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Quenching of spontaneous emission through interference of incoherent pump processes
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We investigate the steady-state spontaneous emission of a V-type three-level atom, with the coherence
between the two upper levels modified and controlled via incoherent pumping to a fourth auxiliary level. The
external pumping gives us an easily controllable handle in manipulating the spontaneous emission to such an
extent that, under certain conditions, complete quenching of spontaneous emission is possible. We also show
that even the interference between the decay channels, which is considered a key requirement in spontaneous
emission quenching through quantum interference, is not essential to achieve near 100% trapping and almost
complete suppression of spontaneous emission. Thus we provide a scheme for spontaneous emission quench-
ing which can be easily realized experimentally.

DOI: 10.1103/PhysRevA.67.023804 PACS number~s!: 42.50.Ct, 42.50.Gy, 42.50.Lc
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I. INTRODUCTION

Atomic coherence plays a crucial role in modifying spe
tral properties of a multilevel atomic system. The novel
fects possible through generation of atomic coherence am
atomic levels include correlated spontaneous emission l
@1#, absorption cancellation~or lasing without inversion!
@2–4#, electromagnetically induced transparency@5#, and
spontaneous emission reduction and cancellation@4,6–8#.
The generation of atomic coherence is usually achieved
application of strong coherent field tuned to an atomic tr
sition of a multilevel atomic system@9# leading to coherently
generated Autler-Townes doublet. Atomic coherence
tween two close lying levels can also be achieved thro
quantum interference of processes such as coupling of t
levels to identical modes of a reservoir@6#, or pumpings
from them to a single upper lying atomic level@10#. Interfer-
ing spontaneous decay channels have also been show
facilitate continuous wave lasing without inversion@11#. A
nice review article appeared recently@12# that summarizes
the quantum interference effects in optical fields and ato
radiation. The article also discusses the problem of contro
spontaneous emission through quantum interference effe

In the simplest scheme, spontaneous emission canc
tion due to quantum interference of spontaneous transit
from two upper levels to a lower lying third level is possib
only if the upper levels are closely spaced. The proximity
the levels is essential to ensure the existence of coher
and sufficient coupling between the two decaying chann
This limitation is overcome in Refs.@6,7# by introducing an
auxiliary fourth level and coupling it to the two upper leve
by a coherent field. Thus, spontaneous emission contro
possible for arbitrarily spaced energy levels decaying t
common lower level by varying the parameters of the coh
ent field. In this setup, the auxiliary fourth level needs to
of lower energy than the doublet to maintain the quant
interference. We, however, wish to achieve even more c
trol over the total spontaneous emission from the at
1050-2947/2003/67~2!/023804~12!/$20.00 67 0238
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through external parameters that can be manipulated
ease.

In this paper, we utilize interference of incoherent pum
processes on the same lines as in Ref.@10#, to introduce
coherence between the decaying doublet. We insert an
iliary level at an energy above the doublet and allow it
couple to the decaying doublet by interfering incohere
pump processes. These pump processes provide an
handle on the fluorescence and a means of controlling
amount of coherent population trapping. Moreover, we ma
tain the advantage that the levels can be well separate
coupling the decaying doublet to the ground level throug
coherent field. We observe that by controlling the parame
of the pumping fields, we can achieve further quenching
spontaneous emission than the simple case of interfering
cay channels. We also observe that in certain range of va
of the pumping parameters it is possible to have near 10
trapping in the decaying doublet, thus, achieving alm
complete spontaneous emission quenching even in the
sence of interference between the decay channels. To n
experimental work on quenching of spontaneous emiss
through quantum interference of two spontaneous de
channels has proved extremely difficult, with only one e
periment so far@13#, nevertheless, with criticism@14#, due to
the inherent uncontrollable nature of spontaneous emis
processes. Our scheme suggests a possibility of achie
complete control over the total decay from a doublet throu
a very simple scheme which could be easily employed
perimentally.

The article is organized as follows: In Sec. II, we discu
the essential ingredients of the model, discuss the Ha
tonian, and give the complete set of density-matrix equati
for the atomic system. We provide a dressed-state pictur
the model in Sec. III to allow for physical intuition of th
results obtained by solving the density-matrix equation.
Sec. IV, we summarize various results obtained through
solution of density-matrix equations. We study the time d
pendent behavior of the populations of the atomic states
show the existence of coherent population trapping un
©2003 The American Physical Society04-1
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certain conditions. We also explore the effect of the ene
spacing between two atomic levels on the coherence ge
ated between them. Furthermore, we investigate the effe
quantum interference on the coherent population trapp
and the spontaneous emission spectrum of the system
review a similar model considered earlier in Ref.@7# in Sec.
V and compare their results with our findings. In Sec. VI, w
state our conclusions. Various calculational details such
the occurrence of quantum interference in the decay and
pump channels and the determination of spontaneous e
sion spectrum are considered in Appendixes A, B, and C

II. THE MODEL AND THE DENSITY-MATRIX
EQUATIONS

We consider a level scheme depicted in Fig. 1. The sp
taneous decay rates fromua1& andua2& to ub& are denoted by
g18 andg28 , respectively. Incoherent pump processesr 1 and
r 2 coupleua1& and ua2& to an auxiliary stateuc&. A coherent
field is set to coupleub& to both the statesua1& and ua2& by
choosing a frequency tuned halfway between the two.
also include decays from stateuc& to all the lower levels.

There are three major dynamical processes occurrin
the system:~i! interaction of the atomic system with the c
herent field,~ii ! incoherent pump processes throughr 1 and
r 2, and~iii ! interaction with the reservoir governing the d
cay processes from statesua1& and ua2& to the ground level.
We describe these processes by interaction termsV1 , V2, and
V3, respectively. Thus, including the free-energy terms,
total Hamiltonian is

H5V01V11V21V3 . ~1!

