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Hadronic modes and quark properties in the quark-gluon plasma
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Based on interaction potentials between a heavy quark and antiquark as extracted from recent QCD lattice
calculations, we set up a Brueckner-type many-body scheme to study the properties of light (anti-) quarks
in a quark-gluon plasma at moderate temperatures, T � 1–2 Tc. The quark-antiquark T matrix, including both
color-singlet and color-octet channels, and corresponding quark self-energies and spectral functions are calculated
self-consistently. The repulsive octet potential induces quasiparticle masses of up to 150 MeV, whereas the
attractive color-singlet part generates resonance structures in the q-q̄ T matrix, which in turn lead to quasiparticle
widths of ∼200 MeV. This corresponds to scattering rates of ∼1 fm−1 and may reflect liquid-like properties of
the system.
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I. INTRODUCTION

A central goal of the relativistic heavy-ion collision
program is the creation and identification of new forms of
highly excited nuclear matter, in particular a deconfined and
chirally symmetric quark-gluon plasma (QGP). At sufficiently
high temperature T, owing to asymptotic freedom of quantum
chromodynamics (QCD), the QGP is expected to be a
weakly interacting gas of quark and gluon quasiparticles with
comparatively small thermal masses, mq,g ∼ gT . Recent data
from the Relativistic Heavy-Ion Collider (RHIC) indicate,
however, that the produced matter exhibits strong collective
behavior that is incompatible with a weakly interacting QGP:
Standard (2 ↔ 2) perturbative QCD (pQCD) cross sections for
quarks and gluons do not allow for rapid thermalization [1] as
required in hydrodynamic models to reproduce the observed
magnitude of the elliptic flow [2–4]. The estimated initial
energy densities well in excess of the critical one predicted
by lattice QCD (lQCD), εc � 1 GeV/fm3, raises questions
about the nature of the produced medium at temperatures
T � 1–2 Tc (where Tc � 170 MeV is the critical temperature).
Of particular importance is the identification of the relevant
interactions that can lead to sufficiently large scattering rates
while maintaining consistency with the QGP equation of state
(EoS), as determined in lQCD.

Recent (quenched) lQCD calculations found intriguing
evidence that mesonic correlation functions, after transfor-
mation into Minkowski space, exhibit resonance-like (or
bound-state-like) structures for temperatures up to ∼2 Tc. This
was first observed for low-lying charmonia (ηc, J/ψ) [5–7],
but subsequently also for mesonic systems with lighter
quarks [8,9]. As is well known, resonance scattering is
typically characterized by isotropic angular distributions and
thus is more efficient in randomizing momentum distributions
than forward-dominated pQCD cross sections. Indeed, a
recent calculation [10] based on the assumption of resonant
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“D”-meson states in the QGP has shown that thermal relaxation
times for charm quarks are reduced by a factor of ∼3 as
compared to using perturbative rescattering cross sections.
The possibility of light hadronic states (especially for the pion
and its chiral partner σ ) surviving above the phase transition
has been suggested some time ago using effective quark
interactions, for example, within the Nambu-Jona-Lasinio
model [11,12], within the instanton-liquid model based on
Euclidean correlators [13], or more recently in Refs. [14,15].

To make closer contact to lQCD, some recent works have
extracted a (color-singlet) heavy-quark (Q-Q̄) potential V1,
from the corresponding lQCD free energy F1, at finite T, and
injected it into a Schrödinger equation to infer quarkonium
properties [16–18]. Reasonable consistency was found in that
the heavy-quark bound states dissolve at roughly the same
temperatures at which the peaks in the lQCD spectral functions
disappear (∼2 Tc for J/ψ and ηc), provided the free energy
was converted into a potential by subtracting an entropy term
according to V1 = F1 − T dF1/dT . A similar approach has
also been applied to the light-quark sector in Refs. [19–21],
where the q-q̄ potentials from unquenched lQCD (including
colored channels) have been supplemented by relativistic (and
instanton-induced) interaction corrections. By assuming rather
large quark- and gluon-quasiparticle masses, mq,g � (3–4) T
(motivated by lQCD calculations of temporal masses [22]),
light mesonic, as well as a large number of colored diquark,
quark-gluon, and gluon-gluon, bound states have been found.
Both quark and gluon quasiparticles and binary bound states
together were shown to approximately reproduce the EoS from
lQCD. However, the effects of finite widths for both quarks,
antiquarks and bound states, which are essential to address
scattering problems, were not included.

