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A Stochastic Model for Sediment Yield Using 
the Principle of Maximum Entropy 

V. P. SINGH AND P. F. KRSTANOVIC 

Department of Civil Engineering, Louisiana State University, Baton Rouge 

The principle of maximum entropy was applied to derive a stochastic model for sediment yield from 
upland watersheds. By maximizing the conditional entropy subject to certain constraints, a probability 
distribution of sediment yield conditioned on the probability distribution of direct runoff volume was 
obtained. This distribution resulted in minimally prejudiced assignment of probabilities on the basis of 
given information. The parameters of this distribution were determined from such prior information 
about the direct runoff volume and sediment yield as their means and covariance. The stochastic model 
was verified by using three sets of field data and was compared with a bivariate normal distribution. The 
model yielded sediment yield reasonably accurately. 

INTRODUCTION 

The total sediment outflow from a watershed, measurable at 
a point of reference spatially and in a specified period of time, 
is called sediment yield [American Society of Civil Engineers, 
1970]. Its prediction is required for solution of a number of 
water resources problems. Determination of water quality in 
streams and reservoirs, transport of pollutants, undertaking 
cleanup following floods, protection of fish and wildlife habi- 
tats, development of opportunities for water-based sports and 
recreation, design of hydraulic works such as dams, debris 
basins and canals, design of soil conservation practices, plan- 
ning urban works, evaluating the effects of certain land man- 
agement practices, off-site damage evaluation, and cost evalu- 
ation of a water project are some of the examples. Sediment is 
a pollutant or a carrier of such pollutants as radioactive ma- 
terial, pesticides, and nutrients. Increased awareness of en- 
vironmental quality and the desire to control nonpoint source 
pollution have significantly increased the need to estimate sed- 
iment yield. These applications may require mean value as 
well as variability of sediment yield corresponding to a given 
time interval (e.g., storm duration, daily, weekly, monthly, or 
yearly). 

Many sediment yield models have been developed to 
address the aforementioned wide-ranging soil and water re- 
sources problems. Several reviews and discussions on various 
phases of sediment yield modeling have recently appeared in 
hydrologic literature. Foster [1981] made a comprehensive 
review of erosion process modeling. Renard [1977, 1980] re- 
viewed the available techniques for estimating erosion rates, as 
well as discussed erosion and sediment yield modeling from 
rangeland. Woolhiser and Renard [1980] presented a dis- 
cussion on stochastic aspects of sediment yield. Alonso [1980] 
evaluated a number of sediment transport formulas, bed load 
as well as total load. Williams [1982] provided a comprehen- 
sive survey of sediment yield modeling for erosion control, 
water resources planning, and water quality analysis. Li et al. 
[1973] reviewed a number of models for prediction of sedi- 
ment yield from small watersheds. Knisel [1980a] provided an 
overview of erosion and sediment yield models. Singh [1986] 
has provided a comprehensive account of sediment yield 
models for upland areas. 

Copyright 1987 by the American Geophysical Union. 

Paper number 6W4348. 
0043-1397/87/006W-4348505.00 

The bulk of sediment yield models is deterministic which 
may be either empirical or conceptual. Some examples of em- 
pirical models [Agricultural Research Service, 1975] are 
sediment-rating curves, reservoir-sediment deposition surveys, 
sediment-delivery ratio, and bed load function extrapolation 
of measured records. These procedures require long data re- 
cords so that time variability as well as annual yield of sedi- 
ment can be determined. They usually link sediment yield to a 
rainfall-runoff relation [Rendon-Herrero, 1974, 1978; Williams 
1978; Rendon-Herrero et al., 1980; Singh and Chen, 1982; 
Singh et al., 1982]. It has been empirically shown that sedi- 
ment yield produced by a rainstorm is linearly correlated with 
the corresponding volume of the direct runoff on a log-log 
paper and that hydrographs of sediment discharge and corre- 
sponding runoff are similar in shape, have the same duration, 
and peak almost at the same time. Exploring these similarities 
further, Rendon-Herrero [1978] developed a so-called "unit- 
sediment graph" concept which is analogous to the unit- 
hydrograph concept (e.g., standard unit of the sediment graph 
could be one ton, for a given duration, distributed over the 
watershed area). This concept is very simple to apply but has 
two main disadvantages: assumption of homogeneity in time 
and space (which is often not true), and requirement for con- 
tinuous data sampling (which is often not met in practice). 

