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The kinematic model for surface irrigation, reported previously by Sherman and Singh (1978), is 
extended. Depending upon the duration of irrigation and time variability of infiltration, three cases are 
distinguished. Explicit solutions are obtained when infiltration is constant. When infiltration is varying 
in time, a numerical procedure is developed which is stable and has fast convergence. A rigorous 
theoretical justification is developed for computation of the depth of water at and the time history of 
the front wall of water advancing down an infiltrating plane or channel. A derivation is given of the 
continuity and momentum equations when there is lateral inflow and infiltration into the channel bed. 

INTRODUCTION 

In recent years several studies have utilized a one-dimen- 
sional form of the St. Venant equations or their approxima- 
tions in hydraulic modeling of surface irrigation or some 
aspects thereof [Basserr and Fitzsimmons, 1976; Katopodes 
and Strelkoff, 1977a, b; Strelkoff and Katopodes, 1977a, b; 
Sherman and Singh, 1978; Clemmens, 1979, 1980; Clem- 
mens and Strelkoff, 1979; Fangmeier and Strelkoff, 1979; 
Chen, 1980; Fonken et al., 1980]. Sherman and Singh [1978] 
showed, using kinematic wave theory, that the governing 
equations for surface irrigation constitute a free boundary 
problem. A free boundary problem will also arise if the 
governing equations are based on the zero inertia approxi- 
mation or the full form of the St. Venant equations. An 
explicit discussion of these mathematical issues does not 
occur in the other references cited above. 

In irrigation hydraulics both advance and recession are 
free boundaries which are not known a priori but must be 
determined concurrently with the solution of the governing 
equations. Basserr [1972] and Basserr and Fitzsimmons 
[1976] presented a hydrodynamic model for border irriga- 
tion. They solved the St. Venant equations numerically 
using the method of characteristics [Streeter and Wylie, 
1967]. From their discussion an explicit formulation of the 
free boundary problem is not clear. This also holds for the 
studies by Katopodes and Strelkoff [1977a, b]. 

Strelkoff pioneered the concept of zero-inertia in hydraulic 
modeling of surface irrigation [Strelkoff and Katopodes, 
1977a, b; Clemmens and Strelkoff, 1979; Fangemeier and 
Strelkoff, 1979]. Numerical solutions were utilized, but an 
explicit formulation of the free boundary problem was not 
given. Therefore even for simple cases it is not clear what 
the analytical solutions will look like. The same is true of 
other studies on hydraulic modeling of surface irrigation 
cited earlier. This discussion is not intended to detract from 

the basic theme of these papers. These authors have made 
fundamental contributions to hydraulics of farm irrigation 
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and have presented a perspective which is essential for 
understanding the limitations of existing techniques. 

In this study we will address ourselves to the above 
mathematical issues, that is, (1) formulation of free boundary 
problems using kinematic wave theory and full dynamic 
equations and (2) solution of the free boundary problem 
using kinematic equations. Sherman and Singh [ 1978] devel- 
oped a kinematic model for surface irrigation which consid- 
ered advance, storage depletion, and recession phases of the 
irrigation cycle [Basserr and McCool, 1973]. We will contin- 
ue the analysis of this model here. We refer to that work for 
the background information but briefly outline below the 
formulation of the problem. 

Surface irrigation essentially deals with water flowing 
down a plane (border) or channel and infiltrating into the 
channel bed. We consider a rectangular channel of uniform 
cross section which is initially dry. Let x be the distance 
along the channel which extends indefinitely to the right of x 
= 0; x = 0 is the position of its head. At time t = 0, water is 
released at the head x = 0. The depth of water inflow at x = 0 
is assumed to be a known time-dependent function g(t). The 
inflow of water at x = 0 lasts for a specified length of time T. 
When water is released, according to the discussion by 
Sherman and Singh [1978], there is a front wall of water 
which advances down the channel. This front wall of water is 

the advance front, that is, the interface between the water 
covered and uncovered part of the channel. Let x = s(t) or, 
inversely, t = [(x), be the time history of that advancing 
front; this time history is the advance function. This front is 
a free boundary which has to be determined along with the 
depth h(x, t) and velocity u(x, t). Let f(r) be the infiltration 
rate (volume per unit area per unit time) at time r = t - [(x); 
r denotes the infiltration opportunity time at a point x in the 
plane, that is, the interval of time that water has covered the 
point x, where t is the total time elapsed since the inflow 
began. The infiltration rate f(r) is assumed to depend only on 
the difference r between the total elapsed time and the 
advance time; that is, it is time dependent but independent of 
xforx > 0. 