The detailed form of these terms in the Hamiltonian can
written as

V05\v1ub&^bu1\v2ua2&^a2u1\v3ua1&^a1u

1\v4uc&^cu, ~2!

V152\V1e2 intua1&^bu2\V2e2 intua2&^bu1H.c., ~3!

FIG. 1. The level scheme. We are interested in controlling
spontaneous emission from the doubletua1& and ua2& to level ub&.
Level uc& is the auxiliary level coupled to the doublet via incohere
pumpingsr 1 and r 2.
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V252\(
k

gk
(1)e2 inktua1&^bub̂k1gk

(2)e2 inktua2&

3^bub̂k1H.c., ~4!

V352p1Epuc&^a1u2p2Epuc&^a2u1H.c., ~5!

whereV1 and V2 are the Rabi frequencies of the cohere
driving field of frequencyn corresponding to the two trans
tions from ua1& and ua2& to ub&, respectively;gk

(1,2) are the
coupling constants between thekth vacuum mode of fre-
quencynk and the atomic transition fromua1& and ua2& to
ub&, respectively, andp1 and p2 are the dipole moments o
the atomic transitions corresponding to the pumpings fr
ua1& and ua2& to uc&, respectively. To illustrate, the interac
tion term V2 describes coupling of statesua1& and ua2& to
stateub& through identical vacuum modes. Thus, there is
possibility of quantum interference between the two dec
modes. The interaction termV3 describes coupling of state
ua1& andua2& to uc& through a single electric fieldEp , which
is taken to be complex to include the frequency depend
phase factor.

The dipole momentsp1 and p2 corresponding to transi
tions fromua1& andua2& to uc& can, in principle, have differ-
ent directions. However, the electric fieldEp can be chosen in
a polarization mode such that it couples to both the tran
tions. Moreover, the electric field is required to have a bro
frequency spectrum or effectived-like correlation, i.e.,

^Ep* ~ t !Ep~ t8!&5Gpd~ t2t8!. ~6!

The effect ofV3 can be summarized through the pumpi
parametersr 1,252 (p1,2

2 /\2) Gp as discussed in Appendix B
We can treat the interaction terms separately to obtain
corresponding terms in the density-matrix equations to ar
at the final form. The effect of the interaction potentials,
well as the free part of the HamiltonianV0 on the density-
matrix can be obtained using the Liouville equation

ṙ (0,1,2,3)52
i

\
@V0,1,2,3~ t !,r (0,1,2,3)~ t !#

52
i

\
@V0,1,2,3~ t !r0,1,2,3)~ t !2r (0,1,2,3)~ t !V0,1,2,3~ t !#.

~7!

Here, the complete density-matrix has been reduced to
ferent parts as

r5r (0)1r (1)1r (2)1r (3), ~8!

coupling only to the corresponding part of the Hamiltonia
The terms corresponding toV0 andV1 can be obtained in a
straightforward manner. However, calculation of the interf
ence effect due toV2 and V3 is little more involved. We
discuss the details of the appearance of decay and p

e

t
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interference terms in Appendixes A and B. Next we tra
form, thus, obtained equations to rotated frame and incl
all the atomic decays as shown in Fig. 1 through the us
procedure. A word of caution is necessary at this point,
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Hamiltonian does not explicitly include the decay terms a
they are to be included in the density-matrix equation
following the usual procedure~see, for example, Ref.@15#!.
The resulting set of equations is
ṙ̃ba2
5F2

1

2
~r 21g28!1 iD2G r̃ba2

2
1

2
~pAr 1r 21p8Ag18g28!r̃ba1

1 i @V2* ~2ra2a2
1ra1a1

1rcc21!1V1* ra1a2
#,

ṙ̃ba1
5F2

1

2
~r 11g18!1 iD1G r̃ba1

2
1

2
~pAr 1r 21p8Ag18g28!r̃ba2

1 i @V1* ~2ra1a1
1ra2a2

1rcc21!1V2* ra2a1
#,

ṙ̃bc5F2
1

2
~r 11r 21g01g11g2!1 i ~D11d1!G r̃bc1 i ~V2* r̃a2c1V1* r̃a1c!,

ṙa2a2
52~r 21g28!ra2a2

1~r 21g2!rcc2
1

2
~pAr 1r 21p8Ag18g28!~ra2a1

1ra1a2
!1 i ~V2r̃ba2

2V2* r̃a2b!,

ṙa2a1
5F2

1

2
~r 11r 21g181g28!2 i ~D22D1!Gra2a1

2
1

2
~pAr 1r 21p8Ag18g28!~ra2a2

1ra1a1
!

1pAr 1r 2rcc1 i ~V2r̃ba1
2V1* r̃a2b!,

ṙ̃a2c5F2
1

2
~r 112r 21g01g11g21g28!1 id2G r̃a2c2

1

2
~pAr 1r 21p8Ag18g28!r̃a1c1 iV2r̃bc ,

ṙa1a1
52~r 11g18!ra1a1

1~r 11g1!rcc2
1

2
~pAr 1r 21p8Ag18g28!~ra2a1

1ra1a2
!1 i ~V1r̃ba1

2V1* r̃a1b!,

ṙ̃a1c5F2
1

2
~r 212r 11g01g11g21g18!1 id1G r̃a1c2

1

2
~pAr 1r 21p8Ag18g28!r̃a2c1 iV1r̃bc ,

ṙcc52~r 11r 21g01g11g2!rcc1r 1ra1a1
1r 2ra2a2

1pAr 1r 2~ra1a2
1ra2a1

!. ~9!
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Here, we have introduced parametersp andp8 to incorporate
the fact that the dipole moments for the corresponding tr
sitions may not be exactly parallel to each other. For
ample,p51 andp50 correspond to the case of dipole m
ments of the transitionsua2&→uc& and ua1&→uc& being
parallel and perpendicular, respectively. Similarlyp8 corre-
sponds to the transitions fromua2&, ua1& to ub&. Thus, these
parameters are the measure of the relative orientation o
corresponding dipole moments. The actual form of them
given later. For most part, we use the values ofp andp8 from
the set of$0,1% corresponding to the extremes of parallel a
orthogonal dipole moments to study the effect of the abse
or the presence of the interference terms on the behavio
the system. The detunings,D15va1b2n, D25va2b2n, d1

