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An extended medium driven in a double Raman configuration generates Stokes and anti-Stokes fields that
are described by coupled parametric oscillator equations with solutions that depend on input boundary opera-
tors and quantum noise operators. We identify the conditions where the boundary operators can be the substi-
tute to the noise operators for describing two-photon cross correlation in forward and backward geometries.
These conditions include short sample and small decoherence between ground states �bc, and they are fulfilled
by the spontaneous Raman electromagnetic induced transparency scheme �weak pump with large detuning�.
We verify the correspondence between the results from boundary and noise operators analytically and show
that the correlation due to the boundary operators is typically smaller than that due to the noise operators. In
general the noise operators are required to obtain the correct correlation, especially when the control laser field
is weak and �bc is finite. Explanations for the findings are given based on the physics represented by the
boundary operators and noise operators. Similar conclusions are obtained for the Stokes and anti-Stokes
intensities.
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I. INTRODUCTION

In the previous paper I �Ref. �1��, we have derived ana-
lytical expressions for two-photon correlations for a double
Raman scheme with counterpropagating �backward� geom-
etry and showed that the cross correlation of anti-Stokes to
Stokes photons Gas

�2� computed using both noise operators and
boundary operators is able to give good quantitative agree-
ment with experimental data of Ref. �2�. Here, we extend the
theory to copropagating �forward� geometry �Fig. 1�a�� and
focus on comparing the results using the boundary operators
and those using the noise operators.

Theory which neglects the noise operators �3�, has been
widely used for studying the generation of photon pairs in
parametric amplifiers �4�, Raman schemes �5�, and optical
fibers �6�. This simpler theoretical approach is an approxima-
tion which avoids all the complications associated with the
noise operators. Recent interests in the generation of en-
tangled photon pairs for quantum communications have
spurred a lot of works on parametric amplifiers based on the
��2� parametric process. Although it is not always possible to
neglect the noise operators, many literature and works have
employed the noiseless approach to describe a variety of
quantum phenomena �7�, such as the generation of squeezed
light �8� and entangled states. Proper theoretical study of
quantum correlation in the amplifier which includes quantum
noise and spatial propagation is desirable, particularly for
determining the role of quantum noise and the validity of the
semiclassical theory.

We will show that the extensively used semiclassical

theory does not, in general, give the correct correlation pro-
file for an extended medium �length L� composed of many
atoms �with number density N� in the Raman-EIT �electro-
magnetic induced transparency� scheme �Fig. 1�a�� espe-
cially when decoherence �bc between levels b and c is finite
or the optical density NL� is large, where � is the scattering
cross section for the anti-Stokes. The situations for its valid-
ity are summarized in Fig. 1�b�. Only for certain parameters,
particularly when �bc=0 and NL� is small, qualitatively cor-
rect correlation can be obtained without the noise operators,
but simply using the boundary operators with the commuta-
tion relation of the field at the boundary. The results will be
verified analytically and the underlying physical reasons will
be explained.

Contrary to usual expectations, the contribution of the
noise operators to the correlation is typically larger than that
of boundary operators, especially for large optical density.
We use the quantum Heisenberg-Langevin-Maxwell theory
�1� to study the effects of quantum interference �via resonant
control field�, decoherence, and propagation �via optical den-
sity� on the role of noise operators and the nonclassical prop-
erties of photon pairs.

II. PARAMETRIC EQUATIONS FOR
FORWARD GEOMETRY

The coupled parametric equations for forward geometry
�copropagating Stokes and anti-Stokes� are �1�

� �

�z
+ Gs�Ŝ + KsÂ

† = F̄s, �1�
*Email address: bokooi73@yahoo.com

PHYSICAL REVIEW A 75, 053822 �2007�

1050-2947/2007/75�5�/053822�15� ©2007 The American Physical Society053822-1

http://dx.doi.org/10.1103/PhysRevA.75.053822


� �

�z
+ Ga�Â† + KaŜ = F̄a

†, �2�

with the effective noise operators

F̄s = �
x

MxĜx, F̄a
† = �

x

NxĜx, �3�

where Ŝ=gsÊs and Â=gaÊa for the Stokes Ês and anti-Stokes

fields Êa, respectively, with gs=Pdb /� and ga=Pac /� as the

coupling strengths; Ĝx=�−�
� �ei�x�z,t�F̂x�z , t��ei�tdt �x

=ac ,ad ,bc ,bd� are the Fourier transforms of the noise op-
erators in the Heisenberg-Langevin equations with �x�z , t�
=kxz−�xt as the rapid varying phases. The microscopic ex-
pressions for Gs, Ks, Ga, Ka, Mx, and Nx in Eqs. �1�–�3�, are
given in Appendix A.

The coupled equations are the same as for backward ge-
ometry except that � 	 �z appears in Eq. �2� instead of − �

�z .

The effective noise operators F̄s and F̄a
† are the quantum

seeds or driving “forces” to both fields due to quantum fluc-
tuations of atomic ensembles in the extended medium. As we
shall see, it incorporates dissipations via fluctuation-
dissipation theorem and the Einstein’s relation �9�.

For a sufficiently short sample, the spatial derivative in
Eqs. �1� and �2� is negligible. These equations become iden-
tical to the familiar form

d

dt
â�t� = �G −

1

2
��â�t� + 	�âin�t� , �4�

used to describe single mode linear amplifier �10�, and the
input-output theory by Walls and Milburn �11�, and Gardiner
�12�. Here, the “input operator” âin plays the role of the noise
operator and it satisfies the commutation relation for bosons.
Of course, the solution of Eq. �4� would not contain any
boundary operator. In vacuum, the input source 	�âin�t�
serves as the quantum seed.

III. SOLUTIONS OF COUPLED EQUATIONS
FOR OPERATORS

The general solutions of Eqs. �1� and �2� are composed of
two parts as

Êf�L,�� = B̂f�L,�� + N̂f�L,�� , �5�

where f =s �Stokes�, a �anti-Stokes�. The term B̂f contains

the boundary operators Ês�z=0,�� and Êa
†�z=0,��, and N̂f

contains the noise operators as shown in Eq. �3�. The physi-
cal significance of the operators is summarized in Fig. 1�c�.
Those combined solutions include the laser fields to all or-
ders and finite populations in upper levels beyond the adia-

batic approximation. Solutions without N̂f are considered as
semiclassical. We compare the cross correlation computed
from the solutions with the noise operators, solutions without
the noise operators, and solutions with both noise and bound-
ary operators.

