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We show how atomic coherence can lead to entanglement between two thermal fields at a temperature T. We
first show that the passage of a three-level atom in V configuration without coherence cannot create entangle-
ment. However, if the excited states are driven by a microwave field, the resulting atomic coherence can lead
to entanglement between the thermal fields. We show that, no matter how high the temperature of the fields is,
the thermal fields can always be entangled in the presence of atomic coherence.
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Atomic coherence �1�, which results from a coherent su-
perposition of different states of a single atom, can lead to
many different quantum optical phenomena. These include
correlated spontaneous emission laser �2�, lasing without in-
version �3�, electromagnetically induced transparence �4� and
spontaneous emission cancellation �5�. Atomic coherence has
recently been shown to play a key role in quantum thermo-
dynamics. For example, Scully et al. showed that mechanical
work may be extracted from a single heat bath via vanishing
atomic coherence �6�.

Another feature of quantum systems is entanglement that
refers to quantum correlation among subsystems that share a
common quantum state. Quantum entanglement plays an es-
sential role in quantum information processing such as quan-
tum computation �7�, quantum teleportation �8�, and quan-
tum cryptography �9�.

In this paper we discuss an important application where
atomic coherence plays a crucial role in creating entangle-
ment between two modes of the electromagnetic field inside
a doubly resonant cavity at temperature T, which are coupled
to two transitions of an atom in V configuration. The two
important concepts, entanglement and atomic coherence, are
shown to be closely related.

In earlier studies on the interaction of thermal fields with
the atomic systems, it has been shown that atom-field �10�
and atom-atom �11� entanglement can be generated in such
systems. In these studies, at least, one subsystem is initially
in a pure state. The entanglement appears only when the
atom and the field are not in thermal equilibrium. Here we
show that atomic coherence is the unique resource of creat-
ing entanglement between two cavity modes in thermal state
even at arbitrarily high temperature.

The model under consideration is shown in Fig. 1. We
consider the interaction of an atom in the V configuration
with the fields inside a cavity at temperature T. Here we
assume that the transitions between the upper levels �a� and
�b� to the ground state �c� are dipole allowed and these tran-
sitions are coupled resonantly with the modes inside the cav-
ity. The transition between the upper levels �a� and �b� is
dipole forbidden, while the coherence between level �a� and
level �b� could be created by applying a classical magnetic
field between these two levels. The interaction picture
Hamiltonian of the system is given by

Ĥ = �g1��a��c�â1 + �c��a�â1
†� + �g2��b��c�â2 + �c��b�â2

†� ,

�1�

where â1�â1
†� and â2�â2

†� are the annihilation �creation� opera-
tors for the two cavity modes and g1,2 are coupling constants
of the atom with the fields.

We consider the initial states of the cavity fields to be
diagonal in the Fock-state representation and the atom to be
prepared in a coherent superposition of the upper levels by a
classical field of frequency �ab as shown in Fig. 1. The initial
state of the atom-field system is written as

�̂af�0� = �
n1=0

�

Pn1
�n1��n1� � �

n2=0

�

Pn2
�n2��n2� � ��aa�a��a�

+ �bb�b��b� + �cc�c��c� + �ab�a��b� + �ba�b��a�� ,

�2�

where Pn1,2
are the probabilities for having photon number

states �n1,2�. An example of fields with vanishing off-
diagonal matrix elements in the Fock-state representation is a
thermal state, which has Pn1,2

= �n1,2�n1,2 / �1+ �n1,2��n1,2+1.
Here �n1,2�= �e��1,2�−1�−1 are the mean photon number of the
fields at temperature T with �1,2 being the field frequencies,
and �−1=kBT with kB being the Boltzmann constant.