5vca1
2np , and d25vca2

2np appear in the above equa
tions as we are in the rotated frames defined by

r5e2 inte2 inptr̃, ~10!

wheren and np are the frequencies of the coherent and
-
-

he
is

ce
of

-

coherent fields, respectively. It will be apparent later that
interference of the two incoherent pump processes and
two decay processes among themselves are very impo
for quenching of spontaneous emission and is governed
the Ar 1r 2 and theAg18g28 terms in the density-matrix equa
tions, respectively.

III. DRESSED-STATE ANALYSIS

Although, the interference terms can be clearly seen in
density-matrix equations~9! they still have a formidable ap
pearance. It is very difficult to extract useful physical insig
about the system from such a set of coupled equations e
in steady state. However, atom-field combined dressed s
provide a useful tool to acquire physical insight in such
complicated multilevel atomic system interacting with va
ous electromagnetic fields and/or a reservoir@16#. In the cur-
rent situation, it is instructive to dress the atom with t
coherent field and see the effect and interaction of
vacuum and pumpings fields on such dressed states. In
4-3
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section, we first determine the form of the dressed states
then consider the effect of the vacuum and pumping inte
tions in the dressed-state picture.

A. Determination of the combined atom-field dressed states

We start with defining the atom-field combined dress
states for the system. To incorporate the coherent light fi
in the state representation, we quantize it and resort to
number state representation of the same. The effect of
free energies and the coherent coupling can be summa
through the existence of the dressed states obtained b
agonalizing the corresponding Hamiltonian. For simplici
we consider a slightly different representation for the Ham
tonian than the one considered in previous sections.

The atom-field combined states for the model of Fig
can be taken to beua1 ,n&, ua2 ,n&, ub,n&, anduc,n& wheren
denotes the number of photons in the coherent-field coup
stateub& to ua1& and ua2&. The atom-field dressed states a
just the eigenstates of the coherent-field coupling part of
Hamiltonian, namely,V1. To start with, we rewriteV1 and
the free-energy part of Hamiltonian in the interaction pictu
as

V5\D1ub&^bu1\D2ua2&^a2u2~\g1ua1&^bua1\g2ua2&

3^bua1H.c.!, ~11!

whereg1,2 are the coupling constants betweenua1,2& andub&.
Here, we have also introduced the annihilation and crea
operators denoted bya and a†, respectively, to achieve th
quantized description of the coherent field. The correspo
ing characteristic equation is

ln
32ln

2~D11D2!2ln@g1
2~n11!1g2

2~n11!2D1D2#

1D1g2
2~n11!1D2g1

2~n11!50. ~12!

For simplicity, we assume that

D1g2
21D2g1

250, ~13!

leading to a trivial solutionln
(0)50 for the eigenvalue. The

corresponding eigenstate is

u0,n&5N0,nF g2An11ua1 ,n&2g1An11ua2 ,n&

2
g2

g1
D1ub,n11&G . ~14!

The other eigenstates can be shown to be

u6,n&5N6,nFg1An11S m6
v12

2 D ua1 ,n&

1g2An11S m7
v12

2 D ua2 ,n&

6~g1
21g2

2!~n11!ub,n11&G , ~15!
02380
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d-whereN0,n andN6,n are the normalization constants and

m5Ag1
2~n11!1g2

2~n11!1
v12

2

4
, ~16!

with v125va1b2va2b being the spacing between the tw
upper levels. The corresponding eigenvalues are

ln
(6)5

D11D2

2
6m. ~17!

In Fig. 2, we show a set of two eigenstates differing in t
photon number by one, thus, they differ in their energy
\n corresponding to the energy carried by single photon

The figure also shows that the adjacent set of dress
states couple with each other through spontaneous transi
and a given set of states couples to the stateuc,n& through
the incoherent pumpings. However, only some of these c
plings are possible and some are forbidden. We discuss t
details in forthcoming sections.

B. Coupled decay channels and dressed-state transitions

The decays from the upper-level doublet to the grou
level in the bare basis amount to decays between two se
the dressed states differing in the photon number by one
discussed above the interaction Hamiltonian for these tra
tions is given by

FIG. 2. Dressed-state representation of the level scheme. A t
cal spectrum is shown at the bottom of the figure, along with
corresponding spontaneous transitions introduced by the intera
with the vacuum field. Incoherent pumpings couple dressed stat
the stateuc,n& as discussed in the text.
4-4



in
w

le

,

ni

th
di

e
y
,

n

-

the
-
hts
of

-
of

ate
in

QUENCHING OF SPONTANEOUS EMISSION THROUGH . . . PHYSICAL REVIEW A67, 023804 ~2003!
Vvacuum52\(
k

gk
(1)e2 inktua1&^bub̂k

1gk
(2)e2 inktua2&^bub̂k1H.c., ~18!

wherenk corresponds to the frequency of thekth mode of
emitted field. It can be shown that the decay interaction
troduces transitions among the dressed states associated
different number of photons. For example, the matrix e
ment for the transition from the dressed stateu6,n11& to
the stateu0,n& can be written as

V0,6,n~ t !5^0,nu^1kuV vacuumu6,n11&u$0%&

5N0,nN6,n11^0,nu@\gk
(1)g1An12m1\gk

(2)g2

3An12m2#ei (nk2n0)tub,n11&

5N0,nN6,n11S 2
g2

g1
D1D @\gk

(1)g1An12m1

1\gk
(2)g2An12m2#ei (nk2n0)t, ~19!

wherem15m6v12/2 andm25m7v12/2. On the other hand
matrix elements of elements of the transitions fromu0,n
11& to u6,n& are given by

V6,0,n~ t !5^6,nu^1kuV vacuumu0,n11&u$0%&5N6,nN0,n11u

6,0&@\gk
(1)g2An12

2\gk
(2)g1An12#ei (nk2n0)tub,n11&

5N6,nN0,n11@6~g1
21g2

2!~n11!#ei (nk2n0)t

3@\gk
(1)g2An122\gk

(2)g1An12#. ~20!

