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We compare the Hanbury Brown–Twiss �HBT� and the thermal light ghost imaging schemes in both near
and far fields. Both effects arise as a result of the intensity fluctuations of the thermal light and we find that the
essential physics behind the two effects is the same. The difference however is that, in the ghost imaging, large
number of bits information of an object needs to be treated together, whereas, in the HBT, there is only one bit
information required to be obtained. In the HBT experiment far field is used for the purpose of easy detection,
while in the ghost image experiment near �or not far� field is used for good quality image.
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Recently, there is a heated discussion on the physics of the
ghost imaging �GI� with thermal light �1–5�. For example, in
a recent paper Scarcelli et al. �5� pose the question: “Can
two-photon correlation of chaotic light be considered as cor-
relation of intensity fluctuations?” The authors point out that
near field is required for ghost imaging whereas the far field
is required in the Hanbury Brown–Twiss �HBT� experiment.
They also conclude that the chaotic �thermal� light ghost
imaging could not be explained with classical mechanics,
and the physics of the ghost imaging is not the intensity
fluctuations of the thermal light ��I1�I2�= �I1I2�− �I1��I2� as
in the HBT experiment �2,5�, because large size of the source
�near field� results in ��I1�I2�=0 �2�. Instead, they claim that
the essential physics is the two-photon quantum interference
�2,5�. On the other hand, others disagreed with the conclu-
sions in �5� by Shih et al. �3,4�, and have concluded that the
ghost imaging with classical thermal field is essentially a
classical effect �3,4�. The controversy has persisted by an-
other paper of Shih’s group �2� in reply to comments in �4�.
The main objective of this paper is to resolve this contro-
versy. In particular, we carry out a simple analysis that helps
to clarify the difference and similarity between the GI and
HBT, and hence shed light on the physics behind the two
related effects.

Originally the ghost image was achieved with entangled
light �6�. In 2004 the formation of ghost image with thermal
light was predicted �7� and the equation for the image for-
mation is given in Ref. �8�. In 2005 the experiments on ghost
imaging with thermal light were realized �9–11�. Since then,
theoretical models are put forward to explain the thermal
light ghost imaging �3,12,13�. Until today, far field is used in
the HBT experiments, while near field �not-far field� is used
in the ghost imaging experiments �2,5�. There is a first-order
coherence for the far field, while the first-order coherence for
the near field �not-far field� is small. A question of interest is
whether the far field and the near field result in significantly
different physics. We ask ourselves, what will be the results
if we use the far field and the near field for both HBT and GI
experiments. In the present paper, we address this question
and discuss how the answer to this question reveals the phys-
ics behind the GI and the HBT effect.

The setup for the thermal light ghost imaging experiment

is presented in Fig. 1 with a lens immediately behind the
object focusing onto D2 �as a bucket detector �5��. The sim-
plest HBT experiment �5,14� is the same except the detector
D2 is placed at the location of the object with no object and
lens. In both experiments, the source is a surface thermal
light, for example a black box at a certain temperature. The
thermal light from the source is split by a beam splitter and
shines the two detectors, D1 and D2 through two paths, as
shown in Fig. 1. The second-order correlation is detected by
D1 and D2 in both the experiments. For the thermal light, the
field statistics is Gaussian and this allows the calculation of
the second-order correlation from the first-order correlation,
i.e.,

G2�u1,u2� = �I1I2� = �I�u1���I�u2�� + ���u1,u2��2, �1�

where �I�u1,2�� are the intensities at the points u1 and u2 on
the planes of D1 and D2, and ��u1 ,u2�= �E+�u1�E�u2�� is the
cross correlation. The correlations at the detectors can be
found out from the correlation at the source by correlation
propagation method �14�.

