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A coupled-channel calculation including Coulomb excitation has been done for excita-
tion of the isovector giant dipole resonance in light-ion inelastic scattering from ' Pb at
forward angles. It is found that the predicted cross sections for excitation of the giant di-

pole resonance with alpha inelastic scattering, calculated including Coulomb excitation,
are much smaller than the experimental isoscalar giant monopole resonance cross section

at incident energies around 100 MeV. The predicted cross section for Coulomb excitation

of the giant dipole resonance increases rapidly with increasing incident energy, and the gi-

ant dipole and monopole resonance cross sections become comparable above E =300
MeV. For inelastic scattering of He, deuterons, and protons at forward angles, Coulomb

excitation of the giant dipole resonance is found to be comparable to the giant monopole

resonance cross section at 100 &E""&200MeV. Coulomb excitation of the giant dipole

resonance is strongly inhibited by momentum mismatch between incident and outgoing
waves due to the large negative Q values. This mismatch is reduced for lighter projectile
masses and higher incident energies. As the giant monopole and dipole resonances are al-

most coincident, giant dipole resonance excitation must be properly accounted for in stud-

ies of the giant monopole resonance.

NUCLEAR REACTIONS Coupled-channel calculation of o(0); for-
Coulomb excitation of isovector dipole resonance in Pb; from (a,a'),

Im ( He, He'), (d, d'), and (p,p') scattering.

I. INTRODUCTION

The isoscalar giant monopole resonance (GMR)
in nuclei has been established by inelastic alpha
scattering measurements. ' Presently, all of the ex-

perimental evidence of the GMR come from inelas-
tic scattering of various light ions with high in-

cident energy (of 80—220 MeV). These measure-
ments have generally been done at forward scatter-
ing angles in order to distinguish the GMR from
the giant quadrupole resonance (GQR). As the
GMR is almost coincident with the isovector giant
dipole resonance (GDR) in excitation energy, it is
important to theoretically investigate to what ex-
tent the GDR is excited.

Though nuclear excitation of the GDR is usually
weak, Coulomb excitation can be significant at for-
ward angles. An estimate with the plane-wave

Born approximation (PWBA) suggests that the
Coulomb excitation cross section of the GDR is
comparable to the measured cross section of the
GMR, and that their angular distribution may be
similiar at forward angles. For a fixed incident en-

ergy, the cross section for Coulomb excitation is
further predicted to be proportional to mz, where
m and z are the mass and charge number of the
projectile. Therefore, the effect of Coulomb excita-
tion may be more pronounced in inelastic alpha
scattering than in proton, deuteron, or He scatter-
ing. A study with the distorted-wave Born ap-
proximation (DWBA) was reported very recently
which indicated Coulomb excitation of the GDR
should be significant in He and proton studies of
the GMR which have been carried out.

The primary aim of the present study was to as-
sess the contribution from Coulomb excitation of
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the GDR in the region of the GMR in Pb in
(a,a') scattering with incident energies between 96
and 218 MeV. There is a serious momentum
mismatch in the excitation of such low spin states
having large negative Q values ( —13 MeV). Dis-
tortion effects on incident and outgoing waves may
play a decisive role in such a case and the simple
mz dependence of Coulomb excitation as predicted
by the PWBA does not survive in distorted-wave
calculations.

Calculations including Coulomb excitation must
meet the following two requirements: (1) Large
wave numbers of 3 to 7 fm ' require a small step
size for the radial integration. (2) The long range
nature of the Coulomb form factor requires that
the integration should be performed to a distant
point from the origin to get convergence. A
coupled-channel (CC) program, JpwKB, by Kim
et al. was employed to perform fast calculations
meeting these requirements without losing much
accuracy. Calculations were also performed for
inelastic scattering of other projectiles exciting the
GDR in Pb. Specific calculations were carried
out for projectiles used in recently published stud-
ies on the excitation of the GMR with 201 MeV
protons, 86 and 108 MeV deuterons, ' and 108.5
MeV He particles.

In Sec. II, we give a brief account of the method
of the CC calculations. In Sec. III, the results of
numerical analysis are presented for the GMR and
GDR in Pb excited by inelastic scattering of
various light ions. A summary is given in Sec. IV.

II. METHOD OF CALCULATIONS

In the present CC study of inelastic scattering,
use is made of a computer program JPWKB,
developed some time ago by Kim et al'. We thus
describe briefly the method used in the program.