Conceptual deterministic models have been developed by 
Foster and Meyer [1972, 1975], Smith [1976], Curtis [1976], 
Borah [1979], Li [1979], Ross et al. [1980], Knisel [1980b], 
Singh and Regl [1983], Singh and Prasad [1982], and Singh 
[1983], to name but a few. These models employ mechanics of 
sediment transport in a simplified form as for example kin- 
ematic wave approximation or zero-inertia formulation. Al- 
though these models appear promising, they remain to be 
tested extensively and their parameters evaluated in a wide 
variety of situations before they can be accepted as working 
tools. Furthermore, quantitative relationships between land 
use changes and their effect on model construction and its 
parameters need to be developed. 

Stochastic models of sediment yield are relatively few. A. 
Murota and M. Hashino (unpublished manuscript, 1971) de- 
veloped a stochastic model for transported sediment for the 
Arita River in Japan which included a stochastic model for 
daily rainfall with seasonally varying parameters, a determin- 
istic rainfall-runoff relation, and a deterministic runoff- 
sediment relation. Lane and Renard [1972] used a stochastic 
model for an ephemeral watershed, where ephemeral flow was 
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Fig. 1. Functions of B(flx, f13) and g(flx, f13) for various values of f13 for r = 0.05. 

generated by a stochastic model on an event basis. Woolhiser 
and Todorovic [1974] and Woolhiser and Blinco [1975] devel- 
oped probability distribution functions of sediment yield using 
the relationship between rainfall, runoff, and sediment yield. 
These stochastic models are constrained by the hypotheses 
regarding the processes of detachment, transport, and deposi- 
tion of sediment and must be tested with field data. Sharma 

[1977] developed a discrete dynamic model for sediment yield 
using systems approach and logarithmic relationship between 
nonstationary runoff rate and sediment yield. By applying the 
transfer function plus noise models of the Box-Jenkins type, 
Caroni et al. [1984] developed two simple stochastic models 
for rainfall-runoff sediment yield relations. They, however, 
tested them on only one small watershed. All these models 
confirmed the main advantage of using a stochastic approach: 
possibility of generating long series of data by using statistical 
parameters based on a short sample. 

This paper applied the principle of maximum entropy 

(POME) to derive a probabilistic relationship between direct 
runoff volume (DR) and sediment yield (SY). The POME was 
used by Sonuga [1972, 1976] concerning rainfall-runoff re- 
lationship and hydrologic frequency analysis. Amorocho and 
Espildora [1973] used it to assess uncertainty in generation of 
streamflow by the Stanford Watershed Model. Singh et al. 
[1985] applied it to derive a number of frequency distri- 
butions used commonly in hydrology. A particular advantage 
of POME is that it is applicable where there are insufficient 
data. The stochastic model derived from POME was mini- 

mally prejudiced subject to given information. Three sets of 
field data were used to validate the model and then compared 
with a bivariate normal distribution. 

PRINCIPLE OF MAXIMUM ENTROPY 

Entropy is defined as a measure of uncertainty or expecta- 
tion of information. It was first applied in communication 
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theory by Shannon and Weaver [1949] and has since been 
employed in virtually all engineering fields. If x is a random 
variable, represented by a continuous distribution, then en- 
tropy is defined as 

H(x)=--Kf_+•©f(x)log•(x)]dx (1) 

where f(x) is probability density function (pdf), and K is con- 
stant. From now onwards, K will be absorbed in the base of 

the logarithm. Equation (1) includes a priori known probabil- 
ities due to our state of knowledge about the system. For a 
detailed discussion on entropy, the reader is referred to Shan- 
non and Weaver [1949], Reza [1961], Jones [1979], and 
Wehrl [1978]. 

Jaynes [1957a, b] extended the concept of entropy by for- 
mulating the POME which says, "While making inferences 
based on incomplete information, draw them from the prob- 
ability distribution that has the maximum entropy permitted 

by the known information." In most areas where POME has 
been applied, satisfactory results have been obtained in de- 
scribing the processes where insufficient data exists. Therefore 
it is reasonable to extend this concept to develop a model for 
prediction of sediment yield especially when only a small 
amount of runoff data is available. That is, a minimally biased 
probability distribution appropriate for the runoff-sediment 
relationship can be developed. 

