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We examine the implications of several recently derived conditions �Hillery and Zubairy, Phys. Rev. Lett.
96, 050503 �2006�� for determining when a two-mode state is entangled. We first find examples of non-
Gaussian states that satisfy these conditions. We then apply the entanglement conditions to the study of several
linear devices, the beam splitter, the parametric amplifier, and the linear phase-insensitive amplifier. For the
first two, we find conditions on the input states that guarantee that the output states are entangled. For the linear
amplifier, we determine in the limit of high and no gain, when an entangled input leads to an entangled output.
Finally, we show how application of two two-mode entanglement conditions to a three-mode state can serve as
a test of genuine three-mode entanglement.
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I. INTRODUCTION

While quantum information theory was originally formu-
lated in terms of qubits, higher-dimensional, and, in particu-
lar, continuous-variable systems have shown considerable
promise in applications such as EPR correlation �1–4� and
quantum cryptography �5–7�. For a recent review, see Ref.
�8�. In view of the important role played by entanglement in
quantum information, this has led to an investigation of en-
tanglement in continuous-variable systems. In particular, suf-
ficiency conditions for multimode states to be entangled have
been formulated. The first set of conditions that was found is
both necessary and sufficient for entanglement in Gaussian
states and sufficient for entanglement in any two-mode state
�9,10�. These conditions are expressed in terms of quantities
that are at most quadratic in mode creation and annihilation
operators. They have been used, for example, to study en-
tanglement in correlated emission laser systems �11,12�.
More recently, sufficient conditions for entanglement have
been found for a wider class of states �13–15�. Our aim here
is to explore some of the implications of these conditions.
We shall first discuss some non-Gaussian states for which
they can be used to detect entanglement. We shall then go on
to use these conditions to study the behavior of entanglement
in linear optical devices. We shall investigate what properties
an input state to two particular optical devices, beam splitters
and parametric amplifiers �or degenerate four-wave mixers�
needs to have in order for the output state to be entangled.
We will also see how entanglement fares when a state is
amplified by a linear, phase-insensitive amplifier. Finally, we
shall show how two-mode entanglement conditions can be
used to detect three-mode entanglement.

Nha and Kim have shown that the entanglement
conditions developed in Refs. �13,14� are useful in detecting
entanglement in one class of non-Gaussian states, SU�2�
minimum-uncertainty states �16�. In particular, they demon-
strated that the condition in Ref. �14� was more effective for
this purpose than a comparable condition in Ref. �13�.
They also discussed how the quantities appearing in these
conditions can be measured.

The entanglement produced by a beam splitter has been
studied in considerable detail by Kim et al. �17�. They
showed that a necessary condition for the output field of a
beam splitter to be entangled is that the input be nonclassical.
They then went on to examine the entanglement produced by
a number of nonclassical inputs, including squeezed states
and number states. There is, however, more to be learned.
For example, it was recently shown by Ivan et al. that if the
input state to a beam splitter is a product state of the vacuum
in one mode and a state with sub-Poissonian statistics in the
other, then the output state will be entangled �18�. They de-
rived this result using the PPT �positive partial transpose�
condition �19,20�. We shall show that this result follows from
one of the inequalities in Refs. �13,15�. We shall then show
how this result can be generalized by applying a number of
the other inequalities derived in these references.

By studying both the parametric and linear amplifiers, we
gain information about the behavior of entanglement under
both phase-sensitive and phase-insensitive amplification.
This gives us some insight into the production of “bright”
entangled light. That the entanglement can be produced by a
parametric amplifier is well known, but the entanglement
conditions in Ref. �13� allow us to gain information about
which input states will produce it. The linear amplifier does
not produce entanglement, and, in fact, can destroy it, and
we will be able to find some conditions under which it can be
preserved.

II. SPECIFIC STATES

Consider two modes, whose annihilation operators are a
and b. The number operators for each mode are Na=a†a and
Nb=b†b. We shall first concentrate on the entanglement
condition

��ab†��2 � �NaNb� , �1�

that is, if the two modes are in a state for which the above
inequality is satisfied, the state is entangled �13�. The quan-
tities in this inequality can be measured in a relatively
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straightforward way. The quantity on the right-hand side can
be measured by photon-counting measurements. The quan-
tity on the left-hand side can be measured with the aid of a
phase shifter and a beam splitter. Suppose the b mode is first
sent through a phase shifter that performs the action b
→e−i�b, and then both modes are sent into a beam splitter
that sends a→ �a+b� /�2 and b→ �b−a� /�2. We then have
that the output operators are

aout =
1
�2

�a + e−i�b� ,

bout =
1
�2

�− a + e−i�b� , �2�

and the expectation of difference of the photon numbers in
the two modes at the output is given by