In the present article we employ quark-antiquark potentials
extracted from lQCD (including relativistic corrections as in
Refs. [19–21]) within a three-dimensionally reduced Bethe-
Salpeter equation to evaluate quark and antiquark interactions
in the QGP. We compute the pertinent scattering (T) matrices
in both color-singlet and color-octet channels and calculate
the quark self-energies including both real and imaginary
parts (corresponding to quasiparticle masses and widths). The
self-energies, in turn, are reinserted into the q-q̄ propagator of
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FIG. 1. (Color online) Left panel: Lattice
QCD results for the color-singlet free energy
from unquenched simulations [27] for six dif-
ferent values of the temperature (symbols) com-
pared to our fit function, Eq. (1), represented by
the various curves. Right panel: Corresponding
potential in the color-singlet channel obtained
with Eq. (5) for the six different values of the
temperature.

the T-matrix equation, constituting a self-consistency problem,
which we solve by numerical iteration. We comment on
possible consequences of our results for quasiparticle masses
and widths with respect to the QGP EoS and (anti-) quark
rescattering time scales, respectively.

Our article is organized as follows. In Sec. II we present our
parametrization of lQCD data for the singlet free energy and
extract a pertinent quark-antiquark potential including both
color-singlet and color-octet contributions. In Sec. III we set
up our self-consistency problem comprising the q-q̄ scattering
equation and in-medium single-particle self-energies and
propagators and discuss the underlying assumptions and
approximations. The numerical results with accompanying
discussion for the T matrix and self-energy in a nonperturbative
QGP are contained in Sec. IV. In Sec. V we conclude and give
an outlook.

II. QUARK-ANTIQUARK POTENTIAL
FROM LATTICE QCD

To obtain a driving term (potential) for a q-q̄ scattering
equation we take recourse to lQCD calculations of the static
free energy for a Q-Q̄ pair. The Bielefeld group has performed
extensive studies of this quantity based on Polyakov loop
correlators [23] for both the pure-glue SU(3) [24,25] and
Nf = 2QCD [26,27]. Various parametrizations thereof have
been given in the literature (e.g., Refs. [17,28–30]). For the
temperature range T = (1.1–2) Tc, it turns out that unquenched
singlet free energy [26,27] can be reasonably well reproduced
by the the following form reminiscent of a screened Cornell
potential (as suggested, e.g., in Ref. [28]):

F1(r, T ) = −α

r
e−aµ(r,T )r + σ

µ(r, T )
(1 − e−µ(r,T )r ), (1)

with a “screening mass”

µ(r, T ) = σ

b
e−0.3/r (2)

and two fitting functions given by

a ≡ a(r, T ) = 1

2
√

µ(r, T )
,

(3)
b ≡ b(t) = 1.1 − 3.6 T − 4.3 T 2 + 17.5 T 3,

where α = 0.4, and σ = 1.2 GeV2. The left panel of Fig. 1
summarizes our fit to the lattice “data.” Also shown is
the unquenched zero-temperature potential as obtained in
Ref. [29] (recall that for T = 0, E1 = F1, see also the
following), which is used to normalize the finite-T results at
short distances, r < 0.2 fm, where the free energy is no longer
expected to depend on temperature. Our parametrization,
Eq. (1), accommodates this T = 0 constraint.

As mentioned in Sec. I, the appropriate quantity in relation
to the free energy that can serve as an effective potential
appears to be the (color-singlet) internal energy E1. Following
Kaczmarek et al. [25], we subtract the entropy contribution to
the free energy according to

E1 = F1 − T
dF1

dT
. (4)

The nonzero asymptotic value of the internal energy can now
be interpreted as an in-medium quark mass that should not be
included in the interaction part of the potential. One therefore
assumes that the potential in the color-singlet channel can be
extracted via

V1(r, T ) = E1(r, T ) − E1(∞, T ). (5)

The singlet potential is shown in the right panel of Fig. 1 for
the same values of temperature as the singlet free-energy (left
panel). The potentials are appreciably larger in magnitude than
the corresponding free energies and decrease with increasing
temperature.

To illustrate uncertainties in the determination of the
potentials we compare in Fig. 2 our results with the ones
obtained by other groups for temperatures of 1.5Tc (left panel)
and 2Tc (right panel). Although the potentials of Refs. [17]
(Wo) and [18] (MP) are extracted from quenched lQCD, the
one of Ref. [21] (SZ) and ours (MR) result from unquenched
simulations. At 1.5Tc our potential is about 30–40% more
attractive than that of SZ at distances between 0.1 and
0.8 fm, whereas similar deviations also occur between the
quenched-based results; however, at 2Tc our potential is less
attractive than both the quenched (Wo) and unquenched (SZ)
results. We therefore conclude that the current uncertainty in
the extraction of the potentials amounts to about 50% and
that it does not yet allow for a systematic discrimination
between quenched and unquenched results [provided the tem-
perature dependence is normalized to Tc, which is, of course,
quite different in quenched (∼260 MeV) and unquenched
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FIG. 2. (Color online) Comparison of Q-Q̄
color-singlet potentials as determined from var-
ious lattice data in our (MR) and other works
(SZ [21], MP [18], and Wo [17]); the left (right)
panel is for T = 1.5Tc (2 Tc).

