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Multiple-vacancy production in the independent-Fermi-particle model

R. L. Becker
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

A. L. Ford and J. F. Reading
Physics Department, Texas 34M University, College Station, Texas 77843

(Received 12 January 1984)

Measurements of E x-ray (or Auger) satellite intensities produced by ion impact have yielded
E"L' multiple-vacancy distributions which in most cases are nearly binomial. This implies that,
statistically, the holes are nearly independent, which is surprising in view of the known influence of
correlations on other collision processes. We give a detailed derivation of general expressions for
ion-induced multiple-vacancy distributions in the independent-Fermi-particle collision model, based
on the Hartree-Fock description of the target, which contains Pauli correlations. Our coupled-
channels calculations employing these expressions have shown that the electron exchange terms tend
to mutually cancel because of "random" phases, but need not cancel when a single channel, such as
a resonant electron capture, is dominant.

I. INTRODUCTION

Most atomic collision theory involves an independent-
particle model (IPM) for the electrons. The IPM for elec-
trons involved in collisions should employ an antisym-
metric many-electron wave function, just as it does for
bound states in the Hartree-Fock (HF) approximation.
However, all the theory' of K-shell-vacancy plus
multiple-l. -shell-vacancy production in ion-atom col-
lisions, previous to our work beginning with Ref. 3, has
been done with a model in which one forms transition
probabilities for a many-electron system directly from the
probabilities of a one-electron system. Because in this
model quantum mechanics is not used except for a one-
electron system, we refer to it as the single-particle model
(SPM). The Pauli exclusion principle (only in the original
sense of excluding multiple occupancy of a spin orbital,
and not in the stronger sense of Dirac's requirement of
antisymmetry of the wave function) is imposed on the
SPM, so that a given spin orbital k is either vacant, with a
probability pk, or occupied by precisely one electron, with
probability 1 —pk. Then simple counting leads to a bino-
mial distribution for the numbers of vacancies. Some
currency has been obtained for an alternative designation
of this model, namely, the "independent-electron approxi-
mation, " which appropriately emphasizes that its
multiple-vacancy formulas contain no correlation terms.

An alternative derivation of the binomial distribution
has been given, which is based on the m.inimum cross-
entropy principle of information theory. Just as in the
SPM, given a set of N spin orbitals, e.g., the L shell with
N=8, one imposes the weak form of the Pauli exclusion
principle, that each spin orbital may be either vacant or
occupied by only one electron. There are then 2 possible
final many-electron states, sc, which can be made from
this set, each of which has a certain number,
X„'=0,1, . . . , N of the spin orbitals occupied. Whether
the states ~ containing more than one electron are an-
tisymmetrical or not is irrelevant to the derivation. One

assumes that the Bayesian prior probability distribution of
the final states v is uniform, p„' ' =2 . Then the entropy
principle leads to the posterior distribution

x„'
p, =(1—p) "p ", p—:(N N')IN—

where p is the mean vacancy probability per spin orbital,
which can be measured. Then the probability of N' occu-
pancies and N —X' vacancies is

2N
PN' g' ( 1 )N'p x

v=1
(E„' =N')

the binomial distribution. This derivation indicates that
even in the presence of correlations in the wave functions,
the binomial distribution is the most probable, given only
the known constraints. Whether the detailed dynamics
(shell structure, form of the interaction, charge and speed
of the projectile ion, etc.) lead effectively to additional
constraints, not yet taken into account, cannot be
answered by the statistical theory.

In contrast to the SPM our dynamical theory includes
hole-hole correlations generated by using an antisym-
metric wave function. To stress that when the IPM em-
ploys a many-electron wave function antisymmetric under
exchange, i.e., when it is a Slater determinant,

pIFPM( r rp r) (Ft) —I/2det[y ]

g;=p (r;, r), a,i =1,2, . . . , F,
the electrons are treated properly as indistinguishable Fer-
mions, we refer to this formulation as the independent-
Fermi particle model (IFP-M). In the IFPM the electrons
remain dynamically independent but have Pauli correla-
tions arising from the Fermi statistics. One of us has con-
sidered elsewhere the independent-distinguishable-
particle model (IDPM), which employs a many-electron
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gc(K)(b) c()st)(b)+ c(lsl)(b) + 2 (1.3)

The IFPM inclusive probability for occupancy of a spin
orbital k is

OCC

p"(»=X lakk(b) I
=akk(b)

h

and for a vacancy is

pk(b) =1—p"(b),

(1.4)

(1.5)

where akk (b) is the amplitude of the single-electron transi-
tion from spin orbital h at t~ —oo to k at t—+00 and h
runs over all the initially occupied spin orbitals. Thus
p"(b) is just the incoherent sum of single-electron proba-
bilities for transitions from all the initially occupied spin
orbitals to the final state k. This result is obtained by
summing over all possible final states for the I' —1 other
electrons. Our notation mill, in general, list occupancies
as superscripts and nonoccupancies as subscripts.

