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We consider a quantum beat laser �Scully and Zubairy, Phys. Rev. A 35 752 �1987�� as a source of entangled
radiation. The system essentially consists of three-level atoms inside a doubly resonant cavity such that
coherence is introduced by driving the upper two levels with a strong classical field of Rabi frequency �. We
study the dynamics of this system for different values of Rabi frequencies in the presence of cavity losses. It
is shown that entanglement can be generated in this system for different initial states of the field in the two
modes.
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I. INTRODUCTION

Due to the recent developments in the field of quantum
computation, quantum communication, and quantum cryp-
tography, interest has grown in the engineering of macro-
scopic entangled states of photons �1–3�. A number of differ-
ent schemes have been proposed. These include the creation
of entangled atomic ensembles through the transfer of a
quantum state from nonclassical light to the atoms �4�, the
generation of bright two-mode quadrature squeezed light
from a narrowband nondegenerate optical parametric ampli-
fier, and many more �5–10�. Recently a scheme for the gen-
eration of bright entangled light using a correlated emission
laser has also been proposed �11,12�. In further studies, the
effects of phase and amplitude fluctuations associated with
the driving field on entanglement generation were also stud-
ied �13,14�

In an earlier study, we considered a parametric converter
as a source of entangled radiation �15�. We examined both
the Duan, Giedke, Cirac, and Zoller �DGCZ� �16� and the
Hillery-Zubairy �17� conditions for determining when the
two modes in a parametric converter are entangled. It was
shown that for different initial input states, the two criteria
give different conditions that ensure that the output states are
entangled.

In this paper, we consider the generation of entangled
radiation by a quantum beat laser �18�. The system consists
of three-level atoms in a V configuration interacting with two
modes of the cavity field in a doubly resonant cavity. The
atoms, which are pumped incoherently in their excited state,
are driven into a coherent superposition of the upper two
levels by a strong classical field. It was shown that this sys-
tem exhibits the vanishing of the phase diffusion in the rela-
tive phase of the two modes under certain conditions �18�. In
some earlier studies, the experimental observation of the

noise reduction in the relative phase of a two-mode laser has
also been discussed �19�. In order to estimate the entangle-
ment in a quantum beat laser, we consider the recently pro-
posed conditions by Simon �20�, DGCZ �16�, and Hillery
and Zubairy �17�. We consider different initial states for the
two-mode field and discuss the temporal evolution of the
field for different values of the Rabi frequency � associated
with the classical field. Our results show that two modes,
which are initially in a product state, evolve into an en-
tangled state even in the presence of cavity losses. However,
the time for which the two modes remain entangled strongly
depends upon the Rabi frequency �. An increase in the
strength of the driving field causes the time for which the
output field is entangled to increase. This result is in agree-
ment with our earlier study of the generation of entanglement
in a correlated spontaneous emission laser �11�. Our results
also show that the two entanglement criteria give different
time intervals for which the two-mode field remains en-
tangled.

II. THE SYSTEM

In this section, we consider the atomic system for the
quantum beat laser proposed by Scully and Zubairy �18�,
which is shown in Fig. 1. It is a three-level atomic system in
a V configuration. The atoms are pumped into the state �a� at
a rate ra. A doubly resonant cavity containing two modes is
considered. The transitions between levels �a� and �c� and
�b� and �c� are dipole allowed while the transition �a�-�b� are
electric-dipole forbidden, but can be induced by applying a
strong magnetic field for a magnetic-dipole-allowed transi-
tion. The transition �a�-�b� is treated semiclassically to all
orders in the Rabi frequency. The transitions �a�-�c� and
�b�-�c� are treated fully quantum mechanically but only up to
second order in the corresponding coupling constants. The
Hamiltonian in the dipole and rotating wave approximations
is given by

H = H0 + V , �1�

H0 = �
i=a,b,c

��i�i��i� + ��1a1
†a1 + ��2a2

†a2, �2�
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V = �g1�a1�a��c� + a1
†�c��a�� + �g2�a2�b��c� + a2