I�u1,2� = �E+�u1,2�E�u1,2��

=� � �Es
+�x1�Es�x2��h1,2

� �x1,u1,2�h1,2�x2,u1,2�dx1dx2,

�2�
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FIG. 1. �Color online� Ghost image setup.
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��u1,u2� = �E+�u1�E�u2��

=� � �Es
+�x1�Es�x2��h1

��x1,u1�h2�x2,u2�dx1dx2,

�3�

where x1,2 are the points at the source plane and the integrals
are within the source. Here h1,2�x ,u1,2� are the propagation
functions of the correlation from the source to the detectors
along paths 1 and 2, respectively, which depend on the opti-
cal elements in the paths. For path 1, h1�x ,u1� is the same in
the two experiments.

h1
H,G�x,u1� = 	−

i

�z1

1/2

exp�−
i�

�z1
�x2 − 2xu1 + u1

2�� . �4�

For path 2, we have different h2�x ,u2� for the two experi-
ments,

h2
H�x,u2� = 	−

i

�z2

1/2

exp�−
i�

�z2
�x2 − 2xu2 + u2

2�� ,

�5a�

h2
G�x,u2� = 	−

i

�f

1/2	−

i

�z2

1/2� dvH�v�

�exp�−
i�

�z2
�x2 − 2xv + v2� −

i�

�f
�− 2vu2 + u2

2�� ,

�5b�

where the superscripts H and G indicate HBT and GI, re-
spectively. It is implicit that h1,2

H,G�x ,u1,2� depend also on z1 or
z2. In Eq. �5b�, H�v� is the transmittance of the object and the
integration is due to the bucket detector. In general, we
should consider the two-dimensional imaging. However as x
and y directions are independent, we only consider the x
direction �one dimension�. This however does not affect the
physics.

For the thermal light at the source, the first-order correla-
tion can be written as a series of the form �15,16�,

�Es
+�x1�Es�x2�� � 1 − ��x1 − x2�2 + ��x1 − x2�4 + ¯ �6�

with � /�=2.2. This however does not allow for an analytical
solution for the correlation functions of the field. We there-
fore approximate the first-order correlation function of the
source to be a Gaussian Schell model source �15,17�,

�Es
+�x1�Es�x2�� = G0 exp�−

x1
2 + x2

2

4	 I
2 −

�x1 − x2�2

2	 g
2 � . �7�

Here we have a Gaussian distribution for the intensity of the
source with the width 	I and 	g is the first-order transverse
coherence width �correlation length� of the thermal light
source. The normalized second-order correlations �HBT or
GI� for the two experiments are

HBT or GI�u1,u2,z1,z2� =
���u1,u2��2

��I�u1���I�u2���
. �8�

First we consider the HBT experiment. The point detec-
tors are located at u1�0 and u2=0 �transverse HBT�. From

Eqs. �2�–�5� with z1=z2=z we have ���ū1 ,0��2=
�4�G0�2


̄

�exp
−
8� 2�	̄ g

2+2	̄ I
2�ū1

2

	̄ g
2	̄ I

2
̄
�, and �I�ū1,2��=

4�G0


̄1/2 exp
−
8� 2ū1,2

2


̄	̄ I
2

�, which

are substituted into Eq. �8� we obtain,

HBT�ū1,0� = exp�−
ū 1

2

	̄g
2 + �z̄2/4� 2	̄ I

2��	̄ g
2/4	̄ I

2 + 1�� ,

�9�

where ū1
2, z̄, and 	̄I,g are in units of �. If ū1= ū2=0, we have

HBT=1. As ū1
2 increases, HBT decreases. In Fig. 2, we plot

HBT versus ū1 with 	̄g=10 and z̄=105 for 	̄I / z̄=10−4 ,
2�10−4 ,10−3 ,10−2, and 0.1. In the following, we define
	̄I / z̄�0.05 as the far field, and otherwise as the near field.

In the experiment with thermal light, the condition z̄ , 	̄I
2

�	̄ g
2 is always satisfied. We can therefore rewrite Eq. �9� as

HBT�ū1,0� = exp�−
ū1

2

	̄g
2 +

z̄2

4�2	̄I
2 � , �9a�

which is a Gaussian distribution. For small 	̄I / z̄ �the far
field�, the decrease in HBT with the increase in ū1 is slow;
see Fig. 2. That is to say, the smaller 	̄I / z̄ is, the easier the
HBT can be measured experimentally. This is why the HBT
experiment is usually done in the far field. However, the
HBT experiment can be carried out in principle with the near
field �or not-far field�, because at ū1=0 we always have
HBT=1, no matter what is the values of 	̄I, z̄, and 	̄g. Large
	̄I / z̄ �near field or not-far field� does not change the physical
nature of the HBT experiment �the intensity fluctuations�, but
it increases the difficulty to realize the HBT experiment.