For a "doubles" measurement, i.e., a twofold coin-

wave function taken to be a simple product of spin orbi-
tals, without electron exchange, as in the old Hartree
atomic theory. Unlike the SPM, the IDPM multiple-
vacancy formulas contain correlation terms, arising from
multiple occupancy of final spin orbitals, but these physi-
cally spurious terms are entirely incoherent in contrast to
those of the IFPM. In the IFPM such incoherent terms
are canceled by similar ones arising from electron ex-
change.

By an exclusive reaction we shall mean one leading to a
unique final state. Most experiments in atomic collision
physics detect inclusive processes, i.e., a set of exclusive
reactions which have something in common, such as the
production of a hole in a given state or of a free electron.
In the context of the IPM we shall distinguish between
particular inclusive processes, for which all the final states
must contain some particular spin orbitals, and hyperin-
clusive processes, which involve sums over particular in-
clusive processes such that the specified spin orbitals must
belong only to some set, such as a shell. As an example,
we cite inclusive L-shell-vacancy production, the set of re-
actions leading to at least one hole in the L shell.

In the IPM it is easy to sum over all the reactions of an
inclusive process, and the resulting cross section is usually
given by a much simpler expression than that for one of
its exclusive components. In the case of a "singles" mea-
surement, such as electron capture from an atom to a par-
ticular state of an initially bare projectile, the IFPM gives
the same inclusive cross section as does the SPM. We
shall employ a classical treatment of the relative motion
of the projectile and target nuclei, so that the integrated
cross section for a particular inclusive process is related to
a corresponding impact parameter-dependent probability,
I'(b) or p(b), by

o.=2m f P(b)bdb . (1.2)

For a hyperinclusive process sometimes instead of the
probability in (1.2) one has an expected value, g(b),
which may be greater than one. For example, the expect-
ed value for capture into the K shell of the projectile is

cidence, the IFPM inclusive cross section contains
electron-exchange terms not present in the SPM cross sec-
tion. These Pauli exchange terms (PET's) become more
numerous as the specified number of occupancies or
nonoccupancies is increased. Each PET contains a prod-
uct of off-diagonal matrix elements of the "single-
electron, transition-density" matrix, a' ', defined by

akk'(b) y akh(b)ak'h(b) ak k('b) .
h

(1.6)

These are complex-valued coherent superpositions of bi-
linear products of amplitudes for different single-electron
transitions. The element akk' can be comparable to or
small compared to (p p" )'~, depending on whether the
interference of the terms in (1.6) is constructive or de-
structive. Moreover, for any inclusive process, the sum of
PET's can also be large or small compared to the average
magnitude of one PET, depending on whether the in-
terference of PET's is constructive or destructive. Thus
the PET's provide a mechanism for the coherent enhance-
ment or suppression of otherwise (in the SPM) incoherent,
independent-electron transitions.

An example of a hyperinclusive doubles measurement is
the experiment first performed by MacDonald in which
one detects an electron capture from the target (by
measuring the final ionic charge of the projectile) in coin-
cidence with a hole in the K shell of the target (detected
from its decay by the emission of a K x ray). We have
found that the PET's provide a significant enhancement
of this process at impact speeds below the "matching"
speed (i.e., the average speed of a K-shell electron in the
target) and that this enhancement grows with the charge
of the projectile.

We were stimulated by our investigation of the PET
enhancement of the capture-and-vacancy production pro-
cess to ask whether striking enhancements or suppressions
resulting from PET's might occur for inclusive p-fold
coincidences with p greater than two. The process most
accessible experimentally is ion-induced multiple-vacancy
production. The multiple-vacancy configurations KL"
can be detected as satellites of the Ka x-ray or Auger
lines. Such measurements have been made frequently
since the first high-resolution satellite work in 1972.

The E x-ray satellites, as observed with moderate reso-
lution, usually are characterized by the number of L-shell
vacancies, but not by the number of M-, X-, . . . shell va-
cancies nor by the multiplet structure. These latter differ-
ences can be detected with a spectrometer of very high
resolution, but we shall assume that the measurements
under discussion are inclusive with respect to everything
except the number of L-shell vacancies or the numbers of
2s and 2p vacancies. We need to distinguish a subset of
hyperinclusive probabilities which we shall call number-
exclusiue hyperinclusive (NEHI) probabilities. If an ini-
tially full shell, S, contains X spin orbitals, a NEHI prob-
ability for this shell will specify a precise number of va-
cancies v and the complementary precise number of occu-
pancies X —v. We shall denote it by P „.Most hyper-

inclusive quantities are not exclusive with respect to the
numbers of occupancies and nonoccupancies. For exam-
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pie, P „and P refer to processes with at least u nonoc-

cupancies and at least n occupancies, respectively, in the
shell S. Only when the specified number of occupancies
in a shell plus the specified number of nonoccupancies in

the shell equals the total number of single-particle states
in the full shell is a hyperinclusive probability a NEHI

gN —v —1

one. P „ is not a NEHI probability. It includes the

possibility of N —v —1 occupancies and u+ 1 nonoccu-
pancies and also the possibility of N —u occupancies and
u nonoccupancies.

