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We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak
probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying
drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak
probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe
field, where one of the drive fields is a standing-wave field of a cavity. We show that the position of an atom
along this standing wave is determined when probe-field absorption is measured. We find that absorption of the
weak probe field at a certain frequency leads to subwavelength localization of the atom in either of the two
half-wavelength regions of the cavity field by appropriate choice of the system parameters. We term this result
as sub-half-wavelength localization to contrast it with the usual atom localization result of four peaks spread
over one wavelength of the standing wave. We observe two localization peaks in either of the two half-
wavelength regions along the cavity axis.
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I. INTRODUCTION

Precision measurement of the position of an atom passing
through a standing-wave field has attracted considerable at-
tention in recent years. Several schemes have been proposed
for the localization of an atom using optical methods �1�.
High-resolution position measurements of the atom with op-
tical techniques are of considerable interest from both a the-
oretical and an experimental point of view. Interest in the
area is largely due to its applications to many areas of optical
manipulations of atomic degrees of freedom, such as laser
cooling �2�, Bose-Einstein condensation �3�, and atom lithog-
raphy �4� and measurement of the center-of-mass wave func-
tion of moving atoms �5�.

It is well known that optical methods provide better spa-
tial resolution in position measurements of atoms. For ex-
ample, in the optical virtual slits scheme the atom interacts
with a standing-wave field and imparts a phase shift to the
field. Measurement of this phase shift then gives the position
information of the atom �6�. Another related idea based on
phase quadrature measurement is considered in Ref. �7�.
Kunze et al. �8� demonstrated how the entanglement between
the atomic position and its internal state allows one to local-
ize the atom without directly affecting its spatial wave func-
tion. It is shown that, by using Ramsey interferometry, the
use of a coherent-state cavity field is better than the classical
field to get a higher resolution in position information of the
atom �9�. Resonance imaging methods have been used in
experimental studies of the precision position measurement
of the moving atoms �1,10,11�.

More recently, atom-localization methods based on the
detection of the spontaneously emitted photon during the in-

teraction of an atom with the classical standing-wave field
are considered �12–15�. We consider some of these proposals
in detail to contrast them with the current proposal. Qamar et
al. �14� suggested a simple scheme for localization of an
atom by using a simple two-level system interacting with the
classical standing-wave field. They showed that the fre-
quency of the spontaneously emitted photon carries informa-
tion about the position of the atom. In another related study,
they used a three-level atom, where the upper two levels are
driven by a classical standing-wave field and spontaneously
emitted photon measurement from the upper level to lower
level gives information about the atomic position �15�. It has
been shown that coherent control of spontaneous emission in
multilevel system gives line-narrowing and even spontane-
ous emission quenching �16�. By using three drive fields, the
phase and amplitude control of the driving field on the spon-
taneous emission spectrum in a four-level system has been
investigated by Ghafoor et al. �17�. This scheme was utilized
further for localization of an atom during its motion on the
classical standing-wave field �18�. Thus observing a sponta-
neously emitted photon can lead to atom localization in a
variety of systems.

It is, however, important to note that from an experimen-
tal point of view, observation of a spontaneous emission
spectrum is very tricky and difficult. In this context, another
scheme based on a three-level �-type system interacting
with two fields—a probe laser field and a classical standing-
wave coupling field—has been used for atom localization by
Paspalakis and Knight �19�. They observe that in the case of
a weak probe field, measurement of the population in the
upper level leads to subwavelength localization of the atom
during its motion in the standing wave. Thus in essence this
scheme uses absorption of a probe field for atom localiza-
tion.