(∼170 MeV) simulations]. The pertinent uncertainties will be
assessed in the following by performing T-matrix calculations
for charmonium (c-c̄ systems) with both our potential and the
quenched Wo potential (cf. Sec. IV A) and comparing them
to spectral functions from lQCD [6] obtained with different
methods; reasonable agreement will be found.

Toward a more complete description of the q-q̄ interactions
in the QGP we will in this work also consider the (repul-
sive) contributions from the color-octet channel. However,
as pointed out in Ref. [31], the octet potential cannot be
straightforwardly inferred from the Polyakov loop correlators.
Because of a lack of better knowledge of the octet free energies,
we here assume that the octet potential follows the leading
order result of perturbation theory,

F8 = − 1
8F1. (6)

Again, we will check the sensitivity of our calculations to this
approximation, by varying the coefficient in Eq. (6) by a factor
of 0.5–2.

For nonstatic quarks it is also important to include relativis-
tic corrections [20,32]. Following Ref. [20] we implement a
velocity-velocity interaction term by the replacement V (r) →
V (r)(1 − α̂1 · α̂2), where α̂1 and α̂2 are quasiparticle velocity
operators. As pointed out in Ref. [21], this procedure is strictly
speaking, correct only for a Coulomb-type potential.

III. REDUCED BETHE-SALPETER EQUATION, QUARK
SELF-ENERGY, AND SELF-CONSISTENCY

To evaluate quark-antiquark interactions in the QGP we
employ the T-matrix approach, as is well known from the
nuclear many-body problem. In relativistic field theory, the
starting point is a four-dimensional Bethe-Salpeter (BS)
equation,

T = K +
∫

KSST, (7)

where K denotes the interaction kernel and S is the single-
particle propagator. Both quantities carry, in principle, depen-
dencies on temperature and (baryon) density of the surround-
ing medium. Since the effective q-q̄ potential constructed in
the previous section is essentially nonrelativistic in nature, it is
appropriate to employ the ladder approximation to Eq. (7) in
connection with neglecting virtual particle-antiparticle loops.
Thus, we will identify the kernel K with the potential V with

appropriate approximations in the propagator and scattering
equation to be discussed in the following.

The medium effects in the quark propagator S are encoded
in a self-energy, which we decompose according to

� = �̃ +
∫

T S. (8)

The first term, �̃, represents a “gluon-induced” contribution
from interactions of quarks and antiquarks with surrounding
thermal gluons. In this work we do not calculate this term
explicitly, but we will study how different (purely real) values
affect our results. We note that a perturbative (hard-thermal-
loop) form of this (mass) term is widely used as a parameter
in quasiparticle descriptions of the QGP EoS [33–36]. The
second term on the right side of Eq. (8) is the contribution to the
self-energy induced by interactions with antiquarks of the heat
bath, which we compute at the same level of approximation as
the T matrix. In principle, the quark self-energy also receives
contributions from interactions with thermal quarks (which
could be significant, especially in the scalar diquark channel),
but we neglect them in this work. We also constrain ourselves
to the case of vanishing quark chemical potential, µq = 0,
which implies equal self-energies for quarks and antiquarks.
The two equations (7) and (8) constitute a self-consistency
problem that is diagrammatically illustrated in Fig. 3.

Let us discuss the single-particle quantities in more detail.
The full quark propagator obeys a Schwinger-Dyson equation,

S = S0 + S0�S, (9)

where S0(k) = [k/ − m0]−1. In the following, we set the current
quark mass m0 to zero and assume the self-energy to take the

= T+

T = V + V T

Σ Σ
FIG. 3. Schematic representation of the self-consistency problem

composed of the Bethe-Salpeter equation (7) in ladder approximation
and the quark self-energy, Eq. (8). Thick lines represent full fermionic
propagators. The four different blocks correspond to the T matrix (T),
potential (V), self-energy (�) and, “gluon-induced” self-energy (�̃).

064905-3



M. MANNARELLI AND R. RAPP PHYSICAL REVIEW C 72, 064905 (2005)

(chirally invariant) form

�(ω, k) = a(ω, k)γ0 + b(ω, k) k̂ · γ, (10)

since scalar and tensor contributions are suppressed owing to
chiral symmetry restoration (above Tc), whereas pseudoscalar
and axial-vector terms are absent owing to parity invariance.
The self-energy can be further decomposed as (cf., e.g.,
Ref. [37])

γ0�(ω, k) = �+(ω, k)	+( k̂) − �−(ω, k)	−( k̂), (11)

where

	±( k̂) = 1 ± γ0 k̂ · γ

2
(12)

are projectors on quark states with chirality equal (	+) or
opposite (	−) to their helicity, and �± = b(ω, k) ± a(ω, k).
The quark propagator then follows as