The depth of water h(x, t) and the unknown time history 
[(x) are subject to the following kinematic formulation: 
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Fig. 1. Solution domain for (3). 

oh o 
+- [a(x)h"] = - f(t - [(x)) h(O, t) = g(t) 

ot Ox 
(1) 

['(X) = [ot(x)hn-l(x, [(x))] -1 = 0 

where a(x) is kinematic resistence parameter, and can be 
determined using standard open channel flow formula. For 
example, if Chezy's relation is used, then a = C S 1/2, in 
which C is Chezy's roughness factor and S is ground slope. 
In this case n = 1.5. If Manning's equation is used, then a = 
sl/2/rtm, in which nm is Manning's roughness factor. Here n = 
-•. In these two examples, a(x) is a constant. We assume that 
g'(t) -< 0 in order to avoid shock formation. We assume that 
n>l. 

Depending upon the variability of infiltration f and the 
kinematic wave friction parameter a, three cases were 
distinguished by Sherman and Singh [1980]: (1) f and a were 
constant, (2) a was stationary but space dependent and f 
was constant, and (3) f was time variant but space indepen- 
dent and a was constant. Explicit solutions were obtained 
when f was constant, and an approach was suggested when 
f was time dependent. One of the assumptions imposed on 
the depth of inflow was g(t) = g > O, 0 -< t -< T, g(t) = O, t > 
T. A closer inspection of the above solutions shows that it 
was tacitly assumed that T _-> (n - 1)g/f (see figures 4 and 8 
of Sherman and Singh [1978]). In this study we relax this 
assumption and discuss the case where T < (n - 1)g/f. 

The case f(r) not constant is briefly discussed by Sherman 
and Singh [1978] but the discussion is incorrect from (39) 
forward. In (39), •O in the first equation should be •x). In 
this paper we discuss this problem again (this time correctly) 
and show how to obtain the solution by an iterative proce- 
dure which can be carried out on a computer. We present the 
results of several such calculations. 

In the last section of the paper we give a derivation of the 
St. Venant equations when there is lateral inflow (rainfall) 
and infiltration. These two terms do not appear symmetrical- 
ly in the momentum equation, because in lateral inflow there 
is no momentum contribution to the flow in the channel 

direction, while momentum is lost in infiltration. Versions of 
the momentum equation which we believe are incorrect have 
appeared in the literature; we hope the discussion in this 
paper will rectify this matter. There is a derivation by Stoker 
[1957, chapter 11], but infiltration is omitted in that discus- 
sion. There are a number of errors in the work by Sherman 
and Singh [1978] which are corrected in the companion to 
this paper [Sherman and Singh, this issue]. 

THE CASE T < (n - 1)g/ f 

We make the additional assumptions g(t) = g, 0 _-< t _-< T, 
g(t) = O, t > T, a(x) = a, and f(r) = f, where g, a, and f are 
positive constants. The assumption that the depth of inflow g 
at the upstream end is constant is reasonable and has been 
used before. However, this assumption is not necessary for 
obtaining numerical solutions. Although a varies in both x 
and t, for practical considerations it is assumed to be 
constant. The assumption that infiltration f is constant is 
perhaps the most restrictive. However, it is essential for 
obtaining explicit solutions, which can give a great deal of 
insight in understanding of irrigation phenomenon. More- 
over, this assumption may not be unduly restrictive in 
modeling recession [Wu, 1972; Singh and McCann, 1979]. 
Again, this assumption is not required for obtaining numeri- 
cal solutions. The case T > (n - 1)g/f has been discussed by 
Sherman and Singh [1978, Figure 8]. The partial differential 
equation in (1) is 

oh oh 
+nah n-1 - f h(O, t) = g(t) (2) 