A. Noise parts

The noise parts in the solutions, i.e., N̂s�L ,�� and N̂a
†�L ,��

are written as convoluted spatial integrals of the noise opera-
tors

N̂s�L,�� =
1

gs



0

L

�
s
s��,��F̄s�z,�� + 
a

s��,��F̄a
†�z,���dz ,

�6�

N̂a
†�L,�� =

1

ga
*


0

L

�
s
a��,��F̄s�z,�� + 
a

a��,��F̄a
†�z,���dz ,

�7�

with the response functions to the noise sources F̄s and F̄a
†

that are spatially nonlocal


s
s�x,�� = �q�x� − ��x�Ga, �8�


a
s�x,�� = ��x�Ks, �9�


s
a�x,�� = ��x�Ka, �10�
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FIG. 1. �Color online� �a� Double Raman scheme for forward
geometry �copropagating Stokes and anti-Stokes� where spontane-
ous Raman-EIT corresponds to 
p=
s� ��p and 
c=
a=0. �b�
Summary of the cases where the noise operators are required for

correct cross-correlation �Ês
†�t�Êa

†�t+��Êa�t+��Ês�t��. �c� The roles
and physical origins of the boundary operators and the noise
operators.
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a
a�x,�� = �q�x� − ��x�Gs, �11�

where �=L−z. The spatially dependent oscillatory functions
are

�q�x� =
q+e−q+x − q−e−q−x

q+ − q−
, �12�

��x� =
e−q+x − e−q−x

q+ − q−
, �13�

with q±=�+±�, �+= 1
2 �Ga+Gs� as the total gain �loss� and

�=	�+
2+KsKa−GsGa governs the oscillation strength.

In Eqs. �6� and �7�, the quantum noise operators act as the

seeds for the amplified quantum fields Êf. Please note that
the coefficients q± depend on the coupling constants gf.
Thus, in the limit of small sample length q+x→0, the solu-
tions Eqs. �6� and �7� become independent of gf and hence
the dipole matrix elements.

B. Boundary parts

The B̂s�L ,�� and B̂a�L ,�� are the solutions of Eqs. �1� and
�2� at the output boundary z=L, do not depend on the noise
operators, and they are expressed as a combination of the

boundary input operators or vacuum field operators Ês�0,��
and Êa

†�0,��,

B̂s�L,�� = 
s
s�L,��Ês�0,�� + 
a

s�L,��
ga

*

gs
Êa

†�0,�� , �14�

B̂a
†�L,�� = 
a

a�L,��Êa
†�0,�� + 
s

a�L,��
gs

ga
* Ês�0,�� , �15�

where 
 f
g�L ,�� �g , f =s ,a� are defined by Eqs. �8�–�11� with

x=L.

The solution B̂s�L ,�� contains the cross seeding anti-

Stokes operator at the boundary Êa
†�0,�� in addition to the

Stokes Ês�0,��, and similarly for the solution of the anti-
Stokes field operator. In the semiclassical solutions, the noise
operators are neglected and the boundary field operators be-
come the necessary seeds for the buildup of both the Stokes
and anti-Stokes signals.

C. Field commutation relation for vacuum fields

The macroscopic quantum field can be expanded in terms
of normal modes uf�z ,��,

Êf�z,�� = E fouf�z,��âf��� , �16�

where E fo=	 �� f

2�oV are the amplitudes, f =s ,a, and

uf�z,�� = eik���z + S�z,�� �17�

are the normal mode functions. The first term is the solution
of the homogenous coupled equations �without noise opera-
tors� and S�z ,�� is the part of the solution due to the noise

source. At the input boundary z=0, it is clear that S�0,��
=0. Thus, we have the normal and antinormal products for
the boundary operators,

�Êf
†�0,��Êf�0,���� = E fo

2 �âf
†���âf����� , �18�

�Êf�0,��Êf
†�0,���� = E fo

2 �âf���âf
†����� , �19�

which gives the commutation relation for vacuum fields

�Êf�0,��,Êf
†�0,���� = Cf��� − ��� , �20�

where Cf =
�� f�

�oAc as derived in Appendix D of Ref. �1�.
In the case where the input radiation is a coherent state


�� such as a laser, �âf
†���âf�����= 2�L

c 
�
2���−���. For a
thermal state we have �âf

†���âf�����= 2�L 	 c n̄f���−���,
where n̄f = �e���f −1�−1. In the experiment of Harris �14�, T
=150 �K corresponds to n̄f �0 and only the antinormal or-
dered term is finite.

D. Noise solutions for short sample

We show the connection between the solutions with noise
operators and with boundary operators. The key point is the
same functional form of the noise coefficients in Eqs. �6� and
�7� and the boundary coefficients in Eqs. �14� and �15� �15�.
In the limit of short sample Lq±� �1, the nonlocal spatial
dependence can be neglected, i.e.,


g
f ��,�� � 
g

f �L,�� . �21�

The 
g
f coefficients in the solutions with noise operators are

approximately local and can be factorized out from the spa-
tial integrations

N̂s�L,�� � 
s
s�L,��


0

L

F̄s�z,��
dz

gs
+ 
a

s�L,��

0

L

F̄a
†�z,��

dz

gs
,

�22�

N̂a
†�L,�� � 
a

a�L,��

0

z

F̄a
†�z,��

dz

ga
* + 
s

a�L,��

0

z

F̄s�z,��
dz

ga
* .

�23�

Now, we see that Eqs. �22� and �23� are of the same form as

Eqs. �14� and �15�, with �0
LF̄f�z ,��dz in place of Êf�0,��.

Even when the two terms �input field and noise parts� are of
the same form, they may be very different numerically.

E. Atomic commutation relation for noise operators

From the similarity between the solutions with the bound-
ary operators �Eqs. �14� and �15�� and the solutions with the
noise operators �Eqs. �22� and �23��, it is tempting to ask

whether the commutations ��0
LF̄f�z ,��dz ,�0

LF̄f�z� ,���dz��
look like Eq. �20�. From Appendix C, we find

��F̄f�z,��,F̄f
†�z�,����� = C̄ f�z,����z − z����� − ��� , �24�

and hence
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��

0

L

F̄f�z,��dz,

0

L

F̄f�z�,���dz��� = C̄ f
int������ − ��� ,

�25�

where C̄ f
int���=�0

LC̄ f�z ,��dz.
Equation �25� is the atomic noise commutation relation

which relates quantum fluctuations and dissipations of
atomic ensembles. The commutation relation is of the same
form as the field commutation relation Eq. �20� for the

boundary operators �Êf�0,�� , Êf
†�0,����=Cf���−���. But we

cannot conclude that the solutions with the noise operators
are identical to the solutions with boundary operators unless

the � dependence in C̄ f
int��� becomes unimportant, as we

show in Sec. V C.

IV. TWO-PHOTON CORRELATION

We now use the solutions for the field operators, Eqs.
�5�–�7�, �14�, and �15� to compute the cross correlations be-
tween the Stokes and anti-Stokes fields Gas

�2� and Gsa
�2�, and the

self-correlations Gss
�2� and Gaa

�2�.