The density matrix operator at time t is given by �̂af�t�
= Û�t��̂af�0�Û†�t� where Û�t�=exp�−iĤt /�� is the time evo-
lution operator. It follows, on taking a trace over the atomic
variables, that the reduced density matrix operator for the
fields is given by

�̂ f�t� = �
n1=0

�

�
n2=0

�

�n1,n2;n1,n2
�n1,n2��n1,n2�

+ �ab �
n1=0

�

�
n2=0

�

�n1+1,n2;n1,n2+1�n1 + 1,n2��n1,n2 + 1�

+ �ba �
n1=0

�

�
n2=0

�

�n1,n2+1;n1+1,n2
�n1,n2 + 1��n1 + 1,n2� ,

�3�

where the matrix elements are given by
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�n1,n2;n1,n2
= Pn1

Pn2
	�aa�1 − g1

2�n1 + 1�An1+1,n2
�1 − Cn1+1,n2

��2 + �bb�1 − g2
2�n2 + 1�An1,n2+1�1 − Cn1,n2+1��2


+ g1
2g2

2	�aaPn1−1Pn2+1n1�n2 + 1� � An1,n2+1
2 �1 − Cn1,n2+1�2 + �bbPn1+1Pn2−1n2�n1 + 1�An1+1,n2

2 �1 − Cn1+1,n2
�2


+ 	�aaPn1−1Pn2
g1

2n1 + �bbPn1
Pn2−1g2

2n2
An1,n2
Sn1,n2

2 + �cc	Pn1
Pn2

Cn1,n2

2 + Pn1+1Pn2
g1

2�n1 + 1�An1+1,n2
Sn1+1,n2

2

+ Pn1
Pn2+1g2

2�n2 + 1�An1,n2+2Sn1,n2+1
2 
 , �4�

�n1+1,n2;n1,n2+1 = − g1g2
��n1 + 1��n2 + 1� � 	An1+1,n2+1�1 − Cn1+1,n2+1� � �Pn1+1Pn2

�1 − g1
2�n1 + 2�An1+2,n2

�1 − Cn1+2,n2
��

+ Pn1
Pn2+1�1 − g2

2�n2 + 2�An1,n2+2�1 − Cn1,n2+2��� − Pn1
Pn2

�An1+1,n2
An1,n2+1Sn1+1,n2

Sn1,n2+1
 , �5�

�n1,n2+1;n1+1,n2
= ��n1+1,n2;n1,n2+1�*, �6�

with An1,n2
= �g1

2n1+g2
2n2�−1, Sn1,n2

=sin��g1
2n1+g2

2n2t� and
Cn1,n2

=cos��g1
2n1+g2

2n2t�.
We first discuss the case where initially there is no atomic

coherence, i.e., �ab=�ba=0. It is clear from Eq. �3� that, un-
der this condition, the fields are definitely in a separable
state,

�̂ f�t� = �
n1=0

�

�
n2=0

�

�n1,n2;n1,n2
�n1,n2��n1,n2� . �7�

In this case, the fields may still have classical statistical cor-
relation if �n1,n2;n1,n2

cannot be decomposed into a direct
product of the form �n1,n1

� �n2,n2
. As a special case, we con-

sider the situation where the atom and the fields are initially
in thermal equilibrium. In this case, the level populations of
the atom are determined by the relations �aa /�cc
= �n1� / ��n1�+1� and �bb /�cc= �n2� / ��n2�+1�. It follows, on
substituting these relations in Eq. �4�, that state �7� becomes

� f = �
n1=0

�

Pn1
�n1��n1� � �

n2=0

�

Pn2
�n2��n2� , �8�

i.e., we have neither entanglement nor classical correlation
between the fields as the two fields are completely separable.

So how do we entangle the thermal fields? We show that
this can be accomplished via atomic coherence.

In Eq. �4�, the term proportional to the population of the
level �c� results from one-photon absorption processes. The
photon absorption processes lead to the classical correlation
between the fields and have no contribution to the entangle-
ment. Therefore, in order to create strong entanglement, the
population of the level �c� should be reduced. In Eq. �5�, the
terms related to Pn1+1Pn2

and Pn1
Pn2+1 involve the processes

in which one mode photon is emitted and another mode pho-
ton is absorbed, and the term proportional to Pn1

Pn2
comes

from the photon emission processes of the upper levels. If
the atomic coherence exists, these terms contribute to the
off-diagonal matrix elements. Without the off-diagonal cor-
relation contribution given in Eqs. �5� and �6�, the fields have
no entanglement. However, the existence of the off-diagonal
correlation can not guarantee entanglement. Thus, we need to
find a condition for the existence of entanglement between
the fields in the state �3�.