The main purpose of this paper is to present a deriva-
tion of general formulas ' for NEHI probabilities in
terms of simpler hyperinclusive expected values for at
least u vacancies, Q „, or for at least n occupancies, Q
which are sums of determinants. The use of the Qs„will
be referred to as the "vacancy formalism, " and the use of
the Q gives the "occupancy formalism. " Numerical
calculations have been made with both formalisms. The
results are the same. This provides an important check on
the validity of both sets of formulas. The essential nature
of these formulas is contained in the result for a single
shell. In the vacancy formalism, with Q „defined by

Pk $p ~ ~ ~ p

where each spin orbital A,; belongs to S, the NEHI proba-
bilities are given by

@+1 U+2
Qsv+&+ 2 Qsu+&+

single shell. The expected values for at least v vacancies
are expressed in terms of the number-exclusive probabili-
ties. Then these relations are inverted to provide explicit
expressions for the NEHI probabilities as linear combina-
tions of determinants. It is shown that these IFPM for-
mulas reduce to those of the SPM when the PET's are set
equal to zero. Section IV provides the generalization to
two and three shells in the cases of the E and L shells and
of the IC, 2s, and 2p shells, respectively. We discuss the
approach of the IFPM vacancy distribution to the SPM
(binomial) distribution in Sec. V. This occurs generally

when the mean vacancy probability per electron p is small
and can, and does, ' ' occur also for large p when the
single-particle amplitudes tend to have random phases.
The concepts introduced and a general inversion theorem
proved in an Appendix permit generalization of the
multiple-vacancy expressions to other cases.

II. IFPM PARTICULAR INCLUSIVE
PROBABILITIES

IFPM formulas for particular inclusive processes have
been derived, discussed, and applied in a few previous pa-
pers. ' Because it is essential to have these results in
mind in order to understand the present paper, we sum-
marize them briefly.

The quantity (k~, . . . , kp
~

A(b)
~
h(, . . . , hp) will

denote the amplitude for the transition, in an ion-atom
collision with impact parameter b, from the normalized
Slater determinant with F target-centered spin-orbitals
h =h ~, . . . , hp, see Eq. (1.1), to one with F spin orbitals
k =k~, . . . , kp. In terms of the single-electron transition
amplitudes, ak~ (b),

( k 1 ~ ~ kp
~

~ (b)
~

b 1 ~ bp ) det[akh ] (2.1)

The first term contains the possibility of more than u va-

cancies; the second term then removes the unwanted v + 1

vacancies in Q „; the third term removes the unwanted

v + 2 vacancies in

v+1
Qsu —

1 Qsv+i,

etc. A general inversion theorem which leads to this re-
sult is given in an Appendix.

The present paper employs only one basis of single-
electron spin orbitals. The HF field which generates this
basis is static, although the generalization of the
multiple-vacancy formalism to time-dependent Hartree-
Fock fields appears straightforward. The present treat-
ment therefore neglects shake-off and shake-up contribu-
tions to vacancy production and neglects the difference
between the L-shell removal energies of satellite and hy-
persatellite configurations. Preliminary discussions of
these effects have been given, ' ' and a more detailed ac-
count is being completed.

In Sec. II we give a brief review of the IFPM expres-
sions for the probabilities of particular inclusive process-
es. ' Section III defines hyperinclusive quantities and
discusses their experimental significance in the case of a

where k ranges over k~, . . . , kz and h over h ~, . . . , h~.
For the purposes of the present paper, it is irrelevant

how the aJ~'s are obtained. In our own work

a~ (b) = lim (X~(b, t) f + (b, t) ),
f~oo

where XJ is a stationary single-electron state of the unper-
turbed system with no interaction between the projectile
and target and g'+' is a perturbed spin orbital subject to
the initial condition that

g~+'(b, t)~X (b, —oo) as t~ —u) .

It satisfies the time-dependent Schrodinger equation

iA +V—„—Uzp(r) V(r;b, t) g—(r, t)=0,8 fi

Bt 2m

where Uzz is the static Hartree-Fock potential of the tar-
get and V( r;b, t) is the perturbing interaction provided by
the projectile while moving on a classical trajectory that is
assumed to be undisturbed by any electronic excitation.
The formalism of this paper is unchanged if Uz„( r ) is re-
placed by a time-dependent potential such as that of the
time-dependent Hartree-Fock theory. However, because
in this paper we use only a single basis of unperturbed
states X~(r;b, t) generated by a static potential, the present
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theory does not take into account shake-off and shake-up

processes, which are important at high impact velocities
and for light targets and are more significant for hyper-
satellites than for satellites.