��aout�†aout − �bout�†bout� = e−i��a†b� + ei��ab†� . �3�

By choosing �=0 we can measure the real part of �ab†� and
by choosing �=−� /2 we can measure the imaginary part.
These can then be combined to yield ��ab†��2. It should be
noted that higher-order field correlation functions can also be
measured, and explicit methods for doing so have been
proposed by Shchukin and Vogel �21�.

In order to gain a better understanding of the types of
entangled states for which this condition can be used to dem-
onstrate entanglement, we shall study several examples. Note
that if the two modes are in coherent states, that is the two-
mode state is ���a ���b, then we have that ��ab†��2= �NaNb�.
One way of possibly finding states that satisfy our entangle-
ment condition, Eq. �1�, is to start with a product of coherent
states and perturbing this state in such a way as to produce
entanglement. We give two examples of this type.

The first example is that of a two-mode photon-added
coherent state

���ab =
1

��� + ��2 + 2�1/2 �a† + b†����a���b, �4�

which is not a Gaussian state. Single-mode photon-added
coherent states were first studied by Agarwal and Tara �22�,
and they have recently been produced in the laboratory �23�.
For this state we find that

�NaNb� − ��ab†��2 =
1

�� + ��2 + 2
�− 4���2���2 − ��*� + ��*�

�����2 + ���2� − 2��*� + ��*� − 1� . �5�

If this quantity is negative, the state is entangled, and we can
see that if we choose � and � such that ��*�+��*��0 this
will indeed be the case. Therefore, the entanglement condi-
tion in Eq. �1� is capable of detecting entanglement in some
two-mode photon-added coherent states.

As a second example, let us consider a symmetric
superposition of two two-mode coherent states

���ab =
1

�2�1 + �������2�1/2
����a���b + ���a���b� , �6�

which is, again, non-Gaussian. For this state we find that

�NaNb� − ��ab†��2 =
1

4�1 + x�2 	− ��*� − ��*�2

�2x�4����2 − ���* + �*������2 + ���2��

− x2����2 − ���2�2
 , �7�

where x= ��� ����2. We see that if we choose ��* to be real
and positive, then this becomes

�NaNb� − ��ab†��2 =
1

4�1 + x�2 �− 2x�������� − ����2

− x2����2 − ���2�2� . �8�

The right-hand side is then negative, and the condition in Eq.
�1� tells us that the state is entangled.

Next, we consider a higher-order entanglement condition
from Ref. �13� and apply it to a superposition of two-mode
number states. We have that a state is entangled if

��am�b†�n��2 � ��a†�mam�b†�nbn� . �9�

Now, consider the state,

��� =
1
�2

��k1�a�k2�b + �k2�a�k1�b� , �10�

which is a superposition of two states that are products
of number states and is clearly entangled if k1�k2.
We shall assume that k1�k2. Choosing m=n=k1−k2, we find
that

����a�k1−k2��b†��k1−k2�����2 =
�k1 ! �2

4�k2 ! �2 , �11�

and

����a†��k1−k2�a�k1−k2��b†��k1−k2�b�k1−k2����� =
k1!

�2k2 − k1�!
,

�12�

if 2k2�k1 and 0 otherwise. We see that if 2k2	k1 the con-
dition in Eq. �9� shows that the state is entangled, because
the right-hand side is zero while the left-hand side is posi-
tive. If 2k2�k1, then Eq. �9� shows that the state is entangled
if

k1 ! �2k2 − k1� ! � 4�k2 ! �2. �13�

Note that because the entanglement conditions given in Refs.
�9,10� contain only quantities that are at most quadratic in
mode creation and annihilation operators, they will not be
able to detect entanglement in this state if k1�k2�2.

