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The equation describing scattering of a fast ion by a E-shell electron, ihv 881/BZ
= exp (iHe Z/k ) V(r, R) exp (-sHeZ/h v) S» where He ( ) =- {0 /2~ e)+ r —(@ /~e) l8 1n Xo (&) /~&~ 8/8&:—FT+ BT, is solved in the Glauber approximation by setting H~ to zero and in the Cheshire
approximation by setting the binding term (BT) to zero. In this paper we solve for Sl includ-
ing both the freely recoiling term (FT) and BT but neglecting their commutator. A diver-
gence found with this method in a previous investigation of hydrogenlike atoms is removed
as long as Zze /5v& 1. This limit represents a natural "threshold" in the method since for
lower velocities the target electron is moving faster than the projectile. We apply the method
in its lowest-order approximation to K-shell ionization by differently charged projectiles. A
substantial improvement in the fit to the ratio x&2 given by xf2 ——o (Zg)Z2/o (Z'2)zg, Zg & Z2, is
found in comparison with the Glauber and Cheshire results. More experiments are needed
with Zz ~20 and at energies such that Z,e /Sv & 1 to test this new theory. The method has
immediate applicability to any scattering problem in which the projectile has a classical
trajectory.

I. INTRODUCTION

In this paper we extend a method proposed by
one of us' to complete the sequence of improved
approximations, i.e. , Born, Glauber, ' and Ches-
hire. ' The method is applied to K-shell ioniza-
tion and gives an improved fit to the data4 when
applied in lowest order to the energy region where
Zze'/hv&1. We are at present engaged in cal-
culating higher-order corrections, the results of
which will be presented in later work.

A fundamental problem in scattering theory is
that of scattering from bound systems. Recent
experimental work on &-shell ionization by fast
ions provides a beautiful testing ground for ap-
proximation schemes' since by varying the pro-
jectile charge one can effectively explore the
Born series. Furthermore, unlike the ease for
electron projectiles the constant-velocity approx-
imation for the heavy projectile is accurate. This
allows the unambiguous removal of the nucleus-
projectile Coulomb repulsion leading to analytically
integrable expressions for the scattering cross
sections without the extensive use of computers. '
It is disturbing then to find that a sequence of
widely used approximations, namely, Born,
Glauber, and Cheshire, fail to fit' the ratio &»
of cross sections o(Z~) for K-shell ionization with
projectiles of different charge Z~. Here

~„=o(Z, )Z,'/(x(Z, )Z,' .
The Glauber and Cheshire methods focus on the

idea that for very fast projectiles the electron in
the atom can be considered to be almost stationary.
The mathematics of this physical idea is that we

can accurately treat the excitation energies of the
electron as negligibly small or at least treat them
approximately. In the Glauber approximation they
are set to zero. In the Cheshire approximation the
energies are calculated as if the electron had zero
binding in the atom. Both these ideas are reason-
able if the projectile is moving much faster than
the electron in the atom but must be corrected if
one wishes to extend the validity of the approxi-
mations to lower energies. In this paper we show
how this may be done by not only allowing finite
electron excitation energies as Cheshire does but
also treating the binding of the electron in the
atom. The method used is one already discussed
by one of us but here we show how to remove a
divergence difficulty encountered in that investi-
gation. ' We find, however, that we cannot extend
the basic idea below a critical velocity such that
Zze'/Sv& 1. This seems to us a natural "thres-
hold" in the method since at this energy the pro-
jectile and the electron are moving at the same
speed. ' Presumably below this projectile energy
an appropriate starting point is to consider the
Projectile to be "at rest" and make corrections to
that.

We apply the method in lowest order to K-shell
ionization. The improved fit to the experimental
data is extremely encouraging and we are now
working on the higher-order corrections. A nice
feature of our approach is that only three-dimen-
sional integrals need be done numerically to ob-
tain excitation cross sections and only four-di-
mensional integrals need be done to evaluate total
ionization cross sections. This is two more di-
mensions than need be done in Born calculations
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of the same processes.
Another interesting point is that the Cheshire

amplitude exhibited a discontinuity' ' when Q =W.
(Here we use the notation of Merzbacher and
Lewis. ) With this new correction this discon-
tinuity is removed allowing the application of the
method to differential cross sections.