In this article, we describe another method for the local-
ization of an atom in a standing-wave field based on electro-
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magnetically induced transparency �20�. We consider a four-
level system driven by two driving fields and a classical
standing-wave field. A similar scheme was recently consid-
ered by us �21� to demonstrate phase and amplitude control
of the group velocity of a weak probe field. The scheme is
very similar to the one used by Ghafoor et al. for phase and
amplitude control of the spontaneous emission �17� and atom
localization �18�. However, their consideration was based on
monitoring the spontaneous emission properties of this
scheme. In the present study we consider the absorption
properties of the weak probe field by determining the suscep-
tibility of the system at the probe frequency. We show that
the probe absorption observed at appropriate frequencies lo-
calizes the atom in the classical standing-wave field. We also
investigate the effects of the amplitude and phase of the driv-
ing fields on the precision of localizing an atom. A novel
feature observed by us as compared to the absorption based
scheme of Paspalakis and Knight �19� is as follows: They
observe four localization peaks in one wavelength of the
standing-wave field—i.e., two each in the two half-
wavelength regions. However, we obtain a more precise lo-
calization in the sense that for a certain choice of parameters
we can confine the atom to one of the half-wavelength re-
gions. We obtain two localization peaks that occur in one of
the half-wavelength regions. We term this new domain of
subwavelength localization as sub-half-wavelength localiza-
tion. We would like to point out that this sub-half-
wavelength localization has already been proposed by Gha-
foor et al. �18�, in the context of monitoring spontaneous
emission spectrum. However, they have not used the term
sub-half-wavelength localization.

This article is organized as follows. In Sec. II we intro-
duce our model and give the basic equations and their solu-
tion to determine the susceptibility. In Sec. III we study the
behavior of the susceptibility along the normalized position
coordinate along the standing wave for a variety of system
parameters. This gives us conditions on the controllable pa-
rameters to attain localization of the atom as it passes
through the standing-wave optical field in the cavity. We give
an analytical expression for the appropriate detuning param-
eters to obtain sub-half-wavelength localization. Finally we
present our conclusions in Sec. IV.

II. MODEL AND EQUATIONS

The schematics of the proposed scheme are shown in Fig.
1. We consider an atom, moving in the z direction, as it
passes through a classical standing-wave field of a cavity.
The cavity is taken to be aligned along the x axis. The inter-
nal energy level structure of the atom is shown in Fig. 1�b�.
The radiative decay rates from the levels �a1� and �a2� to
level �c� are taken to be �1 and �2. The upper level �a1� is
coupled to the level �a2�, and further the level �a2� is coupled
to level �b� via classical fields with Rabi frequencies �3 and
�2, respectively. In addition, the upper level �a1� is coupled
to level �b� via a classical standing-wave field of frequency �
and phase �, having Rabi frequency �1. It should be noted
that the Rabi frequency of the standing wave is position de-
pendent and is taken to be �1�x�=�1 sin �x. Here �1�x� is

defined to include the position dependence and � is the wave
vector of the standing-wave field, defined as �=2� /�, where
� is the wavelength of the standing-wave field of the cavity.
We assume that the atom is initially in the state �c� and in-
teracts with a weak probe field that is near resonant with the
�c�→ �a1� transition. The detuning of the probe on this tran-
sition is taken to be 	. We assume that the center-of-mass
position of the atom is nearly constant along the direction of
the standing wave. Therefore we apply the Raman-Nath ap-
proximation and neglect the kinetic part of the atom from the
Hamiltonian �22�. Under these circumstances, the Hamil-
tonian of the system in the rotating-wave approximation can
be written as

H = H0 + HI, �1�

where

H0 = 
�a1
�a1��a1� + 
�a2

�a2��a2� + 
�b�b��b� + 
�c�c��c�

�2�

and

FIG. 1. The Model: �a� The cavity supports the standing-wave
field �1� corresponding to Rabi frequency �1. Two other fields �2,
3� are applied at an angle as shown. The atom enters the cavity
along the z axis and interacts with the three drive fields. The whole
process takes place in the x-z plane. �b� The energy level structure
of the atom. Probe field, denoted by Ep, is detuned by an amount �

from the �a1�-�c� transition. The fields �2,3� shown in the �a� part of
the figure correspond to the fields with Rabi frequencies �2 and �3,
respectively. The decay rates from the upper levels �a1� and �a2� are
taken to be �1 and �2, respectively.
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HI = −



2
��1e−i�1t sin �x�a1��b� + �2eikx cos �2e−i�2t�a2��b�

+ �3eikx cos �3e−i�3t�a1��a2� +
Ep�a1c



e−i�pt�a1��c�	 + H.c.