In order to connect the pair of random variables (x, y) 
through, joint entropy H(x, y) is defined as 

H(x, y)= - f_•© f_*••f(x, y) logf(x, y) dx dy (2) 

where f(x, y) is joint pdf for x and y. Specifically, x is runoff 
yield, and y is sediment yield. By maximizing H(x, y) subject 
to certain constraints, a minimally biased f(x, y) can be ob- 
tained. 
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DERIVATION OF A STOCHASTIC MODEL FOR SEDIMENT YIELD 

Our objective is to derive conditional pdff(ylx), which can 
be obtained from application of Bayes' theorem, provided 
f(x, y) and f(x) are known. To derive f(x, y) we maximize 
H(x, y), given by (2), subject to some specified constraints 
which were assumed as 

a,, 2 = f(x, y)x 2 dx dy (3) 
-oo - 

•y:=;••;••f(x,y,y:dxdy (4, _ _ 

• = _ _ f(x, y)xy dx dy (5) 

1 = _ _ f(x, y) dx dy (6) 

in which a,• 2 is variance of w, and axy is covariance of x and y. 
In these equations, x and y are defined about their expected 
values; i.e., x=x--E[x] and y=y--E[y]. Using the 
method of undertermined Lagrange multipliers 4•, 42, 43, and 
4,•- 1, the unknown solution f must satisfy [Reza, 1961, pp. 
280-2813 

•-f [-fln f + 2•(fx 2) + 22(fy 2) + 23(fxy) + 44(f)] = 0 
which yields 

-- 1 -- In f + 41 x2 q- 42y 2 + 43(xY ) + 44 = 0 

or 

f(x, y)= exp [ + 4xx 2 + 42y 2 + 43xy + 44 + 1] (7) 

f(x, y) is the joint pdf of (x, y) on the basis of the constraints 
imposed. Thus the problem reduces to determining 4•, i = 1, 2, 
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3, 4, subject to conditions in (3)-(6). Its solution is given in the 
appendix; only the final result is presented here. 

We obtain four equations with four unknowns' (A1), (A5), 
(A7), and (A10) in the appendix. Rewriting them here, 

exp (,i4.) = (8) 
(4,iX,i 2 -- ,i32)1/2 

2 2,i2 
a x = (9) 

4,ix,i 2 -- ,i32 

%2 = 2,ix (10) 
4,ix,i 2 -- ,i32 

axy = --4,ix,i 2 _ ,i32 (11) 
Multiplying (9) and (10) and subtracting the square of (11), 

4,il,i 2 ,i32 1 
(4,il,i 2 -- ,i32) 2 (4,il,i 2 -- ,i32) 2 4,il,i 2 -- ,i32 

or 

1 

rrx20'y 2 -- rrx: v -- 4,il,i2 _ ,i32 (12) 
Equation (8) can be written as 

2 2)1/2 (13) exp (,i,0 = (2•)(rrx2ø':v -- rrx:v 

By using (12) and (13), the unknowns ,ix, ,i2' ,i3' and ,i,• can be 
expressed with known quantities ax 2, O'y 2, and axy. Thus the 
maximum joint pdf in (7) can be written as 

f(x, y) = exp (--,i,•) exp (--,ixx 2 -- ,i2y 2 -- ,i3xy) (14) 

The terms in the second exponent can be obtained from (9), 
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(10), and (11) as 

a 2 2) X2 axy2X 2 •'tX 2 _. vy (4•,t•,2 -- •'3 -" -- •xy • 2 2 ax2ay 2 -- 

ax 2 (4•2_ • 2)y2 ax2y 2 _ 1 •2y 2=• 3 =- 2-a•2a• 2--a• 2 

_-- • •yx2 •yy 2 • •Yxy 2 

(15a) 

(15c) 

respectively. 
Finally, (14) can be written as 

Equation (16) is the joint pdf of (x, y) subject to the constraints 
(3) to (6) and also represents bivariate normal distribution of x 
and y. 
The marginal pdf f(y) of sediment yield can be obtained 

from f(x, y) simply by integrating joint pdf across x domain, 
while keeping y as constant. Similarly, f (x) can be obtained' 

1 exp - (17) f(x) -- 

1 exp - (18) f(y) = 

1 

f(x, y) -- •(o.,,eo. ye 2),/2 
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The conditional pdf of y (sediment yield) due to the knowl- 
edge of x (runoff) can be expressed as 

f(x, y) (19) 
f(ylx) = f'-'• 
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f(ylx) = 

which produces after substitution of (17) and (18) 