It is clear that the matrix element~20! is zero when

gk
(1)

gk
(2)

5
g1

g2
~21!

for the arbitrary mode of the vacuum field. Since, by defi
tion,

gk
(1)

gk
(2)

5
mW a1 ,b•êk

mW a2 ,b•êk

, ~22!

where êk is the unit vector of thekth radiation mode and
mW aj ,b’s are the matrix elements of the dipole moments of
two transitions, the parallel matrix elements of the two
pole moments are needed for vanishingV6,0,n of Eq. ~20! for
arbitrary polarization of the vacuum field, assuming thatg1
andg2 have the same sign. In the case wheng1 andg2 have
opposite signs, matrix element~20! will be zero for each
vacuum mode, if the dipole moments are antiparallel.

Thus, we can have no decay fromu0,n11& to u6,n& un-
der the condition~21!. On the other hand, under the sam
condition the matrix element~19! is maximal, and the deca
rates fromu6,n11& to the u0,n& do not vanish. Therefore
02380
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under the above condition, the dressed statesu6& can decay
into the dressed stateu0&, but not vice versa. The conditio
~21! can be rewritten as

g1

g2
5p8Ag18

g28
, ~23!

where we have expressedgk
(1) andgk

(2) in terms of the cor-
responding radiative decay rates,g18 and g28 , as defined in
the Appendix A andp8 is the alignment of the dipole mo
ments corresponding to the driven transitions,

p85
mW a1 ,b•mW a2 ,b

umW a1 ,buumW a2 ,bu
. ~24!

With the introduction of the Rabi frequenciesV1,2

5g1,2An11 the trapping condition becomes

V1

V2
5p8Ag18

g28
. ~25!

The Fig. 2 takes into account these selection rules when
trapping condition~25! is satisfied and gives a typical spon
taneous emission spectrum with appropriate relative heig
of the peaks. It, however, does not include the influence
the incoherent pumpings on the spectrum.

C. Dressed states and incoherent pumping fields

The incoherent pumping interaction

V352p1Epuc&^a1u2p2Epuc&^a2u1H.c. ~26!

couples the dressed states to stateuc,n&. Matrix element of
the incoherent pumping interaction between stateu0,n& and
the stateuc,n& can be shown to be

Vc,0;n5^c,nu^$0%uV3u0,n&u$0%&

5N0,n@\g2An11p1Ep2\g1An11p2Ep#. ~27!

We can see that this matrix element vanishes if

p1

p2
5pAr 1

r 2
5

g1

g2
5

V1

V2
. ~28!

Here, we have expressedp1 and p2 in terms of the corre-
sponding pumping rates,r 1 andr 2, as defined in the Appen
dix B. Moreover,p corresponds to the relative orientations
the corresponding dipole moments

p5
mW a1 ,c•mW a2 ,c

umW a1 ,cuumW a2 ,cu
. ~29!

Under the condition~28! it can be easily verified that the
other matrix element corresponding to transition from st
u6,n& to stateuc,n& does not vanish. Thus, there are certa
4-5
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selection rules for transitions from the dressed states to
stateuc,n&, provided the trapping conditions are satisfied

The dressed-state picture gives a good physical idea o
effect of the pumpings and vacuum coupling on the sys
as discussed above. However, a complete analysis of the
tem in the dressed-state picture could get extremely com
cated. Therefore, to clarify these effects further, we study
complete numerical solution and so obtained results in
following section.

IV. RESULTS AND DISCUSSION

The set of density-matrix equations~9! can be easily
solved to obtain the time evolution of populations and coh
ences as well as their steady-state behavior. The param
chosen in all the figures satisfy the trapping conditions~25!
and ~28!.

We summarize a typical result in Fig. 3 for the time d
pendence of the populations for all the four states. We s
with all the population in stateub& at time t50, and it all
ends up in statesua1& andua2& in the steady state. Some of
is transferred to stateuc& because of the presence of the dri
and the pump fields but it soon decays and we get alm
100% trapping in statesua1& andua2&. Thus, we observe tha
there is a possibility of trapping all the population in sta
ua1& and ua2& even in the presence of apparent loss mec

FIG. 3. Time evolution of populations forva2a1
50.2g, D1

5d252D252d150.1g, V15V25g, g15g25g050.5g, and
g185g285g.

FIG. 4. Populations of the trapping states versus Rabi freque
r 15r 25g, D152D252d15d250.5va2a1

, and g15g25g0

5g185g285g.
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nisms like the decays to stateub& and pumpings to stateuc&.
Once such coherent population trapping is achieved ther
no spontaneous emission from the system.

Another important observation is the dependence of
amount of trapping on the energy spacing between the st
ua1& and ua2&. We observe that the amount of trapping d
creases with the increase in the energy spacing between
statesua1& and ua2&. Although, there is a possibility of in-
creasing the Rabi frequency of the driving field in order
increase the trapped fraction. This is depicted in Fig.
where we plot the populations of the two upper-levels a
function of the Rabi frequency for different upper-level sep
rations. Larger upper level separation needs larger Rabi
quency for the driving field to achieve the same fraction
population in the trapping states.