The probability for the exclusive reaction (h&, . . . ,
hF~kv . ~ ~, kF) ts

p
' '

(h, , . . . , hF', b)

=
I
(ki, . . . , kF

I
3(b) Ihi, . . . , hF)

I
(2.2)

1
'' ~ m(F)

k +1« ~ kF
p
''''', m=1, . . . , P —),

(2.3)

Particular inclusive probabilities in which only final occu-
pancies are specified are defined here by

terms of the form ak h I I
ak h I

which would corre-

spond to an electron initially in spin orbital h making a
transition both to k& and to kq. We refer to this elimina-
tion as a single-electron Pauli correction. It is somewhat
analogous to the elimination of the Hartree interaction of
an electron with itself by the corresponding Fock term in
the HF theory. Second, there are coherent electron-
exchange terms

OCC OCC

ak hak h'ak h'ak h

h h' (~h)

Particular inclusive probabilities in which some occu-
pancies and some nonoccupancies are specified are given

by sums of determinants. One can obtain these from Eq.
(2.4) or Eq. (2.6) by repeated use of a raising and lowering
relation, namely for any m &F 1—

p„, „(F)—=

k1« . k~

k1, . . . , kF
P

k;&v~, . . . , v, (2.5)

where v;&vz for i&j and ij = 1,2, . . . , m. We find

where we have suppressed the dependence on the initial
spin orbitals and on the impact parameter. The prime on
the sum means that k~+~, . . . , kF must not equal any of
the specified spin orbitals k ~, . . . , k~. Because of the an-
tisymmetry of the Slater determinant (k~, . . . , kF I, this
restriction on the sum may be dropped. Because of the
completeness of the basis of spin orbitals, one finds

p""" (F)=det[ak",.,'k, ] (2.4)

the determinant of an m Xm matrix (i,j = 1, . . . , m).
Here a' ' is as defined in Eq. (1.6), with h =h~, . . . , hF.
Similarly, particular inclusive probabilities in which only
final nonoccupancies are specified are defined for any
m=1, 2, . . . by

Pk, (»=p pk, +
I ak, k, I &p pk klWk2

k1 k1 (2) 2 k1 (2.10)

where the PET always gives an enhancement over the un-

correlated SPM value, p 'pk . The SPM contribution con-

tains single-electron terms.

OCC

which correspond to the subtraction of quantities in
which an electron initially in h contributes both to the oc-
cupancy of k& and of kq. These spurious terms are can-
celled b~ the diagonal (h'=h), i.e., single-electron, terms
in

I
ak k I

. Thus, after the cancellations, we can write
1 2

pk' as the sum of two terms, each of which involves
2

electron-electron correlations:

pU, . p (F)=pU, g, k(F)+pp, p (F) . (2.9)

Thus for (m = l, n =0) or (m =O, n =1), by using Eq.
(1.5), we obtain

p„, , (F)=det[5;~ —ak 'k ], i,j = 1, . . . , m .

(2 6)

k1 d11 k1 k

Pk2 Pk2+ Pk2

where the direct term is

(2.11a)

(2) I 2(Pk), kq Pk)pkq I k)kp I Pk)pkq &— (2.7a)

where the PET always gives a suppression of the SPM
probability, pk pk . Similarly,

(2.7b)

For m= 1 these expressions reduce to Eqs. (1.4) and (1.5).
For m=2 Eq. (2.6) gives for k&&kz

OCC OCC

"'Pk,'= g I
ak h I

'
1 — g I

ak h'
I

'
h h' (~h)

and the exchange term is

OCC OCC
1

Pk = Z, ~ ak hak h'ak h'ak h .2, 1 2 1 2
h h' (~h)

(2.11b)

(2.11c)

By writing out Eq. (2.7b) in detail,

OCC OCC

p
' '= g I ak h I

'g
I ak, h I

'
h h'

ak h k h +k h'ak h'
h h'

(2.8)

we see that the PET corrections to the SPM result are of
two kinds. First, the terms with h'=h cancel similar

k1 k2
terms in p 'p '. This cancellation eliminates unphysical

Detailed coupled-channel calculations of ph', where p& is

an electron-capture state, have been made earlier and
compared with data from coincidence experiments. The
PET enhancement shows up more strongly for larger pro-
jectile charge and lower impact speed.

The description of multiple-vacancy production, detect-
able in x-ray and Auger satellites, involves particular in-
clusive probabilities p„, , Eq. (2.6). However, be-

cause the particular vacancy states with the same number
of K-shell and L-shell vacancies are not distinguished
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f1'om onc a11other at tile 111odcratc rcsollltlo11 of thc cxpcr1-
ments, one must sum over the various ways of producing
the same number of vacancies. We call such sums of par-
ticular inclusive probabilities hyperinclusive quantities.
They are defined and evaluated in the next two sections.