†�c��b��

−
��

2
�e−i�−i�3t�a��b� + ei�+i�3t�b��a�� , �3�

where a1 �a1
†�, and a2 �a2

†� are the annihilation �creation�
operators for the fields in the two modes, whose frequencies
are �1 and �2, g1 �g2� is the coupling constant associated
with the �a�-�c� ��b�-�c�� transition; and �3 is the frequency
of the field that induces the transition between levels
�a� and �b�, which is assumed to be at resonance with the
�a�-�b� transition, i.e., �3=�a−�b. The equation of motion
for the field density matrix is given by

�̇ f = −
1

2
��11

� a1a1
†� f + �11� fa1a1

† − ��11 + �11
� �a1

†� fa1�

−
1

2
��22

� a2a2
†� f + �22� fa2a2

† − ��22 + �22
� �a2

†� fa2�

−
1

2
��21

� a1
†a2� f + �12� fa1

†a2 − ��12 + �21
� �a1

†� fa2�ei�

−
1

2
��12

� a1a2
†� f + �21� fa1a2

† − ��21 + �12
� �a2

†� fa1�e−i�

− 	1�a1
†a1� f − 2a1� fa1

† + � fa1
†a1�

− 	2�a2
†a2� f − 2a2� fa2

† + � fa2
†a2� , �4�

where we include the cavity damping terms in the usual way.
It is assumed that the two cavity modes are coupled to two
independent vacuum reservoirs with 	1 and 	2 being the cav-
ity decay rates of modes 1 and 2, respectively. Here the terms
proportional to �11 and �22 are the gain terms, and the terms
proportional to �12, and �21, are the phase-sensitive terms
that are generated due to the atomic coherence produced be-
tween the levels �a� and �b� by the strong driving field. Ex-
plicit expressions for the coefficients �11, �12, �21, and �22 in
Eq. �4� are given in Appendix A. The phase angle � appear-
ing in Eq. �4� equals �=�+ ��1−�2−�3�t. In our analysis we
consider exact resonance under that condition �=�, which
is the external field reference phase.

III. ENTANGLEMENT CONDITIONS
FOR TWO-MODE STATES

The existence and estimation of entanglement for a mixed
state remains an important question �17�. A state is entangled
if it is not separable. A state is separable if its density matrix
� can be expressed as a convex combination of product
states,

� = �
j

pj�
�1�

� � j
�2�, �5�

with pj 
0 and � jpj =1. If it cannot be expressed in this
form, it is entangled. For a pure state there exist sufficient
and necessary conditions for bipartite entanglement, while
for an arbitrary mixed state there exists no sufficient and
necessary criterion for the existence of entanglement. How-
ever, in some recent studies several sufficient criteria for en-
tanglement have been proposed �21–24�. One of the most
extensively used is the Peres-Horodecki criterion, which is
based on the fact that, if a state is separable, then the partial
transpose of its density matrix must be positive �23,24�.
Similarly, DGCZ �16� and independently Simon �20� pro-
posed a class of conditions that is sufficient to show en-
tanglement in continuous-variable systems, which involves
only low-order moments of the mode quadrature operators.
In fact, for Gaussian states, these conditions are necessary
and sufficient to show entanglement. More recently, Hillery
and Zubairy �17� found sufficiency conditions for entangle-
ment for a different class of states. They provide a class of
inequalities whose violation shows the presence of entangle-
ment in a two-mode system. These methods can be extended
to find conditions for entanglement in systems consisting
more than two modes. In a recent study, we applied these
conditions to study the generation of entanglement in several
devices �25�.

In order to study the generation of entanglement in a
quantum beat laser, we shall first consider the Hillery-
Zubairy criterion, which states that a state is entangled if �17�

��a1a2
†��2 � �N1N2� , �6�

where N1=a1
†a1, and N2=a2

†a2 are the photon number opera-
tors in modes 1 and 2, respectively. Here we are interested in
studying how the generation of entanglement depends on the
Rabi frequency � associated with the driving field. Since the
exact analytical results are rather complicated in this situa-
tion, we shall present the results of our numerical simula-
tions. The equations of motion for various moments that are
required to evaluate the quantities involved in Eq. �6� are
given in Appendix B.