We now discuss the importance of the incoherent pum
ings and the interference terms between them as well as
interference between the decay channels. We carefully s
the effect of these terms on the population trapping in
doublet ua1& and ua2& for various relative values of the
pumping and the decay parameters, while keeping all
other parameters fixed. The results are summarized in Fig
We observe that the process of generating coherence bet
the decaying doublet through interference of incoher
pumpings is effective when the pumping parameters (r 1 ,r 2)
are at least three orders of magnitude larger than the de
parameters (g18 ,g28). In this case, we observe that even in t
absence of interference between the decay channels the
near 100% trapping and, thus, almost complete spontan
emission quenching in the steady state.

This situation is particularly of interest as it implies th
one can achieve tremendous control over the spontan
emission from the decaying doublet even in the absenc
the interference between the decay channels. In real life s
ations one does not have any control over the spontane
decay properties of the atomic system let alone ensuring
presence of interference between two decay channels in
der to quench the spontaneous emission. The first plot of
5 clearly illustrates that our model removes this string
requirement on the decay properties of the system and
parts an easily controllable handle through the incoher
pumping parameters. Thus it could be easily implemen
experimentally.

Observing part 2 and 3 of Fig. 5 illustrates that the abo
mentioned advantage is lost when the pumping parame
become comparable to or smaller than the decay parame
When the pumping parameter values are comparable to t
of the decay parameters the results obtained in the cas
absence of either of the interference term are very clos
each other as expected. However, a point to be noted is
still the precedence taken by the pump interference over
decay interference is clear in part 2 of Fig. 5. In the ca
where the pumpings are small compared to the decay pa
eters~part 3!, we observe a role reversal and the influence
decay interference is larger compared to the pump inter
ence as can be expected. Nevertheless, in all the cases
both the interference terms are present in the system,
have 100% trapping and complete spontaneous emis
quenching.

y.
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In Fig. 6, we plot the spontaneous emission spectrum
radiation emitted by the transitionsua1&→ub& and ua2&
→ub&. The details of the spectrum calculations are given
Appendix C. As we can see it is a spectrum with five pea

FIG. 5. Amount of trapping (ra1a1
1ra2a2

) versus Rabi fre-
quencyV/g of the coherent field. In all the three parts of the figu
thin line corresponds to casep50, p850, i.e., the absence of bot
the interference terms; squares forp50, p851, i.e., the presence o
interference in the decay channels only; circles forp51, p850,
i.e., interference in the pumpings only; and thick line forp51, p8
51, i.e., the presence of both the interference terms. The com
parameters are the level spacingva1a2

52g, other decay ratesg1

5g25g050.1g, and the decay rates of interestg185g2850.001g.
Part 1 corresponds to the case of large pumping parameters
pared to the decay parameters, i.e.,r 15r 2510g. Here, we observe
that in the absence of both the interference terms, there is only
trapping as one would expect. However, the highlight is that eve
the absence of interference in the decay channels there is near
trapping. Part 2 corresponds tor 15r 25g185g2850.001g. In this
case, the results for the the case of either interference term b
absent are close to each other. Other results are similar to the
in part 1. It is clear that the effect of interference due to the in
herent pumpings is little more compared to the same due to
decay channels. Part 3, here, the pumping parameters are
smaller compared to the decay parameters, i.e.,r 15r 251027g, and
we observe a role reversal among the two interference terms. T
there is a swapping between the circles and squares compared
corresponding case of part 1.
02380
f
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within the vicinity of the frequency of the driving field; th
number of peaks can be easily explained in the dressed-
picture.

The total spontaneous emission in all the modes fr
statesua1& and ua2& is governed by the area under the spe
tral curve. We can easily see that the presence or absen
the interference terms in the decay and pump channels
utmost importance in governing the total emission from
atom in the two decay channels. The presence of both
interference between the pump processes (p51) and decay
processes (p851) gives the spectrum with almost zero ar
under the curve. Thus, one can achieve complete spont
ous emission quenching.

V. REVIEW OF THE MODEL CONSIDERED IN REF. †7‡
AND ITS COMPARISON WITH THE PRESENT

ONE

So far, we have discussed the present model in its c
plete details and we have discussed the results in prece
section. It is more instructive to compare the results obtai
here with a model previously considered in the literature
throw more light on the problem of spontaneous emiss
control and manipulation.

A scheme considered Ref.@7# is particularly of interest,
due to its similarity to the current model. The system cons
of a four-level atom very similar to the one considered h
and is depicted in Fig. 7. Leaving aside the incoherent pum
ings in this model, as there are no interference terms ass
ated with them, the essential elements consist of a cohe
field and interfering decay channels. Unlike the curre
model, this model achieves coherence between the deca
doublet through a coherent-field coupling with an outs
level which has to lie below the doublet. Thus, a typic
spontaneous emission spectrum consists of three dis
peaks as opposed to five in the present model. Another
sential ingredient is the interference required among the
cays from levelsua1& and ua2& to level ub&.

The presence of the coherent field assures that the de
ing doublet does not have to lie very close to each other. T
aspect is essentially the same as in our model. Since the
ub& in the model of Fig. 7 is lying lower than the decayin
double there is extra set of spontaneous decay channels
shown in Ref.@7# interference is required on these dec
channels too. This conditions is fairly stringent and can
very difficult to meet in real life situations.