Finally, let us show how we can increase the set of states
for which entanglement can be detected by modifying our
entanglement condition. The proof of the entanglement
condition in Eq. �1� also goes through if we replace a by
a− �a� and b by b− �b�, i.e., a state is entangled if
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���a − �a���b† − �b†����2 � ��a† − �a†���a − �a��

��b† − �b†���b − �b��� . �14�

Now, suppose that we have a density matrix, 
 for which
�a�= �b�=0, and which satisfies the condition in Eq. �1�.
Then the density matrix


� = Da���Db���
Da
−1���Db

−1��� , �15�

where Da���=exp��a†−�*a� and Db���=exp��b†−�*b�
are mode displacement operators, satisfies our modified
entanglement condition. As an example, consider the
state

��� =
1
�2

��0,1� + �1,0�� , �16�

which is a superposition of one photon in mode a and one
photon in mode b. It satisfies the entanglement condition in
Eq. �1�, and �a�= �b�=0. Therefore, the state

���� = Da���Db������ , �17�

will satisfy the condition in Eq. �14�, and can thereby be
shown to be entangled. This result is not surprising, because
the states differ only by local unitary transformations, and
these will not change the entanglement of a state.

III. OPTICAL DEVICES

We first discuss how a beam splitter acts on a two-mode
field. Suppose that the beam splitter couples modes with an-
nihilation operators a and b. The action of the beam splitter
can be described by a unitary operator, U, and the output
operators, which we denote by aout and bout are related to the
input operators, which we denote simply by a and b, by
aout=U†aU and bout=U†bU. The output operators are related
to the input operators by the relation �24�

�aout

bout
� = � t r

− r* t* ��a

b
� . �18�

The quantities t and r are the transmissivity and reflectivity
of the beam splitter, respectively, and they obey the relation
�r�2+ �t�2=1.

There are similar linear input-output relations for a degen-
erate parametric amplifier. This is also a device that couples
two modes. A pump mode, which is treated classically, pro-
vides energy that allows the phase sensitive amplification of
the two modes of interest, which are called the signal and
idler modes. We denote their annihilation operators as a and
b. A similar interaction between two modes can be obtained
by using four-wave mixing with two strong, counter-
propagating pump beams. The output operators are related to
the input operators by �24,25�

aout = ca + sb†,

bout = cb + sa†. �19�

Here c is real and positive, s is complex, and they satisfy the
relation c2− �s�2=1. These numbers are related to the gain of
the amplifier.

Now let us discuss our entanglement conditions. A
two-mode state is entangled if

��am�b†�n��2 � ��a†�mam�b†�nbn� , �20�

or if

��ambn��2 � ��a†�mam���b†�nbn� , �21�

for any integers m ,n�1 �13�. Here we shall be interested in
the cases in which m=n and m=1,2.

Let us first consider the beam splitter. If we assume that
the input state is given by ���in= ���a �0�b, that is an arbitrary
state in the a mode and the vacuum state in the b mode, we
find that

�ab†�out = − rt�a†a� ,

�NaNb�out = �tr�2��Na
2� − �Na�� , �22�

where Na=a†a, Nb=b†b, and expectation values with the
subscript “out” are expectation values in the output state
while those without a subscript are expectation values in the
state ���in. If we now substitute these expressions into the
condition in Eq. �20� with m=n=1 we find that the output
state is entangled if

�Na� � �Na
2� − �Na�2 = ��Na�2. �23�

This is the condition found by Ivan et al., and it simply
states that the output of the beam splitter is in an entangled
state if mode a at the input has sub-Poissonian photon
statistics �18�. We can also use the same entanglement con-
dition to see what happens with a different input state. Sup-
pose the b mode, rather than being in the vacuum state is in
a coherent state with amplitude �, i.e., ���in= ���a ���b. We
then have that

��ab†�out�2 − �NaNb�out = ���2��r�4 + �t�4����a��2 − �Na��

− �tr*�2��*�2��a�2 − �a2��

− �t*r�2�2��a†�2 − ��a†�2�� + O��� ,

�24�

where we have explicitly written down only the highest order
terms in �, because we are interested in the case in which the
photon number in the b mode is much larger than that in
the a mode. If we now express the complex quantities
in terms of amplitudes and phases, t= �t �eit, r= �r �eir, and
�= �� �ei�, and then set �=2�t−r−��, and, in addition
assume that �t � = �r � =1/�2, we have that

��ab†�out�2 − �NaNb�out =
���2

4
	2���a��2 − �Na��

− ei���a�2 − �a2��

− e−i���a†�2 − ��a†�2��
 + O��� .

�25�

We can choose a phase of � to make this dominant term
positive, and thereby guaranteeing that the output state is
entangled, if
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��a2� − �a�2� � �Na� − ��a��2. �26�

This is simply the condition that the a mode be squeezed.
Therefore, if the input state consists of a large-amplitude
coherent state in one mode and a squeezed state with a
much smaller photon number in the other, we can adjust the
phase of the coherent state to produce an entangled output
state.