O' x 

(2•(•rx20-y 2 -- •rxy2)) 1/2 

.exp{_[.Crx2y232•xy.•x_Y+X2ø'xy2/ø'x21 j} (20) 
This expression is the pdf of y conditional on x and is the 
same as the conditional normal distribution with the mean 

values of x and y as zero. The cumulative density function 
(cdt) F(ylx) can be obtained by integrating with respect to y, 

vations or historical experience). In other words, we use trun- 
cated distribution Ft(ylx ) defined as 

F(ylx) 
F,(ylx) - (23) 

F(yma,,Ix ) -- F(y = 0Ix) 

The numerator of (23) is simplified as 

F(ylx) = «{OE(x O'xy/O'x 2 -- y)c•] -- 1} (24) 
where (I) stands for standard normal distribution. The denomi- 

nator of (23) is solved as 

O' x 

F(ylx) = (2:n:(ax2ay 2 __ O. xy2))l/2 

-o• exp -- 2(Crx2ay 2 __ Crxy2) 
Making the substitutions 

[y - (axy/a•2)x] 2} dy 

(2(ax2ay2 _ O. xy2))l/2 = ½1 (21a) 
c•(y -(a,,•,/a,,2)x) = z/x/• (2lb) 

dy -- dz/c•x//• (21c) 
F(ylx) can be written as 

1 F(ylx) - (2•)•/2 _ exp (--z2/2) dz (22) 
which is the integral form of the standard normal distribution. 
It must be mentioned that integration of (20) is performed to 
obtain (22) for the general case from ,,-o•,, to y, as from the 
beginning (constraint (6)) we are working on the entire prob- 
ability space. However, for the sediment yield-runoff relation- 
ship, integration should start from the minimum observed 
value of the sediment yield (say, zero or some small value close 
to it) and will end with any y < maximum (known from obser- 

F(Ymaxlx ) -- F(y = OIx) 

½ 1 ;_'max - ff/•n exp [-c12(y- (O'x.v/O'x2)X) 2] dy 

• exp [--c12(y- (a,o,/a,,2)x) 2] dy 
Using the substitutions Y =y- (axy/O'x2)X in both integrals 
and integrating, 

F(Yma,,lx ) -- F(y = olx) 

• (1 - Of (axy/ax2)x --- Yma.hh] 2c• k 2(1/4c•2) •/2 ]]_.1 

On simplifying, 

F(YmaxlX ) - F(y = 0Ix) = - Ymax)] (25) 

Substituting (24) and (25) into (23), 

F,(ylx) = •[(x(a•/a•=)- y)c•] -- 1 (26) 
(•i)[(x(O-xy/O-x 2) -- Ymax)C1] 

For practical purposes, it may be desirable to express F(ylx) 
in dimensionless form. This can be done by using beta coef- 
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ficients [Yevjevich, 1972] defined as 

fll = x/ax f12 = y/ay f13 = xy/axy = fllfl2/r (27) 
where r is correlation coefficient. We first transform the ex- 

pression for conditional pdf (20) into dimensionless form and 
then integrate to obtain dimensionless distribution F(ylx). 
From (20), 

O' x 
f(ylx) = 

(2rC(ax2ay -- axy 

ß exp {--[ ax 2y2---+ a y•-x2--2axyxY---- 
Simplifying the exponential term, 

A = exp {--[ 1/fl12 + 1/fl22 -- 
2(1 -- r 2) + fi • 

= exp {fl12( 1 1 
f122 ß exp {--2(, -- r2) [1 -- •32]} (28) 

Now simplifying the term associated with the exponential 
part, 

2 O. x 2 O. x 2 1 
2__ 2 __ r2ax 2ay2 ) 2ay 2(1 _r 2) Cl 2(O.x 2ay O'xy 2 ) 2(ax2ay 

(29) 