A. Correlation due to thermal radiation

First, let us compute the correlation of the radiation in the
thermal background without the atomic medium. The corre-
lation can be calculated as

Gthe
�2��t,�� = 
�E†�t + ��E�t��
2 + �E†�t + ��E�t + ����E†�t�E�t��

= ��
k


gk
2n̄ke−i�k��2
+ ��

k

gk
2n̄k�2

, �26�

where n̄k= �ak
†ak�= �e���k −1�−1 is the mean number of pho-

tons in mode k. We find that the multimode thermal radiation
is also super-Poissonian with normalized correlation gthe

�2��0�
=2 and bunching gthe

�2�����2, in contrast to the single mode
thermal state where gthe

�2����=2 for all �.
However, the quantity of interest to experiment is the two-

photon cross-correlation function Gas
�2�

� �Ês
†�t�Êa

†�t+��Êa�t
+��Ês�t��, which quantifies to what extent the macroscopic
anti-Stokes field is correlated to the preceding macroscopic
Stokes field. The contribution of the thermal background to
the correlation is taken care of by the solutions Eqs. �14� and
�15�. This can be seen by omitting the noise contribution to
Eqs. �16� and �17�,

Êf�z,�� → E f�z,�� = Êf�z,�� = E fo���eik���zâf��� . �27�

By using the fact that the two modes are independent
�as

†aa�=0 we have

Gas0
�2� � �Es

†�t�Ea
†�t + ��Ea�t + ��Es�t��

= �Ea
†�t + ��Ea�t + ����Es

†�t�Es�t��

= 
gs
2n̄s
ga
2n̄a, �28�

which is independent of delay � since the thermal photons at
Stokes and anti-Stokes frequencies are independent. There-

fore, the normalized correlation corresponds to a coherent
state g0

�2����=1, which is different from gthe
�2�. Thus, the corre-

lation defined by Eq. �28� does not include the correlation of
the thermal photons in the background. This is fine since we
are only interested in the effects of thermal photons through
the interaction with atomic medium and not through direct
detection.

B. Correlations with only boundary operators

The solutions without noise operators Eqs. �14� and �15�
give the two-photon cross-correlation function

Gas
�2�b�L,�� � �B̂s

†�L,t�B̂a
†�L,t + ��B̂a�L,t + ��B̂s�L,t��

= 
�B̂a�L,��B̂s�L��
2 + Ia
b�L�Is

b�L� , �29�

and similarly the reverse correlation

Gsa
�2�b�L,�� � �B̂a

†�L,t�B̂s
†�L,t + ��B̂s�L,t + ��B̂a�L,t��

= 
�B̂s�L,��B̂a�L��
2 + Is
b�L�Ia

b�L� . �30�

The cross-correlation amplitude �B̂a�L ,��B̂s�L��, reverse-

correlation amplitude �B̂s�L ,��B̂a�L��, and intensities I f
b�L�

are obtained by straightforward calculations using the solu-
tions Eqs. �14� and �15�, the commutation relation Eq. �20�,

and the inverse Fourier transforms � B̂a�t�

B̂a
†�t� �=�−�

� � B̂s���

B̂a
†��� �e−i�td�.

Those expressions are given by

�B̂a�L,��B̂s�L�� = 

−�

� �Ca�n̄a + 1�
ga

*

gs

a

a*�L,��
a
s�L,��

+ Csn̄s

gs
*

ga

s

a*�L,��
s
s�L,���ei�� d�

2�
,

�31�

�B̂s�L,��B̂a�L�� = 

−�

� �Can̄a

ga
*

gs

a

a*�L,��
a
s�L,��

+ Cs�n̄s + 1�
gs

*

ga

s

a*�L,��
s
s�L,���e−i�� d�

2�
,

�32�

where n̄f = �e���f −1�−1 �f =s ,a� are the mean photon numbers
and I f

b�L�=Is
b�L ,�=0� are obtained from the self-correlation

amplitudes

Is
b�L,�� = �B̂s

†�L,��B̂s�L��

= 

−�

� �Ca�n̄a + 1��ga
*

gs

a

s�L,���2

+ Csn̄s

s
s�L,��
2�ei�� d�

2�
, �33�
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Ia
b�L,�� = �B̂a

†�L,��B̂a�L��

= 

−�

� �Cs�n̄s + 1�� gs

ga
*
s

a�L,���2

+ Can̄a

a
a�L,��
2�e−i�� d�

2�
. �34�

The finiteness of the correlation amplitudes in Eqs. �31�
and �32� is due to the noncommutivity of the input Stokes
and anti-Stokes operators at the boundary, i.e., via Cf. In the
absence of thermal photons n̄f =0, Eq. �31� depends only on

a

s�L ,�� and 
a
a�L ,��. So, the cross correlation in Gas

�2�b is

attributed to the boundary operator Êa�0,�� for the anti-
Stokes. By the same arguments, the reverse correlation in

Gsa
�2�b is due to the boundary operator Ês�0,�� for the Stokes.
Equations �29� and �30� are used to compute the normal-

ized correlations gas�sa�
�2�b �L ,���Gas�sa�

�2�b �L ,�� /Is
b�L�Ia

b�L� in

Figs. 2–4.

C. Correlations with only noise operators

The cross and reverse correlations due to the noise opera-
tors alone are defined like Eqs. �29� and �30�, respectively,

except that B̂ is replaced by N̂,

Gas
�2�n�L,�� = 
�N̂a�L,��N̂s�L��
2 + Is

n�L�Ia
n�L� , �35�

Gsa
�2�n�L,�� = 
�N̂s�L,��N̂a�L��
2 + Is

n�L�Ia
n�L� . �36�

Here, the cross-correlation amplitudes �N̂a�L , t

+��N̂s�L , t��, reverse-correlation amplitude �N̂s�L , t

+��N̂a�L , t��, and the intensities I f
n�L� due to the noise op-

erators are given by �13�

�N̂a�L,��N̂s�L�� = ei
kL 2�

AN



−�

�

ei����L,��d� , �37�

�N̂s�L,��N̂a�L�� = ei
kL 2�

AN



−�

�

e−i����L,��d� , �38�

with the phase mismatch 
k and the intensities I f
n�L�

=I f
n�L ,�=0� are obtained from the self-correlation ampli-

tudes

Is
n�L,�� = �N̂s

†�L,��N̂s�L�� =
2�

AN



−�

�

ei��S�L,��d� , �39�

Ia
n�L,�� = �N̂a

†�L,��N̂a�L�� =
2�

AN



−�

�

e−i��A�L,��d� .

�40�

Thus, the above correlation amplitudes are the Fourier trans-
forms of the spectral functions

Noise only

i) Single atomi) Single atom

Without noise

ii) Noii) No decoherencedecoherence,, ��bcbc = 0= 0

��ac ��ac ��ac

b) �c = 4.2�ac

a) �c = �ac

iii) Withiii) With decoherencedecoherence,, ��bcbc = 0.6= 0.6��acac

Noise onlyWithout noise

��ac ��ac

��ac ��ac ��ac
��ac ��ac

FIG. 2. �Color online� Correlations with relatively small dipole moment �=5�10−30 Cm for three categories: �i� G1 atom
�2� for single

Raman-EIT atom, �ii� extended medium in forward geometry without decoherence �bc=0, and �iii� extended medium in forward geometry
with decoherence �bc=0.6�ac. The normalized correlation gas

�2�b=Gas
�2�b�L ,�� /Is

b�L�Ia
b�L� is obtained with a commutation relation for the

operator at boundary but without the noise operator and gas
�2�n=Gas

�2�n�L ,�� /Is�L�Ia�L� is obtained with only noise operators and no zero
boundary operators. Other parameters are 
=−7.5�ac, �p=0.2�ac, and N�L=0.528 �L=1.5 mm and N=8�1016 m−3�. As the control field
increases from �a� �c=�ac to �b� �c=4.2�ac, the correlation with the boundary operator gives the correct result, in close quantitative
agreement with the normalized correlation using only noise operators.
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��L,�� = �
x,x�



0

L

2D̃x,x�
n �z�Cx

a*��,��Cx�
s ��,��dz , �41�

��L,�� = �
x,x�



0

L

2D̃x,x�
an �z�Cx

s��,��Cx�
a*��,��dz , �42�

S�L,�� = �
x,x�



0

L

2D̃x,x�
n �z�Cx

s*��,��Cx�
s ��,��dz , �43�

A�L,�� = �
x,x�



0

L

2D̃x,x�
an �z�Cx

a��,��Cx�
a*��,��dz , �44�

where x ,x�=ac ,ad ,bc ,bd. The expressions for 2D̃
x,x�
n�an��z , t�

�2D
x,x�
n�an��z , t�e−i�x�z,t�ei�x��z,t�, the slowly varying normal �an-

tinormal� ordered diffusion coefficients can be obtained from

Einstein’s relation �9� d
dt �x̂ŷ�=2D

x,x�
n�an��z , t�+ �x̂Ây�+ �Âxŷ� and

a pair of Heisenberg-Langevin equations d
dt q̂�z , t�= Âq�z , t�

+ F̂q�z , t� ,q=x ,y. Equations �35�–�44� imply that the ampli-
fied quantum fluctuations contribute to the two-photon cor-
relation via the diffusion coefficients.

The Cx
f coefficients �f =s ,a� in Eqs. �41�–�44� are defined

as

Cx
s��,�� =

1

gs
�
s

s��,��Mx��� + 
a
s��,��Nx���� , �45�

Cx
a��,�� =

1

ga
* �
a

a��,��Nx��� + 
s
a��,��Mx���� , �46�

with Mx��� and Nx��� given by Eqs. �A5� and �A6�.
The adjoint of Eq. �37� can also be expressed in an alter-

native form 2�ei
kL

AN �x,x��0
L2D̃x,x�

n �z��−�
� C̃x

a*�� , t��C̃x�
s �� ,�

− t��dt�dz using the convolution theorem. If the spatial varia-
tions of the populations and the coherences are much slower

than G f ,K f, the diffusion coefficients D̃
x,x�
n�an� can be separated

from the functions Cx
s ,Cx

a in the spatial integrals and Eqs.
�41�–�44� can be integrated analytically.

boundary noise boundary+noise boundary noise boundary+noise

boundary noise boundary+noise boundary noise boundary+noise

Optically Thin, NoOptically Thin, No DecoherenceDecoherence Optically Thin, WithOptically Thin, With DecoherenceDecoherence

Optically Thick, NoOptically Thick, No DecoherenceDecoherence Optically Thick, WithOptically Thick, With DecoherenceDecoherence
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FIG. 3. �Color online� Cross correlation gas
�2� and the reverse correlation gsa

�2� computed with boundary �without noise� operators, noise
operators only, and both boundary and noise operators for forward geometry. The four cases involve, with decoherence �bc=0.6�ac, no
decoherence �bc=0, short sample N�L=1, and long sample N�L=11. Other parameters are 
=−7.5�ac, �p=0.4�ac, and �c=4.2�ac. We
have computed the entire results for backward geometry as well �based on Ref. �1�� and find that there is no noticeable difference from the
forward case for the cross correlation and reverse correlation, even for a long sample.
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For comparison with gas�sa�
�2�b , the normalized correlations

due to the noise operators only gas�sa�
�2�n �L ,��

�Gas�sa�
�2�n �L ,�� /Is

n�L�Ia
n�L� are plotted in Figs. 2–4.

D. Total cross correlation

The total cross correlation Gas
�2� is obtained by summing up

Gas
�2�b, Gas

�2�n, and the terms with combinations of the boundary
operators and noise operators,

Gas
�2��L,�� � �Ês

†�L,t�Êa
†�L,t + ��Êa�L,t + ��Ês�L,t��

= 
�B̂a�L,��B̂s�L�� + �N̂a�L,��N̂s�L��
2 + Is�L�Ia�L� ,

�47�

where the total intensities are I f�L�=I f
b�L�+I f

n�L�.
Similarly, we have the reverse correlation

Gsa
�2��L,�� � �Êa

†�L,t�Ês
†�L,t + ��Ês�L,t + ��Êa�L,t��

= 
�B̂s�L,��B̂a�L�� + �N̂s�L,��N̂a�L��
2 + Is�L�Ia�L� ,

�48�

and the self-correlations

Gf f
�2��L,�� � �Êf

†�t�Êf
†�t + ��Êf�t + ��Êf�t��

= 
I f
b�L,�� + I f

n�L,��
2 + I f�L�2. �49�

The normalized total correlations that include both the
boundary and noise operators can be computed from
gas�sa�

�2� �L ,���Gas�sa�
�2� �L ,�� /Is�L�Ia�L�.

V. CORRESPONDENCE BETWEEN BOUNDARY
AND NOISE PARTS

In the limit where the decoherence vanishes �bc→0, large
control field �c, and sufficiently short sample q±L�1 �q±

��a�ga�a /�ac�N� /2�, Fig. 2 shows that the normalized
correlation gas

�2� for the Raman-EIT scheme computed with
boundary operators and with noise operators are in excellent
quantitative agreement. This motivates further analysis to
understand such a correspondence.

A. Identical correlation for Raman-EIT and short sample

Here, we show that the correlation Eq. �35� obtained us-
ing the noise operators is also identical to the correlation Eq.
�29� obtained using the boundary operators. For the present
�Raman-EIT� scheme, the parameters correspond to the off-

boundary noise boundary+noise boundary noise boundary+noise

boundary noise boundary+noise boundary noise boundary+noise

Optically Thin, NoOptically Thin, No DecoherenceDecoherence Optically Thin, WithOptically Thin, With DecoherenceDecoherence

Optically Thick, NoOptically Thick, No DecoherenceDecoherence Optically Thick, WithOptically Thick, With DecoherenceDecoherence

)2(

asg

)2(

sag

)2(

asg

)2(

sag

)2(

asg

)2(

sag

)2(

asg

)2(

sag

FIG. 4. �Color online� Same as Fig. 3 except with a smaller control Rabi frequency �c=0.2�ac. Again, we do not show the entire results
for backward geometry since they are indistinguishable from the above figures.
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resonant weak pump field and strong control field, such that


, 
�c
 � ���, 
�p
 . �50�

For these parameters, the excited populations and the coher-
ence are negligible �dd

st ,�aa
st , �̃ab

st �0. In addition, for a negli-
gible mean number of thermal photons and dephasings such
that �db+�bc=�dc, the dominant terms in the nonvanishing
diffusion coefficients are are simply the normal ordered co-
efficients