In the parametric limit, when the Rabi frequency is much
larger than the atomic decay rate �, i.e., ��, the coeffi-
cients �11 and �22 which are given by Eqs. �A1� and �A4� in
Appendix A approach zero. Under this condition, the equa-
tion of motion for the density matrix given by Eq. �4� ap-
proaches the equation of motion for a parametric converter.
In a recent study, we discussed the generation of entangle-
ment in a parametric converter using the DGCZ �16� and the

FIG. 1. Energy level diagram for the quantum beat laser, a three-
level atomic system in a V configuration. The transitions between
levels �a� and �c� and �b� and �c� at frequencies �1 and �2 are
resonant with the cavity. The transition �a�-�b� is electric-dipole
forbidden but can be induced by a strong magnetic field if it is
magnetic-dipole allowed.
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Hillery-Zubairy �17� criteria, and obtained the conditions on
the input modes that ensure that the output modes are en-
tangled.

IV. NUMERICAL RESULTS

Here we present the results of our numerical simulation.
In Fig. 2, we show the plot of the time development of F
	�N1N2�− ��a1a2

†��2 versus the dimensionless interaction time
Kt. The parameter K is defined as K=g2ra /�2. We consider
the initial squeezed vacuum state in mode 1, which can be
represented as S�r��0� with the squeezing operator S�r�
=exp��r /2��a2−a†2

�� defined in terms of the creation and
annihilation operators. The parameter values are chosen such
that they correspond to the micromaser experiment of Me-
schede et al. �27�. It may be mentioned that the system we
are discussing here can be realized by placing the gain me-
dium inside a doubly resonant cavity. We can also consider
the system in which atoms with long-lived states pass
through the cavity such that there is only one atom at a time
inside the cavity in the presence of classical driving fields.
This corresponds to the experimental setup used in the mi-
cromaser �27,28�. It is clear from the curves that the param-
eter F becomes negative as time evolves, which shows that
the two modes, which are initially in a product state, evolve
into an entangled state. For �=400 and 500 kHz, oscillations
appear whose amplitudes decrease due to the presence of
cavity losses. During the evolution, there is a time at which F
becomes zero, and the entanglement criterion is no longer
satisfied. Our results show that the time for which the two
modes remain entangled strongly depends upon the strength
of the Rabi frequency. When we further increase the value of
�, such that it is equal to 1500 kHz, then the entanglement
time increases further. This behavior is in agreement with our
earlier study, which dealt with the generation of entangle-
ment in a correlated spontaneous emission laser �11�.

In order to get some insight, next we show the time de-
velopment of average photon numbers in modes 1 and 2 for
the same set of parameters as in Fig. 2. The average photon

numbers evolve with time and exhibit oscillatory behavior in
Figs. 3�a� and 3�b�, which correspond to �=400 and 500
kHz. However, the amplitude of oscillations decreases, due
to the presence of cavity losses. During the oscillations, there
are times at which the average photon numbers become zero.
Note that, because it is the correlation between the two
modes that gives rise to entanglement in a quantum beat
laser, when the average photon number in one of the modes
vanishes, then the correlation no longer exists and the en-
tanglement criterion is no longer satisfied. This is clear from
Fig. 3. For �=1500 kHz, the average photon number re-
mains nonzero for the time interval shown in Fig. 2, and, as
a result, correlations exist that lead to entanglement. A com-
parison of Figs. 2 and 3 clearly shows that, due to the in-
crease in the Rabi frequency, the time period for which the
photon numbers in the two modes remain nonzero increases,
and this gives rise to an increase in the entanglement time.

In Fig. 4, we show the results of our numerical simulation
for the case when mode 1 is initially in a photon number
state with ten photons and mode 2 is in a vacuum state. All
the other parameters are the same as in Fig. 2. The results

FIG. 2. �Color online� Time development of F	�N1N2�
− ��a1a2

†��2 for initial squeezed vacuum state in mode a and coherent
state in mode b with r=0.1 and �=10 �in terms of normalized
interaction time Kt�. Various parameters are �=20 kHz, 	1=	2

=1.5 kHz, g=43 kHz, and ra=22 kHz. Here curves �A�, �B�, and
�C� represent the results for �=400, 500, and 1500 kHz,
respectively.