Ot Ox 

Let the continuous function g(t, e) be defined as follows: g(t, 
e) = g, 0 =< t _-< T, g(t, e) is a decreasing function in T _-< t _-< T 
+ e such that g'(t, e) -• - o• as e --> 0 (e.g., g(t, e) = g(T + 
- t)/e), and g(t, e) = 0; t => T. The solution h(x, t, e) of 

Oh Oh 
m + nahn-1 - - f h(O, t, e) = g(t, e) (3) 
Ot Ox 

tends to the solution of (2) as e--> 0. Following the discussion 
by Sherman and Singh [ 1978] the characteristic curve x(t, 
e) h(t, rr, e) of (3) passing through the point (0, rr, g(rr, e)) of 
(x, t, h) space is 

h(t, or, e) = g(rr, e) - f(t- 

x(t, rr, e) = • {g"(rr, e) - [g(rr, e) - f(t - 
(4) 

Referring to Figure 1, the curve OPQ (= FB1) is the free 
boundary t = [(x, e); the curve FB3 joining t = T + e on the t 
axis to Q is the locus of points along which h(t, rr, e) is 0, and 
curves originating on the t axis (at t = rr) and terminating on 
FB 1 or FB3 are x = x(t, rr, e). If we let e --> 0, then we get, 
from Figure 1, Figure 2. In Figure 2 the curves x = x(t, rr) in 
D2 originate at the point t = T on the t axis and terminate on 
PQ or FB3. Physically, FB 1 is the advance function and FB3 

D•//•F B 1 
o 

Fig. 2. Solution domain for (2). 
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the recession function. The kinematic hypothesis does not 
accommodate vertical recession. Therefore by recession here 
we mean the horizontal recession. Following the discussion 
by Sherman and Singh [1978] we get, for h(x, t) in D1, 

h(x, t) = gn _ (5) 

From (5) it is clear that the flow depends only on x and is 
therefore steady but nonuniform. In D:, h(x, t) is defined 
implicitly by 

x = 7 {[h + f(t- T)] n -- h n} (6) 
From (6) it is clear that the flow depends on both x and t and 
is therefore both unsteady and nonuniform. The part OP of 
FB1, i.e., the locus t = •(x) (in the form x = s(t)), is 

..... (7) X f gn g n 
and FB3 is given by 

X = otfn-l(t- T) n (8) 

The curve x = x(t, T), joining t = T on the t axis to P, is 

X = 7 {gn _ [g _ f(t- T)] n} (9) 
It remains to determine the part PQ of FB 1. In Figure 1, PQ 
is given parametrically by [Sherman and Singh, 1978, p. 360] 

•'(0', E) = 7 {gn(o" e) -- [g(o', e) -- f(Tl(O' , e) -- O')] n) 

n(g'(cr, e) + f) 

(n- 

ng'(tr, e)g n-1 (tr, e) 
(n - 1)f[g(cr, e) - f(z/(cr, e) - o')] n-1 

(10) 

nT 
= 

n-1 

Here T -< cr -< cro(e), where cro(e) is some number less than T 
+ e. In (10) we introduce a new parameter, T = g(cr, e)/g. 
Then T =< cr -< T + e implies 1 >= T >-- 0. The reason for the 
introduction of the parameter T is as follows: The parameter 
cr runs from T to cr0(e), where •cro(e), e) and ,/(cro(e), e) are 
the x and t coordinates of point Q in Figure 1, and then from 
fro(e) to T + e. Thus the characteristics issuing from points 
on the t axis below t = cro(e) terminate on PQ, and those 
issuing from points above t = cro(e) terminate on FB3. When 
cr runs from T to cro(e), the parameter T runs from 1 to To(e) = 
g(cro, e)/g, and when cr runs from cro(e) to T + e, the 
parameter T runs from To(S) to 0. PQ is now represented 
parametrically by x = •T, e) t = */(T, e), where •T, e) is 
defined by the first line in (11) and */(T, e) is defined by the 
differential equation in the second line of (11) together with 
the initial condition in the third line of (11). Here T >= T >= 
To(e). If now we let e --> 0, then To(e) will tend to some value 
To between 1 and 0, which can be determined according to 

the discussion below (12). The advantage of this procedure is 
that (11) turns into (12), which eliminates all reference to 
both e and g(t, e), and from (12) we have the parametric 
representation x = sO-(T), t = •T) of PQ in Figure 2. In this 
parametric representation the parameter T runs from 1 to T0. 