We can also apply other entanglement conditions to the
beam splitter output to find additional kinds of input states
that produce entangled output states. We again consider input
states with the a mode in an arbitrary state and the b mode in
the vacuum state. If we apply the condition in Eq. �20� for
m=n=2 to the output state resulting from such an input, we
find that

�a2�b†�2�out = �rt�2��Na
2� − �Na�� ,

��a†�2a2�b†�2b2�out = �tr�4��Na
2�Na − 1�2� − 4�Na�Na − 1�2�

+ 2�Na�Na − 1��� , �27�

so that the output state is entangled if the input state satisfies
the condition

�Na�Na − 1��2 � �Na�Na − 1��Na − 2��Na − 3�� . �28�

From this condition we can see that there are input states
whose photon statistics are not sub-Poissonian, but
which still lead to entangled states at the output. A specific
example is the state ��0�+ �3�� /�2. One can also apply the
condition in Eq. �21� with m=n=1 to the output state. If we
again assume that the b mode is initially in the vacuum state,
we find that the output is entangled if the a-mode input state
satisfies

��a2�� � �Na� . �29�

This inequality is satisfied by a squeezed state that satisfies
the additional condition �a�=0.

Next we consider the parametric amplifier. We apply
the condition in Eq. �21� with m=n=1 and m=n=2.
Again we assume an input state of the form ���in= ���a �0�b.
The m=n=1 condition gives us that the output is entangled
if the input a mode state satisfies �we assume here that
�s � �0�

c � �s� , �30�

which is always true. Therefore, any input state for the a
mode will lead to an entangled output state. Higher-order
conditions lead to the same conclusion. The m=n=2
condition for entanglement gives us that the output is
entangled if

2�1 −
�s�2

c2 ��Na� + �1 −
�s�4

c4 � � 0, �31�

which is again satisfied for any a-mode input state.
Finally, let us see what the entanglement conditions in

Refs. �9,10� tell us about the inputs of beam splitters and
parametric amplifiers. In order to state these conditions, we
first define

xa =
1
�2

�a† + a�, xb =
1
�2

�b† + b� ,

pa =
i

�2
�a† − a�, pb =

i
�2

�b† − b� . �32�

Next, for any real �, define

u = ���xa +
1

�
xb,

v = ���pa −
1

�
pb. �33�

Finally, we can say that if a state satisfies the inequality

��u�2 + ��v�2 	 �2 +
1

�2 , �34�

then it is entangled.
If we assume that the input state of the beam splitter is of

the form ���a �0�b, then we find that

��u�out
2 + ��v�out

2 = −
2���

�
	tr*��a2� − �a�2�

+ t*r���a†�2� − �a†�2�
 + ��t��2 +
�r�2

�2 �
��2��Na� − ��a��2� + 1� + ��r��2 +

�t�2

�2 � .

�35�

The output state will be entangled if

��u�out
2 + ��v�out

2 − �2 −
1

�2 	 0. �36�

We now minimize the left-hand side with respect to �. The
result is that the output state is entangled if

±	tr*��a2� − �a�2� + t*r���a†�2� − �a†�2�


+ 2�rt���Na� − ��a��2� 	 0, �37�

where the plus or minus sign is chosen to minimize the left-
hand side. Suppose we send the a mode state through a phase
shifter, which will send a→e−i�a, before sending it into the
beam splitter, and we can choose � so as to minimize the
left-hand side of the above inequality. We then find that the
above entanglement condition will be satisfied if

��a2� − �a�2� � �Na� − ��a��2, �38�

which is simply the condition that the input a mode state be
squeezed.

We can now apply the condition in Eq. �34� to the para-
metric amplifier. As usual, we assume that in the input state
the b mode is in the vacuum state. The derivation is similar
to the one for the beam splitter, so we just give the result.
Defining
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� = 2��Na� − ��a��2� + 1, �39�

we find that the output state is entangled if the input state
satisfies

2�s���c2 + �s�2 − 1�1/2 	 c�s + s*��� + 1�1/2. �40�

This condition is more restrictive than the one derived from
Eq. �21� with m=n=1, which showed that the output is en-
tangled for any a-mode input state and any phase of s. If s is
real, then the above inequality is satisfied for any a-mode
input state, but if s is imaginary, then it is never satisfied and
gives us no information.