S(ω, k)γ0 = 
+(ω, k)	+( k̂) + 
−(ω, k)	−( k̂) (13)

with 
± = −[ω ∓ (k + �±)]. Since the potential extracted
from lQCD is independent of chirality, the self-energy satisfies
�+ = −�−; that is b(ω, k) = 0. Recalling Eq. (10), we see
that this implies that the nonperturbative interactions only
contribute to a chirally invariant (thermal) mass term for quarks
and antiquarks. For the “gluon-induced” self-energy, �̃ in
Eq. (8), we adopt a form suggested by the high-temperature
hard-thermal-loop result, characterized by a mass term, m, in
the pertinent dispersion relation,

ωk =
√

k2 + m2, (14)

ignoring possible imaginary parts. Our default value for m is
0.1 GeV.

Let us now turn to the scattering equation (7). As previously,
mentioned, we neglect the (virtual) antiparticle components
in the quark propagator and apply a three-dimensional (3-D)
reduction scheme to the four-dimensional BS equation, fa-
cilitating its numerical evaluation substantially. The resulting
Lippmann-Schwinger equation takes the form

Ta(E; q′, q) = Va(q′, q) −
∫

d3k

(2π )3
Va(q′, k)

×Gqq̄ (E; k)Ta(E; k, q)[1 − 2f (ωk)], (15)

where E denotes the center-of-mass (c.m.) energy and q and q′
are the ingoing and outgoing (off-shell) three-momenta in the
center of mass (where as usual, the on-shell T matrix is defined
by q = q ′ with E = 2ωq , where ωq is the on-shell single-quark
energy); a = 1, 8 labels color-singlet and color-octet channels,
and

f (ω) = 1

eω/T + 1
(16)

is the Fermi-Dirac distribution. The explicit form of the two-
particle propagator, Gqq̄ (E; k), depends on the 3-D reduction
scheme. Unless otherwise stated, we adopt the Blankenbecler-
Sugar (BbS) [38], prescription leading to

Gqq̄ (E; k) = ωk

ω2
k − E2/4 + 2iωk�I (ωk, k)

(BbS), (17)

but we have checked that our results are very similar when
employing the Thompson scheme [39] with

Gqq̄ (E; k) = 1

2

1

ωk − E/2 + i�I (ωk, k)
(Th). (18)

In both Eqs. (17) and (18) ωk denotes the on-shell quasiparticle
dispersion law, that is, the solution of the equation

ωk =
√

k2 + m2 + �R(ωk, k), (19)

with �R and �I the real and imaginary parts of the self-energy.
Finally, the potential figuring into Eq. (15) follows from our
lQCD parametrization via Fourier transformation,

Va(q′, q) =
∫

d3rVa(r)ei(q−q′)·r. (20)

To solve Eq. (15) it is convenient to work in a partial-wave
basis. Expanding the T matrix and potential,

Va(q′, q) = 4π
∑

l

(2l + 1)Va,l(q
′, q)Pl(q′ · q), (21)

Ta(E; q′, q) = 4π
∑

l

(2l + 1)Ta,l(E; q ′, q)Pl(q′ · q), (22)

allows us to perform the angular integrations to yield

Ta,l(E; q ′, q) = Va,l(q
′, q) − 2

π

∫
k2dkVa,l(q

′, k)

×Gqq̄ (E; k)Ta,l(E; k, q)[1 − 2f (ωk)]. (23)

In the present study we will constrain ourselves to S-wave
channels, deferring higher waves to future work. In Ref. [21]
it was found that P-wave bound-state formation is strongly
suppressed (in accordance with our own estimates). Concern-
ing spin-isospin channels, we recall that in the chirally restored
phase the spectral functions of chiral partners (e.g., π -σ, ρ-a1)
degenerate, which is also reflected in the spectral functions
extracted from lQCD [40]. Within the naive constituent quark
model, π and ρ states are S-wave q-q̄ bound states, whereas σ

and a1 are in a P-wave state. Interestingly, lQCD spectral
functions find an additional (approximate) degeneration of
π and ρ states above Tc [8,40]. Insofar as an interpretation
of these objects as qq̄ states applies, this might be taken as
an indication for a spin symmetry much like in heavy-quark
effective theories. In view of these considerations, and because
our lQCD-extracted potential is flavor blind, we will assume
the color-singlet S-wave states to appear with a spin-isospin
degeneracy corresponding to π + ρ states, dSI = 12. Since
the color-octet potential does not carry any flavor dependence
either, the same factor will be applied to the color-octet states.