III. HYPERINCLUSIVE PROBABILITIES
AND EXPECTED VALUES FOR A SINGLE SHELL

A. Shell with only two spin orbitals

Hyperinclusive quantities refer to shells rather than to
particular spin orbitals. The ones we are primarily in-
terested in for describing multiple-vacancy production
specify precisely the number of vacancies in the shell in
question, and also its complement, the number of occu-
pancies in the shell. We call these number-exclusive hy-
perinclusive (NEHI) probabilities. They are inclusive with
respect to angular momentum couphngs in the shell in
question and with respect to all electrons or boles in other
shells. In the j= —, case the NEHI probabilities are

S2 S2 ),2 So
(3.2)

We introduce hyperinclusive quantities by considering
the simplest case, shells with only two single-particle
states, i.e., with j=—,', namely the shells S=ns»z and

nP, &z. There are four exclusive Probabilities, P', Pz, P1,
and p1z, and four particular inclusive probabilities,

2 = 1
PI =Pj+P12~ P2=P2+P jz ~

(3.1)

occupied. We introduce the hyperinclusive "expected
values"

Q =P—+P =Pz+P1+2P '

2 1
Qs =P1—+Pz=P1+Pz+2P1, z i

Q' =p' Q, =p1,z .S2 1,2

From (3.4) we see that

(3.6)

Q'=P'+Ps =P,'+2P'„Qs =P,', ,

(3.7)

so s
Ps2 =Qsz Ps =Qs —2Qsz (3.8)

(3.9)

We shall refer to expressions in which the only Q's which
appear have subscripts, e.g., Eq. (3.8), as being in the va-

cancy formalism, and to those like Eq. (3.9) as being in
the occupancy formalism. For completeness, we still need

S2 s'.P, in the vacancy formalism and P, in the occupancy

formalism. From the raising and lowering relation, Eq.
(2.9), we have

If P, =Pz~ I, then Qs~2 and, if a'1 z ——0, P1z~ 1 so that

Ps~1 and Ps +P o~—0. If p1 ——pz
——p'=p = —,, then

Qs = 1 alld 1f a Iz =0, p1 z= ~ so Ps =
4 =P

The main result we seek is the expression for each
NEHI probability in terms of the Q's. For %=2, the re-
sult is trivial:

which are single determinants, and

P;~ =Ps =Pz+P1 =—(P'—+P') 2P"-
Pso =P ' =1 (P1+—Pz)+P1,z=Q, O Qs+—Qs2

S2

(3.10)

=(p1+p» —2p1, z (3.3b) Pso 1 ( 1+ 2)+ 1,z Qs Qs+Qs

S 1 2~S =~S+ PS& Pl+P2 PI, 2 P2+P1+P1,2 ~

(3,4)

I' and I's are the probabilities that at least one spin orbi-
tal of the S shell is occupied or not. occupied, respectively.
They satisfy the desired relations

(3.5)

because from Eq. (2.9)

I' +I' 2

, .=PZ+P~+P ' +P~,2=
aS+~so P +P2

Because of the existence of the general formulas (2.4)
and (2.6), it will be advantageous to work with quantities
in which all the specified states are occupied or are not

which is a sum of three determinants. Other, non-
number-exclusive, hyperinclusive probabilities for shell S
may be defined by analogy with Eqs. (3.1):

(3.11)

(3.12)

Let us now consider the physical significance of the hy-
perinclusive quantities. For definiteness we shall assume
the shell S is the E shell. Moreover, we shall assume that
the fluorescence yields (i.e., the branching ratios for decay
by x-ray emission) are known or that the experiment can
detect both x rays and Auger electrons. Both pz and P1
represent a single EC vacancy, which leads to a single de-
cay product. But p& 2 represents two E vacancies, which
lead to two decay products. %c shall assume these decay
products have distinguishably different energies, the est
in the "hypcrsatellite group" and the second in thc "satel-
lite group. " For some ions these groups overlap, but wc
shall ignore that possibil'ity. From (3.2) and (3.6) we see
that Qz, ——Px, —p1z is the probability for two E vacan-

cies, which corresponds to the detection of a hypersatcllite
decay. The measurement requires sufficiently high energy
resolution to distinguish it from a satellite decay. From
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(3.4) we find that P» corresponds to the detection of all
satellite decays. Of the two decays from the double va-
cancy described by p& 2, only one decay is to be counted.
Again this measurement requires high energy resolution.
From (3.3) P» represents satellite configurations and cor-
responds to measurement of satellite decays not accom-
panied by hypersatellite decays. From (3 4) P» is just the
difference between P» and P»r, or, from (3.7), is the

difference between Q» and 2P ~. We see from (3.6) that

Q» contains 2p& z so that both decays from the double K-
vacancy configurations are to be counted. Thus Q» corre-
sponds to an experiment, which could be of lower resolu-
tion, in which satellite and hypersatellite decays are not
distinguished and all decays are counted. Alternatively,
P» corresponds to the detection of all prompt decays, Q»
corresponds to the detection of all decays, including
second decays, and Q, =P, corresponds to the detection

of near coincidences between two decays occurring rough-
ly within the lifetime of a single E vacancy. In summary,
the measurement of the NEHI (P», and P») and non-

NEHI (P») probabilities requires high resolution in ener-

gy or time, whereas the expected value which is not a
probability (Q») corresponds to a measurement of low
resolution.