The radial region is divided into two parts
separated by a separation distance R, as shown in
Fig. 1. The first is the internal region (0 &r &R, ),
where both nuclear and Coulomb excitation are
important. The CC equations are solved exactly,
and the program JUPITER-18 is used in its original
form to generate N sets of independent solutions
[u~(r); p =1, 2, ...,N]. The second is the external
region (r )R, ), where only the Coulomb interac-
tion has to be considered. The CC equations are,
however, solved approximately by using a
Wentzel-Kramers-Brillouin (WKB)-type of approxi-
mation originally introduced by Alder and Pau-
li 10, 11
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FIG. 1. Division of the radial integration region in
solving CC equations.

Since detailed descriptions of the internal solu-
tions were given earlier, ' we limit our discussion
to the external solution of the CC equations and
the matching condition at r =R, . The expression
of the S matrix may be written as

S = U'S'"U . (2.1)

&»(r) = [h»' '(r)a» '(r) —h»+'(r)a»'+'(r)],
»

(2.2)

with

(2.3)h»' '(r) =Gi(k»r )+iF-((k r),
where kq is the wave number. F~ and G~ are the
regular and irregular Coulomb wave functions,
respectively. We neglect the spin-orbit interaction
in the optical potential. Thus, the channel index q
can be specified by the spin I„ofthe state

~

n }of
the target nucleus, - the orbital angular momentum
l, and the total angular momentum of the system
J = I„+1.

Here a unitary transformation U contains all the
effect of Coulomb excitation in the external region.
The internal S-matrix S'" is obtained by matching
smoothly the two sets of N independent solutions
obtained for each partial wave at r =R, .

In the external region, the radial part of the
wave function in the channel q is given as
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The CC equation for the unknown functions
aq'+-'(r) is obtained by inserting Eq. (2.2) into the
exact CC equation for uq(r) [see Eq. (25) of Ref. 8]
and multiplying by either hq'+'(r) or hq '(r) from
the left hand side. We further introduce the fol-

lowing three approximations: (i) hq'-'(r) are ap-
proximated by those obtained by the WKB
method. (ii) The second derivative of aq' '(r)-with

respect to r is neglected. (iii) The rapidly oscillat-

ing terms like hq+ (r)hq'+ (r) and h (r)hq' '(r)
are neglected. One can see that a '+-(r) satisfies'

(+)
aq " (+) (+)

UqqI aq~
dr

(2.4)

where

(+) 1 PqPq J +i(p p ')

2i Qkkq q

(2.5)

P =
I 1 (2rlq—/kqr) [l(1+—1)lkq r ] I ', (2.6)

and

(2.7)

with gq being the Sommerfeld parameter. Uqq in

Eq. (2.5) is exactly the same as the interaction ma-
trix element given by Eq. (27) of Ref. 8, except that
no nuclear interaction is involved in Eq. (2.5).

Note that a' +'(r) are not i-ndependent but are re-
lated through

u (r) = g Upq(r)b~q
1

0 k pq pqo ' (2.15)

P = k r/P +rl log[V 71,'+l(l+ 1)/(kqr'qlq+—V'kqr /Pq')]

—&1(1 + 1)cos I [rlqkqr+ 1 (1+ 1)]/kqr (/ qlq +1(l + 1) I

I

The unknown matrix a'+' is determined by the re-
quirement that the external solutions (2.11}should
be mat'ched at r =R, smoothly to the internal solu-
tions:

g ( )+(r) g (+)(r) (2.8)

This may be seen if one notices that Uqq—
+ satisfies

the symmetry relation

where coeAicients b~ are also to be determined.&f0

The S matrix is thus completely determined. It is
interesting to note that Eq. (2.14) can be rewritten
as

(+)+ (+)
"qq' = +Uqq' (2.9) S g (+)(r )S(i)g ( —)(r ) (2.16)

Now let us denote N independent sets of solutions
of Eq. (2.4) by [ak+'(r);k =1,2, .. .,N], which are
obtained by setting the boundary condition at
r=R, as

ak+-'(r =R, ) =5k (2.10}

This normalization guarantees that ak +'(r) are u—ni-

tary matrices.
The solution uqq (r) in the external region may

be given in the form

uqq = g [ hq (r)ak (r)akq
q k

—hq+'(r)ak+'(r)akq+'] . (2.11)

