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The region from 6,Ex,11 MeV in 40Ca has been studied with inelastic scattering of 240 MeVa particles
at small angles including 0°. Strength corresponding to 3.2±1.0% of the isoscalarE0 sum rule was identified
with a centroid of 8.7±0.30 MeV.
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The location of the isoscalar giant monopole resonance is
important because its energy can be directly related to the
nuclear compressibility and from this the compressibility of
nuclear mattersKNMd can be obtained. In a previous paper[1]
strength corresponding to 97±11% of theE0 energy-
weighted sum rule was identified between 11,Ex,55 MeV
in 40Ca using inelastic scattering of 240 MeVa particles.
Kamerdzhiev, Speth, and Tertychny have carried out micro-
scopic calculations in continuum random-phase approxima-
tion including 1p1h coupled to two-phonon configurations
[2] showing significantE0 strength from 6,Ex,35 MeV.
The data of Ref.[1] are in quite good agreement with these
calculations above theEx=11 MeV limit of the data.

In another(earlier) measurement[3], data were obtained
for the same reaction with a different detector over the range
2,Ex,30 MeV, andE0 strength was inferred from this data
with a spectrum subtraction technique. This technique is par-
ticularly sensitive to experimental background, detector re-
sponse functions, and the presence of other multipolarities.
We report here analysis of the data in Ref.[3] covering
6,Ex,22 MeV with a technique that unambiguously iden-
tifies multipole strength[1].

The experimental technique was described thoroughly in
Ref. [3] and is summarized briefly below. A beam of 240-
MeV a particles from the Texas A&M K500 superconduct-
ing cyclotron bombarded a self-supporting natural Ca foil
11.6 mg/cm2 thick located in the target chamber of the
multipole-dipole-multipole spectrometer. The horizontal ac-
ceptance of the spectrometer was 4° and ray tracing was used
to reconstruct the scattering angle. The out-of-plane scatter-
ing angle was not measured. Sample spectra from Refs.[1,3]
are shown in Fig. 1 and are generally in good agreement.
Although the data from Ref.[1] extend down to aboutEx
=8 MeV, in the region between 8 and 10 MeV the solid
angle was varying rapidly due to detector edge effects and
reliable cross sections could not be obtained. With the ex-
perimental setup described in Ref.[3], the cross sections
were reliable down to about 3.5 MeV. For the analysis de-
scribed below, the spectra were each divided into a peak and
a continuum. For each spectrum analyzed in this work, the
continuum used was that obtained for a similar angle in the
work described in Ref.[1]. This continuum is shown in the
figure.

The multipole components of the giant resonance peak
were obtained[1] by dividing the peak into multiple regions
(bins) by excitation energy and then comparing the angular
distributions obtained for each of these bins to distorted-
wave Born approximation(DWBA) calculations to obtain
the multipole components. The uncertainty from the multi-
pole fits was determined for each multipole by incrementing
(or decrementing) that strength, then adjusting the strengths
of the other multipoles to minimize totalx2. This continued
until the newx2 was one unit larger than the totalx2 obtained
for the best fit.

The DWBA calculations were described in Ref.[3] and
the same Gaussian Woods-Saxon folding potentials were

*Present address: Nuclear Physics Division, Bhabha Atomic Re-
search Center, Mumbai 400085, India.

FIG. 1. Inelastica spectra(reported in Refs.[1,3]) obtained
with the spectrometer at average c.m. angles of 1.1° and 3.0°. The
thick gray lines show the continuum used for the analysis.
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used for the calculations in this work. A sample of the angu-
lar distributions obtained is shown in Fig. 2. Fits to the an-
gular distributions were carried out with a sum of isoscalar
0+, 1−, 2+, 3−, and 4+ strengths. The isovector giant dipole
resonance contributions are small, but were calculated from
the known distribution[4] and held fixed in the fits. Sample
fits obtained, along with the individual components of the
fits, are shown superimposed on the data in Fig. 2. Although
data were available for 4,Ex,6 MeV, a particles scattered

from hydrogen in the target were present in the crucial
3.5° –6° region, preventing a reliable extraction of multipole
strengths in this energy region.

The (isoscalar) E0 multipole distribution obtained is
shown in Fig. 3 superimposed on the distribution from Ref.
[1].1 They are in reasonable agreement over the
11,Ex,22 MeV region where they overlap. The strength
obtained in the 6,Ex,11 MeV region in this analysis is in
fair agreement with that reported from spectrum subtraction
in Ref. [3]. The totalE0 strength seen from 6 to 11 MeV is
3.2±1.0% of theE0 EWSR and is centered at 8.7±0.3 MeV.
This compares with the spectrum subtraction result of 4.3%
of the E0 EWSR and a centroid of 9.0 MeV.

The E2 strength obtained for 11,Ex,22 MeV also
agreed with that reported in Ref.[1]. Several 2+ states are
known [5] in the region 6,Ex,11 MeV and approximately
10% of theE2 EWSR was identified in that region. Small
amounts ofE1, E3, andE4 strength were also seen.

Including the strength belowEx=11 MeV obtained from
this analysis and the strength reported in Ref.[1], m1/m0
becomes 18.39+0.49−0.35 MeV, sm1/m−1d1/2=17.58
±0.40 MeV, sm3/m1d1/2=20.42+0.89−0.36 MeV, and
100±13% of theE0 EWSR in40Ca is accounted for.2 This
value ofsm1/m−1d1/2 agrees within errors with those given in
Refs.[1] and [3] and that used in Ref.[6] to obtain nuclear
incompressibility by comparison with theoretical calcula-
tions [7].

1The vertical scale on the top graph in Fig. 3 of Ref.[1] is incor-
rect. The same data are shown in Fig. 3 with the correct vertical
scale.

2The value 112±13% reported on page 3 of Ref.[1] for the E0
strength including the spectrum subtraction results is misprinted.
The correct value is 102±13%.

FIG. 2. Angular distributions obtained for inelastica scattering
for three excitation ranges of the GR peak and one range for the
continuum in 40Ca. The energy bins are approximately 450 keV
wide. The medium black line shows the fits. Contributions of each
multipole are shown. When not shown, errors are smaller than the
data points.
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FIG. 3. TheE0 strength distribution obtained is shown by the
gray histogram. Error bars represent the uncertainty due to the fit-
ting of the angular distributions as described in the text. The black
line shows theE0 distribution reported in Ref.[1].

FIG. 4. TheE0 cross section for 240 MeVa scattering atuc.m.

=1.08° is shown by the histogram. The thick black line shows the
cross section obtained in this work, while the thin line shows that
from Ref. [1]. The calculation by Kamerdzhiev, Speth, and Ter-
tychny [2] is shown by the wide gray line. The error bars represent
the uncertainty in obtaining theE0 strength.
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Kamerdzhiev, Speth, and Tertychny[2] have calculated
expectedE0 cross sections as a function ofEx for 240 MeV
inelastic a particle scattering at 1.08°. We have used the
strength distribution shown in Fig. 3 and calculated an
equivalent 1.08°E0 cross section and that is compared to
their calculation in Fig. 4. While the data are somewhat
lower than the calculation over the region 6,Ex,11 MeV,

their calculation predicts both location and approximate rela-
tive strengths of the two peaks seen in the data.
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