Finally we note that though we are first applying
this new theory t;o K-shell ionization by fast ions
because we believe this is the most severe test
that present experimental data provide, it is by
no means limited to K-shell ionization. Elastic
and excitation processes by both ions and elec-
trons can essentially be treated in the same
manner and of course we are not restricted to
atomic physics. Indeed any physical process such
as heavy-'ion scattering, or nucleon-nucleon scat-
tering in the quark model, or deuteron-nucleus
scattering, may be treated in the same way if the
path of the projectile can be accurately described
with a classical trajectory.

II. BINDING TERM

The equation we need to solve to describe a fast
projectile of momentum k„ located at 8, scat-
tering from a target particle located at r, bound
to the origin of our coordinate system with a sin-
gle-particle wave function y, (r) is'

=[H, (r)+V(r, R}]S(r,R),&S(r, R}

-
( )

&', I' sing, (r) 8

2~, " m, Br Br

=—FT+BT . (3)
Here the single-particle wave function g describing
the system is given by

0 =e'"0' 'X,(r)S (r, R) (4)

and we have made this factorization with the idea
in mind that if the projectile is much faster than
the bound electron that S(r, R) is a slowly varying
function.

The Glauber approximation to Eq. (1) is to set
H, to zero. If V(r, R) is a Coulomb force for a
neutral system this leads to

(5)

Cheshire' solved Eq. (1) by setting the binding
term (BT}to zero, but kept the freely recoiling
term (FT).

For the Coulomb problem this approximation
gives

S=Sc=e ""i'I'(I+in)

Here,

k, =m, v/k .
We may solve Eq. (1} if we neglect FT by

working in the interaction picture. ' Defining

eiH+ 2/h v SI

we obtain

BS eiHe Z/&v ye-iH S/hv S —y SI I I

If we now write

sing, (r)
me Br Br BP

we can solve for P to give

p=- S2
Blnx, r

BSIihv ' =V(rF(p+iz/hv), R)S, .
Bg (15)

Equation (15) may be solved giving

—2
exp

I2 V
V (rF(p +iZ'/a v), R ) dZ' .

Here we use the notation R'=(B,Z').
Perhaps a concrete example will make this pro-

cedure clearer to the reader Consider go(.r)
r2/a2S,

Inverting this function gives

r =F(p) .
If in Eq. (11)we now set FT to zero in H„we are
just left with an exponentiated shift operator in the
variable P. This leads to

where here

n = -Z~ e'/hv (6)
2h2p /

dr +s m, ~s lnr
2r 2h' (17)

V(r R) =Z e2 ——iR- [

Hence

Vz =V(re" ~"e's, R} . (19)



BINDING EFFECTS IN HIGH-ENERGY SCATTERING. . . 1207

-o(lzl '), (20)

If the potential t/' were a Coulomb force, this
particular )(h(r) would not present any problem
in particular for large Z:
V(reh~z/heas R) Z e [I 7I —

I
Z —reh~z/heasl ]

Vi=zee'[I RI ' —IR-r -icz
I

and for large Z,

v, -z, e'[I XI ' —
I Z-iczl ']

-o(l zl '). (24)

and the integral in Eq. (16) would exist.
Here we use a convenient notation

.
I Xl =(X X)', (21)

Here

and

c = (k, a, ) ' = ( Zse'/ Iv) = ( Z,-n/Z, ), (25)

implying that by I Xl we mean the square root of
the scalar product of A with itself, not the square
root of the scalar product of A and A*. This we
will denote by

II All =(A'A*)' ' (22)

However, it turns out that for any binding potential
which allows continuum scattering states the pro-
cedure outlined above gives trouble for Coulomb
forces. This can be illustrated with a hydrogen-
like wave function, )(o(r) =e " 's. For this case

c=c&.
Such a potential does not fall off sufficiently

raPidly for large Z to make the integral in Eq.
(16) convergent Thi.s result has been discussed
at some length in Ref. 1.