From the boundary condition that uqq (r} takes the
qqo

asymptotic form

I=a' '(r = oo )a' (2.13)

uqqo(r)~ [hq (r)5qq hq+ (r)Sqq ] (2.12)
q

one can obtain

with

S(1) a(+)[a( —)]—i (2.17)

which is the same form as given in Eq. (2.1).
Comparing Eq. (2.16) with Eq. (2.1), we obtain the
matrix U as

U [g ( —)(r )]
—i (2.18)

C= . (I S), ——1

2l

the cross section can be expressed as

do' 1 X (g)+1 g I M+MD

(2.19)

(2.20}

Since the first derivative of ak +'(r) is very -small al-
ready at r =R„ it is easily seen from the matching
equations that the internal S matrix S'" can be re-
placed to a good approximation by the S matrix
obtained from the original JUPITER-1. Kim et al.
assumed this replacement. We used the S matrix
given in Eq. (2.14) in the present calculation.

Introducing the C matrix as

and

S=a'+'(r = m)a'+'. . (2.14)
X is given in terms of the C matrix introduced
above as
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xM ~ (|))=X
kqkq,

X (lIOOMO
~
JMO) (I'I„MI M„~ JMO)c, pl,~,(g) . (2.21)

It should be remembered that the CC equation
for aq

—'(r) given by Eq. (2A) can be solved with a
large step size, since all functions involved are very
smooth functions of r. This significantly speeds up
the computation. In order to save more computer
time, an interpolation is used to generate C ma-
trices for higher partial waves for which only the
Coulomb excitation effect is important. The in-

tegration of the CC equations is made of all the I
values up to a certain l value, say lo. Beyond lo
the integration is carried out with a step of Al =10
and the C matrices for the l values in between are
generated by the four-point interpolation method.

III. NUMERICAL RESULTS

A. (a,a') scattering

We first discuss Coulomb and nuclear excitation
of the GDR in Pb in terms of the CC method.
In the calculations, the GDR is assumed to ex-
haust the full value (100%) of the energy-weighted
sum rule (EWSR) obtained using a radius parame-

ter ro ——1.2S fm. The complex form factor'for nu-

clear excitation is obtained by following the
prescription given by Satchler. ' The optical po-
tential parameters used in the calculation have
been taken from Refs. 5, 13, and 14, and are listed

I

in Table I. In the calculations the internal region
of radial integration extends up to 10 fm beyond
the classical turning point. The maximum radius
R,„ofthe external region was 600 fm, which is
large enough to obtain convergence of S-matrix ele-
ments for angular momenta up to 250fi. In order
to demonstrate this, an S-matrix element SI =i'I for
values of R,„up to 600 fm is plotted in Fig. 2.
The other matrix element SI+& I is much smaller
than the above one, and is not given here. We in-
tend to determine the angular distributions of the
GDR down to 0= 1 —2'. For cases of high in-
cident energies ()200 MeV), partial waves up to
25(% are adequate as can be understood from the
classical angle of deflection, 0=2g/l, „. For
lower incident energies, we do not need to include
very high partial waves, since the magnitude of the
S-matrix element falls off' very rapidly because of
large momentum mismatch (as will be discussed
later).

The calculated cross sections of the GDR
(dashed-dotted lines) for incident energies of 96,
129, 172, and 218 MeV are shown in Fig. 3. At
the lowest energy, E =96 MeV, the cross section
of the GDR is dominated by nuclear excitation,
and there is destructive interference between
Coulomb and nuclear excitation. As the incident
energy increases, both contributions increase.
Coulomb excitation, however, increases more rap-

TABLE I. Optical potential parameters used in the calculation.

Blab

(MeV)
V

(MeV)
r

(fm) (fm)

8'
(Mev) (fm)

Clw

(fm) (fm)

Alpha
96

129
172
218

89.3
89.3

155.0
119.9

1.35
1.35
1.282
1.26

0.71
0.71
0.677
0.74

52.7
52.7
23.26
21.3

1.35
1.35
1.478
1.45

0.71
0.71
0.733
0.80

1.30
1.30
1.30
1.30

He
108.5
217

115.0
78

1.182
1.25

0.857
0.86

17.2
24.1

1.551
1.43

0.769
0.81

1.30
1.30

86
108

201

83.74
99

12.11

1.15
1.05

1.238

0.817
0.98

0.836

17.84'
25.5'

18.58

1.028
1.206

1.232

1.24
0.75

0.642

1.30
1.30

1.18

'Surface absorption is assumed.
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FIG. 2. Absolute value of an S-matrix element