The model of this paper~Fig. 1!, does not impose any
stringent requirements. Our results even relax the requ
ment of interference among the decay channels by choo
appropriate values for the pumping parameters. Achiev
interference in the incoherent pumping is fairly easy expe
mentally by tweaking the polarization of the applied lig
field. Moreover, we observe that one can obtain more con
over the spontaneous emission through the present sch
Under similar conditions one obtains much less emission
all the modes in the present scheme compared to the on
Fig. 7. Thus, the present scheme can be more easily
ployed in experimental situations and gives more con
over the amount of spontaneous emission from the syste
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FIG. 6. Spontaneous emission spectrum. Parameter values for plots~a!–~d!; va2a1
520g,g185g285g15g25g05g,V15V2510g,r 1

5r 2510g. Left: Spontaneous emission spectrum for four different cases of the values ofp and p8 corresponding to the parallel an
perpendicular directions of the corresponding dipole moments. The four different cases possible are depicted in~a! p5p850, ~b! p50,
p851, ~c! p51, p850, and~d! p5p851. Plot~e! corresponds to the parameter values of Part 1 of Fig. 5 withp51, p850. Observe that
in this scale the case~d! lies on the zero line. Moreover, in the case~e! is very close to the zero line illustrating the control one can achi
over spontaneous emission even in the absence of coupling in the decay channels. Right: The magnification of the zero line in th
of the figure. The shape of the spectrum is preserved but the emission is negligible. Here,D5(v2n) in the units ofg.
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VI. CONCLUSIONS

We have shown that atomic coherence can be gener
through the interference of incoherent pump processes.
imparts an easily controllable handle for manipulating
spontaneous emission properties of three-level V-type
tem. Whereas, the interference between the decay chann
essential for complete quenching of spontaneous emiss
the nature does not give us any control over the character
decays of any given system. In such a situation, being ab
modify the coherence through the interference of exter
pumping fields, offers more control in achieving the rig
amount of trapping and fluorescence as needed. We have
shown that, under certain conditions, complete spontane
emission quenching is possible in all the modes of the ra
tion field. We have also shown that with a certain choice
parameters it is possible to obtain near 100% trapping
almost complete quenching of spontaneous emission fro
doublet even without the stringent requirement of the ex
tence of interference in the decay channels. Our scheme
be very easily implemented experimentally as it wor
around the difficulty of finding the right kind of system wit
interfering decay channels.
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APPENDIX A: INTERFERENCE TERM FOR THE
DECAY CHANNELS

We discuss the effect ofV2 on the density-matrix element
in this appendix. We consider all the four levels without t
presence of the pumping terms and decays from stateuc& to
ua1& and ua2&. Even though there is no direct coupling
state uc&, as it will be evident later some coherence term
involving stateuc& are still present and do get affected by t
interference of the decay processes.

The coupling of the atomic system to the vacuum res
voir is described through

V252\(
k

gk
(1)e2 inktua1&^bub̂k1gk

(2)e2 inktua2&

3^bub̂k1H.c., ~A1!

as mentioned earlier. The Liouville equation for the to
density operatorrT of the ‘‘atom1 reservoir’’ system in the
interaction representation is

ṙT52
i

\
@V2~ t !,rT~ t !#. ~A2!

Integrating the above equation once and substituting the
sult in it, we obtain

ṙT52
i

\
@V2~ t !,rT~0!#

1S i

\2D E0

t

dt8†V2~ t !,@V2~ t8!,rT~ t8!#‡, ~A3!

with the initial conditions given by

rT~0!5r (2)~0!rF , rF[^$0k%uu$0k%&, ~A4!
4-8
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QUENCHING OF SPONTANEOUS EMISSION THROUGH . . . PHYSICAL REVIEW A67, 023804 ~2003!
where,r (2)(0) denotes the atomic density operator att50,
rF the field density operator, andu$0k%& corresponds to the
vacuum state. We now assume, as usually done when
system of interest is weakly coupled to a large reservoir,
the total density operator factorizes into the form

rT5r (2)~ t !rF ~A5!

for any t.0; in addition, we calculate the partial trace
above equation over the field degrees of freedom. Thus, f
straightforward calculations, it follows that the atomic de
sity matrix elementrba2

(2) satisfies the equation of motion

ṙba2

(2) 52E
0

t

dt8(
k

gk
(1)2exp@2 ink~ t2t8!#rba2

(2) ~ t8!

52E
0

t

dt8(
k

gk
(1)gk

(2)exp@2 inkt1 ink8t8#rba1

(2) ~ t8!.

~A6!

At this point, usually, it is assumed thatrba2

(2) (t) andrba1

(2) (t8)

are slowly varying functions of time and, therefore,r (2)(t8)
can be replaced byr (2)(t). Thet8 integration in above equa
tion is then carried out. Here, we follow a different proc
dure. First, we replace the summation overk by an integral,
i.e.,

(
k

. . .→E
2`

`

dnkD~nk!•••, ~A7!

where

D~nk!5
Vnk

2

p2c3
~A8!

represents the density of states. Here,V is the quantization
volume. On interchanging the integrations overnk andt8, we
obtain

ṙba2

(2) 52E
0

t

dt8E
2`

`

dnkD~nk!gk
(1)$gk

(1)rba2

(2) ~ t !

3exp@2 ink~ t2t8!#1gk
(2)rba1

(2) ~ t8!exp~2 inkt !

3exp~2 ink8t8!%. ~A9!

Now, we assume that the statesua1& and ua2& are close to
each other. Thus, the density of statesD(nk) and the cou-
pling constantsgk

(1) and gk
(2) contribute significantly only

aroundnk5v. We can, therefore, replacenk by v in the
corresponding terms. Thus,

ṙba2

(2) 52D~v!gv
(1)E

0

t

dt8E
2`

`

dnk$gk
(1)rba2

(2) ~ t !

3exp@2 ink~ t2t8!#1gk
(2)rba1

(2) ~ t8!exp~2 inkt !