We now show how this divergence can be re-
moved if c is less than unity. The idea is to keep
both FT and BT in the exponential but neglect their
commutator. A quantity we will need is e' e

& V(r, R). We can approximately evaluate it thus:

eiHe z/hv V (r R) ekz(FT)/hv eiz(B T) /hv V( r t

e 'z v»"ez, e'(I Rl ' —IR, -r-iczl ']
Now for large Z in this approximation,

e&He z/hvV(r R) =zee'e 'zv" '
[hIeI z II

' —
ll zll 'I k-icl ']

(26)

=z, e' llzll-'- g llzll-'exp ——,
~

r' +, 2k P, (k c)(ic)
l=p e—

This result is derived in detail in Appendix A.
Because of the Z '/' factor introduced in Eq. (27)
the potential now has perfectly satisfactory prop-
erties for large Z. Of course, the Legendre ex-
pansion employed is only good if

c&1 .
If this inequality is not satisfied we run once again
into divergence problems.

These divergences arise because in an attempt
to expand the exponential in powers of v ' we are
also expanding in a power series in Z.' Thus at
large Z, no matter how large v, eventually the
argument of the exponential will become large.
This is just the mathematical consequence of the
fact that the target electron will of course com-
plete many orbits as the projectile approaches
from infinity and the approximation that it is "at
rest" is invalid. Nevertheless the physics of the
situation is that the important interaction region
is probably restricted to some region of the di-
mensions of the atom' and during the time taken

for the projectile to cross this interaction region
the electron might be considered to be at rest in
the first approximation. Thus the divergences
might be viewed as more of a nuisance than a
major difficulty. An alternative procedure would
be to use our technique to produce a wave function
for small Z and match it on to another wave func-
tion for large Z. We could not discover a con-
venient way of doing this. However, the philosophy
of Glauber' is that such worries are unnecessary
if one only intends to use the wave function to sub-
stitute into a t -matrix-type expression. What is
essential, Glauber argues, is to have a wave func-
tion good in the interaction region in that case.
And in that regard we remark that while our solu-
tion is probably not good for large Z its range of
validity in this respect is much larger than for the
Glauber or Cheshire approximations.

Of course we have neglected a commutator in
deriving Eq. (27) and presumably if we kept all
higher-order commutators we would always pro-
duce cor rectly convergent potentials. However,
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as the reader will have no doubt grasped, this
procedure is not trivial to carry out in practice.

That BT and FT do not commute can be illus-
trated by operating with the exponentiated FT
before BT. This leads once again to divergence
difficulties.

III. SECOND BORN TERM

In this section we illustrate the procedures out-
lined above in a calculation including the second
Born term for S. We have

We therefore write

$2 =Se+S~ ~

where

S„=—in ln(l R -Sl /2S )

and

in 0
S 1 —

( )3
dZ d'q d'pe~~ ' ~r ~2~e

S, =y-in ~~re(Z'-S) j~v

((( (R-r-2" -( '
I

s (30)

20

x(IR'-rl '-IR'I ')dZ'. (28)

We expand the integral on p in terms of a Le-
gendre expansion in the function P, (q c), i.e. ,

It is convenient to treat the nuclear repulsion and
the electron-projectile potential separately so we
introduce an infinite cutoff -Z0 as a lower bound
on the integral. If everything is correct our an-
swer should not depend on Z0, and it does not.

d'p e ' '
I
p+icZ"

I

' = g a, (q, cZ" )P, (q ~ c) .
&=0

Here

a, (z, cz")=f d'p(-i )'(2)+1)j, (qp)p, (( p)) p+iLz"
(

' (32)

p 6p
+z

dx (—i )'(2l+1)j, (qp)P, (x)(p'+2icZ"px c'Z"') ' ' . - (33)

We must now proceed with a little care. If

cZ" & p, (34)

(p'+2icZ" px —c'S"') 't'

( *z')"' z ' z") '
l=0

we may correctly write

On the other hand, if

cZ" &p,

then

(36)

(p'+2icZ" px —c'Z" ') 't'= p ' Q P, (x)
l=0

(
—icz"

)
'

(37)
The reason is that the I

p+icZ"
I is a, two-branched

function. Which sheet u)e arrive at from analyti
cally continuing from the inequality of Eq. (34) to

Eq. (3t)) depends on the sign of x. That we must
analytically continue the square root of course
goes back to our use of the shift operator when
we assumed our function I R —rl was infinitely
differentiable.