2D̃ac,ac
n � 2�ac�cc

st and 2D̃bc,bc
n � 2�bc�cc

st , �51�

where 2D̃ac,ad
n =2�D̃ad,ac

n �*��ad�̃dc
st are neglected since they

are about more than ten times smaller. Hence, the spectral
function Eq. �41� to the correlation amplitude due to the
noise operator can be written as

��L,�� �
2D̃ac,ac

n

gags



0

L

�
a
a*��,��Nac

* ��� + 
s
a*��,��Mac

* ����

��
s
s��,��Mac��� + 
a

s��,��Nac����dz

+
2D̃bc,bc

n

gags



0

L

�
a
a*��,��Nbc

* ��� + 
s
a*��,��Mbc

* ����

��
s
s��,��Mbc��� + 
a

s��,��Nbc����dz . �52�

Before we proceed with Eq. �52�, note that for short sample
�N�L�2� the intensities would be small and we may neglect
I f

b�L� in Eq. �29�. By taking n̄f =0 in Eq. �31� we obtain the
correlation due to the boundary operators

Gas
�2�b � �Ca

ga
*

gs



−�

�


a
a*�L,��
a

s�L,��ei�� d�

2�
�2

. �53�

Since Gas
�2�b depends only on two �out of four� coefficients,

i.e., 
a
a* and 
a

s , the sufficient conditions to obtain a corre-
spondence between Gas

�2�b in Eq. �53� and Gas
�2�n

�
�N̂a�L ,��N̂s�L��
2 via Eqs. �52� and �37� �1� are Condition
1.


Mac���
 � 
Nac���
 or 
�s
 � 1. �54�

�2� Condition 2.


Mbc
 � 
Nbc


or


�a�c
*�s − �s�p
 � 
�s�p�a − �a�c

*
 . �55�

Note that for �bc=0, we have D̃bc,bc
n =0 and the condition Eq.

�55� that involves �a does not apply. An analysis of these
conditions is given in Appendix B.

The two conditions allow us to neglect 
Mac���
 and 
Mbc

in Eq. �52� which simplifies to

��L,�� �
1

gags



0

L

����
a
a*��,��
a

s��,��dz , �56�

where

���� = 2D̃ac,ac
n 
Nac���
2 + 2D̃bc,bc

n 
Nbc���
2

� 2�cc
st 
�a���
2��ac + �bc� �c

*

Tbc���
�2� . �57�

Again, for sufficiently short medium Lq±�1, the local ap-
proximation Eq. �21� holds and by taking �cc

st �1 and �bc
=0 in Eq. �51� we have

��L,�� �
L�2�ac�

gsga

�a���
2
a

a*�L,��
a
s�L,�� . �58�

The 
�a���
2 has two symmetric peaks with value 
�a,max
2
that coincide with the peaks of the function antisymmetric
function 
a

a*�L ,��
a
s�L ,��. For large �c, we find that


�a,max
2
a
a*�L ,��
a

s�L ,�� is a good approximation to

�a���
2
a

a*�L ,��
a
s�L ,��. Therefore we may put �a���

�ga
*�a

* /�ac in Eq. �58�. Finally, from Eqs. �37� and �35� we
obtain the noise part of the cross correlation

Gas
�2�n � � 4�L
�a
2

AN�ac

ga
*

gs



−�

�


a
a*�L,��
a

s�L,��ei��d��2

,

�59�

which is identical to Eq. �53�, the result using boundary op-
erators.

Thus, under appropriate conditions of �a� negligible popu-
lations in the excited levels, �b� vanishing decoherence be-
tween the grounds levels, and �c� short sample, Eq. �35� is
qualitatively identical to Eq. �29�, i.e., the correlation profile
obtained using the boundary operators coincide with that us-
ing noise operators. As seen from the solutions Eqs. �6�, �7�,
�14�, and �15� of the coupled parametric oscillator, in general
there is no correspondence between the noise part and the
boundary part because of the spatially nonlocal noise coeffi-
cients and the fundamental distinction between the noise
�atomic� operators and the boundary �field� operators. Thus,
the above correspondence is a unique property of the two-
photon Raman-EIT amplifier. The correspondence means
that the role of quantum noise can be effectively replaced by
the field operators at the boundary. Here the noise operators
are not needed for correct qualitative description, and this
provide a significant simplification in the calculations involv-
ing correlations.

B. Conditions for Re �f , Im �f™1

It is not possible to obtain simple analytical constraints
for correspondence from the expressions of � f in Eqs. �A7�
and �A8�. We plot the real and imaginary parts of �s and �a
in Fig. 5. We can identify three resonances for �s at �a� +�c,
�b� −�c, and �c� −
. There are also three resonances for �a
at �a� −
+�c, �b� −
−�c, and �c� 0. A closer look at Fig.
5�b� reveals that Re � f are “dispersivelike” while Im � f are
“absorptivelike.”

For sufficiently large detuning �


 30�ac� and large
field ��c 10�ac�, the peaks of the resonances in Fig. 5�b�
are mostly less than 0.1. Thus, the magnitudes of Re �a and
Im �a are negligible when the control field �c and detuning

 are sufficiently large even if the decoherence �bc is finite,
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and it is possible to obtain the correspondence between the
results with noise operators and with boundary operators.
This is supported by the analysis in Appendix B.

For �bc=0 �Fig. 5�a��, there are sharp peaks around �
�0 in �s. The Re �s goes like � /� and Im �s�����. Fortu-
nately, both are highly confined around a very narrow region
around ��0 and fall off rapidly as 
�
 increases. Actually, for
�bc=0 and �=0, the expressions of � f in Eqs. �A7� and �A8�
give �s=�c /�p

*, �a=�p
* /�c, and �s�a=1. But this particular

point gives no contribution to the integration over �. The
effects of finite �bc in Fig. 5�b� are �a� the removal of the
narrow peaks and �b� smaller peaks at resonances. Thus,
when �bc=0 �no decoherence� the correspondence is still
possible for the Raman-EIT scheme.

For the parameters �bc�0.6�ac ,�p=0.4�ac ,
=−7.5�ac
used in the experiment of Balic et al. �2�, the peaks in Fig.

5�a� are comparable to 1, so � f cannot be neglected. The
detuning 
 is not large enough to satisfy Eq. �50� for the
Raman-EIT scheme. So, the noise operators are required to
obtain agreement with their results, as done in Ref. �1�.

C. Identical fields for Raman-EIT and short sample

At this point, we are ready to proceed from Sec. III E to
show the correspondence between Eqs. �6� and �7� and Eqs.
�14� and �15� for the Raman-EIT scheme. Under the condi-
tions that give Re � f , Im � f �1 �as discussed in in Sec. V B�,
the commutations Eq. �C3� simplify to

�F̄f�z,��,F̄f
†�z�,���� � �F̂f�z,��,F̂f

†�z,��� . �60�

Thus, Eqs. �C4� and �C5� give C̄s�z ,���Cs�z ,�� and the co-

efficient in Eq. �25� becomes C̄f
int�����0

LC f�z ,��dz.