TABLE 1. Runoff-Sediment Data 

John Martin Reservoir 

Runoff x, Sediment Yield y, 
No. 86,400 m 3 tons/daily 

Green River, Kentucky 

Runoff x, Sediment Yield y, 
86,400 m 3 tons/daily 

1 2.34 48.32 29.81 308.86 

2 2.35 52.76 38.23 746.89 

3 3.54 78.95 43.96 608.73 

4 4.20 109.17 48.96 832.37 

5 4.71 115.23 49.17 955.21 

6 4.72 127.36 49.63 977.50 

7 5.11 194.08 52.88 1038.06 

8 5.34 206.21 66.42 1128.28 

9 5.37 224.41 66.44 1169.83 

10 6.11 376.03 73.59 1177.57 

11 6.25 442.75 73.66 1298.04 

12 8.74 448.81 75.68 1353.51 

13 8.32 460.94 77.32 1359.34 

14 8.68 491.26 81.41 1368.58 
15 10.07 533.72 81.89 1478.47 

16 10.40 551.92 86.96 2016.80 

17 10.59 564.04 88.95 2039.48 

18 12.03 624.70 96.46 2113.78 

19 13.36 667.15 99.69 2272.21 

20 16.14 727.80 111.03 2575.96 

21 17.38 788.45 115.05 2933.93 

22 17.76 2304.70 

23 26.54 2426.00 

a x = 5.93, ay = 617.0, 
and axy = 3265.0 

a x = 23.63, % = 673.0, 
and axy = 15,293 

Data sets for the John Martin Reservoir and Green River, Ken- 
tucky are ordered according to the magnitude. 

Inserting (28) and (29) in f(ylx), 

f(ylx) = 
exp {/•12(•- 2(1 

(2/ray2(1 -- r2))1/2 

' exp {-- fi22 2(i -'/.2) 03 JJ 
The cdf F(ylx) can be obtained by integrating from 0 to y with 
substitution dy = 

F(ylx) = 

1 

exp {fl12(• -- 2(1 _ r2i) } 
(2n(1 -- r2)) 1/2 

fl22 [1 -- 'foexp{ 2(l_r 2) fl32]} dfl2 

ß f2 exp {_•r •- •_•1_•,1• 

F(ylx) = 

1 

exp {fl12[• -- 2(1 _ r2)] } 
(2n(1 -/.2))1/2 

•1•2 

ß exp 022 •1•2 

On simplifying, 
(1 -- r2)] 

F(ylx) = 
exp {,/•12[•- 2(1 L r2i]} 

(2n(1 --/.2))1/2 

•o •2 exp [--• 
and on integrating, 

1 --/.2)1/2 •1 F(ylx) = 2rr r(fil 2 _ fi3) 

ß {exp [__(•1- ]•3/fll)21 exp [-- 
which can be written as 

•2 2 
2(1 -- r 2) 

fllfl2r 1 
+ 1 -- r2J do2 

2(1/r 2 1) 
(30) 

F(ylx) = •](•1, ]•3)B(fll, f13) 

where 

•](1•1' 1•3)= 2• r(fil 2 -- 

B(fi •3)=ex p [_(fll--03/fl!) 2] ,, ]-xp [ 
/33) 

2(1/r 2 1) 

(31) 

(32) 

(33) 

The functions B(•i, •3) and •](•1' ]•3) are plotted against ]•1 for 
various values of fi3 and correlation coefficient r as shown in 
Figures 1-10. The regions of validity of functions B(fil, fi3) and 
g(fil, fi3) for various values of r are shown in Figure 11. It is 



SINGH AND KRSTANOVIC' STOCHASTIC MODEL FOR SEDIMENT YIELD 789 

TABLE 2. Runoff-Sediment Data for U.S. Geological Survey 
Watershed 1-4815 

Runoff x, Sediment Yield y, 
No. cm metric tons 

1 1.10 0.080 

2 2.20 0.130 

3 2.30 0.400 

4 4.00 0.185 

5 4.50 0.670 

6 5.00 0.680 

7 5.20 0.370 

8 5.30 0.680 

9 5.60 0.270 

10 5.70 0.300 
11 6.70 1.200 

12 6.80 0.620 

13 8.00 0.800 

14 8.80 2.200 

15 11.50 2.800 

16 12.00 2.000 

17 13.00 2.500 

18 14.00 0.550 
19 16.00 1.300 

20 18.00 9.000 

4.78, ay = 1.98, and a,,y = 6.65 

seen that for higher values of r, the region of discontinuity 
around the curve •3 = fix 2 becomes smaller. The 0(fix, •3) 
curves are hyperbolic in nature with asymptotes at the points 
of discontinuity and at zero. The asymptotic nature of the 
hyperbolae increases with the correlation coefficient r. For 
high values of r (>0.95), two asymptotes (vertical and hori- 
zontal) almost completely dominate the 0(fix, •3) domain. Fig- 
ures 1-10 can be interpreted hydrologically by examining the 
slope of 0(fix, •3) curves. The horizontal asymptotes of these 
curves are unlikely to happen, since an increase of fix, thus 
runoff, would require a decrease in/•2, thus sediment yield in 
order for /•3 to remain constant, an improbable event. The 
unique relationship between fix and •3 would hold in the 
domain between those two curves. With the decrease of the 