However, once having realized this, it is
straightforward to proceed, and in particular we
derive

tcZ" t

a,(q, cS")=4m dp pj, (q, p)I1 —(1 —p'/c'Z"')' ']+43'
0

4~
dx cos[qcS"(1 )'tx'] . -

dp pf. (q, p)
cZ "l

(38)

For the purposes of this present calculation a0
is all we will need as we shall ignore all the high-
er-order terms in our Legendre expansion. We are
presently engaged in calculating the effect of these
and will report on this in later work. Here we are

I

mainly concerned with presenting the method and
demonstrating its practicability. We do note
though that a0 is the leading-order term, since if
we set c to zero we would obtain the Cheshire ap-
proximation to & in Eq. (30), and all the other a, 's
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are zero in this limit. It might be argued that
since we are trying to calculate a correction term
of order c and since Eq. (38) is "obviousLy" second
order in c we should first of all be concerned with
a calculation of a„setting c to zero in ao. We do
not have a perturbation theory in c in mind though.
To begin with, since the Cheshire amplitude has a
discontinuity' in it there is not a simple analytic
behavior of the corrected amplitude at c equal to
zero. In fact it contains terms proportional to

(c')'~' because of this.
Furthermore the angular dependence of the

higher-order terms in the expansion leads to cer-
tain orthogonality properties which will probably
reduce their effect in h'-shell ionization, though
only a detailed calculation will confirm whether
thi. s is really true.

Working in this lowest-order approximation
then we substitute Eqs. (31) and (38) into Eq. (30).
We replace ~'„by -g' and arrive at

zn
S

—Z
dx exp + i q R -r — cos QcZ

2k,
(39)

We can now make use of all the work that has been done on the Cheshire approximation. We write, in-
troducing a "dummy" angular c dependence,

!. Z/2Cxcos[qcZ" (1-x')' ']=- —c dQ, dxe'~'' ' "
4w Bc p

With this substitution we see that the only modifi-
cation that we have over the Chesire result as far
as the q and Z" integrations are concerned is that
we have an extra factor in the e '"' term, i.e. ,

e-5q ~ Z" -fqZ" ~ f S- c( j.-x 2) ~~ ]-e (40)
Ps

This leads to a "rule": replace k by k —c(1 -x')'~'
and the answer is the same as for the Cheshire
approximation. Of course, since we can work out
all the integrals involving q and S" in the Cheshire

I

result to obtain the second Born term [e.g. , by an
expansion in n of Eq. (8)], similarly we can work
out all the integrals in Eq. (39). Furthermore,
since we could in the Cheshire approximation sub-
stitute ~~ into an expression for the scattering am-
plitude ( y& ~

V
~ g) and work out all the integrals

on R and r so we can here. And of course we end
up with an expression to first order in n for the
cross section 0~ for producing a K-shell hole, as
simple as the Cheshire result, viz. ,

dWdQ- e ' — 1 — - c dQ
d WdQ 4a sc dx nw [1 —2 c * k(1 -x')'~'+c'(1 -x')]

xsgn[q'+2k, 'q —2k, c'q(1 -x ) (41)

Here Q and W are defined as in Merzbacher and
Lewis' in terms of the momentum transfer q given
to the projectile, and the kinetic energy of the
ejected electron. That the factor [1 —2c k(1 -x')' '
+c'(1 -x')] ' ' shouLd be present in Eq. (41) is not
obvious from the rule but is correct as can be
shown by carrying out all the integrations neces-
sary to arrive at the result. This is done in Ap-
pendix B.

The most important point to notice about Eq.
(41) is that the discontinuity or "sign function"
present in the Cheshire approximation as (1
+2k, q/q') changes sign is still here, but it
it no longer produces a discontinuity in the dif-
ferential cross section as the Cheshire approxi-
mation did. The approximate treatment described
is good enough to remove this unfortunate aspect
of the Cheshire approach which by neglecting
binding effects in the dynamics but not in the kine-
matics gave this unphysical discontinuity.