FIG. 5. �Color online� The real and imaginary parts of �s and �s as a function of Fourier frequency � for �a� �bc=0.6�ac, 
=−7.5�ac and
�b� with decoherence �bc=0.6�ac and larger detuning 
=−30�ac, with �p=0.4�ac.
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Equation �51� simplifies the coefficients �Eqs. �C8� and
�C9�� for the commutation relations Eq. �C7� to

Cs��� � −
�2��3

AN
��s���

�p

Tbc���
�2

2�bc�cc
st , �61�

Ca��� �
�2��3

AN

�a���
22��ac + �bc� �c

Tbc���
�2��cc

st . �62�

For �bc=0, Eq. �62� gives the coefficient in Eq. �25� as

C̄a
int��� �

L�2��3

AN

�a���
22�ac�cc

st . �63�

As shown in the discussion below Eq. �58�, the � dependence

in �s��� is immaterial for the Raman-EIT scheme. Thus C̄a
int

becomes effectively like the constant Cf in the commutation
relation Eq. �20� for the boundary operators. This shows the

correspondence between the noise part �N̂f� of the fields and

the boundary operator part �B̂f�.

D. Ratio of noise correlation amplitude to boundary
correlation amplitude

By comparing gas
�2�n and gsa

�2� the results obtained with
noise operators only and those obtained with both boundary
and noise operators in Figs. 3 and 4, we find that the contri-
bution of the input boundary operators is small compared to
the contribution of the noise operators. This can be verified
analytically from Eqs. �59� and �53�, which give the approxi-
mate ratio Gas

�2�n /Gas
�2�b�
 3

2!a
2NL

"a

�ac

2 for the Raman-EIT

scheme, where "a=
�2�a

3

3��o�c3 and !a=2�c /�a.
The ratio can be obtained in a different way. By using

expressions for the two-photon amplitude in Sec. IV and

inserting 2D̃n�2�ac, max�Mx ,Nx���a�gaN�c�o�a
/2�ac,

and neglecting the Stark shift �a, we find the ratio of the
correlation amplitudes of the noise operators to that of the
boundary operators for the Raman-EIT scheme as

r =
�N̂a�L,t + ��N̂s�L,t��

�B̂a�L,t + ��B̂s�L,t��

�
�2�/AN��2D̃n���a/ga�2L

��� f/��ocA�

= N!a
2L

3"a

2�ac
, �64�

which is the same as the result using Eqs. �59� and �53�.
By using an amplifier length of 1 mm, !�400 nm, and

dilute gas density N�1017 m−3, we find r�50. This shows
that the contribution of the boundary operators is small com-
pared with the noise operators. This can be easily understood
from the fact that the noise operators account for the quan-
tum fluctuations in the entire medium while the boundary
operators include only the quantum fluctuations at the input
boundary. Equations �35�–�44� imply that the amplified
quantum fluctuations contribute to the two-photon correla-

tion via the diffusion coefficients. This shows the importance
of the atom-fields fluctuations to the nonclassical two-photon
correlations.

It is interesting to note that if a shorter transition wave-
length �such as ultraviolet� were used in the atomic scheme,
r�1 and the terms due to the boundary operators would be
significant. Here, we have considered the propagation along
the z axis in a thin cylindrical medium with Fresnel number
F=A /!L#1, where the transverse effects such as diffraction
can be neglected.

VI. DISCUSSIONS

Noise vs. no noise. In Fig. 2, we compare the correlations
for �i� single atom �16�, �ii� without noise operators �from
Sec. IV B�, and �iii� with noise operators only �from Sec.
IV C�. For an optically thin sample and in the absence of
decoherence �bc, the results for the three cases are in good
qualitative agreement. However, quantitative agreement �in
normalized gas

�2�� is obtained when �c is sufficiently large
�also see Fig. 3�. When �bc is finite, the results with and
without noise do not agree, especially when �c is small.
Since the noise part �and not the boundary part� gives the
antibunching, here, we may say that the quantum fluctuations
of the atomic ensembles are responsible for the nonclassical
effect of antibunching. Also, qualitative agreement is ob-
tained only for sufficiently large �c. A similar trend is found
in an optically thick sample �see Figs. 3 and 4�.

Physics behind boundary and noise operators. The

boundary operators Êf�0,�� are characterized by the quan-
tum fluctuations of vacuum fields at the input boundary of

the medium, while the noise operators F̂x are determined by
the quantum fluctuations of atoms and vacuum fields in the
entire medium. The source of fluctuations in the medium is
not simply vacuum noise of the form �kgk

j âk�0�eik·re−i�kt but
also characterized largely by a combined vacuum noise �via
âk�0�� and atomic noise �via �̂xy�0�� associated with the
atomic populations and decoherences. Thus, for sufficiently

large optical density the effects of F̂x would become impor-
tant and the correlation at the output medium may differ
substantially from that of a thin medium or single atom case.

Fluctuation-dissipation and vacuum fluctuations. When
one goes through the derivation of the quantum Langevin
equations, one sees that they contain atomic fluctuations �via
the noise operators� and dissipations �via decay rates and
decoherences� due to the vacuum fluctuations of the fields.

The noise parts N̂f contain fluctuations and dissipations of

the atoms, but the boundary parts B̂f describe only atomic
dissipations �via 
 f

g� and vacuum fluctuations. Thus, there is
no question that both are complementary and necessary to
provide the ultimate truthful description. One might argue
that the theory without noise is inconsistent with the
fluctuation-dissipation theorem and therefore would never
yield the correct result. Whenever the boundary operators
give results that agree qualitatively with the noise operators,
they provide the same underlying physics to the correlation
as the quantum noise. Here, the semiclassical theory with
only boundary parts is a sufficient substitute to the noise
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parts N̂f which can be neglected. However, this does not
mean that there are no fluctuations which always accompany
dissipations, in accordance with the fluctuation-dissipation
theorem. In other words, sufficient physics can be obtained
without the noise operators when the atomic fluctuations in
the medium and the vacuum fluctuations give essentially the
same effects to the correlation, as in the case of zero deco-
herence �bc=0, large �c, and small optical density �N�L
�1�.

Semiclassical or quantum. In the commutation relation
�20� for the input boundary operators, note that quantum me-
chanics enters through � in Cf and quantum electrodynamics
�QED� via the bosonic commutation relation. Therefore, the
solutions of the boundary parts alone can be considered as a
QED theory instead of a semiclassical theory. However, the
boundary parts describe only the quantum fluctuations of the
vacuum fields �in the absence of external inputs� and not the
fluctuations in the atomic medium. Thus, solutions based on
the boundary parts alone are incomplete QED theory.

Effects of decoherence �bc. Unlike the coherences with
dipole-allowed transitions �ac, �dc, �ab, �db, and �ad, the ori-
gin of the decoherence �bc is not due to dissipation. But it
contributes to the atom-field fluctuations and therefore, can
significantly affect the correspondence between the correla-
tions with the boundary operators and those with the noise
operators.