B. Shell with N spin orbitals

PX,, . . . , XN, =PA, ,, . . . , XN, Pi, 2, . . . , N ~' ~ 'r re ~ ~ r r r ~ ~ r

so

Qx i=Pe i+&Px.1

The general term in Q~ q can be written

so
+ps, , . . . , z~

N —2 N —1

PN —2+ N 2 PN —1+ N 2 PN ~

For Qz 3 we have

1
x —3 3l

N 2''''' N

( 3N —2' N —1' N N —1' N
Pp]r ~ ~ ~ r AN 3

+ PA 1 AN

Hence

N —1' N
1'' ' N 2 2t ~ 1''''' N —2 1''''' N —1

~N —lr ~N

PN —v
V

1r ~ ~ ~ r A\N

px, , . . . , x„

To simplify the notation, we drop the reference to the

shell S and write P „=P, ', Qs„——Q„, etc. We define

the NEHI probabilities by

N —3
QN —3 ~ 3 N —3

N —1

+ N 3 PN

N —2
+ N 3 PN —2

N
]+ N 3 PN

1 A + 1r ~ 4 ~ r KIN

i(N —)i
1r ~ ~ ~ r

(3.13)

We find that, in general, for a set S with N spin orbitals,

N j nPJ—
j=N —n

where each k; belongs to S. Terms in which two or more
A, 's are the same vanish because of the exclusion principle,
i.e., because the p's are obtained from antisymmetric wave
functions. The hyperinclusive expected values are de-
fined for 1 & v or n &N by

or, since (J ) =0 for j & v,

j
Q (~) g P~N j

j=0

Similarly,

(3.15)

and

A1( ''' (A,

Ar1 k 1
p =

) p
Ar 1r ~ ~ ~ r Ar

(3.14)
(3.16)

These results contrast with those for the hyperinclusive
probabilities

together with Eq. (3.12) for u or n equal to zero. We shall
discuss the vacancy formalism; the results for the occu-
pancy formalism can be obtained in a similar way. Let us
denote the spin orbitals in S by 1,2, . . . , N. First we need
to express the Q„'s in terms of the NEHI probabilities.
Then these relations will be inverted. We begin with Qz
and work down to Q~. We have

0
QX p1, 2, . . . , %

a single determinant. For each of the K terms of Q&
we can write

P, = gP,"-J, P"= QPj, ,
J =V

(3.17)

For u=o Eq. (3.15) confirms the normalization of the dis-
tribution,

j=O

and for U= 1 and 2 it implies' ' for the inclusive "sin-
gles" and "doubles" cross sections in which all decay
products are detected
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N

os(Q)= g vcr „
No,(P)= g o „ (3.20)

os2( Q) = g 2 os„
v=2

(3.18)
The inversion of (3.15) can be done successively, start-

ing with v =N. One has

On the other hand, if only the last decay product is ob-
served, one has

PN=QNt PN —1 QN —1 N 1 QN ~

N
gN —u

os(P) = Q os.

and, if only the last two decay products are observed,

(3.19)

Then

N —1

2 QN-1+ N

N —2
N —3 —QN-3 N 3 QN-2+

N —2 N —1

N —3 N —2

N —1

3 QN-1

N —2 N N —1 N N

N —3 N —2 N —3 N —1 N —3

N —2 N —1 N
=QN —3 N 3 QN —2+ N 3 QN —1 N 3 QN ~

We find that the general NEHI probability is given by

N —v v+j"= g ( —1)' Q, +,.
j=0

Ar]p ~ ~ ~ p Ar At'

P = P

(SPM) .

(3.24)

N
= g ( —1)'+"

i=0 , Q;. (3.21)

(3.25)

If one also makes the "average hole" assumption that
A, .

1 —p '(b)= p2,, (b)~p—(b),
A noniterative proof of the inversion formula is given in
the Appendix. In the occupancy formalism we have

N —n n+j
PN „—g ( —1) . Q"+

j=0

(3.22)

then at a given value of the impact parameter

and

Q pu Qu (1 p)li

By Eq. (3.21)

(3.26)

(3.27)

ol pN —u

j=0

V+J N v+j
v+j P

P,"-"=g ( —IV
j=0

N —v+j
gN —u+j

J
j=0

N —v
( —1)j . p'

J
N

1)i+N —u

i=0
Ql

N —v
(3.23) (3.28)

The occupancy form has fewer terms when v &N/2, and
the vacancy form is more convenient when v & N/2.