IV. LINEAR AMPLIFIER

A linear amplifier is a device that provides phase-
insensitive amplification of an optical signal. It will not cre-
ate entanglement, but it is useful to see what happens to an
input state that does possess entanglement. It also allows us
to see how losses affect entanglement.

A linear amplifier for a single mode is described by the
master equation �24�

d


dt
= Lga�
� + Lla�
� , �41�

where 
 is the density matrix of the mode, Lga is the Liou-
ville operator describing the gain

Lga�
� =
Aa

2
�2a†
a − aa†
 − 
aa†� , �42�

and Lla is the Liouville operator describing the loss

Lla�
� =
Ca

2
�2a
a† − a†a
 − 
a†a� . �43�

For two modes, the master equation becomes

d


dt
= Lga�
� + Lla�
� + Lgb�
� + Llb�
� . �44�

From the master equation we can find equations of motion
for expectation values of operators, and the solution of these
equations is straightforward. We find that �expectation values
at time t are denoted by a subscript t and those at time 0 are
denoted by a subscript 0�

�ab†�t = e�Aa+Ab−Ca−Cb�t/2�ab†�0,

�NaNb�t = e�Aa+Ab−Ca−Cb�t�NaNb�0

+
Aa

Aa − Ca
e�Ab−Cb�t�e�Aa−Ca�t − 1��Nb�0

+
Ab

Ab − Cb
e�Aa−Ca�t�e�Ab−Cb�t − 1��Na�0

+
Aa

Aa − Ca

Ab

Ab − Cb
�e�Aa−Ca�t − 1��e�Ab−Cb�t − 1� .

�45�

Let us use these results to see how the entanglement con-
dition in Eq. �1� behaves upon amplification, or attenuation,

in two limiting cases. First, let us set the gain terms to zero,
i.e., Aa=Ab=0. This allows us to see what happens when
only losses are present. We find that

��ab†�t�2 − �NaNb�t = e−�Ca+Cb�t���ab†�0�2 − �NaNb�0� .

�46�

From this we see that losses do not, in principle, affect our
ability to detect entanglement by means of Eq. �1�; if the
condition is satisfied initially it will be satisfied for any later
time. It does, of course, become more and more difficult to
detect the difference between the two quantities appearing
in this condition as time progresses. Our second case is
the high-gain limit. We shall assume that Aa−Ca�0 and
Ab−Cb�0 and that t is large, so that we shall only keep
terms proportional to Gab

2 =exp��Aa+Ab−Ca−Cb�t�. We then
find that

��ab†�t�2 − �NaNb�t = Gab
2 ����ab†�0�2 − �NaNb�0�

−
Aa

Aa − Ca
�Nb�0 −

Ab

Ab − Cb
�Na�0

−
AaAb

�Aa − Ca��Ab − Cb�� . �47�

If we now note that, for any state

��ab†��2 � �NaNb� + �Na� , �48�

we see that the right-hand side of the above equation is al-
ways less than or equal to zero, so that in the high-gain limit
the condition in Eq. �1� is no longer able to detect whether
there is entanglement in the output state.

The fact that our condition can no longer detect entangle-
ment in the high-gain regime does not necessarily mean that
there is no entanglement there. Using different arguments,
however, we can show that if the gain is too high any initial
entanglement in the input state will be absent at the output.
In order to do so we make use of the results from Hong,
Friberg, and Mandel, which show that when the gain of a
linear amplifier is too large, its output will be classical �26�.
If, for a single mode, the P representation of the input state
to a linear amplifier is P0���, then at time t the P represen-
tation is given by

P��,t� = d2��P0����
1

�m�t�
e−�� − G�t����2/m�t�, �49�

where

G�t� = e�A−C�t/2,

m�t� =
A

A − C
�G�t�2 − 1� . �50�

They showed that if G�t�2�A /C, then the output state is
classical, i.e., P�� , t� has the properties of a probability dis-
tribution. These results are easily extended to two modes. In
that case, if the input state has a P representation given by
P0�� ,��, then the P representation at time t is given by
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P��,�,t� = d2�� d2��P0���,���
1

�2ma�t�mb�t�

� e−�� − Ga�t����2/ma�t�e−�� − Gb�t����2/mb�t�, �51�

where Ga�t� and ma�t� are given by the above expressions
with A and C replaced by Aa and Ca, and Gb�t� and mb�t� are
given by the above expressions with A and C replaced by Ab
and Cb. The P representation of the output state, P�� ,� , t�,
will be classical if Ga�t�2�Aa /Ca and Gb�t�2�Ab /Cb.
This also means the output state will be separable. We have
that


ab�t� = d2� d2�P��,�,t����a��� � ���b��� , �52�

where ���a is a coherent state in the a mode, and ���b is a
coherent state in the b mode. From the above equation, it is
clear that if P�� ,� , t� is a probability distribution, then 
ab is
separable. Therefore, we can conclude that if the single-
mode gains are sufficiently large, the output state of the am-
plifier will be separable no matter how entangled the input
was. Linear, phase-insensitive amplification with sufficiently
high gain destroys entanglement.