The decoherence �bc and �c have opposite effects on the
correlation. When the atoms are transferred to level b, they
need to be pumped to level a fast enough by �c before they
are decohered by �bc. This explains the smaller correlation
for finite �bc and the larger correlation for larger �c in Fig. 2.
Thus, a large control field would minimize the effects of
atomic fluctuations via �bc and consequently dwarfs the dis-
tinctions between the fluctuations of the vacuum fields and
the atom fields in the medium. Decoherence �bc also tends to
reduce the correlation time between the Stokes and anti-
Stokes �Figs. 2–4�, as well as the maximum signals gener-
ated via parametric process, i.e., coherent Raman scattering
�Figs. 6�c� and 6�d��. When the pump and control fields are

a) b)

��bcbc=0=0
NN

��
L

=
2

0
L

=
2

0
��bcbc=0.6=0.6��acac

NN
��

L
=

1
L

=
1

c) d)

FIG. 6. �Color online� Intensities of the Stokes and anti-Stokes obtained with noise operators Is
n ,Ia

n and with boundary operators Is
b ,Ia

b

for forward geometry. �a� Small optical density N�L=1 and without decoherence �bc=0. �b� Small optical density and with decoherence. �c�
Large optical density and without decoherence. �d� Large optical density and with decoherence. Other parameters are 
=−7.5�ac and �p

=0.4�ac. The intensities without noise operators give quite good qualitative results for zero decoherence even if the optical density is large.
For small optical density, the intensities increase rapidly with control field but saturate at a small field. In contrast, for large optical density
the intensities drop rapidly before saturation. The onset of saturation is larger when �bc is finite.
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comparable �Fig. 6�, the amplified quantum fields become
classically correlated �bunching� in the presence of decoher-
ence �bc. For sufficiently large optical density, the antibunch-
ing dip apears at a finite �. This is due to the appreciable EIT
group delay of the anti-stokes when the control field is weak.

Effects of larger dipole moment. In Fig. 3, the parameters
are for 87Rb which give a larger transition dipole moment
than in Fig. 2. This gives the larger coupling strengths gs, ga,

and optical thickness N�L=

�ac
2�a

�c�o�ac
NL= �2gs�s�L /�ac. The in-

crement of 
�ac
 has the same effect as NL except that it
changes quadratically. The effects are: �1� larger finite corre-
lation at �=0 and �2� smaller correlation time. For a single
particle, gas

�2� would be zero at �=0. The finite correlation at
�=0 is a feature in common with the resonance fluorescence
process of more than one atom �17�. By comparing Figs. 2
and 4 for gas

�2�, we see that the larger dipole moment of 87Rb
leads to a smaller antibunching slope at �=0, which is also
accompanied by a larger value of gas

�2���=0� and a smaller
peak of gas

�2�.
Reverse correlation. The finite value of the reverse corre-

lation gsa
�2� in Fig. 4 is a propagation effect of the extended

medium. When �c is large, anti-Stokes photons are gener-
ated shortly after the emission of Stokes photons. The anti-
Stokes photons are correlated to the Stokes instead of other-
wise, so gsa

�2� is negligible as shown in Fig. 3.
In extended medium, the anti-Stokes photons may build

up �to some extent� into a weak quasicoherent field, referred
to as �a. When �c is small, it creates �together with �a� a
small coherence �bc which is driven by the pump field to
produce the Stokes photons. Here, the Stokes follow the anti-
Stokes, giving a finite value of gsa

�2�. For �c��p, the gsa
�2�

shows antibunching with the period of oscillations about
�sa�2� / 


. A dramatic result is found in Fig. 6 for opti-
cally thick medium. Here, the reverse correlation with the
boundary operators and with the noise operators show dis-
tinct contradictory features; antibunching and bunching, re-
spectively. This is the best situaltion for experimental test of
the role of noise operators. We also observe that a larger gsa

�2�

is accompanied by a smaller gas
�2� and vice-versa. The reverse

correlation in Fig. 4 should not be taken too seriously be-
cause of the small values. For weak control field in Fig. 6,
the noise correlation becomes bunching when the optical
density increases.

Variations with control field. When �c is weaker than �p

the profile of gas
�2� is dominated by exponentially varying

functions instead of oscillations �Fig. 4�, but antibunching
remains. As the control field increases �compare Figs. 2�a�
and 2�b��, the nonclassical correlation continues to increase
even though the individual Stokes and anti-Stokes intensities
become saturated. For �bc=0, the onset of saturation is de-
termined by the pump, i.e., �c

sat��p=0.4�ac �Figs. 6�a� and
6�c��. The �c

sat increases in the presence of decoherence
�Figs. 6�b� and 6�d��. This saturation is due to the fact that
the intensity of the anti-Stokes is limited by the population in
level b, which is limited by the weak and largely detuned
pump. The intensity of the Stokes is also saturated since it is
determined by the coherence �bc produced by the control
field and the anti-Stokes field.

For large optical density and �bc=0 �Figs. 6�c��, both
fields are amplified to a maximum far above the saturation
level when �c��p /2 and fall off rapidly to a saturated
level. This interesting effect is well known and can be used
as a switch.

As expected for zero decoherence �bc=0, the intensities
obtained from the boundary operators are qualitatively cor-
rect �Figs. 6�a� and 6�c��. In the presence of decoherence
�Figs. 6�b� and 6�d�� the results without noise operators give
no agreement, especially for optically thick medium. Here,
the Stokes is amplified only moderately above the saturation
level while the anti-Stokes hardly rises beyond the saturation
level. The decoherence �bc reduces the contribution of the
four-wave mixing process to the fields.

VII. CONCLUSIONS

We have compared the two-photon correlations obtained
using the boundary operators with those using the noise op-
erators. Under certain conditions, the results obtained by ne-
glecting the noise operators can be justified even though this
is not valid in general. It is found that the cross correlation
obtained with and without noise operators are qualitatively
identical only when the optical density is small N�L�1 and
decoherence �bc=0 for forward and backward geometries.
This correspondence is a unique property of the parametric
amplifier with certain conditions, particularly for the sponta-
neous Raman-EIT scheme. The correspondence also exists
when the decoherence is finite �bc�0 provided the control
field �c is large. We obtained the ratio Gwith noise

�2� /Gno noise
�2�

��N!2L�2 in the absence of external input quantum fields,
which shows that the contribution of quantum noise in the
medium to the correlation is much larger than the contribu-
tion of the vacuum noise via the boundary input operators.
We discussed the physics represented by the boundary opera-
tors and the noise operators that are useful to explain the
correspondence and understand the role of noise operators in
connection with the fluctuation-dissipation theorem. We also
compared the results with and without the noise operators for
the reverse correlation, and the intensities of the Stokes and
anti-Stokes fields.