correlation coefficient r, this region grows wider, and finally, 
when r approaches zero, any value of runoff is possible for the 
sediment yield. This is expected, since this is the case with no 
correlation (see, for example, Figure 1 for r = 0.05). With in- 
crease of r, this region narrows, and finally, when r approaches 
one, 0(/•x, /•3) curve becomes rectangular. There is only one 
valid unique relationship between runoff and sediment yield 
which is for the vertical side of that rectangle (see, for example, 
Figure 10 for r = 0.90). 

STOCHASTIC MODEL: AN EXTENSION 

The stochastic sediment yield model derived in (26) was 
extended to include a simple linear relation between sediment 
yield and corresponding direct runoff volume. This linear rela- 
tion has been noted previously [Rendon-Herrero, 1974; Singh 
and Chen, 1982]. The relation between x and y used can be 
expressed as 

log y = log a + b log x (34) 

The parameters a and b can be obtained using the least 
squares procedure as 

loga=[(• (logxi)2)( • logyi)-( •logxi) i=1 i=1 i=1 

ß log x i log yi n (log xi) 2 -- log x i 
i=1 i=1 i=1 

b • n log x ilog Yi -- log x i log Yi 
i= i= i= 

ß n (log xi) 2 -- log x• 
i=l i=l 

(35) 

(36) 

The parameters a and b can also be computed by correlating 
with watershed characteristics [Sinoh and Chen, 1982]. An im- 
portant implication of these correlations is that the contraints 
related to y, i.e., %2, can be expressed in terms of %2 by 
taking the variance of (34). Clearly, for any known value x, y 
can be calculated from (34). The /• coefficients can then be 
expressed in terms of the parameters a and b: 

Ox02 1 ax b 
r r Gy 

Simplifying, 

a•lb+ 10.x b 
03 -- (37) 

r 

For the application of the extended model, the following 
steps can be taken. (1) Assume that x, %, %, and a•,y are 
known. Compute fl from (27). (2) Use (35)-(36) or any other 
method to compute a and b. Determine the value of r. Use (37) 
to compute/•3-(3) Obtain B(/•i,/•3) and 0(/•1,/•3) from Figures 
1-10. Check whether fl and /•3 are in the region of validity 
using Figure 11. Compute F(ylx) from (31). (4) Using (26) and 
tables of the normal distribution, determine the arguments of 
the first and second term, and finally, determine the value of 
sediment yield y. 

APPLICATION 

Empirical Data 

For testing the model, data sets from three various sources 
that had long measured records of runoff discharge and equiv- 
alent sediment yield were used. Data were transformed to 
M-K-S units and are presented in Tables 1 and 2. The first 
data set was taken from the John Martin Reservoir in Col- 

orado [Sharma, 1977]. The 24-year historical record of sedi- 
ment inflow, outflow, and equivalent discharge was available 
at the cross section of the stream that entered the reservoir. 

The second date set [Haan, 1977] represented similar 
measurements for 21 years record at the Green River in Ken- 
tucky. The third data set [Sinoh and Chen, 1982] was taken 
from the detailed measurements on a U.S. Geological Survey 
watershed 1-4815 in Virginia for a series of storm events (both 
the runoff and sediment discharge hydrographs were avail- 
able). 

Estimation of Parameters 

The prior information needed for application of the sto- 
chastic model in (26) are variances %2 and %2 and covariance 
a,,y, which were used as the constraints or assumed to be 
known. In the absence of the real data, these parameters must 
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TABLE 3. Values of a and b for Three Data Sets 

Parameter 

Data a b 

John Martin Reservoir 1.90 0.83 

Green River, Kentucky 1.57 0.86 
Watershed 1-4815 59.57 1.34 

be estimated by some statistical methods. For the data sample, 
these parameters were defined as 

S• 2 _ 1 • (n- 1) (x i _ g)2 (38) i=1 

SY 2 _ 1 • (n -- 1) (Yi- f)2 (39) i=1 

1 • (x,- g)(y,- •) (40) S,•y - (n -- 1) i= • 
where n is sample size (or the number of data points avail- 
able); • and y are mean values of the runoff and sediment 

yields, respectively; Sw 2 is sample variance for w, and S• is 
sample covariance of x and y (for the three data sets these are 
given in Tables 1 and 2). For (34), the values of the parameters 
a and b for the three data sets are given in Table 3. 