Since 

d•l d•l dT d•l g'(rr) 

drr dT drr dT g 

we get, multiplying the second equation of (10) by g/g'(rr), 

otgn f-- ( •l( T, e) -- •g, e)= --• - 7 n- T- g 

n'(y, e) = (n- 1)f 1 + g,(cr, e)' 
ng 

(n - 1)f[1 - (f/gT)(•l(T, e) - if)in-1 

(11) 

,/(1) - 
nT 

n-1 

Here 1 -> T >- To(s), where To(s) = g(cro, e)/g. If in (11) we let 
e --> 0, then g'(cr, e) --> - oo and cr ---> T. Also, To(e) tends to 
some limit To. We get 

agn{ L (,y/(T) - T)]n } = -F- n_g 

ng ng 

*/'(T) = (n - 1)f - (n - !)f[1 - (flgT)(rl(T) - r)] n-1 (12) 

,/(1) = 
nT 

n-1 

(12) is valid in 1 >- T >- To, and x = [(T), t = */(T) is the 
parametric representation of PQ in Figure 2. Now, T = 1 
corresponds to P, and T = To corresponds to Q; To is 
determined by the fact that Xo = gr.(To), to = ,/(To) satisfies (8). 

We can approximate ,/(T) by a power series in T - 1 to the 
second degree term: 

*/(T) = ao + al(T- 1) + a2(T- 1) 2 (13) 

We have 

nT 
ao = •1)- al = ,/'(1)= 

n-1 (n- 1)f 1 - to--h-•_ • 

a2 = •- •l"(1) = 2w n (n 1)f n'l -- 1 + • - rt- 1 

fT 

g(n - 1) 

Note that 0 < w < 1. This implies that al < 0 and a2 > 0. We 
write (13) as 

t = ao + al(T- 1) + a2(T- 1) 2 
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and solve for % getting 

1 
•, = 1 + • {-a• - [a• 2 + 4a2(t- a0)] m} (14) 

2a2 

If we write the first equation of (12), 

agn f-- (t - T) (15) x= f •- •/-g 
and then replace the •/in (15) by (14), we get approximately, 
the equation of PQ in the form of x, a function of t. Here t _>- 
ao = nT/(n- 1). 

In the case T > (n - 1)g/f, discussed by Sherman and 
Singh [1978], the characteristics in D• are given by (14) of 
that paper: 

x= f {g"- [g- f(t- o-)]"} 0_-< o-_-< T 
and on this characteristic 

h= g- f (t- •r) 0_-< •r_-< T 

In D2 we have 

agn{ f } x = • •/-•-(t - T)]" 0 _-< •,_-< 1 (16) 
and on each of these 

h = gT- f(t- T) 0=< T -< 1 

These same equations hold in the case T < (n - 1)g/f. Of 
course, h is given in D• and D2 in both cases by (5) and (6). 

THE CASE f(r) NOT CONSTANT 

We assume that 0 < f(•) _-< b and that a(x) = a = constant. 
The introduction of the new variable r = t - [(x) yields, from 
(1), the equations for k(x, r) = h(x, r + [(x)): 

[1 - nakn-•['(x)]k, + nakn-•kx = - f(r) k(O, r) = g(r) 

(17) 

•'(X) = [akn-l(x, 0)] -1 •(0) = 0 

k(x, O) = h(x, [(x)) is the depth of the front wall of water. 
From (17) we get the partial differential-difference equation 
[(38) of Sherman and Singh, 1978] 

1 - n [k(x, O) k• + nakn-•(x, r)kx = - f(r) (18) 
r) = g(r) 

Following the discussion by Sherman and Singh [1978], we 
specify that k(x, 0) = q•(x), q•(0) = g(0), on the x axis, and 
then solve 