FIG. 3. �Color online� Time development of average photon
numbers �N1� and �N2� against the normalized interaction time Kt
for �a� �=400, �b� 500, and �c� 1500 kHz, respectively. Here curve
1 corresponds to mode 1 and curve 2 to mode 2. All the parameters
are the same as in Fig. 2.

QUANTUM BEAT LASER AS A SOURCE OF ENTANGLED… PHYSICAL REVIEW A 77, 062308 �2008�

062308-3



clearly show that, as the parameter F evolves with time, it
becomes negative. Here the curves are truncated at the point
where the value of F becomes equal to zero. Our results
show that the system evolves into an entangled state and
remains entangled for a period of time. The curves �A�, �B�,
and �C�, which correspond to different values of Rabi fre-
quency, again show that the time for the entanglement is not
the same, and that it increases as the Rabi frequency � of the
driving field increases.

V. SIMON-DGCZ ENTANGLEMENT CRITERION
FOR TWO-MODE STATES

In this section we consider the Simon-DGCZ entangle-
ment criterion to study the generation of entanglement in a
quantum beat laser. According to this criterion, a state of the
system is known to be entangled if the quantum fluctuations
of the two Einstein-Podolsky-Rosen-like operators û and v̂ of
the two modes satisfy the following inequality:

��û�2 + ��v̂�2 � 2. �7�

This inequality gives a sufficient condition for the entangle-
ment of a two-mode state. It is one of the class of entangle-
ment criteria found by Duan et al. and by Simon �16,20�. In
Eq. �7�,

û = x̂1 + x̂2,

v̂ = p̂1 − p̂2. �8�

and xj = �aj +aj
†� /
2 and pj = �aj −aj

†� /
2 �with j=1,2� are the
quadratures for the two modes of the cavity field. These can
be measured in an experiment by using the technique of
balanced homodyne detection �26�. If we substitute the defi-
nition of û and v̂ in Eq. �7�, we obtain

��û�2 + ��v̂�2 = �a1
†,a1� + �a1,a1

†� + �a2
†,a2� + �a2,a2

†�

+ 2��a1,a2� + �a1
†,a2

†�� , �9�

where we used the notation �a ,b�= �ab�− �a��b�. In order to
study the entanglement, we calculate the time evolution of
various moments involved in the quantity ��û�2+ ��v̂�2 us-
ing the equations of motion given in Appendix B. The ana-

lytical solutions are, as before, rather complicated; therefore,
we again present the results of our numerical simulations.

In Fig. 5, we show the plots of the time development of
G= ��û�2+ ��v̂�2 as a function of the dimensionless interac-
tion time Kt. The initial state of the field in mode 1 is a
squeezed vacuum state, while the mode 2 is in a coherent
state. Here curves I, II, and III correspond to �=1400 kHz,
1500 kHz, and 2000 kHz, respectively. All the other param-
eters are the same as in Fig. 2. The results show that the
parameter G evolves with time and becomes less then 2,
showing that the two modes, which were initially in a prod-
uct state, become entangled. However, after some time the
parameter G becomes equal to 2, and the entanglement con-
dition is no longer satisfied. This is due to the presence of
dissipation in the system. It is clear from curves I, II, and III
that the time interval for the two modes to remain entangled
increases as the amplitude of the Rabi frequency � of the
driving field is increased. A comparison of the results shown
by curve II in Fig. 5 with those shown by curve C in Fig. 2
�which corresponds to the same set of parameters� shows that
the two entanglement criteria give different time intervals for
which the two modes remain entangled. For example, the
Hillery-Zubairy criterion shows that the two modes become
entangled as soon as the system evolves, whereas according
to the Simon-DGCZ criterion, the system is not entangled
unless the value of the normalized interaction time Kt is
approximately equal to 13.