�3�

Here �i are the frequencies of the states �i� and �i are the
frequencies of the optical fields, and �2 and �3 are the angles
made by the propagation direction of the fields �2 and �3
with respect to the x axis, respectively. The subscript p
stands for the quantities corresponding to the probe field; i.e.,
Ep and �p are the amplitude and frequency of the probe field.
Also �a1c is the dipole matrix element of the �c�→ �a1� tran-
sition. For simplicity we assume that the Rabi frequencies �1
and �2 are real and �3 is complex—i.e., �3=�3e−i�. This
choice of imparting a carrying phase to field 3 is only for the
convenience of calculations. As will become clear later, only
the relative phase of the three fields is important and absolute
phases do not matter. The dynamics of the system is de-
scribed using density matrix approach as

̇ = −
i



�H,� −

1

2

�,� , �4�

where 
� ,�=�+�. Here the decay rate is incorporated
into the equation by a relaxation matrix �, which is defined
by the equation �n���m�=�n�nm. The detailed calculations of
these equations are given in the Appendix.

Our goal is to obtain information about the atomic posi-
tion from the susceptibility of the system at the probe fre-
quency. Therefore we need to determine the steady-state
value of the off-diagonal density matrix element a1c. After
necessary algebraic calculations and moving to appropriate
rotating frames, we obtain a set of density matrix equations
�see Eq. �A4��. To determine a1c we only need the following
equations:

̇̃a1c = − �i��a1c − �p� +
1

2
�1	̃a1c +

i

2
�3e−i�eikx cos �3̃a2c

+
i

2
�1 sin �x̃bc − i

Ep�a1c

2

�̃a1a1

− ̃cc� ,

̇̃a2c = − �i��a2c − ��p − �3�� +
1

2
�2	̃a2c +

i

2
�2eikx cos �2̃bc

+
i

2
�3ei�e−ikx cos �3̃a1c − i

Ep�a1c

2

̃a2a1

,

̇̃bc = − �i��bc + �1 − �p� + �bc�̃bc +
i

2
�1 sin �x̃a1c

+
i

2
�2e−ikx cos �2̃a2c − i

Ep�a1c

2

̃ba1

. �5�

As we know, the dispersion and absorption are related to the
susceptibility of the system and are determined by a1c. We
take the probe field to be weak and calculate the polarization

of the system to lowest order in Ep. We keep all the terms of
the driving fields but keep only linear terms in the probe
field. The atom is initially in the ground state �c�; therefore,
we use

̃cc
�0� = 1, ̃ba1

�0� = 0, ̃a2a1

�0� = 0, ̃a1a1

�0� = 0. �6�

Equations �5� can then be simplified considerably to obtain

̇̃a1c = − �i	 +
1

2
�1̃a1c +

i

2
�3e−i�eikx cos �3̃a2c

+
i

2
�1 sin �x̃bc + i

Ep�a1c

2

,

̇̃a2c = − �i	 +
1

2
�2̃a2c +

i

2
�3ei�e−ikx cos �3̃a1c

+
i

2
�2eikx cos �2̃bc,

̇̃bc = − i	̃bc +
i

2
�1 sin �x̃a1c +

i

2
�2e−ikx cos �2̃a2c. �7�

Here we have introduced the detuning of the probe field and
the frequency difference between levels �a1� and �c�,

	 = �a1c − �p = �a2c + �3 − �p = �bc + �1 − �p. �8�

We have also assumed �bc=0.
This set of equations can be solved analytically. Follow-

ing the treatment discussed in the Appendix, the off-diagonal
density-matrix element corresponding to the probe transition
is obtained as

a1c = ̃a1ce
−i�pt =

1

Y

��2

2 − 4	2 + 2i�2	�Ep�a1ce
−i�pt, �9�

where we have assumed �3=� /4, �2=� /2+� /4, and Y is
given by

Y = A + iB , �10�

with

A = − 8	3 + 2	��1
2 sin2 �x + �2

2 + �3
2� + 2�1�2	

+ �1�2�3�ei� + e−i��sin �x ,

B = 4	2��1 + �2� − �1�2
2 − �2�1

2 sin2 �x . �11�

The susceptibility at the probe frequency can be written as

� =
2N�a1ca1c

�0Ep
ei�pt =

2N��a1c�2

�0

��2
2 − 4	2 + 2i�2	�

Y

,

�12�

where N is the atom number density in the medium. The real
and imaginary parts of susceptibility are given as