1 - n k, + nakn-(x, r)kx = - f(r) (19) 
O) = 

We wish to determine •(x) so that the solution k(x, r) of (19) 
has the property k(0, r) = g(r). Let 

x = x(rr, s•; •) r = -r(rr; s•; •) k = k(rr, s•; •) (20) 

be the characteristic of (19) passing through the point (•, 0, 
ß (•) of (x, r, k) space. Here •ris the running parameter along 
the characteristics; if •r = 0 in (20), we get 

x(0, e; = e ,(0, e; ,I,) = 0 t40, e; = 

(21) 

The characteristic equations of (19) are 

dx dr ( k )"-• dk__ drr nakn-• 1 - n f(r) &r *(x) drr 

(22) 

and these are subject to the initial conditions (21). The 
characteristics (20), taken together, constitute a surface 
containing the cume I' = {x = s •, r = 0, k = •(O}; indeed, 
(20) is the parametric representation of that surface. If we 
can solve the first two equations of (20) for rr and • in terms 
of x and r, then, by substituting in the third equation of (20), 
we get the solution of (19). To this end we note that the 
Jacobianj(rr, s•; •) = x•r e - xer,• has the value at rr = 0, using 
(21) and (22), j(0, •; *) = n - 1. Since j(0, •; *) 9 0, j(rr, •; 
*) 9 0 in the neighborhood of rr = 0. Thus there is a surface 
k(x, r; •) containing the curve I' satisfying (19). We note that 
the existence of x e and r e is required; this will require the 
existence of *'(O. If k(0, r; *) is defined for some interval 0 
_-< r -_< r0, then k(0, r; *) = g(r) constitutes an equation for 
the determination of •(x). The k(x, r) corresponding to this 
•(x) satisfies (18). 

We can simplify the problem by taking x as the parameter. 
We note, from the first equation of {22), that since k > 0, x is 
an increasing function of rr. Thus we have two functions, 

r = r(x, •; •) k = k(x, s•; •) (23) 

such that 

dr 1 -- rt(k/q•(x)) n-1 dk f(r) 
dx - n ak n - • dx - n ak n - • (24) 

subject to the initial conditions 

r(e, e; ,I,) = 0 to(e, e; ,I,) = ,I,(0 (25) 

r and k are defined on S(•0) = {0 _-< x _-< •, 0 _-< • _-< •0}, where 
*(O > 0 on 0 _-< • -< •0. If r e > 0 on S(•0), then (23) 
determines a function k(x, r; •), satisfying (19). We wish to 
determine *(x) so that k(0, r; ,) = g(r); in terms of the 
functions (23), this can be expressed 

t(o, ,I,)= g(r(o, ,I,)) (26) 

The solution •(x) of (26) determines k(x, r), satisfying (18). 
We can achieve further simplifications by introducing 

F(x, •; rb) = k•(x, •; •) 

(•(X) = •/lln(x) 

The r and F satisfy 

(27) 

dr 1 1 
_ F-(n- 1)/n 

dx na a 

dF 1 
- --- f(r) 

dx a 

__ __ [(•(X)]-( n-1)/n 

(28) 
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Fig. 3. Rectangular grid for numerical solution of (28)-(29) and 
(32). 

subject to 

ß (•, se; &) = 0 F(s e, se; &) = •0 (29) 

(26) becomes 

F(0, se; &) = •,(,t(0, se; &)) (30) 

We can write (28) and (29) in the following integral form 
(here we write •(x, O and F(x, O, omitting &): 

•-(x, 0 1 fx • = [F(o., •)]-(n-1)/n do. 

+- [4fro.)] -(n-•)/n do. (31) 

F(x, 0 = •) + - f(•'(o., O)do. 

Using the second equation of (31), we can write (30) as 

4if0 1 fo • = f0'(o., •) d• + •(•(0, •) (32) 

(31) and (32) constitute three integral equations for the 
functions v, F, and &. The solution of (17) is equivalent to the 
solution of (31) and (32); d ß = •(x, O is solved for •, • = •(x, 
ß ), then the solution of (17) is 

k(x, •')= [F(x, •(x, 'r))] TM g(x)- 1 fo • do. a [4,(•)] (•-')/• 

(33) 

The solution of (1) is given by [(x) in (33) and by h(x, 0 • k(x, 
t- /•(x)). 