~

S~ =~'~
~

for the GDR excitation for E =218 MeV.
The radial integration range is varied from 100 to 600
fm.

idly than nuclear excitation does. At the highest
energy, E~ =218 MeV, Coulomb excitation dom-
inates nuclear excitation by a factor of 3. The en-

ergy dependence of these contributions at forward
angles is a result of the large momentum mismatch
involved. This can be seen from the difference be-
tween the incident and outgoing momenta:

hq =A'
~
k; k/ ~

=Q/+—2E' Im,

lo'—

=lo0
th

E

Cy
m lO

bo

to0—

lOI

lo0—

MeV-

MeV

MeV

where Q is the reaction Q value, m is the reduced
mass of the system, and Ec™is the incident ener-

gy in the center-of-mass system. This mismatch
introduces oscillations in the integrand in the in-

teraction matrix elements, and reduces the resul-

tant values of the matrix elements. This explains

why both of the contributions increase with de-

creasing q (or increasing E™).The reduction due
to this mismatch is expected to be stronger for the
long range Coulomb interaction than the short-
range nuclear interaction. (We may alternatively
discuss the Fourier components of both interac-
tions in momentum space. ) This explains also why
Coulomb excitation increases more rapidly than
nuclear excitation with increasing E' (or de-

creasing q}. Note that the efFect of momentum
mismatch can also be checked by varying the reac-
tion Q value artificially. This is illustrated in Fig.
4, where absolute values of the S-matrix element

~
St t'1

~

for E =96 MeV are plotted as a func-

tion of the angular momentum l. We see that for
increasing

~ Q ~
[or increasing q in Eq. (3.1)], the

S-matrix element for high partial waves falls off
and becomes less significant.

lOI—

IO 2—

I « i i I

5 IO I5

8, (deg)

FIG. 3. Theoretical prediction of excitation cross sec-

tions of the GDR in Pb from inelastic alpha scatter-

ing (dashed-dotted lines). The individual contributions

from Coulomb and nuclear excitations are shown by
solid and dashed lines, respectively.

In Fig. 5, calculated cross sections of the GMR
and the GDR are compared with the experimental

data. For the GMR, the form factor (version

1) from Ref. 15 was assumed and the EWSR was

evaluated by using the radius of the imaginary part
of the optical potential for the radius parameter.
The calculated cross sections of the GMR agree
quantitatively with results obtained by the
DWBA. However, the DWBA results in Ref. 3 for
Coulomb excitation of the GDR could not be

reproduced, which might suffer from inadequacy of
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for the GDR excitation for E =96 MeV. The
reaction Q value is varied from Q = —13.4 MeV to
—5.0 MeV.
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the conventional integration method. For the
lower incident energies, calculated GDR cross sec-
tions (oD) are negligibly small compared with
those of the GMR (oM ) and the experimental data.
However, as the incident energy becomes higher,
o.a becomes almost comparable to o+. Such a ra-

pid growth of oD as compared with o.~ results
mainly from the rapid increase of Coulomb excita-
tion of the GDR. This trend continues as the in-

cident energy is raised. At E =320 MeV, o.D is
predicted to be comparable to o.~ at forward an-

gles. It is concluded that the effect of Coulomb ex-
citation of the GDR cannot be neglected at such
energies. This result disagrees with a speculation
based on DWBA analysis in Ref. 3.

B. Inelastic scattering of other light ions

Similar analyses have been made for inelastic
scattering of He particles, deuterons, and protons
from the GMR and the GDR in Pb. The cross
sections for inelastic scattering of He particles are
shown in Fig. 6 for E( He) = 108.5 MeV (Ref. 7)
and 217 MeV obtained using the optical potential
parameters from Refs. 16 and 17, respectively.
The contributions of the nuclear interaction to ex-
citation of the GDR are not included in the figure
because of uncertainty in the strength of the isovec-
tor coupling potential. For 108.5 MeV, the
Goldhaber-Teller model (without Coulomb excita-
tion) predicts a maximum cross section of -0.4
mb/sr at 3' with use of the real coupling potential

Ui ——39 MeV taken from Ref. 18. This is much

10'— 172 MeV

] ~ I I

Ii
II

I I

lp'—
r l
I
I I
I I
I

I
III
II

I

I

I I
I I
I
I I
I III
II
II
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I
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I( II
II

1
p-l I I I I I I I I I I I I

0 5 10

8, (deg)