�� =
2N��a1c�2

�0
Z

��2

2 − 4	2�A + 2�2	B� , �13�
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�� =
2N��a1c�2

�0
Z

�2�2	A − ��2

2 − 4	2�B�� , �14�

where Z=YY* and �=��+ i��. It is imperative to point out
that the phase enters the susceptibility expression only
through the quantities A and Y. Even the phase dependence
of Y is only through A. Moreover, we observe that the phase-
dependent term in A is �1�2�3�ei�+e−i��sin �x. Thus the
phase factor could very well have come from either of the
three driving fields. As pointed out earlier, if all the fields had
phase dependence, only the collective phase would be impor-
tant and no individual phase-dependent terms would occur.
This is because the Rabi frequencies �i in all the other terms
appear through �i

2, which is ��i�2 for a complex Rabi
frequency �i= ��i�ei�i. The collective phase can be easily
determined to be �=�2+�3−�1 by repeating the suscepti-
bility calculation. Here �i is the phase of the complex Rabi
frequency �i of the ith driving field.

In the next section we consider the imaginary part of the
susceptibility �� in detail and obtain various conditions for
subwavelength localization of the atom.

III. RESULTS AND DISCUSSION

We study expression �14� for the imaginary part of the
susceptibility on the probe transition in greater detail in the
following discussion. It is clear that ��—i.e., the probe
absorption—depends on the controllable parameters of the
system like probe field detuning and amplitudes and phases
of the driving fields.

Noting the dependence of �� on sin �x, it is, in principle,
possible to obtain information about the x position of the
atom as it passes through the cavity by measuring the probe
absorption. Nevertheless, for precise localization of the atom
the susceptibility should show maxima or peaks along the x
coordinate. We obtain the conditions for the presence of
peaks in �� in the discussion to follow. In the case of
�2=0—i.e., the level �a2� is metastable—Eq. �14� can be
simplified as follows:

�� =
2N��a1c�2


�0

�1��2
2 − 4	2�2

�1
2��2

2 − 4	2�2 + �8	3 − 2	��1
2 sin2 �x + �2

2 + �3
2� − 2�1�2�3 cos � sin �x�2

=
2N��a1c�2


�0

�1��2
2 − 4	2�2

�1
2��2

2 − 4	2�2 + 4	2�1
4�sin �x − R1�2�sin �x − R2�2 , �15�

where

R1,2 =
1

2	�1

− �2�3 cos �

± ��2
2�3

2 cos2 � − 4	2���2
2 + �3

2� − 4	2�� . �16�

From Eq. �15� it is clear that peaks will occur in �� at x
positions satisfying sin �x=R1,2. In other words, the probe
absorption peaks at the spatial position defined by

�x = sin−1� 1

2	�1

− �2�3 cos �

± ��2
2�3

2 cos2 � − 4	2���2
2 + �3

2� − 4	2��	 ± n� ,

�17�

where n is an integer. This leads to localization of atoms
conditioned on probe absorption at a particular frequency
corresponding to the value of 	.

We show the dependence of �� or probe absorption in
arbitrary units versus the dimensionless x coordinate in Fig.
2. We show how the number of peaks, their positions, and
widths vary as the probe-field detuning, driving-field Rabi
frequencies and the relative phase carried by the standing-
wave field are changed. As seen from �a�–�c� in Fig. 2, the
number of peaks is dependent on the detuning. As the detun-

ing is decreased the peaks separate and we obtain four peaks
in �b� and �c� compared to only two in �a�. In �d� we show
that, for a larger strength of the standing-wave cavity field,
the peaks become sharp, leading to localization of the atom
at one of the four possible positions. It can be noted that such
localization is conditioned on the measurement of the ab-
sorption of the probe field at a frequency corresponding to
the chosen value of the detuning.