The solution of (31) and (32) can be obtained explicitly in 
the case f(•) = f = constant and g(•) = g - constant. For 
this case and also for the case f(•) = f - constant and g'(v) 
< 0, we refer the reader to Sherman and Singh [1978] and 
Sherman [1981]. When f(•) is not constant we use the 
iterative argument (34) below: 

d•k 1 1 
-- 'Fk -(n-1)/n -- -- [(•k-l(X)] -(n-1)/n •'k(•, •) -- 0 

dx na a 

dF•, 1 
- - - f(•'k) Fk(•, 0 = 

dx 

d•o ( x ) = a 0 -< x -_< •o 
(34) 

•bn(0 1 fo e = f('o,(o., 0) do' + y('rt,(O, 0) 

Here a is any number such that 0 < a < •,(0) and se0 is a 
number which can be determined once a has been chosen; in 
the case •t) = •, = constant, it is any number satisfying 

0 < •0 < min (seo(a), H(a)) (35) 

where 

•eo(a) = • (•/- a) 
H(a) = na[A(n + 2)(n- 1)] -1/2 a (2n-1)/2 

Here A is the maximum of r 0, The right side of (35) 
is maximum when a is selected to be the root of •0(a) = H(a). 
For the determination of •0 when •t) is not constant, we 
refer to Sherman [1981, p. 92-93]. We can explain the 
iterative process (34) in greater detail as follows: Having 
made a choice of a, we then determine •0. For each •, 0 < • 
--< •0, the two differential equations on the first two lines of 
(34), subject to the initial'conditions indicated, determine the 
two functions ,•(x, O and F•(x, O on 0 -< x =< •. Thus r• and 
F• are determined on S(•0). The function ,•(x, O, inserted 
into the fight side of the last equation of (34), determines 
qb•(O on 0 -< • _-< •0. We now repeat this process with &•(x), 
thus determining ,2(x, O and F2(x, O on S(•0). The sequences 
of function •bn, ,•, Fn generated in this manner converge to 
the solution qb, ,, F of (31) and (32) [Sherman, 1981]. Also, a 
=< 4•(0 =< 7(0), so that a =< 4•(0 -< y(0). 

We note that qb(x) = •n(x) and that •(x) = k(x, O) = h(x, 
•(x)) is the depth of the front wall of water. We would 
therefore want •0 to be such that •(•0) (and therefore also 
qb(•0)) to be very nea. dy zero. But •0) -> a > 0, so we have 
only a partial determination of the solution. Furthermore, if 
we take a to be small, then (35) shows, in the case •,(t) = •, = 
constant, that •0 is also small, so that qb(•0) is near •(0) rather 
than 0. This situation wouid make impractical the iterative 
solution described above. Fortunately, experimentation on 
th e computer shows that the restfiction (35) in the case T(t) 
= •, = constant, which is a sufficient condition for the 
convergence of the iterative procedure, is in fact not neces- 
sary. More precisely, if we take a to be very small, then we 
may select •o to be larger than that required by (35) and still 
get convergence of the iterative process (34). Indeed, we 
may on the computer consecutively increase •0 and get 
solutions from (34) such that •0) is sufficiently. small for 
practical purposes. Thus (34) is a constructive and practical 
procedure for the solution of (1). 

DISCUSSION OF THE CALCULATION 

AND NUMERICAL RESULTS 

We will now discuss the numerical experimentation on the 
computer. In this study our objective is not to validate the 
kinematic model using field observations. This constitutes a 
separate portion of the study, which will be•reported in the 
near future. Here our objective is to develop a numerical 
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Fig. 4. The depth of front wall of water as a function of x for data of Kincaid [1970]. 

algorithm to obtain solutions to the kinematic model under 
suf•ciently general conditions and to determine if this algo- 
rithm has desirable mathematical properties. We consider 
the case g(t) = g = constant only, although the procedure 
would also be valid for g(t) not constant. We take g = 11.5 
cm and f(•-) = cle-C2• where cl and c2 are constants. We 
subdivide both the x and • axes by equally spaced points 0, 
•(1), •(2), . . . , •(m• = •o, thus obtaining the grid of Figure 3. 