For the GI experiment, it follows on substituting Eqs. �4�
and �5b� into Eq. �3� and with z1=z2 where the image is
formed, we obtain the cross correlation function and the
intensity,
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FIG. 2. �Color online� HBT effect for different 	̄I / z̄=10−4 ,
2�10−4 ,10−3 ,10−2, and 0.1 �from top to below�, with 	̄g=10 and
z̄=105.
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��u1,0� =

4�G0 exp	 i�

z̄1

ū1
2


f̄1/2
̄1/2
� dv̄H�v̄�exp	−

i�

z̄1
v̄2


�exp�−
4�2��	̄ g

2 + 2	̄ I
2�ū1

2 − 4	̄ I
2ū1v̄ + �	̄ g

2 + 2	̄I
2�v̄2 − i4�	̄ g

2	̄I
2�v̄2 − ū1

2�/z̄1�

	̄ g
2	̄ I

2
̄
� , �10a�

�I�u2 = 0�� =
4�G0

f̄ 
̄1/2
� � dv̄1dv̄2H�v̄1�H�v̄2�exp	−

i�

z̄1
v̄2

2 +
i�

z̄1
2 v̄1

2

�exp�−

4� 2��	̄ g
2 + 2	̄ I

2�v̄1
2 − 4	̄ I

2v̄1v̄2 + �	̄ g
2 + 2	̄ I

2�v̄2
2 − i4�	̄ g

2	̄ I
2�v̄2

2 − v̄1
2�/z̄1�

	̄ g
2	̄ I

2
̄
� , �10b�

and �I�ū1��= �4�G0 / 
̄1/2�exp�−8� 2ū1
2 / 	̄ I

2
̄�, where 
̄=16� 2

+ �z̄1
2 / 	̄ I

2��4 / 	̄ g
2+1 / 	̄ I

2�. With Eqs. �10a� and �10b�, we cal-
culate GI�ū1 , z̄1= z̄2�= ���ū1��2 / �I�ū1���I�ū2=0�� numerically.
In Fig. 3, we plot the ghost image for a triple slits object
�with the width of each slit being 10� and the separation
between the two slits being 10�� with z̄1= z̄2=105 for differ-
ent values of 	̄I and 	̄g.Within the three slits, H�v̄�=1, 0.8,
and 0.6, respectively, and is zero elsewhere.

From Fig. 3, we see no image for small 	̄1 / z̄1 �far field�
�curves �a� and �b��. Note that decreasing 	̄g does not help
for small 	̄1 / z̄1. For a good quality image we need large
	̄1 / z̄1 �near field� �18,19� and small 	̄g. In curves �d� and �e�,
we note the formation of the image and the image edge of
the middle slit spreads approximately from 3 to 7 and 4 to 6
�see the inset� with visibilities of 12% and 7%, respectively.
When we have good quality image, the visibility is low
which is in agreement with earlier studies �8,20,21�. Large-
size slits result in low visibility.

For small 	̄I / z̄1
1 �far field� we have HBT effect, but no
thermal light ghost image. The difference can be explained
as follows. In the HBT experiment, the measurement mainly
differentiates between two values, HBT=1 or 0. This corre-
sponds to one bit information. On the other hand, in the

ghost image, we need to obtain the information of the whole
object and this corresponds to a large amount of bits. The
large amount of bits is processed together and one particular
bit must not be influenced by other bits. For the curve �c� in
Fig. 3, it is hard to say whether the image is formed. If we
consider the three slits as three bits, we can conclude: “yes,
we have three bits with good visibility in curve �c�.”