The positions of the probe absorption maxima are
strongly dependent on the probe-field frequency through its
detuning 	 defined in Eq. �8�. To clarify this point further we
consider the relation sin �x=R1,2 for various values of the
phase parameter � and solve for the detuning. This gives the
values of the detunings as a function of �x to obtain probe
absorption peaks, provided all other parameters are fixed.
Taking �2=�3=� for simplicity we obtain

	 =
1

4
��1 sin �x ± ��1

2 sin2 �x + 8�2� = �1,2
�0�

or 	 = −
1

2
�1 sin �x = �3

�0� for � = 0, �18�

	 = ±
1

2
��1

2 sin2 �x + 2�2 = ± �1
��/2� for � = �/2,

�19�
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	 =
1

4
�− �1 sin �x ± ��1

2 sin2 �x + 8�2� = �1,2
���

or 	 =
1

2
�1 sin �x = �3

��� for � = � . �20�

From these relations it can be seen that there is a strong
phase dependence on the detuning values required to obtain
probe absorption maxima. Also for each phase value there
are several detuning values that would give rise to probe
absorption maxima at each position. Namely, for �=0 and �
there are three different values given by �1,2,3

�0� and �1,2,3
��� , re-

spectively. Similarly for �=� /2 detuning can take either of
the values ±�1

��/2�.

To study this dependence in depth we plot the right-hand
side �RHS� of Eqs. �18�–�20� at different positions in one
wavelength of the cavity standing-wave field in Fig. 3. These
curves give the detuning value required to obtain peaks in
the probe absorption at the corresponding position along the
cavity axis. However, in an experiment a particular value for
the detuning of the probe needs to be chosen to begin with.
Therefore, for a given fixed detuning, represented by hori-
zontal lines in the plots, the maximum conditions would be
satisfied only if the horizontal lines intersect with the curves
obtained from the solution of Eqs. �18�–�20�. That is, there
will be certain x positions at which probe absorption maxima
will occur. The curves obtained for �=0 and �=� happen to
be related to each other by the transformation x→−x. More-
over, there exists another symmetry for the phase values �
=0,�. The curves obtained by changing the sign of the de-
tuning are the same as the original ones transformed accord-
ing to x→−x, whereas the curves for �=� /2 are entirely
different and the structure is independent of the sign of the
detuning. Keeping these symmetries in mind we only con-
sider positive values of the detunings, corresponding to a
probe frequency less than the probe transition frequency, for
the rest of the discussion. The results for negative values of
the detunings can be similarly obtained.

It can be seen from the plots in Fig. 3 that the number of
intersecting points and their positions depend on the value of
the detuning chosen as well as the relative phase � of the
drive fields. The points of intersection correspond to the
probe absorption maxima. In Fig. 3 we have considered sev-
eral values of the detunings for different phase parameters.
From the figure the positions and number of peaks to be
observed in the probe-field absorption can be predicted. To
understand this in detail we consider these special detuning
values �labeled �a�–�l� in Fig. 3� and plot numerically evalu-
ated �� in Fig. 4.

It is straightforward to make contact with the results pre-
sented in Figs. 3 and 4. For each value of the detuning,
represented by horizontal lines in Fig. 3, we have a box
showing the corresponding probe absorption curve along the
cavity standing-wave field. The predictions about the number
of peaks and their position for each detuning and phase value
made by observing Fig. 3 can be verified by looking at the
corresponding box in Fig. 4. Thus, we observe that the num-

FIG. 2. Dependence of the probe absorption on drive-field Rabi
frequencies and detuning: plot of the imaginary part of the suscep-
tibility in arbitrary units vs the dimensionless x coordinate �x along
the standing wave in the cavity. �x runs from the values −� on the
extreme left to � to the extreme right in each box. A vertical line is
drawn at �x=0 to guide the eye. The common parameters are �2

=�3=�=�1, �2=0, �1=3�1, and �=� /2 unless specified other-
wise. �a� 	=5�1, �b� 	=1.4�1, �c� 	=1.3�1, and �d� �1=20�1, 	
=5�1. Notice that with the increase in the strength of the standing-
wave field the peaks get sharper. Although the detuning is the same
for �a� and �b�, the number of peaks is different as the cavity-field
strength is different.