It turns out that we can do one more integration
in Eq. (41) simply and one more after that if we
are prepared to introduce derivatives of elliptic
integrals. We found that in the absence of simple
polynomial formulas for the elliptic integrals it
was simpler to leave the problem as the four-
dimensional integral given in Appendix B. The
results of applying this method to the calculation
of r„are presented in Sec. Iv.

IV. E-SHELL IONIZATION AND F12

The ratio &» defined in Sec. I provides an ex-
tremely severe test for any theory of scattering
from bound systems. ' Furthermore by varying
the charges of the projectiles involved we can ef-
fectively explore the Born series as a power series
in the coupling constant n. Such freedom is a
nuclear physicist's dream but an atomic physicist's
reality. In Figs. 1-5 we plot the results for
Glauber, Cheshire, and this approximation and
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FIG. 1. Theoretical results for ~-particle and deuteron
scattering in sodium. Dotted line, obtained from the
Glauber approximation; broken line, from the Cheshire
approximation. Solid curve, work of this paper. The
figure illustrates that x~2 is predicted to be below 1 at
high energies.

compare them with the available experimental re-
sults for alpha and deuteron scattering from sodi-
um, chlorine, calcium, titanium, and copper.

The first thing to note is that in the region c &1
there is quite a paucity of experimental data. This
is in part due to the comparative difficulty of ac-
curately measuring the x-ray yield provided by
K-shell ionization for atoms with Z~ less than 20.
The chlorine and calcium data for example are
"relative. " However, probably the most over-
whelming reason for not performing experiments
at higher energies is the "misconception" that the

FIG. 3. Same as for Fig. 1, but for calcium. The ex-
perimental points are taken from Hef. 4.

Born approximation is supposed to be valid at these
energies. Whether the second Born term is indeed
negligibly small in this region only the experiments
will finally show but certainly none of the three
approximations described here would lead one to
believe that it is supposed to be. On the contrary,
for sodium, Fig. 1, at 10-20 MeV, it is predicted
that &„ should be less than unity by 5% and exper-
iments with more highly charged ions would cer-
tainly increase this.

The theoretical prediction' that &» should be
less than unity at high energies as the Glauber
theory says is still maintained by this new approx-
imation but the high-energy crossover point is
moved up somewhat over the Cheshire result.
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FIG. 2. Same as for Fig. 1, but for chlorine. The
experimental points are taken from Hef. 4.

4 8 I2 l6 20 24 28 32 36
Mev amu

FIG. 4. Same as for Fig. 1, but for titanium. The ex-
perimental results are taken from Ref. 4.
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I 0 .9

Copper

.8
I

This result is certainly encouraging enough for
us to try to keep higher-order terms and extend
the method beyond the second Born approxima-
tion.

When this is done we will try the approach on
excitation processes and then on systems other
than the Coulomb type.

V. CONCLUSION

.92-

.88-

~ ~
~ ~

~ ~

~ ~ ~
~ ~

This seems to be in agreement with the experi-
ments. Over all of cour se this new approximation
is seen to give a substantial improvement in the

agreement saith Ne exPeriments, though there is
still plenty of room for further theoretical work.

I I I I I I I I I

4 8 l2 l6 20 24 28 32 36
Mev/amu

FIG. 5. Same as for Fig. 1, but for copper. The black
dots are the experimental points taken from Ref. 4. The
tx iangles are new unpublished data very kindly given to
us by R. L. Watson and T. Hardt.

We have presented a method which allows ex-
tension of the Glauber method to lower velocities
but not lower than the velocity of the bound par-
ticle. For scattering from hydrogenlike atoms
the discontinuity found in the differential cross
section for the Chesire method is removed. An

application to K-shell ionization in the theory's
lowest order shows that only a four-dimensional
integral need be evaluated numerically to obtain
the total cross section for producing a K'-shell
hole. The fit to the experimental data leaves
room for improvement but is substantially better
than with the Glaub~kr or Cheshire approximation.
The theoretical prediction that F2 will approach
unity at high energies from below 1 is still main-
tained.

APPENDIX A

We show here that for large Z

I'& l /2+ —'& ik r'
I —e-izv„/kk P (q, r) ~P (q, r) 2 / 2) e

r(1+2) 2Z

We first note that

e-izvke /eke P (q, r)

1 sr' s l(l+1) iZ
e Sr Sr+ rk 2h.