With the q-q̄ T matrix at hand, we can proceed to calculate
the explicit expression for the quark self-energy resulting
from interactions with anti quarks. Within the imaginary
time formalism the latter follows from closing the forward
scattering T matrix with a thermal q̄ propagator,

�(zv; p) = dSI

12
da

∫
d3p′

(2π )3
(−T )

×
∑
zν′

T a
qq̄(zν + zν ′ ; p, p′)Dq̄(zν ′, p′), (24)
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where zν = πi(2ν + 1)T are fermionic Matsubara frequen-
cies, d1,8 = 1, 8 is the color degeneracy factor, and the factor
1/12 represents the average over the 3 × 2 × 2 (color ×
flavor × spin) initial quark states. By using the spectral
representations of both the T matrix and q̄ propagator to
perform the Matsubara sum, and after analytic continuation
to the real axis, the self-energy takes the form

�a(ω; p) = dSI

12
da

∫
dω′

2π

∫
dE

π

∫
d3k

(2π )3
A(ω′, k)

× f (ω′) + g(E)

ω + ω′ − E + iη
Im Ta(E; k + p) (25)

with the Bose distribution

g(E) = 1

eE/T − 1
(26)

and the quark spectral function

A(ω, k) = −2�I (ω, k)

[ω − √
k2 + m2 − �R(ω, k)]2 + �I (ω, k)2

. (27)

To further simplify our task we assume in the following a
quasiparticle approximation for the spectral function,

A(ω, k) = 2πδ(ω − ωk), (28)

where ωk is obtained from the self-consistent solution of
Eq. (19). (We will check this approximation in the following.)
If we furthermore neglect the (weak) energy dependence of
g(E) close to the pole of the principal value integral in Eq. (25),
we can recover the real part of Tqq̄ to cast the self-energy in
compact form,

�a(ω; p) = dSI

12
da

∫
k2dk dx

(2π )2
[f (ωk) + g(ω + ωk)]T a

qq̄(E),

(29)

where x = cos θ [with θ = � (p, k)] and the c.m. energy of the
on-shell T matrix is given by

E =
√

(ωk + ω)2 − (p + k)2 . (30)

IV. T MATRIX, SELF-ENERGY, AND
SPECTRAL FUNCTION

In this section we discuss the numerical solutions to the set
of equations (19), (23), and (29). Self-consistency is achieved
by iteration, starting with the calculation of the T matrix using
a constant self-energy in the first step. The self-energy is then
calculated from (29) and used to solve the on-shell condition
(19). The pertinent quasiparticle dispersion law is then re-
inserted into the T-matrix equation and the procedure is iterated
until T matrix and self-energy converge (typically within less
than 10 iteration steps). (We have also verified that the final
results are insensitive to the initial input value for the self-
energy.)

A. Quark-antiquark T matrix

The T-matrix equation (23) is solved by using the ma-
trix inversion algorithm of Haftel and Tabakin [41] (after
discretizing the momentum integration). To assess the pos-
sible formation of bound states, the T matrix needs to be
calculated below the nominal q-q̄ threshold, Ethr = 2[m +
�R(Ethr/2, 0)]. The potential does not depend on the c.m.
energy E, and, because of its nonrelativistic character, is
only defined for real external three-momenta q and q ′. We
therefore define the subthreshold on-shell T matrix by setting
the external momenta q = q ′ = 0. In the following we will
refer to a peak in the imaginary part of the T matrix as
a bound state (resonance) if the energy of the maximum
is located below (above) the quasiparticle threshold Ethr.

1. Charmonium systems

To check the reliability of the parametrization of the poten-
tial in the singlet channel, and of the algorithm to compute the
T-matrix, we first apply our approach to the c-c̄ (charmonium)
sector by using a (constant) quark mass of m = 1.8 GeV,
which approximately reproduces the vacuum J/ψ mass at
the lowest temperature. (Note that self-consistency does not
play a role here since the thermal abundance of c quarks
is strongly suppressed; for numerical purposes, we used a
fixed imaginary value for the self-energy, �I = −10 MeV, and
�R = 0.) The results are displayed in Fig. 4 for three different
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FIG. 4. (Color online) Real part (full red line) and imaginary part (absolute value, dashed blue line) of T matrix in the color-singlet
channel for charmonium (with a charm-quark mass of m = 1.8 GeV) at T = 1.2 Tc, T = 1.5 Tc, and T = 2 Tc (left, middle, and right panels,
respectively) as a function of c.m. energy E, based on our potential parametrization extracted from unquenched lQCD.
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FIG. 5. (Color online) Real part (full red line) and imaginary part (absolute value, dashed blue line) of T matrix in the color-singlet
channel for charmonium (with a charm-quark mass of m = 1.8 GeV) at T = 1.2 Tc, T = 1.5 Tc, and T = 2 Tc (left, middle, and right
panels, respectively) as a function of c.m. energy E, based on a potential [17] extracted from quenched lQCD.

temperatures, 1.2Tc (left panel), 1.5Tc (middle panel), and 2Tc

(right panel). As the temperature increases the charmonium
state moves up in energy (reflecting a decreasing binding
energy), reaching the threshold (Ethr = 3.6 GeV) at T � 2Tc,
after which the resonance peak essentially dissolves (Also
note that the strength in the T matrix is much reduced at
2Tc compared to the lower temperatures.) This behavior is
in reasonable (qualitative) agreement with both lQCD calcu-
lations [6] and effective potential models using a Schrödinger
equation [17,18].