State �3� is defined in an infinite dimensional Hilbert
space. In general, it is very difficult to measure the entangle-
ment in such systems �10,11�. However we recall that en-
tanglement cannot be generated through local transforma-
tions. To estimate the entanglement of �3�, we consider the

local projection operators Ân1
= �n1��n1�+ �n1+1��n1+1� and

B̂n2
= �n2��n2�+ �n2+1��n2+1� with n1,2=0 ,2 ,4 , . . .. If the

fields are in a separable state �ipi�i
�1�

� �i
�2�, the projected

state Ân1
B̂n2

�ipi�i
�1�

� �i
�2�B̂n2

† Ân1

† is still separable. Then we
can claim the existence of entanglement in �3� if the en-
tanglement exists in the projected state.

The projection of �3� on the subspace spanned by basis
vectors ��n1� , �n1+1�� � ��n2� , �n2+1�� with fixed photon num-
bers n1,2�=0,2 ,4 , . . . � leads to the state

��̂ f�t��n1,n2
= Ân1

B̂n2
�̂ f�t�B̂n2

† Ân1

† . �9�

In the subspace under consideration, the projected density
matrix operator �9� becomes a 4�4 Hermitian matrix. Now
we can apply the Peres-Horodecki sufficiency condition �12�
for the inseparability of density matrices of a two-party
quantum system. For a bipartite system, a state is separable if
and only if its density matrix can be written as �AB=�ipi�A

i

� �B
i , where pi	0 and �ipi=1. It is clear that the partial

FIG. 1. A three-level atom in V configuration with initial popu-
lations �aa ,�bb ,�cc is prepared in a superposition of upper levels �a�
and �b� by a resonant classical field. The atom then passes through
a doubly resonant cavity that is resonant with �a�− �c� and �b�− �c�
transitions. The fields inside the cavity are initially diagonal, such
as a thermal state.
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transposed matrix 
AB=�ipi�A
i

� ��B
i �T of a separable state

has only non-negative eigenvalues. According to the Peres-
Horodecki criterion, if the partial transposed matrix 
AB of a
state has negative eigenvalues, this state must be entangled.

The partial transposition of the density matrix �9� has a
negative eigenvalue if the condition

��ab�2 � Rn1,n2
=

�n1,n2;n1,n2
�n1+1,n2+1;n1+1,n2+1

��n1+1,n2;n1,n2+1�2
�10�

is satisfied. According to the Peres-Horodecki condition, we
can claim that state �3� is an entangled state if the condition
�10� is satisfied. This kind of methodology to detect the en-
tanglement of an infinite dimensional mixed state for a bi-
partite system was discussed and used by Bose et al. in �10�.

An experimental verification of inequality �10� requires
the full knowledge of the state. Several schemes have been
proposed to reconstruct a two-mode state in a high-Q cavity
recently �13�. For example, one can look at the spontaneous
emission spectrum in a driven four-level atomic system pass-
ing through the cavity to recover the Wigner function of the

two-mode field �14�. Once the Wigner function is known, the
right-hand side of �10� can be calculated in a straightforward
manner.

It follows from Eqs. �4� and �5� that R0,0=0 when �n1� and
�n2� approach zero. Thus, for this case, arbitrarily small but
nonzero atomic coherence can induce entanglement between
the two modes. For a general case, Rn1,n2

is always larger
than zero. Therefore there is the minimum atomic coherence
beyond which the entanglement can appear. The right side of
�10� depends on the level populations that satisfy the physi-
cal restriction with respect to the atomic coherence: �aa�bb
	 ��ab�2. In order to conveniently control the population and
atomic coherence at the same time, we consider the atom
whose level populations initially are �ii�0� �i=a ,b ,c� and
off-diagonal matrix elements �ij =0 for i� j. A coherence
between the excited states a and b is created when the atom
interacts resonantly with a classical magnetic field �since this
transition is dipole forbidden� of frequency �ab for a time �.
After the interaction with the classical field, the poulations
and the atomic coherence are given by �15�

�aa = �aa�0�cos2��� + �bb�0�sin2��� ,

�bb = �aa�0�sin2��� + �bb�0�cos2��� ,

�ab = ��ba�* = iei���aa�0� − �bb�0��sin���cos��� ,

�11�

where  is the Rabi frequency and � is the phase of the
driving field. All the other density matrix elements remain
unchanged. In this way, we can unitarily and continuously
control the level populations and atomic coherence by use of
the single parameter �. After passing through the classical
field, the atom acquires a coherence. When this atom passes
through the cavity with two thermal fields, the state of the
fields is described by the density matrix �3�. The entangle-
ment of the resulting state of the field is determined by the
condition �10�.

In Fig. 2, the right side of �10� with n1=n2=0 and the
squared modulus of the atomic coherence �11� are shown as
a function of � when the atom and the fields are initially in
thermal equilibrium. In the present calculation, we take g1

FIG. 2. The solid lines are for the case with �n1�=0.1 and �n2�
=5.0. The dashed lines are for the case with �n1�=0.1 and �n2�
=1.0. gt=11.0.

FIG. 3. The solid lines are for the case with �n1�= �n2�=1.0. The
dashed line is for the case with T→�. gt=5.0, and �aa=1.

FIG. 4. The time evolution of the entanglement measurement
with �n1�=0.1, �n2�=5.0, and �=� /4.
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=g2=g. We also find that, as a function of n1 and n2, the right
side of the inequality �10� takes the minimal value with n1
=n2=0. From Fig. 2, it can be noticed that the entanglement
condition �10� can be satisfied if the difference between the
mean thermal photon numbers of the two fields is sufficiently
large. This situation may not easily realizable because it re-
quires a large frequency difference between the two upper
levels.

Equation �11� shows that the atomic coherence is propor-
tional to the population inversion of the upper levels. On the
other hand, the numerator of the right side of the condition
�10� decreases if the level populations �aa, �bb, or �cc are
small. Therefore, the best initial condition of the atom for
satisfying the condition �10� is that the atom is in one of the
upper levels. For this case, Fig. 3 shows that the entangle-
ment condition �10� can be satisfied even if the temperature
becomes arbitrarily high.

As discussed earlier, the Hilbert space for the complete
system is infinite dimensional, i.e., the dimension of the den-
sity matrix �3� is infinite. We can therefore obtain an infinite
number of the projected 4�4 Hermitian matrices �9� with
different photon numbers n1 and n2 by projecting the density
matrix �3� into the subspaces. We can then use the quantity
�16�

�E� = − 2 �
n1,n2=0,2,4,. . .

�

pn1,n2
�n1,n2

�12�

to measure the entanglement of �3�, where �n1,n2
is the

negative eigenvalue of the partial transposed density
matrix of �9� and pn1,n2

=�n1,n2;n1,n2
+�n1+1,n2;n1,n2

+�n1,n2+1;n1,n2
+�n1+1,n2+1;n1+1,n2+1 is the probability of taking

the 4�4 matrix �9� out of the matrix �3�. If �E�=0, it does
not mean nonentanglement. If �E��0, however, we can en-
sure that the infinite dimensional density matrix �3� must be
an entangled state. In Fig. 4, the time evolution of the en-
tanglement �12� is shown when the atom and the fields are
initially in thermal equilibrium. It is seen that for this case

the weak entanglement is detected at several time points. As
pointed out earlier, the atomic coherence will become stron-
ger when the atom is initially in one of the upper level.
Therefore, we may expect that in this case the stronger en-
tanglement will be detected. Figure 5 shows the time evolu-
tion of the entanglement �12� when the atom is initially in the
level �a�.

In conclusion we have shown that, no matter how high the
temperature is, and the atom and the fields are initially in
either thermal nonequilibrium or equilibrium, two thermal
field modes in a cavity can be entangled by a single three-
level atom of the V configuration when the coherence be-
tween two upper levels is beyond a critical value. The
present result reveals a relation between entanglement and
atomic coherence.
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