V. THREE-MODE ENTANGLEMENT

We now briefly want to examine entanglement in a three-
mode system. We shall denote the modes, and their respec-
tive annihilation operators, by a, b, and c. Entanglement
conditions for three-mode Gaussian states were formulated
by Giedke et al. �27�. Conditions for determining whether
a general three-mode state is completely separable were
given in Ref. �13� and very recently conditions for
multimode entanglement have been studied by Shchukin and
Vogel �28�.

In studying three-mode states, we are often interested in
which subsystems are responsible for the entanglement. If
the state is entangled, it may be the case that only two of the
modes are entangled, while the third is not entangled with
either of these two modes. For example, if the density matrix
is of the form


abc = �
j

pj
aj � 
bcj , �53�

where 0� pj �1 and � jpj =1, then mode a will not be en-
tangled with either mode b or mode c, but modes b and c can
be entangled leading to the overall entanglement of the state.
If a three-mode density matrix cannot be expressed in the
above form, or in either of the two forms


abc = �
j

pj
bj � 
acj ,


abc = �
j

pj
cj � 
abj , �54�

then we say that it is genuinely entangled. It has been shown
how to produce genuinely entangled multimode states by van
Loock and Braunstein �29�.

We now want to give some simple conditions for deter-
mining whether a three-mode state is genuinely entangled,
and to give an example of such a state that is not Gaussian
and whose entanglement can be demonstrated by these
conditions. Suppose that the three-mode density matrix, 
abc
is of the form given in Eq. �53� or of the form of the first
line in Eq. �54�. Then it is the case that 
ab=Trc�
abc� is
separable, and the results of Ref. �13� imply that it must
satisfy

��ab†��2 � �NaNb� . �55�

Therefore, if 
abc satisfies the condition

��ab†��2 � �NaNb� �56�

it cannot be of either of these two forms. Similarly, if it
satisfies the condition

��bc†��2 � �NbNc� , �57�

it cannot be of the form given in the second line of Eq. �54�.
If it satisfies both of these conditions, it must be genuinely
three-mode entangled.

A simple example of a state that does satisfy these
conditions is a three-mode, single-photon W state

��� =
1
�3

��0,0,1� + �0,1,0� + �1,0,0�� . �58�

This state is a superposition of states in which one mode
has one photon and the other two modes are in the vacuum
state. For this state we find that �NaNb�= �NbNc�=0,
and �ab†�= �bc†�=1/3. Therefore, both of the above
conditions are satisfied, and the state is genuinely three-mode
entangled.

By replacing the one-photon state in the above example
with a coherent state, we can find a family of states that is
genuinely three-mode entangled. That is we consider the
state

������ = ���0�a�0�b���c + �0�a���b�0�c + ���a�0�b�0�c� ,

�59�

where ��� is a coherent state and

� =
1

�3�1 + 2e−���2��1/2
. �60�

For this state we again have that �NaNb�= �NbNc�=0, but now
�ab†�= �bc†�= ����2 exp�−���2 � �. Therefore, we see that for
all nonzero values of � the state ������ exhibits genuine
three-mode entanglement, though this entanglement is easi-
est to detect for �� � �1, because that is when the difference
between the two sides of the inequalities, Eqs. �56� and �57�,
is greatest.

VI. CONCLUSION

We have discussed a number of applications of the en-
tanglement conditions derived in Ref. �13�. We have given
examples of non-Gaussian states whose entanglement can be
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detected by these conditions. We have also used them to
study the entanglement produced, or destroyed, by linear op-
tical devices, in particular beam splitters, parametric ampli-
fiers �with a classical pump�, and linear amplifiers. Finally,
we showed how these conditions could be simply extended

so that they can be used to detect genuine three-mode en-
tanglement. The quantities in these entanglement conditions,
at least the simplest ones, are relatively simple to measure,
and it should be possible to use them to detect entanglement
in the laboratory.
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