Prediction 

For each value of x in each data set, fi• and r were com- 
puted. Then fi3 was computed from (37). Corresponding to 
these values, B(fi•, fi3) and g(fi•, fi3) were obtained from the 
appropriate figure (selected from Figures 1-10) or (32) and 
(33). By substituting into (31), F(ylx) was calculated for each 
data set. Note that two stochastic models have been derived 

above: one in (26) or (30) and the other in (31) incorporating 
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Fig. 13. Comparison of observed and computed conditional dis- 
tributions of sediment yield for John Martin Reservoir. Computed 
distribution was obtained from the extended stochastic model as well 
as the conditional bivariate normal distribution. 

(34). A comparison of these two models with observed distri- 
bution of sediment yield, shown in a sample Figure 12 for one 
data set, pointed out that the extended model in (31) was 
better. Consequently, this model was chosen for further analy- 
sis. The extended model was also compared with the bivariate 
normal distribution model. For John Martin Reservoir the 
extended model was found to fit better for 65% of the data in 
frequency distribution than the bivariate normal distribution 
model as shown in Figure 13. Maximum error in prediction 
according to Kolmogorov-Smirnov test was 0.10, which is less 
than the critical value of the test statistics (0.29) corresponding 
to 5% significance level I-Yevjevich, 1972, p. 229, Table 10.3]. 

*' 6 

• 4 

z 

POME D•stribution Without 
- Least Square Improvement • 

./ J/ 
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_././/_•'/'//•0bs e_r v e d 

ß __...•_..•. / • Distribution 
a 5 io ao 30 405060 70 80 90 95 

F(YIX) 
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Fig. 12. Comparison of observed and computed conditional dis- 
tribution of sediment yield. Two stochastic models were used to yield 
computed distribution: one with and the other without least squares 
improvement. 

8 - 

Observed Frequency Distribution I 

POME-Derived 
Dist ributian F(YIX) 

Bivariate•N 
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Fig. 14. Comparison of observed and computed conditional dis- 
tributions of sediment yield for Watershed 1-4815. Computed distri- 
bution was obtained from the extended stochastic model as well as 
the conditional bivariate normal distribution. 
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Fig. 15. Comparison of observed and computed conditional dis- 
tributions of sediment yield for Green River Kentucky. Computed 
distribution was obtained from the extended stochastic model as well 

as the conditional bivariate normal distribution. 

For Watershed 1-4815 the model was better for 90% of the 

data (Figure 14) than the bivariate normal distribution. Maxi- 
mum error in the prediction was found to be the same as for 
the previous data set. In both cases, the data were almost 
equally spread from very low to very high values. For Water- 
shed 1-4815, the sediment yield was considered for several 
storms with each storm as one event. Two additional cases 

were considered: sediment yield during the rising hydrograph 
and that during the recession hydrograph. The extended 
model predicted the cdf accurately for the recession part, but 
not so well for the rising part. The predicted cdf was corrected 
when the lower limit of observations was greater than zero. 
The effect of this discrepancy is reflected in Figure 15 where 
the model results would be greatly improved by shifting the 
cdf to the left. 

CONCLUDING REMARKS 

The POME was used to derive minimally prejudiced prob- 
ability distribution for sediment yield subject to the con- 
straints in two-dimensional space, %2, %2, and covariance 
axy; this yielded a general equation (22). By further limiting 
the probability space from 0 (or minimum observed value) to 
the observed maximum, (26) was obtained; that was applied to 
the sediment yield-runoff relation. On the basis of results for 
three different data sets (from three different environments: 
entrance of lake, river section, and the watershed) the follow- 
ing conclusions can be made. 

1. The prediction was better when the available data was 
equally spread from very low to very high values, no matter 
how bad the sediment yield-runoff correlation was (e.g., John 
Martin Reservoir data set, Figures 12 and 13). 

2. The entropy procedure worked well in cases where the 
data available was minimum. With more certainty, the uncer- 
tainty which entropy describes diminishes. 

3. The model can be applied in practice very easily, but 
requires more testing to enumerate its advantages over other 
models. 