On this grid we implement the iterative procedure (34) as 
discussed above, using the fourth-order Runge-Kutta meth- 
od. From the &(x) obtained in this manner we calculate the 
free boundary t = •(x) according to the second equation of 
(33). For the calculation of &(x) and •(x) we used six sets of 
cl and c2: (1) c• = 2.69, c2 = O, (2) c• = 5.38, c2 = O, (3) c• = 
8.05, c2 = O, (4) c• = 2.69, c2 = 01.4, (5) cl = 5.38, c2 = 0.14, 
and (6) c• = 8.06, c2 - 0.14, with c• in cm/h and c2 in 1/h. 
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Eo10 

C2= 14 

500 600 700 800 900 

DISTANCE, m 

Fig. 5. The depth of front wall of water as a function of x for data of Kincaid [1970]. 



SHERMAN AND SINGH' KINEMATIC MODEL FOR SURFACE IRRIGATION 665 

25 

2O 

15 

I0 

C2--.0 

,....-, 
ioo 2 o 300 I I I I •0 • 4OO 5O0 600 700 8 

DISTANCE , m 

Fig. 6. Advance time as a function of x for data of Kincaid [1970]. 

This data corresponds to border 1M of Kincaid [1970], where 
the slope was 0.00017, length 19812 cm, and width 783.4 cm. 
The discharge at the upstream end of the border was 50.17 
cm 3 s-] cm-]. For these values the parameter a was found to 
be 0.86 from Manning's equation; n was therefore •. 

For each set of data, 4fix) was determined as shown in 
Figures 4 and 5. Figure 4 presents the case when infiltration 
is a constant for which we have analytical solutions. The 
numerical scheme was checked against this case. It was 
found that the numerical solutions were identical to analyti- 
cal solutions. Furthermore, the numerical scheme converged 
very fast. As seen from the Figures 4 and 5, the higher the 
infiltration rate, the lower the length for which 4• becomes 
zero, as is physically plausible. The function 4fix) is quite 
sensitive to the choice of parameters in the infiltration 
function. 

For each of the same sets of data the free boundary t = 
[(x) was computed as shown in Figures 6 and 7. We observe 
that the higher the infiltration, the less the distance traveled 
by the front wall of water. The depth of water along the free 
boundary is not zero except at the end of its traveled 
distance. The free boundary is quite sensitive to the parame- 
ters in the infiltration function. Therefore an accurate deter- 

mination of infiltration parameters is crucial in irrigation 
flow modeling. 

THE CONTINUITY AND MOMENTUM EQUATIONS 
WITH LATERAL INFLOW 

AND INFILTRATION 

The continuity and momentum equations for channel flow 
are derived by Stoker [1957, chapter 10], when there is 
lateral inflow but no infiltration. In some papers the infiltra- 
tion term q is merely replaced by q-f in these equations. 
While this is valid in the continuity equation, it is not valid 
for the momentum equation because lateral inflow and 
infiltration are different from the point of view of gain or loss 
of momentum in the direction of flow. We give here a 
derivation which takes this difference into account. In this 

derivation we make the usual assumptions of shallow water 

theory to the lowest order, as described by Stoker [1957]. 
We assume that the channel is wide and rectangular, of 
constant width b, and that the slope S is constant and small. 
St(u, h) is the friction slope, u(x, t) and h(x, t) the velocity 
and depth of water, and q(x, t) and f(x, t) the lateral inflow in 
volume per unit area per unit time. Then the continuity and 
momentum equations are 

ht q- (uh)x = q - f (•6) 
ut + uux + ghx = g(S- Sf) - qu/h 

To derive the continuity equation, let x = s•(t) and x = s2(t), 
s2(t) > s•(t), be plane sections moving with the water, i.e., 
each section contains, at all times, the same water particles. 
Then the mass m(t) between the section is 

f $2(t) re(t) = pb h(x, t) dx (37) 
ds•(t) 

where p is the density. From (37) we get 

if s2(t) m'(t) = pb ht(x, t) dx + h(s2(t), t)s2'(t) 
j s,(t) 

_- h(s•(t), t)s•'(t)] 
= pb ht dx + (h2- hi)u2 + hi(u2 - u]) 

1 

where ha = h(sk(t), t) and uk = u(sk(t), t), k = 1, 2. We have 
also 

f s2(t) m'(t) = pb (q(x, t) - f(x, t)) dx 
d s•(t) 

so 

(q - f) dx = ht dx + (h2 - h•) u2 
1 

+ hi(u2- Ul) (38) 
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Fig. 7. Advance time as a function of x •or data of Kineaid [1970]. 