FIG. 3. Plot of the RHS of Eqs. �18�–�20� �in units of �1� vs the dimensionless x coordinate �x. Each curve gives the values of the
detunings at given positions corresponding to peaks in the probe absorption. The common parameters are taken to be �2=�3=�=20�1,
�2=0, and �1=30�1. Note that the character of these plots would change for different drive-field parameters. Interesting values of the
detunings chosen for further analysis are shown by horizontal lines in each graph. The number of places at which the horizontal line
intersects with the plotted curves corresponds to the number of peaks observed in the probe absorption, and the corresponding x coordinate
gives the positions of the peaks in the cavity standing-wave field.
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ber of peaks and their positions depend on the phase and
detuning values as long as other parameters are kept fixed.
Using Fig. 4 we can make several observations.

We obtain an interesting regime of atom localization for
�=0 and �; the probe absorption peaks are situated in either
�x= 
−� ,0� or �x= 
0,�� half-wavelength regions along the
cavity field, provided the detunings are chosen properly �see
Fig. 4, �b�, �c�, �d�, �j�, �k�, and �l��. The more interesting
regime corresponds to the existence of just two peaks as
opposed to the usual four. We have coined the term sub-half-
wavelength localization for such an interesting regime of lo-
calization. It can be seen that for �=� /2, although the num-
ber of peaks and their widths vary as per the detuning value,
there is no sub-half-wavelength localization possible. Never-
thless, the usual atom localization regime �see Fig. 4, box
�g�� is still available. Another interesting observation for the
parameters �=� /2, 	=0 �see �e�� gives no peaks in the
probe absorption. The probe absorption is uniform over the
length of the cavity, although the cavity field strength is dif-
ferent at different points. As seen from Fig. 3, this value of
the detuning does not intersect with the solutions of the
maximum condition sin �x=R1,2. For all the results repre-
sented in this figure we have chosen positive values for the
probe detuning; however, the results can be similarly ob-
tained for negative detunings as well and they show similar
characteristics.

It is imperative to clarify the results obtained here. It can
be seen that observing the peak in the absorption of the probe

field of a particular frequency leads to localization of the
atom. It means only if the atom passed through that position
along the cavity field, one would obtain peak absorption for
the probe. Another atom passing through the cavity may not
pass through the position corresponding to the absorption
peak; in such a case, the probe field will not experience any
absorption. This can be alternatively understood as the
center-of-mass distribution of the atomic beam is not
changed by the procedure considered here. It is only modu-
lated by the coherent processes occurring in the system.
Therefore, the localization of the atom is conditioned upon
the observance of a peak in the absorption of the probe at
particular frequency. However, the fact that a particular fre-
quency is associated with a particular location along the
standing wave, one can envision the probe field carrying
multiple frequencies. Such a configuration can then lead to
localization of atoms at different locations conditioned upon
the peak absorption of the corresponding frequency compo-
nent of the probe. Such a scheme can be applied for atom
lithography for generating arbitrary one-dimensional pat-
terns. One can extend these arguments for generating arbi-
trary two-dimensional patterns as well. The advantage our
model provides is that the resolution is much larger com-
pared to conventional subwavelength localization. We have
succeeded in localization in the sub-half-wavelength domain.

Thus, we have shown how to obtain sub-half-wavelength
localization through monitoring the probe absorption at a
particular frequency. We note that the atom is to be prepared

FIG. 4. Phase dependence of the localization for several values of the detuning parameter. Plot of the imaginary part of the susceptibility
in arbitrary units vs the dimensionless x coordinate �x. �x runs from the values −� on the extreme left to � to the extreme right in each box.
A vertical line is drawn at �x=0 to guide the eye. The common parameters are the same as in Fig. 3. The labels �a�–�l� correspond to the
detuning values similarly labeled in Fig. 3. Notice sub-half-wavelength localization for boxes �b�, �c�, and �d� for phase �=0. Similarly, for
�=� sub-half-wavelength localization exists as shown in boxes �j�, �k�, and �l�. The term sub-half-wavelength localization is coined for a
special regime of atom localization where the localization peaks are confined to either the range �x= 
−� ,0� or �x= 
0,��. It can be noted
that for �=� /2 there is no sub-half-wavelength localization, although the number of peaks varies according to the detuning value chosen.
The interesting results correspond to boxes �d� and �l� where there are only two peaks that are confined to a half-wavelength region on the
cavity field. In box �e� the probe absorption is the same at all positions in the cavity field represented by the dark line appearing at the top
boundary of the box.
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in its ground state to start with �see Eq. �6�� as opposed to
schemes based on the observation of the spontaneous emis-
sion spectrum �e.g., Ref. �18��, where the atom needs to be
prepared in its excited state. Thus the preparation stage is
considerably simplified in our model. Moreover, as we need
monitoring the probe absorption as opposed to spontaneous
emission as in Ref. �18�, we have a distinct advantage to
offer as the absorption measurements are straightforward to
realize in an experiment compared to the measurement of the
spontaneous emission spectrum. In the following section we
summarize our conclusions.