To check the sensitivity to the underlying potential (recall
the discussion in Sec. II around Fig. 2), we have repeated
the calculations for the charmonium T matrix in the singlet
channel using the (quenched-based) potential of Ref. [17]
(cf. Fig. 5). At the lower temperature of 1.2Tc the binding is
significantly less pronounced (by about 0.25 GeV) compared
to our parametrization, as to be expected from the less attractive
potential. At higher temperatures the agreement improves, and
both potentials lead to a very similar temperature where the
state crosses the c-c̄ threshold (close to 2Tc), with strongly
reduced strength. This, in turn, is again in line with the
Schrödinger-equation approach, in which the c-c̄ system
becomes unbound around ∼2Tc [17]. Although the resonance
at 2Tc appears to be rather narrow, we recall that we did not
include here (temperature-dependent) absorptive parts [10]

and reduced masses for the c-quarks (nor inelastic charmonium
reaction channels [42]), all of which are expected to increase
the width of the charmonium states.

2. Light-quark systems

For the light-quark sector, the self-consistent results for real
and imaginary parts of the on-shell T matrix for quasiparticles
with a gluon-induced mass-term of m = 0.1 GeV are summa-
rized in Figs. 6 and 7 for temperatures T = 1.2Tc, T = 1.5Tc,
and T = 1.75Tc.

At T = 1.2Tc the color-singlet T matrix exhibits a relatively
narrow bound state located significantly below the q-q̄ thresh-
old energy of Ethr � 0.52 GeV (corresponding to twice the real
part of the total quark self-energy discussed in the following.)
As the temperature increases to 1.5Tc, the state moves to higher
c.m. energy above the threshold (Ethr � 0.48 GeV), which, not
surprisingly, is accompanied by a significant broadening. Note
also that the peak value is substantially reduced compared to
the 1.2Tc case, substantially more than would be expected
from the broadening alone. We assign this behavior to the
decrease in the potential (cf. right panel of Fig. 1), reflecting
an overall reduction in interaction strength. The trends in
suppression, broadening, and upward energy shift continue at
T = 1.75Tc, where the resonance has now essentially melted,
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FIG. 6. (Color online) Real part (full red line) and imaginary part (absolute value, dashed blue line) of the light-quark (on-shell)
T matrix in the color-singlet channel at temperatures T = 1.2 Tc, T = 1.5 Tc, and T = 1.75 Tc (left, middle, and right panels, respectively)
as a function of the qq̄ c.m. energy E, with a “gluon-induced” quark-mass term m = 0.1 GeV.
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FIG. 7. (Color online) Light-quark T matrix in the color-octet channel vs. qq̄ c.m. energy at T = 1.2Tc, T = 1.5Tc, and T = 1.75Tc

(left, middle, and right panels, respectively) with m = 0.1 GeV. Solid (red) line: real part; dashed (blue) line: imaginary part (absolute value).

as indicated by a width of almost 1 GeV, comparable to its
mass. These results may be put into context with computations
of mesonic spectral functions in (quenched) lattice QCD. For
(reasonably) light quarks [8,40], their main features above Tc

are a gradual increase of the peak position (corresponding
to the “meson mass”) with temperature (roughly proportional
to T), accompanied by a broadening. The bound (resonance)
states depicted in Fig. 6 approximately share both of these
features.

The T matrix in the color-octet channel is displayed in
Fig. 7 for the same set of temperatures. As to be expected for
a purely repulsive potential, we find a smooth (nonresonant)
dependence of both real and imaginary parts with c.m. energy
(with a substantial suppression at higher T, as in the singlet
case). The imaginary part is very small, and also the real part
appears to be small when compared to the singlet channel. We
recall, however, that the octet contribution to the self-energy,
Eq. (29), enters with a weight that is by a factor of 8 larger
than for the singlet one, rendering it an important effect as will
be seen below in the following.

B. Self-energy

We proceed to the single-quark self-energies as calculated
from the interactions with antiquarks of the heat bath using
the expression, Eq. (29), based on the self-consistent S-wave
q-q̄ T matrices in the “π” and “ρ” channels as obtained

in the previous section. We recall that the real part of the
self-energy corresponds to a chirally invariant mass term,
whereas its imaginary part determines the width of a quark
(quasiparticle) according to � = −2 Im �. Since we work at
zero quark-chemical potential, µq = 0, the same results hold
for antiquarks. We also recall that our on-shell approximation
scheme for the self-energy implies that the effects of bound
states are not captured by Eq. (29), since in the integration
over the T matrix only energies above the q-q̄ threshold, Ethr,
contribute.