4. Stochastic prediction model derived by POME can be 
extended to some other pair of variables, i.e., rainfall-runoff 
process (which was derived in a slightly modified way by 
Sonuga [1976]) or to the flood frequency analysis on which 
the authors are currently working. 

APPENDIX 

We use conditions in (3)-(6) to solve for ;•x, 9•2, 9•3, and ;•4- 
Using (6), 

f_+••;*••exp(-,•lx2-,•2y2-i•3xy-,•4) dxdy=l 
Separating terms containing x and y, 

and using the formula 

we obtain 

exp(-•4) f+•©dxexp(-•x 2) 
ß _ exp -- q- 23 X) 2-- •'32 = 1 ;+•o• [ ,;[2{(y •_•2 2 4_•e•x2}]dy 

--•_+c• ø• Iexp •L32)c2x•l N/• 1 exp( •) _ dx ( -•xx2+ 4•2J1(•2) x•2- 
( '•4) dx [-- -- _ 

Again, using the formula G(n) we obtain 

( 
or 

-1 

2• 

exp (24) = (4$[•$[2 _ /•32)1/2 (A1) 
Equation (A1) gives 24 as a function of 2•, 22, and 23. In order 
to solve for all Lagrange multipliers, three more equations are 
needed. By substituting (7) into (3), and separating for x and y, 

= exp (-a)f7 [exp(--,•x2)]x2dx 

The inner integral can be expanded and solved using G(n) as 

•3 _ 4vx]}y 
=exp[(•)x 2] • (•2) 1/2 

Substituting into (A2), 

fix 2 = (--•4)(•)1/2 I7 {exp[--x2( •1 •32•]•X2 exp _ -•]jj dx 
Replacing 2• - 232/422 = p, we obtain 

= -- x 2 exp (--px 2) dx (A3) 
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In order to solve (A3), we use the formula [Gradshtein and 
Rhyzhik, 1980, equation 3.461-2] 

W(p)=liø•x2nexp(--px2)dx= 
where n = l, p > 0. Solving (A3), 

(2p) n 

ax 2 _ exp (_it,0 (•22t x/2 1 2['•'1 -- '•'32/4'•'2] ['•'1 -- •32/4•2] 1/2 

2 1 4•22 
Gx exp (•4) [4•2 -- •32] 3/2 (A4) 

On substituting the expression for exp (•4) from (A1) into (A4), 
2 

the expression of a• can be simplified to 

2 2•2 
= 

4•x12 -- 23 2 

Using a similar procedure, fly2 is obtained as 

Gyz•••m••my2exp[--•lX2--•2y2--•3xY--•4]dxdy 
•2 =exp(--•4)••m exp(--•zy2) y2 dy 

••mexp [-•lx2-•3xy]dx (A6) 
Solving inner integral using G(•) we obtain 

••• (•32 •(••1/2 _ exp [-2xx 2- 23xy] dx = exp -• y2 
Plugging back into (A6) and rearranging, 

a• 2 = exp (--•4) y2 exp (--y2p) dy 

Using W(p) for n = l, 

Gy2 __ 2•1 -- 4• 2 __ •32 (A7) 
which is the third equation connecting ix, 12, 13, and •. The 
fourth equation connecting 2• can be obtained by substituting 
(7) into the expression for covariance in (5)' 

Separating integrals for x and y, 

axy=exp(-;•4) l+••xdxexp(-2•x 2) 
ß __ _.]_ '•'3 __ X2}l)y dy I +•øø (exp [ ,/],2{(.,12 •22x) 2 ,/],3 _ 4,• 2 

exp exp 

ß exp --'•'2 Y + •22 x y dy (A8) 
Equation (A8) can be solved by using the substitutions 

Y--Y+•2 x 
dY = dy 

Then 

axy = exp (-24) x dx exp - ;tx -- 4•2• 

ß (exp (-- •2 y2)) y dY - (exp (- •2 y2)) • x dY 
(A9) 

The first integral within brackets can be solved by integration 
by parts and the second by using G(•). Solving the first inte- 
gral, 

X • •3 _ exp (-u) du 2•2 • 2•2 
Plugging back into (A4), we obtain 

•3 (•• 1/2 ••• [ (•32•] 2•2 • exp (--•) x 2 dx exp --x 2 • -- 
Solving the integral in the same way as (A3), 

•3 

-- 42122 __ •3 2 = ffxy (A10) 
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