Note added. Recently, a nice paper appeared which in-
cludes the noise operators to describe the correlations in the
optical fiber �18�.
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APPENDIX A: COEFFICIENTS IN COUPLED EQUATIONS

The coefficients in Eqs. �1�–�3� are given by

Gs = −
�s

Isa
wbb

st + i�Mbc�̃cd
st − Mad�̃ba

st � − i
�

c
, �A1�

Ga = −
�a

Isa
wcc

st + i�Nad�̃dc
st − Nbc�̃ab

st � − i
�

c
, �A2�
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Ks =
�a�s

Isa
wcc

st + i�Mad�̃dc
st − Mbc�̃ab

st � , �A3�

Ka =
�s�a

Isa
wbb

st + i�Nbc�̃cd
st − Nad�̃ba

st � , �A4�

with Isa=1−�s�a,

Mac =
i�a�s

Isa
, Mad =

�s�c − �a�p
*�s

IsaTad���
,

Mbc =
�a�c

*�s − �s�p

IsaTbc���
, Mbd =

i�s

Isa
, �A5�

Nac = −
i�a

Isa
, Nad =

�a�p
* − �s�c�a

IsaTad���
,

Nbc =
�s�p�a − �a�c

*

IsaTbc���
, Nbd = −

i�s�a

Isa
, �A6�

�s =
�s

ga
*�a

*�c�p� 1

Tbc���
+

1

Tad���
� , �A7�

�a =
�a

gs�s
�c

*�p
*� 1

Tbc���
+

1

Tad���
� , �A8�

and the effective absorption coefficients

�s =
gs�s

Tdb
* ��� + �s

, �a =
ga

*�a
*

Tac��� + �a
, �A9�

with the power broadening frequencies

�s =

�c
2

Tad���
+


�p
2

Tbc���
, �a =


�p
2

Tad���
+


�c
2

Tbc���
, �A10�

the propagation constants �s=N�bdc�o�s /2, �a
=N�cac�o�a /2, the complex rates Tx���=Tx− i�, and the
steady state �superscript “st”� density matrix elements �̃��

st

= �p̂��
st ���� with wcc

st =�aa
st −�cc

st , wbb
st =�dd

st −�bb
st .

APPENDIX B: CONDITIONS FOR NOISE-BOUNDARY
OPERATORS CORRESPONDENCE

The two conditions Eqs. �54� and �55� that give the
correspondence between the correlation with boundary
operators and that with noise operators are elaborated
here.

1. Condition 1

The condition Eq. �54� can be written as

� Tad��� + Tbc���
Tbc����Tdb

* ���Tad��� + Ic� + Tad���Ip
�2

IcIp � 1, �B1�

where Ip,c= 
�p,c
2. We learn from Fig. 5 that the peaks of
Im �s occur at �=0,−
±�c. So, we should obtain a collec-
tive condition based on the three values of �.

�i� �=0. We have

� �c�p��ad + �bc − i
�
�bc���db − i
���ad − i
� + Ic� + Ip��ad − i
�

�2

� 1.

�B2�

By assuming �db=� and �ad=2� we obtain the quadratic
constraint

��2�2 − 
2 + Ic��bc + Ip��2 + 
2�3��bc + Ip�2

− IcIp��2� + �bc�2 + 
2� � 0, �B3�

with the roots

Ic
�1±� = − a +

1

2
b ±

1

2
	b2 − 4�ab + c� , �B4�

where a=2�2−
2+ Ip
�

�bc
, b= Ip��2 �

�bc
+1�2+ � 


�bc
�2� and c

=
2�3�+
Ip

�bc
�2

. By inserting the parameters �bc�0.6�ac, �p

=0.4�ac, 
=−7.5�ac used in the experiment of Balic et al.
�2�, we find that a sufficiently strong control field �c�10� is
required for correspondence.

�ii� �= �−
±�c�. Here, we have

�s �
�c�p�− 2� − �bc ± i2�c − i
�

�i�− 
 ± �c� − �bc��− � ± i�c��− 2� ± i�c� + Ic�i�− 
 ± �c� − �bc� + Ip�− 2� ± i�c�
. �B5�

It is not useful to obtain a lengthy solution for 
�s
�1. By
putting in the above parameters, we find that 
�s
�1 is sat-
isfied at resonances −
±�c for all values of �c.

2. Condition 2

With the help of the expressions for � f and � f in Appen-
dix A, the condition Eq. �55� can be expressed as


Icp − Tad���Tac���

�p
 � 
Icp + Tdb
* ���Tad���

�c
 ,

�B6�

where Icp= Ic− Ip.
From Eq. �50�, 
�p
� 
�c
. So Eq. �B6� also implies


Tac����p
� 
Tdb
* ����c
, 
�ac�p
� 
��db− i
��c
, or Ic

�
�ac

2

��db
2 +
2� Ip. Since

�ac
2

��db
2 +
2� �1, the condition 
�p
� 
�c
,

which we already have for the Raman-EIT scheme, is suffi-
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cient. Therefore condition 2 is satisfied by the Raman-EIT
scheme.

APPENDIX C: NOISE COMMUTATORS

The F̄s and F̄a
† in Eq. �3� are related to

F̂s = �s� �c

Tad���
Gad −

�p

Tbc���
Gbc + iGbd� , �C1�

F̂a
† = �a�Gad

�p
*

Tad���
− Gbc

�c
*

Tbc���
− iGac� , �C2�

by F̄s=
F̂s−�sF̂a

†

Isa
, F̄a

†=
F̂a

†−�aF̂s

Isa
�given by Eq. �9� in Ref. �1��. It is

straightforward to obtain the relations between the noise
commutations

��F̄f�z,��,F̄f
†�z�,����� = C̄ f�z,����� − �����z − z�� , �C3�

where

C̄s�z,�� =
1


Isa
2
�Cs�z,�� − 
�s
2Ca�z,�� − �s

*Csa�z,��

− �sCsa
* �z,��� , �C4�

C̄a�z,�� =
1


Isa
2
�Ca�z,�� − 
�a
2Cs�z,�� − �a

*Cas
* �z,��

− �aCas�z,��� , �C5�

we have used

��F̂f�z,��,F̂g�z�,����� = C fg�z,����� − �����z − z�� ,

�C6�

��F̂f�z,��,F̂f
†�z�,����� = C f�z,����� − �����z − z�� . �C7�

As discussed in Sec. V C, the conditions 
� f
2�1 allow us

to evaluate only �F̂f , F̂f
†�, where the coefficients are given by

Cs�z,�� =
�2��3

AN

�s���
2�Dbd,bd

an,n + � �c

Tad���
�2

Dad,ad
an,n + � �p

Tbc���
�2

Dbc,bc
an,n +

i�p

Tbc���
Dbc,bd

an,n

−
i�p

*

Tbc
* ���

Dbd,bc
an,n +

i�c
*

Tad
* ���

Dbd,ad
an,n −

i�c

Tad���
Dad,bd

an,n � , �C8�

where Dx,x�
an,n�z ,��=2D̃x,x�

an �z ,��−2D̃x�,x
n �z ,�� depend on the normal �superscript “n”� and antinormal ordered �superscript “an”�

diffusion coefficients obtained from Einstein’s relation. Similarly,

Ca�z,�� =
�2��3

AN

�a���
2�Dac,ac

n,an + � �p

Tad���
�2

Dad,ad
n,an + � �c

Tbc���
�2

Dbc,bc
n,an +

i�p
*

Tad���
Dac,ad

n,an

−
i�p

Tad
* ���

Dad,ac
n,an +

i�c

Tbc
* ���

Dbc,ac
n,an −

i�c
*

Tbc���
Dac,bc

n,an � , �C9�

where Dx,x�
n,an=2D̃x,x�

n −2D̃x�,x
an .
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