In Fig. 8 the on-shell self-energy is displayed for the same
selection of temperatures as in the previous section. Both real
and imaginary parts are smooth functions of the quark three-
momentum with maximal values at k = 0. Note that the real
part is positive, implying that the repulsive contribution from
the octet channels overcomes the attractive singlet channels.
The imaginary part (width), in contrast, chiefly arises from
resonant scattering in the singlet channel.

More quantitatively, in the temperature regime (1.2–1.5) Tc,
the nonperturbative contribution to the thermal quark mass
reaches values of around 150 MeV at small momenta,
decreasing to ∼50 MeV at 1.75Tc. With the underlying
“gluon-induced” mass term of m = 100 MeV, the total thermal
mass, m + �R , amounts to 150–250 MeV. This is smaller than
the effective (perturbative) thermal quark masses required in
phenomenological fits to the QGP EoS of lQCD [33–36].
To improve upon this, we have performed self-consistent
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FIG. 8. (Color online) Real part (solid line, red) and imaginary part (dashed line, blue) of the on-shell quark self-energy as a function of
three-momentum at temperatures T = 1.2Tc, T = 1.5Tc, and T = 1.75Tc (left, middle, and right panels, respectively) with m = 0.1 GeV.
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FIG. 9. (Color online) Real part (full line, red) and imaginary part (dashed line, blue) of the T matrix in the color-singlet channel (left
panel), color-octet channel (middle panel), and corresponding (singlet + octet) self-energy (right panel) at a temperature T = 1.5 Tc using a
“gluon-induced” mass term of m = 0.25 GeV.

calculations with a gluon-induced mass term of m = 250 MeV.
It turns out that, at given temperature, the “mesonic” states are
slightly stronger bound, but in general the behavior of the
T matrix and pertinent self-energy are quite similar to those
obtained with m = 100 MeV. For example, for T = 1.5Tc

(cf. Fig. 9), the resonance structure is right at threshold, the
quark width reaches almost 200 MeV, and the combined real
part at low momenta amounts to a quark mass of m + �R �
350 MeV.

An important aspect of our results is the rather large
imaginary parts of the quark self-energy, translating into
widths of about 200 MeV at low momenta for temperatures
around 1.5Tc. As already, mentioned, the width is almost
entirely generated by the resonant scattering in the singlet
channel; this is nicely illustrated by the significant increase
in Im � when going from 1.2Tc to 1.5Tc (cf. left and
middle panels in Fig. 8), during which the state in the T
matrix moves from below to above threshold (cf. left and
middle panels in Fig. 6), that is, converts from bound state
to resonance.1 The magnitude of the quark widths is quite
comparable to the thermal masses, qualitatively supporting the
notion that the QGP could be in a liquid-like regime [43,44].
Even at the highest considered temperature of 1.75Tc, and
at typical thermal momenta (k � 3T � 0.9 GeV), the quark
width owing to scattering off antiquarks is between 50 and
100 MeV. This width does not include P-wave interactions,
nor strange antiquarks, nor any contributions from scattering
off quarks or gluons.

Finally, let us return to the uncertainty associated with the
interaction in the octet channel related to the perturbative
ansatz, Eq. (6). If the coeffiecient in Eq. (6) is increased
(decreased) by a factor 2 (for T = 1.5 Tc and m = 0.25 GeV),
the imaginary part of the self-energy barely changes, whereas
its real part increases (decreases) by about 40%.

1We recall that bound states are not accessible in on-shell 2 →
2 scattering; even if a resonance is close to threshold it does not
contribute effectively to rescattering processes if the average thermal
energy of particles from the heat bath is significant. The contribution
of bound states to the self-energy can be included rather by going
beyond the quasiparticle approximation, that is, by evaluating Eq. (25)
with the off-shell spectral function, Eq. (27).

C. Quark spectral functions and normalization condition

To better elucidate the validity of the quasiparticle approxi-
mation, Eq. (28), we compute the off-shell real and imaginary
parts of the self-energy using Eq. (29) and obtain the pertinent
quark spectral function A(ω, k) from Eq. (27). In Fig. 10 we
depict A(ω, k) as a function of quark energy ω for various
fixed momenta at a temperature of T = 1.5Tc. On the one
hand, this reiterates the large effect of the width for low
momenta and calls for an off-shell treatment to improve the
reliability of our results in the (sub) threshold region of the
T matrix. On the other hand, for larger momenta (including
typical thermal momenta) the quasiparticle approximation as
applied in our calculations appears to be reasonably well
justified.