We now show that these IFPM formulas reduce to a bi-
nomial distribution when the off-diagonal elements a,z ',
i&j, in the determinants which give the particular in-
clusive probabilities [Eqs. (2.4) and (2.6)], are set equal to
zero. In this limit the product of independent inclusive
probabilities is recovered:

and from Eq. (3.23)

. N —v+j
Pu "~ g ( —1)J

j=O

p)N —
p
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IV. FORMULAS FOR E- PLUS L-SHELL VACANCIES

A. Subshells not distinguished

g2 —Q I 8—u

We let P „„' (b) be the NEHI probability for producing precisely u vacancies in an initially filled Ir: shell

( u =0, 1,2) together with precisely u vacancies in an initially filled L shell ( v =0, 1, . . . , 8). Then

g2 —Q I 8—u
t

~gQ Lu
K1( ''' (K& A1( ''' (AujM1( ' ( V1( '' (v8

2—g

= [u!v!(2—u)!(8—u)!]

p1p + ~ ~ p JM2 tV1p ~ ~ ~ p V8

pK1p. ~ . , K )A, lp. . . pA,

p 1p ~ ~ ~ p p2 t Vlp ~ ~ ~ p V8

PK1p e ~ ~ p K t Atlp ~ ~ ~ p Ar (4.1)
1''''' u 1''' ' u~lp''''~ 2—u 1''''' 8 —u

where tc; and p; are spin orbitals of the Ir" shell and A,; and
v; are those of the L shell. The hyperinclusive expected
values are defined by

I

Because the sums over the spin orbitals of the lr. and L
shells are independent of each other, we may apply the re-
sults of the previous two sections. Recall that

QKu Lu—
K1(,... (K A1( ' ' ' (~u

[u !u !]

p..

(4.2)pK~~. . . . , Kg &A ~r ' t~U

PK =QK —2QK2= Q —2Q

and

K1p ~ ~ ~ p Kt A 1p ~ ~ ~ p ku

and
(4.4)

gK~L" r t )~ —1 p&mtV1p p Vn

P1p ~ ~ ~ p P~ V}p ~ ~ ~ p Vn

(4.3)
I

P o =Q o
—QK+Q 2=Q (Q o=1)

Thus for the "K satellites"

8 —u v+J

j=0
c

8 —u 8 —V+J 8 u+.

j=O

in the vacancy and occupancy formalism, respectively. For the "Khypersatellites"
r

go I 8—u ~ +J
PK'L" = + ( 1" j QK2, L"+J

j=0

U 8 —v+J (gK,L " J gKL "+J gL
Jj=0

And for no E-shell vacancies,

(4.5a)

(4.5b)

(4.6a)

(4.6b)

8 —vg2 L 8 —u

j=O

j=0

v+J
«K,L"—

QK,L" +QL +'

8 —v+J
( 1)j j gK2L~ '+J

J

(4.7a)

(4.7b)

B. Factorization with respect
to projection of intrinsic spin

In the above formulas the determinants can be as large
as 10)&10. Reduction in the number of rows and of
columns by a factor of 2 can be obtained if the potentials
in the collision problem are independent of the intrinsic
spin. Then the transition amplitudes a,j are zero if i and j

I

refer to spin orbitals with different projections of the spin.
The determinants p; j and p'J' ' then factor into prod-
ucts of two determinants, each of which pertains to a
specific spin projection Let R . „(or„RK L

) be de-
t

fined just as is QK„L„(or Q ' ), but with the restriction
t

that all spin orbitals have the same spin projection. We
shall assume that each spin-up expected value R equals
the corresponding spin-down R. Then
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QK L„2——Q,s, L„2——+R K L, RL„ (4.8a) max(O, U —4) &i &min(4, v) . (4.8d)

QK, L" + KL' KL"

and

QL„—g—RL,RL„ i

where

(4.8b)

(4.8c)

The corresponding expressions in the occupancy formal-
ism are exactly the same, with all subscripts raised to su-
perscripts.

The equations of the preceding section for the NEHI
probabilities are written in terms of these smaller deter-
minants, R, as follows: For precisely one IC vacancy,

8 —v
PKL " 2+( ly

j=0

v+j
K Li(RLs+i i —K L +sj i)—J 7

(4.9a)

j=0 J k

For precisely two E vacancies,

(4.9b)

j=0

v+J
J K L, tj+J —t

l

(4.10a)

j=0
and for precisely no E vacancies,

8—v

j=O l

y(RL" RKL")(RL "" ' RKL " ") (4.10b)

(4.11a)

8—U+j
K,L" K,LS "+i

j=0 J k

(4.11b)

Here i is restricted as in Eq. (4.8d) and k satisfies

max(0, 4—u+j)&k &min(4, 8 —v+j) . (4.12)

C. Separation of the 2s and 2p shells

The statement of some of these formulas has been given in
Ref. 10.

From these number-exclusive probabilities one can ob-
tain the corresponding cross sections by integration over
the impact parameter as in Eq. (1.2), i.e.,

(4.13)

We have used transition amplitudes from our coupled-
channel calculations to evaluate these cross sections.
Some results have been given. ' ' ' A detailed presenta-
tion of numerical results and comparisons with experi-
mental measurements will be given in a paper which is in
preparation.