1 Br' 8 l (l+1) i Z
=P, (q r) exp ——, + dr' 5(r —r')sr r' 2k,

1 Br' s l (l+1) iS 2=P, (q ~ r)exp —— +, — dr' r" dpp'j, (pr)j, (pr') e ek
r r 2~e - g 0

p, (q r) —I dr r"=de e '' '* ' ~ j, (dr))', (pr )
0 0

It should be understood that e can only be set to zero after the integration. The P integration can be per-
formed" to give

rI2e-(r +r'2) /4{a -fz/ az ) rr'
(rr')'"2(r -(egdk) ' ~ 'f' 2(r -ie/22 )) '
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The F' integration can now be performed. ' It is
convergent as &' goes to infinity because the Gaus-
sian cutoff overwhelms the exponential blow up of
the Bessel function. It gives

I'(l/2+ 2) ik, r' ' ~' 1I =I' (q r) ~(f, )
— ' 1+0

which is the desired result for large Z.

APPENDlX 8

Here we fill in some of the steps in the deriva-
tion of Eq. (41) and then show how Eq. (41) may be
reduced to a four -dimensional quadrature.

The Cheshire-type integral we have to consider
from Eqs. (39) and (40) is of the form

Z/2 Zo
j n e e ~" /'1 g d'g I gI

m 0 0

f 0! p k /2Z

We would like to take the limit as Z0- but may
not yet because the integral over p would diverge
at p =0. Instead we rewrite the integral on y in
two parts: an integralI, from zero to infinity
and an integralI, from one to infinity to be sub-
tracted off. We can now perform the y integra-
tion in I, and the 8" integration in I, as in the
latter case we may correctly take Z, to be infinite.
We obtain

I =I, —I =-in

-snI =
2r

ZQ

dg d pig

xe-~PZ" /2y +&q ~ (Z-1 -Z "K)e

where

where

K =k —c(1 —x')'~' .
We perform the integration over q by first of all

integrating on the angles and then using the fact
that

Performing the Z" integration and using the fact
that

'1-e '„
t

we obtain

s in(o.qy)
gQ

cos(y nq) dy,

o'=~ 8 —r -8"K~,

to allow us to perform the q integration. We obtain Thus

ef PA Ef

dx - ' — — in(R —Z(+)e)! K-im/2 —I''())+E (p)! K)}
dQe 8 nc
4m Bc K e f e

(42)

By writing Eq. (42) as a derivative with respect
to n we illustrate the simplicity of the rule of Eq.
(40); i.e., the second Born term for the wave func-
tion is, apart from the integrations over Q, and x
still to be performed, the same as Cheshire's with
the proviso that n is replaced by n/K and k, is re-
placed by ke K. Using this fact together with the
knowledge that keeping only terms up to third
order in n in Cheshire gives'

o' = dW d —-B- --'-—1 -nmsgn q'+2k q
d2os (Q, W)

SC dQ dW e

we derive Eq. (41).
Equation (41) can be reduced to a four-dimen-

sional integral, by performing the 8/sc differen-
tiation and then integrating one term by parts with

A

respect to the c k angular variable. If we write

c k.=x
9

c ~ q =xq )+cos(I)(1 -x')'~'[1 —(q ~ k)2]')"

so that dQ, —dx dQ, it happens that the Q integra-
tion can be easily done. The result is

dard B 9 ] + 0+1~ j +&2 j /2
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where if c'=c(1 -x")' '
&(c' ) = —~m sgn( y(c' )) &( I

y(c' )I —
I &I) +&

x2(c' ) dx[y(c' )(1 —c' x) + A.(c' —x)]8 (1 —
I y(c')I)

(1 pc' —2c'x)'~'[ [x -x, (c' )][x,(c' ) -x]j'~'(1 -x') '

x, (c' )
=y(c' )A. +[1 —y'(c')]'~2(1 —g2)'»

x, (c' )

(, q'+2 k, ci (Q —W)
2q A,,c' 2Q" '

Zse'
2Q' Kn

s
Sv c

and Q and W are as defined in Merzbacher and Lewis. Here 8 is the usual step function.
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