
+ 2ρn(�r1)ρp(�r2)

(
W + B

2

)
+ [ρn(�r1, �r2)ρn(�r2, �r1) + ρp(�r1, �r2)ρp(�r2, �r1)]

×
(

M + H

2
− B − W

2

)

+ 2 ρn(�r1, �r2)ρp(�r2, �r1)

(
M + H

2

)}
e−µ|�r1−�r2 |
|�r1 − �r2| , (A10)

with the first and second terms being the direct contribution,
and the third and fourth terms being the exchange contribution.

To obtain the energy density functional from the finite-range
interaction, we introduce the coordinate transformation

�r = (�r1 + �r2)/2, �s = �r1 − �r2. (A11)

For the direct contribution, we use the approximation of infinite
nuclear matter with constant density and make use of the
integral

∫
d3se−µs/s = 4π/µ2 to obtain

ED
r =

∫
d3rHD

r (�r) (A12)

with

HD
r = 2π

µ2

(
W + B

2
− H

2
− M

4

)
ρ2 − 2π

µ2

(
H

2
+ M

4

)
ρ2δ2.

(A13)

For the exchange contribution, we express the density matrix
in terms of the Fourier transform of the Wigner function,
that is

ρτ

(
�r + �s

2
, �r − �s

2

)
=

∫
d3pfτ (�r, �p)e−i �p·�s . (A14)

Substituting Eq. (A14) into Eq. (A10) and evaluating the
Fourier transform of the Yukawa interaction according to∫

d3se−i( �p− �p′)·�s e−µs

s
= 4π

µ2

1

1 + ( �p − �p′)2/µ2
, (A15)

the exchange contribution of the finite-range interaction to the
potential energy is then

EE
r =

∫
d3rHE

r (�r), (A16)

044311-8



DENSITY MATRIX EXPANSION FOR THE ISOSPIN- . . . PHYSICAL REVIEW C 82, 044311 (2010)

with

HE
r (�r) = 2π

µ2

∫
d3pd3p′

1 + ( �p − �p′)2/µ2

[(
M + H

2
− B − W

2

)
× [fn(�r, �p)fn(�r, �p′) + fp(�r, �p)fp(�r, �p′)]

+
(

M + H

2

)
2fn(�r, �p)fp(�r, �p′)

]
. (A17)

Comparing Eqs. (A13) and (A17) with Eq. (1) then allows one
to obtain Eqs. (8)–(12) for the parameters in the finite-range
Yukawa potential in the MDI interaction.

APPENDIX B: DENSITY MATRIX EXPANSION OF THE
FINITE-RANGE EXCHANGE INTERACTION

Here we follow exactly the same procedure for the density
matrix expansion introduced in Ref. [19]. To obtain the energy
density functional in Eq. (14) from the exchange contribution
in Eq. (A10), we first use the coordinate transformation given
by Eq. (A11) to express the density matrix as

ρτ (�r1, �r2) = ρτ

(
�r + �s

2
, �r − �s

2

)

=
∑

i

φ	
τ i

(
�r + �s

2

)
φτi

(
�r − �s

2

)

= e
�s
2 ·(∇1−∇2)

∑
i

φ	
τ i(�r)φτi(�r), (B1)

with ∇1(2) acting on the first (second) term on the right, and
φτi the spatial wave function of particle i with isospin τ . The
angular average over the direction of �s is then

1

4π

∫
d�sρτ

(
�r + �s

2
, �r − �s

2

)

= sinh
[ �s

2 · (∇1 − ∇2)
]

�s
2 · (∇1 − ∇2)

∑
i

φ	
τ i(�r)φτi(�r). (B2)

Using the Bessel-function expansion

sinh(xy)

xy
= 1

x

+∞∑
n=0

(4n + 3)j2n+1(x)Qn(y2) (B3)

with j2n+1 the (2n + 1)th-order spherical Bessel function and

Qn(y2) = 1

22n+1

n∑
l=0

(4n + 2 − 2l)!y2(n−l)

l!(2n + 1 − l)!(2n + 1 − 2l)!
, (B4)

one obtains by identifying x ∼ kτ s and y ∼ (∇1 − ∇2)/2kτ

with kτ being the Fermi momentum and keeping up to the
third-order Bessel function the following result:

1

4π

∫
d�sρτ

(
�r + �s

2
, �r − �s

2

)
= ρSL(kτ s)ρτ (�r) + g(kτ s)s2

×
[

1

4
∇2ρτ (�r) − ττ (�r) + 3

5
k2
τ ρτ (�r)

]
(B5)

with ρSL(kτ s) = 3
kτ s

j1(kτ s), g(kτ s) = 35
2(kτ s)3 j3(kτ s), and

ττ (�r) = ∑
i |∇φτi(�r)|2 being the kinetic energy density. By

making the approximation

1

4π

∫
d�sρτ

(
�r + �s

2
, �r − �s

2

)
ρτ ′

(
�r − �s

2
, �r + �s

2

)
≈ ρτ (�r)ρSL(kτ s)ρτ ′(�r)ρSL(kτ ′s) + ρτ (�r)ρSL(kτ s)g(kτ ′s)s2

×
[

1

4
∇2ρτ ′(�r) − ττ ′(�r) + 3

5
k2
τ ′ρτ ′(�r)

]
+ ρτ ′ (�r)ρSL(kτ ′s)g(kτ s)s2

×
[

1

4
∇2ρτ (�r) − ττ (�r) + 3

5
k2
τ ρτ (�r)

]
, (B6)

and using the relation

F (ρn, ρp)∇2ρn = −∂F (ρn, ρp)

ρn

(∇ρn)2

−∂F (ρn, ρp)

ρp

∇ρn · ∇ρp. (B7)

we obtain

EE
r =

∫
d3rHE

SL(�r), (B8)

where HE
SL(�r) is the Skymre-like zero-range energy den-

sity from the finite-range exchange interaction defined in
Eq. (14).
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