As another check of our approximations we have evaluated
the norm of the quark spectral functions defined by

I (k) =
∫

dω

2π
A(ω, k). (31)
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FIG. 10. (Color online) Off-shell spectral function A(ω, k) as
given by Eq. (27) vs. quark energy for different values of the quark
momentum at T = 1.5Tc and for m = 0.25 GeV.
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The unitarity condition for A(ω, k) requires I (k) = 1 for
each momentum k. This relation is rather well satisfied
[I (k) � 94%], for all momenta considered in Fig. 10.

V. CONCLUSIONS AND OUTLOOK

In the present article we have set up a self-consistent
many-body scheme of Brueckner type to assess nonpertubative
properties of (anti-) quarks and mesonic composites in a
quark-gluon plasma at temperatures T � (1.2–2) Tc. Our key
ingredient for describing the q-q̄ interaction in the QGP was a
driving kernel (potential) extracted from unquenched finite-T
lattice QCD calculations for the free energy of a heavy-quark
pair, supplemented with corrections for relativistic motion.
Our main objective was to go beyond earlier applications
to bound states by solving the scattering problem thereby
accounting for absorptive effects (finite imaginary parts).
The self-consistent set of single-quark Dyson and two-body
scattering equations has been solved by numerical iteration
employing a nonrelativistic reduction of the Bethe-Salpeter
equation in connection with a quasiparticle approximation
for the quark propagators. One of our main new findings
is that the lQCD potentials (dynamically) generate S-wave
resonance states above the q-q̄ threshold up to temperatures of
∼2 Tc. These resonances (assumed to occur with a degeneracy
corresponding to “π” and “ρ” mesons), in turn, play a key role
in inducing large quark scattering rates (equal to the imaginary
parts of the quark self-energy) as indicated by single-particle
widths of � � 200 MeV at temperatures around 1.5Tc. At the
same time, significant (positive) real parts arise from repulsive
interactions in the color-octet channel entailing thermal masses
of up to ∼150 MeV. We expect that additional contributions to
the quark mass of ∼250 MeV (induced, e.g., by interactions
with thermal gluons as parametrized in quasiparticle models)
will be necessary to account for the QGP EoS computed in
lattice QCD. Nevertheless, especially at low momenta, the
quark widths are comparable to the thermal masses, which
could be indicative for liquid-like properties of the QGP at
moderate temperatures.

Our analysis suggests several directions for future work.
First, the accuracy of our approximations should be scru-
tinized. This includes improving upon the quasiparticle ap-
proximation of the quark spectral function by implementing
its off-shell (energy) dependence (as, e.g., carried out in
Ref. [45] for a hot pion gas), most notably at low energies to
incorporate bound-state contributions to the quark self-energy.
The scattering equation ought to be extended to finite total
three-momenta of the mesonic composites. Even though we
expect the q-q̄ channel to constitute a major part of the

in-medium interaction, a more complete treatment including
q-q and q-g channels is desirable. It is also conceivable that
processes of the type qq̄ → Mg (inverse gluon-dissociation,
where M is mesonic state) could be significant, as they render
bound states accessible in (on-shell) two-body scattering. In a
broader context, the underlying EoS of the interacting system
needs to be investigated, which is obviously not an easy task.
On the phenomenological side, to address the problem of early
equilibration at RHIC, it will be of great interest to calculate
the thermal equilibration time scales for (anti-) quarks based
on the resonant scattering amplitudes found here (e.g., within a
Fokker-Planck equation). The elastic scattering rates of around
1/(fm)/c as found in this work, together with the isotropic
angular dependence inherent in S-wave rescattering, look
promising. For gluons the situation could be more involved
since, in addition to bound states as suggested in Ref. [21],
other thermalization mechanisms might be operative (e.g.,
gg ↔ ggg processes [46,47]). In this respect, charm quarks are
of particular importance, as their number is presumably frozen
after primordial production, and genuine 2 → 3 processes are
absent. Indeed, the recent analysis of Ref. [10] has shown
that “D”-meson resonances in the QGP can accelerate thermal
relaxation times obtained from pQCD by a factor of ∼3. A
rather straightforward extension of our approach to the heavy-
light sector should therefore be pursued. The formation of
mesonic composites in the cooling QGP phase of a heavy-ion
collision could furthermore serve as a “pre-hadronization”
mechanism and thus improve phenomenologically successful
quark-coalescence models at RHIC [48–50] (e.g., with respect
to the question of energy conservation). Significant future
efforts will be required to possibly develop such a scheme
into a quantitative phenomenology. Further progress will also
rely on increasing information from finite-T lattice QCD to
provide both input and constraints to a many-body approach
as presented here. Clearly, a thorough understanding of the
intricate properties of the strongly interacting matter above Tc,
and its implications for ultrarelativistic heavy-ion experiments,
is an exciting future task.
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