IV. CONCLUSION

We have presented a scheme for subwavelength localiza-
tion of a moving atom as it passes through the standing-wave
field of a cavity. This allows us to determine the position of
the moving atoms with high precision as we show the pos-
sibility of confinement of the atom to a sub-half-wavelength
region. Our scheme is based on the measurement of absorp-
tion of a weak probe field by the atom. Measurement of the
absorption of a weak probe field of prechosen frequency lo-
calizes the atom in real time. We have shown that the preci-
sion of the position measurement of the atom depends upon
the amplitude and phase of the classical standing-wave field.
The amplitude of standing-wave driving field when increased
leads to line narrowing in the probe absorption, thus giving
increased precision in the position measurement, whereas the
phase of the standing-wave driving field has an important
role in reducing the number of localization peaks from the
usual four to two, leading to a new localization scheme
which we call sub-half-wavelength localization. Moreover,
we show that the proper choice of probe frequency is very
important in obtaining sub-half-wavelength localization. As
our method is based on the measurement of the probe ab-
sorption, it has two distinct advantages compared to similar
methods based on observation of the spontaneous emission
spectrum. Absorption measurements are much easier to per-
form in a laboratory compared to monitoring of the sponta-
neous emission spectrum. Moreover, we do not require the
atoms to be prepared in their excited states. We require that
they are prepared in their ground state, which is a fairly
routine task in atomic physics experiments. Thus the prepa-
ration stage is fairly straightforward. These advantages sug-
gest an easy experimental implementation of our scheme.
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APPENDIX: DETAILS OF THE SUSCEPTIBILITY
CALCULATIONS

Here we give details of the derivation of the density ma-
trix equation and their solution for the calculation of the

susceptibility. The density matrix equations are given by Eq.
�4�, so the �i , j�th element of the density matrix satisfies the
equation

̇ij = −
i



�

k

�Hik,kj − ikHkj� −
1

2�
k

��ikkj + ik�kj� .

�A1�

Here the indices i, j, and k run over a1, a2, b, and c. The
decay matrix has only two nonzero elements given by �a1c

=�1 and �a2c=�2. By utilizing the Hamiltonian given in Eqs.
�1�–�3� and Eq. �A1�, the off-diagonal density matrix ele-
ments can be shown to satisfy the following set of equations:

̇a1a2
= − �i�a1a2

+
1

2
��1 + �2�a1a2

−
i

2
�3e−i�eikx cos �3e−i�3t�a1a1

− a2a2
�

+
i

2
�1 sin �xe−i�1tba2

−
i

2
�2e−ikx cos �2ei�2ta1b

+
iEp�a1c

2

e−i�ptca2

,

̇a1b = − �i�a1b +
1

2
�1a1b −

i

2
�1 sin �xe−i�1t�a1a1

− bb�

−
i

2
�2eikx cos �2e−i�2ta1a2

+
i

2
�3e−i�eikx cos �3e−i�3ta2b

+
iEp�a1c

2

e−i�ptcb,

̇a2b = − �i�a2b +
1

2
�2a2b −

i

2
�2eikx cos �2e−i�2t�a2a2

− bb�

−
i

2
�1 sin �xe−i�1ta2a1

+
i

2
�3ei�e−ikx cos �3ei�3ta1b,

̇a1c = − �i�a1c +
1

2
�1a1c +

i

2
�3e−i�eikx cos �3e−i�3ta2c

+
i

2
�1 sin �xe−i�1tbc −

iEp�a1c

2

e−i�pt�a1a1

− cc� ,

̇a2c = − �i�a2c +
1

2
�2a2c +

i

2
�3ei�e−ikx cos �3ei�3ta1c

+
i

2
�2eikx cos �2e−i�2tbc −

iEp�a1c

2

e−i�pta2a1

,

̇bc = − �i�bc + �bc�bc +
i

2
�1 sin �xei�1ta1c

+
i

2
�2e−ikx cos �2ei�2ta2c −

iEp�a1c

2

e−i�ptba1

. �A2�

The diagonal density matrix elements—i.e., the popula-
tions of the atomic energy levels—can be determined in a
similar manner. Here �ik corresponds to the energy differ-
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ence between the levels i, k, and �k is the frequency of the
kth optical field. Next we transform these equations to ap-
propriate rotating frame defined through

ca2
= ei��p−�3�t̃ca2

,

a1b = e−i��2+�3�t̃a1b,

a2b = e−i�2t̃a2b,

a1a2
= e−i�3t̃a1a2

,

bc = ei��1−�p�t̃bc,

a1c = e−i�pt̃a1c. �A3�

The equations of motion for the density matrix elements
in the rotated frame take the following form:

̇̃a1a2
= − �i��a1a2

− �3� +
1

2
��1 + �2�	̃a1a2

−
i

2
�3e−i�eikx cos �3�̃a1a1

− ̃a2a2
� +

i

2
�1 sin �x̃ba2

−
i

2
�2e−ikx cos �2̃a1b +

iEp�a1c

2

̃ca2

,

̇̃a1b = − �i��a1b − �1� +
1

2
�1	̃a1b −

i

2
�1 sin �x�̃a1a1

− ̃bb�

−
i

2
�2eikx cos �2̃a1a2

+
i

2
�3e−i�eikx cos �3̃a2b

+
iEp�a1c

2

̃cb,

̇̃a2b = − �i��a2b − �2� +
1

2
�2	̃a2b −

i

2
�2eikx cos �2�̃a2a2

− ̃bb�

−
i

2
�1 sin �x̃a2a1

+
i

2
�3ei�e−ikx cos �3̃a1b,

̇̃a1c = − �i��a1c − �p� +
1

2
�1	̃a1c +

i

2
�3e−i�eikx cos �3̃a2c

+
i

2
�1 sin �x̃bc −

iEp�a1c

2

�̃a1a1

− ̃cc� ,

̇a2c = − �i��a2c − ��p − �3�� +
1

2
�2	̃a2c

+
i

2
�3ei�e−ikx cos �3̃a1c +

i

2
�2eikx cos �2̃bc

−
iEp�a1c

2

̃a2a1

,

̇̃bc = − �i��bc + ��1 − �p�� + �bc�̃bc +
i

2
�1 sin �x̃a1c

+
i

2
�2e−ikx cos �2̃a2c −

iEp�a1c

2

̃ba1

. �A4�

Now we use the definition of the detuning from Eq. �8� into
Eq. �A4� and after linearization with respect to the probe
field we obtain Eq. �7� which is only a set of equations useful
for determining the susceptibility of the medium at the probe
frequency.

Now we consider the details of the solution of Eq. �7�.
This set of equations can be solved by writing them in the
matrix form

R�t�˙ = − MR�t� + C , �A5�

where R�t� and C are the column vectors and M is a matrix:

R = �̃a1c ̃a2c ̃bc�T,

C = �i
Ep�a1c

2

0 0T

,

M =� �i	 +
1

2
�1 −

i

2
�3e−i�eikx cos �3 −

i

2
�1 sin �x

−
i

2
�3ei�e−ikx cos �3 �i	 +

1

2
�2 −

i

2
�2eikx cos �2

−
i

2
�1 sin �x −

i

2
�2e−ikx cos �2 i	

� . �A6�

The formal solution of such equations is given by

R�t� = �
−�

t

e−M�t−t��Cdt� = M−1C . �A7�

Finally by using Eq. �A7�, we obtain the solution, Eq. �9�.
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