Let us consider a very narrow slit for the object located at
v̄= ā. The image measurement becomes the determination of
one nonzero value at one location �and near by� and zero
value at other locations, which is equivalent to the measure-
ment in the HBT experiment to obtain one bit information.
Setting z̄1 , 	̄I�	̄g �valid in experiments� we have

���ū1, ū2 = 0��2

�I�ū1���I�ū2 = 0��
= exp�−

�ū1 − ā�2

	̄ g
2 + �z̄1

2/4� 2	̄ I
2�� . �11�

The image of the very narrow slit is a Gaussian distribution
with a width of 
	̄ g

2+ �z̄1
2 /4� 2	̄ I

2��1/2 �the same as Eq. �9a�
for the HBT effect�. The width of the best image for an ideal
point at ū20 is limited by the width 
	̄ g

2+ �z̄1
2 /4� 2	̄ I

2��1/2. For
small 	̄I / z̄1 �
1, far field�, the ghost image of the very nar-
row slit can still be formed but with very bad quality �wide
spread�. This is the reason that the good image for small
	̄I / z̄1 �far field� cannot be achieved even in the limit of 	̄g
→0. While for a large 	̄I / z̄1 �=0.2, not far field�, small 	̄g
may lead to small width �good image quality�, a similar situ-
ation for the HBT experiment.

The accuracy of the image is limited by the width of the
detector �no real point detector�. Consequently, improving
the quality of the image by increasing the size source is
limited by the width of the detector. Also the width deter-
mines the possibility of detecting the HBT with large size of
source, the width ��
	̄ g

2+ �z̄1
2 /4� 2	̄ I

2��1/2 �see Eq. �9a��.
Within this limit, any size in the object equal to the width
represents one bit. Currently, the width of the best detector is
about 10�. In Fig. 4, we plot the images of objects contained
one bit, two bits, and three bits for the detector with a width
of 8�. For one bit object, the visibility is almost one, for the
two bits and three bits objects, the visibility reduce to half
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FIG. 3. �Color online� The ghost image of three slits, �a�
	̄I / z̄1=10−2, �b� 	̄I / z̄1=2.5�10−2, �c� 	̄I / z̄1=0.2, with 	̄g=4, �d�
	̄I / z̄1=0.2 and 	̄g=1, and �e� 	̄I / z̄1=0.2 and 	̄g=0.1.
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and one-third. The more information in the object, the lower
the image visibility will be.

Let us consider 	̄g→0 and 	̄I / z̄�1. Under this limit, we
have HBT=1 at ū1=0, and HBT�0 for ū1�0, which can be
considered as perfect bunching �photoelectrons always
comes out in pairs�. It can be proven from Eqs. �10� that
under this limit we have ��ū1 , ū2=0��H�ū1� �13� �perfect
image�. Therefore, we can say the perfect bunching results in
the perfect image. Under this limit, we can prove

���ū1, ū2 = 0��2/�I�ū2 = 0���I�ū1�� = �H�ū1��2/� dv̄�H�v̄��2,

�12�

perfect imaging with the visibility inversely proportional to
the size of the object �not the size of the source�. Large-size

source improves the quality of the image, and large-size ob-
ject reduces the visibility, which comes from the bucket de-
tection triggered by the thermal light passing through differ-
ent points of the object �20�. Here we would like to
emphasize that large size of the source does not result in the
low visibility as claimed in �5�, and it is the size of the object
that leads to low visibility.

Large size of the source results in good quality image,
while large size of the object �a large amount of bits� leads to
low visibility. Therefore we can conclude that the physics
behind the thermal light ghost imaging and the HBT experi-
ment is the same, the intensity fluctuations. The difference
between the GI and the HBT experiments is the information
that is required to be obtained: large amount for GI and a
small amount for HBT �large number of bits versus one bit�.
In the HBT experiment the far field is used for the purpose of
easy detection, while in the GI experiment the near field
�not-far field� is used for good quality image at the expense
of low visibility �22�.
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ment, FRG of HKBU, and NSFC �Contract No. 10604047�.
The research of MSZ is supported by a grant from Qatar
National Research Fund �QNRF�.

APPENDIX: DERIVATION OF EQS. (11) and (12)

Now let us see how to obtain Eq. �11�. Since we assume a
very narrow slit at position v̄= ā, then the object function
could be written by H�v̄�=��v̄− ā�. From Eq. �10a�, we can
easily find the cross correlation,

���ū1,0��2 =
�4�G0�2

f̄ 
̄
exp�−

8� 2��	̄ g
2 + 2	̄ I

2�ū1
2 − 4	̄ I

2ū1ā + �	̄ g
2 + 2	̄ I

2�ā2�

	̄ g
2	̄ I

2
̄
� . �A1�

Meanwhile, from Eq. �10b� the intensity at u2=0 in the GI experiment could be obtained