In (38) we divide by s2(t) '-- s](t) and let s](t) ? x and s2(t) $ x. 
Then we get q - f = ht + hxlt + hltx, which is the first 
equation of (36). 

The momentum M(t) between the two sections is 

f $2(t) M(t) = pb u(x, t) h(x, t) dx 
ds•(t) 

so that, as above, 

M'(t) = pb (uh)t dx + [(uh)2- (uh)•] u2 
1 

+ (uh)•(u2- u•)} (39) 
where the subscript k refers to evaluation at (sk(t), t). M'(t) is 
the sum of three terms: the rate of momentum loss through 
infiltration (there is no gain or loss of momentum in the x 
direction through lateral inflow), the body force, and the net 
pressure force at the two sections. The first of these terms is 

f $2(t) - pb f(x, t) u(x, t) dx (40) 
Jsl(t) 

Following Stoker [1957, pp. 454-455], and making the same 
small slope approximations, the body force term is, to the 
first order in s2(t) - s•(t), 

pbgh(S- Sf)(s2(t)- s•(t)) (41) 

and the net pressure force is, to the first order in $2(t) -- s•(t), 

- pbghhx(s2(t) - s•(t)) (42) 

From (39), (40), (41), and (42) we get, on dividing by s2(t) -- 
s•(t) and letting s•(t) ? x and se(t) $ x, 

(uh)t + (uh)xu + uhux = - fu + gh(S - S T) - ghhx (43) 

From (43) we get, using the first equation of (36), the second 
equation of (36). 

A free boundary problem fo• (36) can be formulat ed as 
follows: suppose u0 > 0 and h0 > 0 are such that S - Sj(uo, 
h0) = 0; the infiltration function f(x, t) is 0 for x < 0 and is a 
function of t only for x > 0; the lateral input function q(x, t) is 
0 for all x and t. Suppose a piston fits the channel and moves 
with velocity u0 when x < 0; to the left of the piston there is 
the flow regime u = u0, h = h0. We note that this flow regime 
satisfies (36) when x < 0. When the piston reaches x = 0 (at 
time t = 0), it moves in such a manner that the height at the 
piston face is the prescribed function h(x), where h'(x) _-< O. 
This last restriction is imposed to avoid shock formation. Let 
x = s(t), s(0) = 0, be the piston motion when x >- 0. It is clear 
that s(t) is an increasing function of x, so it has the inverse t 
= [(x). This time history x = s(t) or t = [(x) is a free 
boundary. For this problem in the domain D = {t > 0, x < 
s(t)} of the (x, t) plane, we get the formulation 

ht + (uh)x = -f(x, t- [(x)) in D 

ut + UUx + ghx = g(S - St(u, h)) in D 

u(x, O) = Uo h(x, O) = ho x -< 0 

h(x, ½x)) = h(x) u(x, ½x)) = [•'(x)] -• x>0 

(44) 

When h(x) -- 0 and S, Sf, and f are 0, this is the dam- 
breaking problem discussed by Stoker [1957, p. 313]. The 
solution of (44) may be compared with the solution of (1) if, 
in (1), we choose g(t) = h(O, t), where h(0, t) is the h(x, t) of 
(44) evaluated at x = 0. It is plausible that for small S, h(0, t) 
is a decreasing function of t. Thus with this choice of g(t) we 
are in position to compare the two free boundaries t = [(x) of 
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(1) and (44), with h(x) = 0 in (44). This comparison will 
provide some idea of the validity of the kinematic wave 
approximation, particularly in its dependence on $ and C. 
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