3exp~2 ink8t8!%. ~A10!
02380
he
at

m
-

On carrying out the integration, we obtain

ṙba2

(2) 52
1

2
g28rba2

(2) 2
1

2
Ag18g28 rba1

(2) , ~A11!

where g1852pD(v)gv
(1)2, g2852pD(v)gv

(2)2. Here, we
have assumed both coupling constants to be positive. Sim
calculations lead to the equations for the remaining indep
dent matrix elements

ṙba1

(2) 52
1

2
g18rba1

(2) 2
1

2
Ag18g28rba2

(2) ,

ṙa2a2

(2) 52g28ra2a2

(2) 2
1

2
Ag18g28 ~ra2a1

(2) 1ra1a2

(2) !,

ṙa2a1

(2) 52
1

2
~g181g28!ra2a1

(2) 2
1

2
Ag18g28~ra2a2

(2) 1ra1a1

(2) !,

~A12!

ṙa2c
(2) 52

1

2
g28ra2c

(2) 2
1

2
Ag18g28 ra1c

(2) ,

ṙa1a1

(2) 52g18ra1a1

(2) 2
1

2
Ag18g28 ~ra2a1

(2) 1ra1a2

(2) !,

ṙa1c
(2) 52

1

2
g18ra1c

(2) 2
1

2
Ag18g28 ra2c

(2) .

We note that the terms containing the product ofg18 andg28
describe quantum interference effects which emerge from
radiative decay of the upper states to their common low
level. In particular, this interference term is responsible
establishing the coherence between statesua1& andua2&. The
coherencesra2c

(2) and ra1c
(2) are affected by these interferenc

terms even in the absence of any direct coupling ofuc& to the
remaining states.

APPENDIX B: INTERFERENCE TERM
FOR THE PUMP PROCESSES

In this appendix, we consider the detailed calculation
the pump processes described by the Hamiltonian

V352p1Epuc&^a1u2p2Epuc&^a2u1H.c. ~B1!

As discussed in Sec. II we assume a the two-time correla
of the applied electric field to bed-like, i.e.,

^Ep* ~ t !Ep~ t8!&5Gpd~ t2t8!. ~B2!

The Liouville equation for the density-matrix correspondi
to this part of the integration is

ṙ (3)52
i

\
@V3 ,r (3)#52

i

\
~V 3r (3)2r (3)V3!. ~B3!

Expanding the Liouville equation, we arrive at
4-9
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ṙba2

(3) 52
i

\
p2E prbc

(3) ,

ṙba1

(3) 52
i

\
p1E prbc

(3) ,

ṙbc
(3)52

i

\
Ep* ~p1rba1

(3) 1p2rba2

(3) !,

ṙa2a2

(3) 5
i

\
p2~Ep* rca2

(3) 2E pra2c
(3) !,

ṙa2a1

(3) 5
i

\
~p2Ep* rca1

(3) 2p1E pra2c
(3) !, ~B4!

ṙa2c
(3) 5

i

\
@p2Ep* ~rcc

(3)2ra2a2

(3) !2p1Ep* ra2a1

(3) #,

ṙa1a1

(3) 5
i

\
p1~Ep* rca1

(3) 2E pra1c
(3) !,

ṙa1c
(3) 5

i

\
@p1Ep* ~rcc

(3)2ra1a1

(3) !2p2Ep* ra1a2

(3) #,

ṙcc
(3)5

i

\
$Ep~p1ra1c

(3) 1p2ra2c
(3) !2Ep* ~p1rca1

(3) 1p2rca2

(3) !%,

as a starting point. The strategy is to integrate all these e
tions once and then resubstitute the so obtained equa
back into the above equation, much like the method app
in Appendix A. We consider the evaluation of density-mat
equation for elementrba2

(3) in complete details. We need ex

pression forrbc
(3)(t), which after formal integration ofṙbc

(3)

equation from above is

rbc
(3)~ t !52

i

\E0

t

dtEp* ~t!@p1 rba1

(3) ~t!1p2rba2

(3) ~t!#.

~B5!

Substituting in theṙba2

(3) equation, we obtain

ṙba2

(3) 51S i

\ D 2

p2
2E

0

t

dtEp~ t !Ep* ~t!rba2

(3) ~t!

1S i

\ D 2

p1p2E
0

t

dtEp~ t !Ep* ~t!rba1

(3) ~t!. ~B6!

Thus, using thed correlation of the pumping fields, we arriv
at

ṙba2

(3) 52
1

2
r 2rba2

(3) 2
1

2
Ar 1r 2rba1

(3) , ~B7!
02380
a-
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where we have defined

r 1,2[2~p1,2
2 /\2!Gp . ~B8!

Following similar steps for the remaining matrix elemen
we obtain

ṙba1

(3) 52
1

2
r 1 rba1

(3) 2
1

2
Ar 1r 2 rba2

(3) ,

ṙbc
(3)52

1

2
~r 11r 2! rbc

(3) ,

ṙa2a2

(3) 52r 2ra2a2

(3) 1r 2rcc
(3)2

1

2
Ar 1r 2~ra2a1

(3) 1ra1a2

(3) !,

ṙa2a1

(3) 52
1

2
~r 11r 2! ra2a1

(3) 1
1

2
Ar 1r 2 ~2rcc

(3)2ra2a2

(3) 2ra1a1

(3) !,

~B9!

ṙa2c
(3) 52r 2 ra2c

(3) 2
1

2
r 1 ra2c

(3) 2
1

2
Ar 1r 2ra1c

(3) ,

ṙa1a1

(3) 52r 1ra1a1

(3) 1r 1rcc
(3)2

1

2
Ar 1r 2~ra2a1

(3) 1ra1a2

(3) !,

ṙa1c
(3) 52r 1 ra1c

(3) 2
1

2
r 2 ra1c

(3) 2
1

2
Ar 1r 2ra2c

(3) ,

ṙcc
(3)52~r 11r 2! rcc

(3)1r 1ra1a1

(3) 1r 2 ra2a2

(3)

1Ar 1r 2 ~ra2a1

(3) 1ra1a2

(3) !.