�I�ū2 = 0�� =
4�G0

f̄ 
̄1/2
exp�−

4� 2��	̄ g
2 + 2	̄ I

2�ā2 − 4	̄ I
2ā2 + �	̄ g

2 + 2	̄ I
2�ā2�

	̄ g
2	̄ I

2
̄
� . �A2�

From Eq. �8�, we finally obtain

GI�ū1, ū2 = 0� =
���ū1,0��2

�I�ū1���I�ū2 = 0��
= exp�−

�ū1 − ā�2

	̄ g
2 +

z̄1
2

4� 2	̄ I
2	1 +

	̄ g
2

4	̄ I
2
� . �A3�

It is clearly seen that Eq. �A3� is similar to Eq. �9�, which indicates that the image of an ideal pointlike object in GI experiment
actually becomes a Gaussian-shape image, and the image size is limited by the propagation distance z1, the spatial coherence
	̄g, and the light source size 	̄I. Under the conditions of z̄1 , 	̄I�	̄g �valid in experiments�, Eq.�A3� could be approximately
expressed by
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FIG. 4. �Color online� The visibility of the objects containing

one bit, two bits, and three bits information. The width of each slit
and the interval between slits are 10�, and 	̄I / z̄1=0.2, 	̄g=4.
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GI�ū1, ū2 = 0� =
���ū1,0��2

�I�ū1���I�ū2 = 0��
= exp�−

�ū1 − ā�2

	̄ g
2 +

z̄1
2

4� 2	̄ I
2 � , �A4�

which is Eq. �11�.
In order to prove Eq. �12�, we can rewrite Eqs. �10a� and �10b� as follows:

��u1,0� =
4�G0

f̄1/2
̄1/2
� dv̄H�v̄�exp	 i�

z̄1

ū1
2 −

i�

z̄1
v̄2
exp�−

4� 2��	̄ g
2 + 2	̄ I

2�ū1
2 − 4	̄ I

2ū1v̄ + �	̄ g
2 + 2	̄ I

2�v̄2�

	̄ g
2	̄ I

2
̄
+

i16� 3�v̄2 − ū1
2�


̄z̄1
�

→
z̄/	̄ I→0 4�G0

f̄1/2
̄1/2
� dv̄H�v̄�exp�−

1

4�	 1

	̄ I
2 +

2

	̄ g
2
ū1

2 −
4

	̄ g
2 ū1v̄ + 	 1

	̄ I
2 +

2

	̄ g
2
v̄2��

→
	̄g→0 4�G0

f̄1/2
̄1/2
� dv̄H�v̄���ū1 − v̄� =

4�G0

f̄1 � 2
̄1 � 2
H�ū1� , �A5�

�I�u2 = 0�� =
4�G0

f̄ 
̄1 � 2
� � dv̄1dv̄2H�v̄1�H*�v̄2�exp	−

i�

z̄1
v̄2

2 +
i�

z̄1
2 v̄1

2

�exp�−

4�2��	̄ g
2 + 2	̄ I

2�v̄1
2 − 4	̄ I

2v̄1v̄2 + �	̄ g
2 + 2	̄ I

2�v̄2
2�

	̄ g
2	̄ I

2
̄
+

�i16�3�v̄2
2 − v̄1

2��


̄z̄1
�

→
z̄/	̄I→04�G0

f̄ 
̄1/2
� � dv̄1dv̄2H�v̄1�H*�v̄2�exp�−

1

4�	 1

	̄I
2 +

2

	̄g
2
v̄1

2 −
4

	̄ g
2 v̄1v̄2 + 	 1

	̄ I
2 +

2

	̄ g
2
v̄2

2��
→

	̄g→04�G0

f̄ 
̄1/2
� � dv̄1dv̄2H�v̄1�H*�v̄2���v̄1 − v̄2� =

4�G0

f̄ 
̄1/2
� dv̄1�H�v̄1��2. �A6�

We can also rewrite the intensity �I�ū1�� into

�I�ū1�� =
4�G0


̄1/2
exp�−

8� 2ū1
2

	̄ I
2
̄

� ——→
	̄g→0 and z̄/	̄I
14�G0


̄1/2
. �A7�

Using Eqs. �A5�–�A7�, we can obtain Eq. �12�.
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