VI. CONCLUSION

In conclusion, we have studied the generation of en-
tangled states in a quantum beat laser in the presence of
cavity losses using the Hillery-Zubairy, and the Simon-
DGCZ criteria. We considered different initial states of the
field in the two modes, for example, a squeezed vacuum state
in mode 1 and a coherent state in mode 2, and a photon
number state in mode 1 and a vacuum state in mode 2. Our
results show that the initial states, which are in a product
state, evolve into an entangled state. The time for which the
two modes remain entangled depends upon the strength of

FIG. 4. �Color online� Time development of F	�N1N2�
− ��a1a2

†��2 for a photon number state with ten photons in mode 1
and the vacuum state in mode 2. All the other parameters are the
same as in Fig. 2.

FIG. 5. �Color online� Time development of G	��û�2+ ��v̂�2

in terms of the normalized interaction time Kt for a squeezed
vacuum state in mode 1 and a coherent state in mode 2 with r
=0.1 and �=10. Here curves I, II, and III represent the results for
�=1400, 1500, and 2000 kHz, espectively. All the other parameters
are the same as in Fig. 2.
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the Rabi frequency of the classical driving field, and this
time can be increased by increasing it. Our results also show
that the two criteria give different time intervals for the en-
tanglement, which is quite interesting. This indicates that
here both the criteria provide only sufficient conditions for
the entanglement. If they had provided the necessary and
sufficient conditions then the time intervals for the entangle-
ment determined by the two criteria should be the same. It
may be mentioned that in some very specific cases these
criteria can lead to necessary and sufficient conditions for
entanglement. We also present results for average photon
number in the two modes, which exhibits damped oscilla-
tions. The temporal behavior of the average photon numbers
gives an insight into the increase in the entanglement time
due to the increase in the amplitude of the Rabi frequency.
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APPENDIX A

The coefficients �11, �12, �21, and �22 in Eq. �4� are given
by the following:

�11 =
g2ra

2���2 + �2�� �2�2 + �2 + i����� − i�� − �/2��
��2 + �� − �/2�2�

+
�2�2 + �2 − i����� − i�� + �/2��

��2 + �� + �/2�2� � , �A1�

�12 =
g2ra�

2���2 + �2�� �� − i�� − �/2��
��2 + �� − �/2�2�

�� − i��

−
�� − i�� + �/2��
��2 + �� + �/2�2�

�� + i��� , �A2�

�21 =
g2ra

2���2 + �2�� �2�2 + �2 + i����� − i�� − �/2��
��2 + �� − �/2�2�

−
�2�2 + �2 − i����� − i�� + �/2��

��2 + �� + �/2�2� � , �A3�

�22 =
g2ra�

2���2 + �2�� �� − i�� − �/2��
��2 + �� − �/2�2�

�� − i��

+
�� − i�� + �/2��
��2 + �� + �/2�2�

�� + i��� . �A4�

APPENDIX B

The equations of motion for various moments required to
study the generation of entanglement using a quantum beat
laser can easily be obtained from Eq. �4�. For a suitable
choice of the phase �=� /2 associated with the classical

driving field, the following sets of coupled equations for
various moments are obtained:

d

dt
�a1� =

1

2
��11 − 2	1��a1� +

i

2
�12�a2� , �B1�

d

dt
�a2� =

1

2
��22 − 2	2��a2� −

i

2
�21�a1� , �B2�

d

dt
�a1a2

†� =
1

2
���11 + �22

� � − �	1 + 	2���a1a2
†� +

i

2
��21

� �a1
†a1�

+ �12�a2
†a2�� +

i

2
��21

� + �12� , �B3�

d

dt
�a1

†a2� =
1

2
���11

� + �22� − �	1 + 	2���a1
†a2� −

i

2
��21�a1

†a1�

+ �12
� �a2

†a2�� −
i

2
��21 + �12

� � , �B4�

d

dt
�N1� =

1

2
���11 + �11

� � − 2	1��N1� +
i

2
��12�a1

†a2�

− �12
� �a1a2

†�� +
1

2
��11 + �11

� � , �B5�

d

dt
�N2� =

1

2
���22 + �22

� � − 2	2��N2� +
i

2
��21

� �a1
†a2�

− �21�a1a2
†�� +

1

2
��22 + �22

� � , �B6�

d

dt
�a1a2� = �1

2
��11 + �22� − �	1 + 	2���a1a2�

+
i

2
�12�a2a2� −

i

2
�21�a1a1� , �B7�

d

dt
�a1a1� = ��11 − 2	1��a1a1� + i�12�a1a2� , �B8�

d

dt
�a2a2� = ��22 − 2	2��a2a2� − i�21�a1a2� , �B9�

d

dt
�N1N2� = �1

2
��11 + �11

� + �22 + �22
� � − 2�	1 + 	2���N1N2�

+
1

2
��22 + �22

� ��N1� +
1

2
��11 + �11

� ��N2�

+
i

2
�− �21�N1a1a2

†� + �21
� �N1a1

†a2��

+
i

2
�− �12

� �a1a2
†N2� + �12�a1

†a2N2��

−
i

2
��12

� + �21��a1a2
†� , �B10�
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d

dt
�N1a1

†a2� = �1

2
�2�11

� + �11 + �22� − �3	1 + 	2���N1a1
†a2�

+ �1

2
��11 + �11

� � + 2	1��a1
†a2� +

1

2
�12i�a1

†2a2
2�

− i��12
� �N1N2� +

1

2
�21�N1

2� +
1

2
��12

� + �21��N1�

+
1

2
�12

� �N2� +
1

2
��12

� + �21�� , �B11�

d

dt
�N1a1a2

†� = �1

2
��11

� + 2�11 + �22
� � − �3	1 + 	2���N1a1a2

†�

+ ��11 + �11
� ��a1a2

†� −
i

2
�12

� �a1
2a2

†2�

− i��12�N1N2� +
1

2
�21

� �N1
2�

+
1

2
�2�12 + �21

� ��N1�� , �B12�

d

dt
�a1a2

†N2� = �1

2
��11 + 2�22

� + �22� − �	1 + 3	2���a1a2
†N2�

+ ��22 + �22
� ��a1a2

†� −
i

2
�21�a1

2a2
†2�

+ i��21
� �N1N2� +

1

2
�12�N2

2�

+
1

2
�2�21

� + �12��N2�� , �B13�

d

dt
�a1

†a2N2� = �1

2
��11

� + �22
� + 2�22� − �	1 + 3	2���a1

†a2N2�

+ �1

2
��22 + �22

� � + 2	2��a1
†a2� +

i

2
�21

� �a1
†2a2

2�

− i��21�N1N2� +
1

2
�12

� �N2� + ��12
� + �21��N2�

+
1

2
�21�N1� +

1

2
��12

� + �21�� , �B14�

d

dt
�a1

†2a2
2� = ���11

� + �22� − 2�	1 + 	2���a1
†2a2

2� − i��12
� �a1

†a2N2�

+ �21�N1a1
†a2� + ��12

� + �21��a1
†a2�� , �B15�

d

dt
�a1

2a2
†2� = ���11 + �22

� � − 2�	1 + 	2���a1
2a2

†2� + i��21
� �N1a1a2

†�

+ �12�a1a2
†N2� + 2��21

� + �12��a1a2
†�� , �B16�

d

dt
�N1

2� = ���11 + �11
� � − 4	1��N1

2� + �3

2
��11 + �11

� � + 2	1��N1�

+
1

2
��11 + �11

� � +
i

2
�12�2�N1a1

†a2� − �a1
†a2��

−
i

2
�12

� �2�N1a1a2
†� + �a1a2

†�� , �B17�

d

dt
�N2

2� = ���22 + �22
� � − 4	2��N2

2� + �3

2
��22 + �22

� � + 2	2��N2�

+
1

2
��22 + �22

� � +
i

2
�21

� �2�a1
†a2N2� − �a1

†a2��

+
i

2
�21�2�a1a2

†N2� + �a1a2
†�� . �B18�

where the coefficients �11, �22, �12, and �21 are listed in
Appendix A.
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