I

I I I I I

15

FIG. 5. Excitation of the 13.4 MeV peak in Pb
from alpha inelastic scattering is compared with theoret-
ical estimates. The experimental data are taken from
Refs. 3—5.

smaller than the Coulomb excitation cross section.
The GMR in Pb has also been observed in

inelastic scattering of deuterons at Ed ——86 MeV
and 108 MeV . We note that the experimental
cross section at 108 MeV has been renormalized in
Ref. 3 to be smaller by a factor of 3 than the previ-
ously published value. ' CC predictions are given
in Fig. 7 in comparison with the experimental
data. The estimated cross section of GDR is ap-
preciable at angles below 5' compared to the GMR
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FIG. 6. Inelastic scattering of He particles from the
GMR region in Pb at E( He) =108.5 MeV and
theoretical estimates for 108.5 and 217 MeV. The data
are taken from Ref. 7.
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cross section. The EWSR limit for the GDR and
the GMR have been evaluated by using the radius
parameter ro ——1.25 fm here arid in the proton case.

The results of a CC calculation for GMR and

GDR excitation in proton scattering are shown in

Fig. 8 in comparison with the experimental data.
The optical potential parameters were taken from

Ref. 20. Coulomb excitation of the GDR dom-

inates the cross section at forward angles, which

agrees with the DWBA analyses given earlier. ' '

It is interesting to compare Coulomb excitation
induced by protons and alphas (or He particles)
with almost the same incident energy of 200 MeV.
See Fig. 8 and the bottom of Fig. 2 (or 6). The
latter cross section is quite comparable to the
former, which contradicts the mz dependence of
the PWBA. It is worthwhile to remember that
momentum mismatch in Eq. (3.1) becomes of less

importance for projectiles with smaller masses. We

may thus conclude that the enhancement eA'ect due

to a reduction of momentum mismatch for small

projectiles dominates the mz deperidence of the
cross section.
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I « I I I » I I I I I I I
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FIG. 7. Inelastic scattering of deuterons from the
GMR region in Pb at E~ ——86 and 108 MeV and
theoretical estimates. The data are taken from Refs. 3
and 5.

IV. SUMMARY

lo'
I

I I I I I I I I I I I I I I I I I

0 5 10 l5

8, IrI {degj

A CC calculation has been done for excitation of
the GMR and GDR in Pb from the inelastic
scattering of light ions. Special emphasis was

FIG. 8. Inelastic scattering of protons from the
GMR region in Pb at E~ =201 MeV and theoretical
estimates. The data are taken from Ref. 3.
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given to computing Coulomb excitation of the
GDR, which might suffer from difficulties with
conventional CC and DWBA programs for light-
ion reactions. A large range of radial integration
(up to a few hundred fm) and a small step size are
required because of a slow damping of the radial
form factor and large wave numbers, respectively.
Contributions from high partial waves must be
summed up accurately to set the cross sections at
forward angles„which are important in comparing
with experimental data. These requirements have
been fulfilled by making use of a program JpwKB2

We note that similar approaches have also been
reported using the factorization (2.2) proposed by
Alder and-Pauli. ' '"

The CC calculation of the GMR and GDR in
Pb revealed some interesting features. For alpha

inelastic scattering of 96 and 129 MeV, the
Coulomb excitation cross section of the GDR is
found to be far less than the experimental cross
sections of the GMR, which supports the DWBA
analyses' and contradicts an estimate in terms of
the PWBA with a radial cutoff. However, as the
incident energy goes higher, say E =320 MeV, an
appreciable contribution comes from Coulomb ex-
citation of the GDR to the observed giant reso-
nances at 13.4 MeV.

Our results differ from a conclusion dragon in
Ref. 3, which may suffer from numerical inaccura-
cy of the DWBA calculation. We, however, note
that a linearity of the calculated cross section
versus the square of the coupling strength is ob-
served in the CC calculation, which implies the
validity of the DWBA in these applications. For
inelastic scattering of other light' projectiles,
Coulomb excitation of the GDR may not be
neglected even at low incident energy —100 MeV,
and its cross sections are found to grow with in-

creasing incident energy. The observed energy and
projectile-mass dependence of the cross section are
well explained in terms of momentum mismatch
involved, which is serious especially for larger pro-
jectiles with lower incident energy. The same con-
clusion drawn above may also apply to medium-
mass nuclei, where the systematics of the GMR
have been recently disclosed by alpha inelastic
scattering.
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