In some x-ray satellite measurements there has been
sufficient resolution to subdivide a satellite group with V
L-shell vacancies into components with v 2p vacancies
and V —U 2s vacancies. For simplicity we give formulas
only for the case of precisely one K-shell vacancy and
only in the vacancy formalism. The interested reader can
obtain the formulas for zero or two E vacancies, or for
the occupancy formalism, by analogy with those we have
presented. The further distinction between the Ln and
Lnt subshells requires the use of the (j, m) scheme rather
than the (m„mj) scheme employed here. We defer a dis-
cussion of this case until our computer codes are modified
to treat open-shell or relativistic targets. We find, for ini-
tially filled E and L shells,

K,2$, 2p
K, 2s, 2 s =2 g ( —1 V ~ + [RK,2s 2 i[R2 s+i i RK 2 s+j i 2(R2s 2

s—+j i ——RK, 2s 2 u+j i
j=0

K, 2p' 2s, 2p"+ ' K, 2s, 2p"+ (4.14)
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and

6—v U+E 2s2~2p6 —u +j
P~ 2&0 2pv

=2 g ( —1) ~ g (Rx 2pi Rx» 2pi)(R2pv+J i RK 2pv+j —i
—R», 2pv+j —i+Ra, », 2pvyj i—)

j=0
(4.15)

E,2s , 2p
Px»22pv

——2 g ( —1V QRx»2pf(R»2pv+j i R—tt»2pv+j i) .
j=O l

(4.16)

In each of these formulas,

max(0, u+j —3)&i &min(3, u+j) . (4.17) p p((1 ~

V. APPROACH TO THE BINOMIAL DISTRIBUTION

Perhaps the main contrast between the IFPM and SPM
collision theories is that the IFPM requires the phases of
the transition amplitudes connecting all pairs of initially
occupied orbitals whereas the SPM requires only single-
particle transition probabilities, which are independent of
the phases. Even for an atom as small as neon, to obtain
all the needed phases is not a simple assignment. Howev-
er, our own coupled-channels method, ' which uses a
large target-centered basis, is ideally suited for IFPM
multiple-vacancy calculations. We routinely have a good
representation in our basis of all the initially occupied
target-centered orbitals, and our U-matrix procedure for
solving the time-dependent coupled equations yields the
complex-valued transition amplitudes between all orbitals
in the basis in a single computation.

As we have discussed already in preliminary reports of
our work, both the experimental and our calculated IFPM
KI.' multiple-vacancy distributions are in almost all cases
very close to binomial distributions given by the SPM. In
view of the IFPM formulas presented above this numeri-
cal result is at first surprising. The off-diagonal a,'J 's are
of the same order in the interaction strength as are the di-
agonal ones which determine the SPM distribution; both
are bilinear in the transition amplitudes, a;~. There is no
formal reason a priori why the off-diagonal parts of the
determinants p; J should be negligibly small. In fact in
the case of K-shell vacancy production in coincidence
with electron transfer to the projectile we found the off-
diagonal elements to be quite large. We have found nu-
merically that the smallness of the off-diagonal a;J 's
which enter into multiple-vacancy production is the result
of destructive interference in the coherent sums. That is,
the individual aiI, aj~ may not be small, but their sum over
the initially occupied spin orbitals h may be small because
of a tendency toward random phases of the arnpli-
tudes 10, 12, 15, 16

To emphasize this point we note that for projectiles of
low charge or high energy, so that the interaction is weak,
there is a different way in which the IFPM formulas
reduce to the SPM binomial distribution. In Eq. (1.8) or
(3.21), if the single-particle vacancy-production ampli-
tudes are small, then Q„will be much larger than Q„+J,j)1, so Pv "=Qv is a good approximation. With the
"average-hole" approximation, Q, =(„)p" (Eq. 3.27), one
then has

This is a close approximation to the binomial distribution
because for small p, (1—p)" "=1. This approximation
of the SPM by the IFPM breaks down, however, for cases
with large p, where we have found that the IFPM distri-
bution remains nearly binomial, but with a smaller vari-
ance. ' In these cases it is the random-phase mechanism
alone that leads to the nearly binomial distribution.

In summary, we have presented formulas for number-
exclusive multiple-vacancy cross sections within the
independent-Fermi-particle model. The formulas take
complete account of the electron-electron correlations im-
posed by the Pauli exclusion principle. These NEHI
probabilities for producing precisely u E-shell and u L
shell vacancies are quite different in principle from the
hyperinclusive probabilities and expected values for pro-
ducing at least u vacancies (for which we also provide for-
mulas). The formulas for NEHI probabilities given here
have formed the basis for multiple-vacancy calcula-
tions' ' that we will report in detail in a subsequent
publication. We hope that others will find the concepts
and procedures we have developed here useful in deriving
analogous results for other cases.
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APPENDIX: NONITERATIVE INVERSION
OF A LINEAR TRANSFORMATION
WITH BINOMIAL COEFFICIENTS

We shall invert the linear transformation x~ y defined
by

Ic =0

Observe that for a complex variable z =m —1
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N N l . N

gy, z'= g . zjx;= gx;w'.
j=O )J=O . . )=0

But also

N N jg yjzj= g ( —1)'+~ . y Jto'.
lj=O i,j=O

(A3)

By equating the coefficients of the powers of w we have

N jX;= g ( —1)'+&
j=O

N —i l+k
( —1)" y;+k

k=0
(A4)

This provides a derivation of Eq. (3.21) from Eq. (3.15) or
(3.16).
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