We note that the terms involving products ofr 1 and r 2
correspond to interference between the pumping proce
from two lower lying statesua1& and ua2& to upper lying
statesuc&. In particular, this interference term affects the c
herence between statesua1& andua2&. Moreover, even in the
absence of any direct coupling with stateub&, coherences
rba2

(3) , rba1

(3) , and rbc
(3) are influenced by the interference o

pumpings from statesua1& and ua2& to stateuc&.

APPENDIX C: CALCULATION OF THE SPONTANEOUS
EMISSION SPECTRUM

Spontaneous emission spectrum can be calculated
Fourier transform of the two-time correlation function
electric-field intensity, i.e.,

S~v!5
1

2pE0

`

dt e2 ivt^EW (2)~rW,t1t!•EW (1)~rW,t !&1c.c.,

~C1!
4-10
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QUENCHING OF SPONTANEOUS EMISSION THROUGH . . . PHYSICAL REVIEW A67, 023804 ~2003!
whereEW (1)(rW,t) @EW (2)(rW,t)# is the positive~negative! part of
the electric field operator at timet and positionrW. In the
far-zone approximation this operator takes the form

EW (1)~rW,t !5EW 0
(1)~rW,t !2

v0
2

4pe0c2r
n̂•@ n̂•PW (1)~ t2r /c!#,

~C2!

where n̂ is the unit vector in the direction of observatio
PW (1) is the positive part of the atomic polarization opera
in the Heisenberg picture. We are interested in the spect
of radiation emitted by the transitionsua1&→ub& and ua2&
→ub&. In this case,v05(va1b1va2b)/2 and

PW (2)~ t !5mW a1b~ ua1&^bu!H~ t !1mW a2b~ ua2&^bu!H~ t !,

PW (1)~ t !5@PW (2)~ t !#† , ~C3!

where superscriptH denotes that the operators are taken
the Heisenberg picture. We note that

p85
mW a1b•mW a2b

ma1bma2b
, ~C4!

denotes the alignment of the dipole moments of the two tr
sitions. From Eqs.~C2! and~C3!, it follows that the sponta-
neous emission spectrum is proportional to the Fourier tra
form of the atomic two-time correlation function

G (1)~ t,t!5^PW (2)~ t1t!PW (1)~ t !&. ~C5!

Calculation of Eq.~C5! involves a straightforward applica
tion of the quantum regression theorem@17#. This theorem
states that if, for some operatorÔi ,

^Ôi~ t1t!&5(
j

cj~ t,t!^Ôj~ t !&, ~C6!

where$Ôj% is a complete set of system operators andcj8s are
c-number functions of time, then

^Ôi~ t1t!Ôk~ t !&5(
j

cj~ t,t!^Ôj~ t !Ôk~ t !&. ~C7!

The density-matrix elements can be arranged in a ve
form
02380
r
m
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R5~rba2
rba1

rbc ra2b ra2a2
ra2a1

ra2c ra1b

3ra1a2
ra1a1

ra1c rcb rca2
rca1

rcc!
T, ~C8!

thus allowing to rewrite the density-matrix equations of m
tion in the following matrix form:

Ṙ5MR1B, ~C9!

whereB is a inhomogeneous part arising from elimination
rbb by normalization condition( i 5a1 ,a2 ,b,cr i i 51. Explicit
expressions for the matrixM and vectorB are too bulky to be
presented here. They can be easily obtained from Eq.~9!.
The formal solution of the system~C9! can be written as

R~ t !5exp@M ~ t2t0!#R~0!1E
t0

t

dt8exp@M ~ t2t8!#B,

~C10!
and the steady-state solution reads

R~ t5`!52M 21B. ~C11!

The first step in the application of the regression theorem
to find the one-time expectation value of the atomic pol
ization operator. The expectation values calculated in Sch¨-
dinger and Heisenberg pictures coincide, therefore,

^PW (2)~ t1t!&5mW a1b^~ ua1&^bu!H~ t1t!&

1mW a2b^~ ua2&^bu!H~ t1t!&

5mW a1bra1b
S ~ t1t!1mW a2bra2b

S ~ t1t!

5mW a1bra1beva1b(t1t)1mW a2bra2beva2b(t1t).

~C12!

Here, the superscriptsH andS stand for the Heisenberg an
Schrödinger picture, respectively. Now in order to evalua
Eq. ~C5!, we need to rewrite this expectation value in term
of the system operators (u i &^ j u)H and carry out the replace
ment

^~ u i &^ j u!H~ t !&→^~ u i &^ j uPW (1)!H~ t !&. ~C13!

Taking the Fourier transform of the result, in the limitt
→`, we find the spontaneous emission spectrum in the fo
@18#

S~v!5ReG (1)~z!uz5 iv , ~C14!

where
4-11
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Ĝ~z!5ma1b
2 S L21~z1!R9~`!1L22~z1!R10~`!1L23~z1!R11~`!1(

j 51

15

P2 j~z1!BjR8~`!D
1p mW a1b•mW a2bS L21~z1!R5~`!1L22~z1!R6~`!1L23~z1!R7~`!1(

j 51

15

P2 j~z1!BjR4~`!D
1p mW a2b•mW ba1S L11~z1!R9~`!1L12~z1!R10~`!1L13~z1!R11~`!1(

j 51

15

P1 j~z1!BjR8~`!D
1ma2b

2 S L11~z1!R5~`!1L12~z1!R6~`!1L13~z1!R7~`!1(
j 51

15

P1 j~z1!BjR4~`!D , ~C15!

with

L~z1!5~z1I 2M !21, P~z1!5M 21~z1I 2M !21. ~C16!

Here, we have used the definition

z15z2 iv05 i ~v2v0!5 i ~v2n!5 iD, ~C17!

with n being the frequency of the coherent-field tuned to the middle of the two levelsua1& and ua2&. Thus, using the recipe
discussed in this appendix the spectrum can be calculated numerically for different parameter values.
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