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ABSTRACT 

Whole building interval analysis to determine 
savings from energy reduction measures is addressed 
by IPMVP Option C, ASHRAE Guideline 14 and is 
also presented in a 2008 guideline from the California 
Commissioning Collaborative.  The whole building 
analysis has typically focused on the avoided energy 
use method; although a normalized savings method is 
also described in Guideline-14 and IPMVP.   

Using the normalized method might allow for the 
determination of annual savings when less than a year 
of post-implementation data is collected.  The reduced 
time required to determine annual savings via the 
normalized savings method might appeal to energy 
conservation programs.  However, details and rules for 
applying normalized savings are not yet detailed in the 
guidelines.   

The case studies presented in this paper use the 
normalized savings method to determine annual 
savings.  Savings uncertainty for the normalized 
method is determined and presented after slight 
modifications to the formulas described in ASHRAE 
Guideline 14.   The effects of reduced post-
implementation monitoring periods are also 
investigated.   

INTRODUCTION 
The use of whole building data to develop energy 

models as a method to ascertain energy savings has 
been researched for many years.  This method has been 
detailed in the IPMVP Option C, ASHRAE Guideline 
14 (GL14), and was used extensively in the Texas 
LoanSTAR program.  The California Commissioning 
Collaborative (CCC) has also recently published 
procedures for using this method in the “Guidelines for 
Verifying Existing Building Commissioning Project 
Savings Using Interval Data Energy Models”.  Despite 
the extensive research into this M&V method, and 
availability of guidelines, the wide-spread adoption has 
not yet taken hold in utility programs.   

One of the largest obstacles preventing adoption 
of Option C is the length of monitoring time required 
to develop reliable regression models.  Also, to be 
IPMVP adherent, both pre- and post-implementation 
data must be collected over a period that covers the 

full reporting period (IPMVP, 2007).   As such, the 
determination of annual energy savings for weather-
dependent energy efficiency measures can require a 
monitoring period of an entire year for each phase of 
the project (baseline and post-implementation).  Since 
it is more common that a year of historical baseline 
interval data is available at the start of the project, the 
length of the post-implementation phase is typically 
the point of contention.  A year delay to determine 
project savings might not be desired or even possible 
in certain energy efficiency programs. 

One possible method to reduce the length of time 
required to determine annual savings is to create a 
post-implementation regression model when less than a 
year of data is collected.  The baseline and post- 
implementation models can be applied to a common 
base, such as TMY temperature data to determine the 
normalized annual average savings (Reddy, 2000). 
This paper presents the experience gained from 
applying IPMVP’s Option C to determine normalized 
savings on two existing building commissioning 
projects.   

Utilizing previous studies and guidelines, a 
method for determining the fractional savings 
uncertainty in normalized savings estimates is 
developed.  This uncertainty analysis is applied to the 
annualized energy savings based on normalized 
weather data for a large commercial office building 
and a grocery store.  The impact on savings and 
uncertainty from the various monitoring period lengths 
used to develop the post-implementation models is 
investigated. 

BACKGROUND 
The focus from previous research and guidelines 

on determining energy savings from whole building 
energy meters has been directed toward “avoided 
energy use.”  The avoided energy use method requires 
the development of a regression model from measured 
baseline data.  The regression model is then used to 
project the building energy performance into the post-
implementation period as if no change were made to 
the building.  The independent driving variables are 
measured in the post-implementation period and used 
as inputs for the baseline model.  Measured energy use 
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is compared with the regression model results and 
savings are defined as the difference between the 
adjusted baseline model prediction and the actual post-
implementation energy measurements.   

The normalized savings method uses the same 
baseline regression development as the avoided energy 
use method.  However, for normalized savings, 
measured post-implementation data is used to develop 
a post-implementation regression.  Baseline and post-
implementation regressions are driven by the same 
input, TMY3 temperature data for this study, and 
savings result from the difference between the results 
of the two regressions. 

 Depending on project requirements, an 
establishment of savings uncertainty might be an 
important component of reported savings.  The 
avoided energy use method typically introduces 
uncertainty in the form of regression error from an 
imperfect baseline model.  Measurement error from the 
post-implementation period should be applied to the 
overall uncertainty calculation, but when the measured 
data are taken from utility grade meters, the error is 
assumed to be zero.  In the normalized approach, an 
additional uncertainty is present in the form of 
regression error from the post-implementation energy 
model.  This uncertainty should be addressed when 
annual avoided savings are reported.   

GL-14 mentions the normalized savings method as 
a measurement option, but then states that the main 
focus and process development was based on the 
avoided energy use method.  No clear direction has 
been provided to address the overall uncertainty when 
the normalized savings method is used, so one was 
developed and is outlined herein. 

The case studies presented in this paper will use 
the well established avoided energy use as a base of 
comparison to investigate the impact on total savings 
when a normal average data set (TMY3) is used.  The 
impacts on savings and uncertainty due to post-
implementation regressions with monitoring lengths 
less than one year were also investigated. It is 
important to note that when annual savings are 
calculated using less than 12 months of post-
installation data, the results are no longer IPMVP 
adherent (CCC, 2008). 

METHODOLOGY 
The buildings selected for this study are a large 

office located in Southern California and a large sized 
grocery store located in Northern California.  A year’s 
worth of utility data, in 15 minute intervals, was 
collected for each baseline and post-implementation 
period.  The analysis interval desired for this analysis 
was hourly, since determining peak demand savings is 
a priority for many California retro-commissioning 

projects.  In order to extract peak demand savings, the 
smaller data intervals are required (Katipamula, 1994).   

Ambient conditions and TMY3 data were 
collected from the nearest NOAA station.  The date 
stamps between the weather data and interval data 
were aligned using the Universal Translator processing 
tool (available free at utonline.org). 

Once the data conditioning was complete, an 
analysis was conducted to identify the independent 
variable or variables that drive the building energy use.  
Microsoft Excel was used to perform multi-variable 
linear regressions on the outside air ambient dry bulb 
and ambient wet bulb temperatures as well as the 
humidity ratio to determine if one variable or the other 
had a stronger correlation to electrical consumption.  
Production level data was not available for these two 
projects.  Outside air dry bulb temperature proved to 
be the strongest available contributor and was chosen 
for the development of the energy models for the two 
buildings in this case study. 

Energy Explorer, a software tool developed by Dr. 
Kissock from the University of Dayton, Ohio, was 
used to develop and evaluate potential change-point 
regressions models.  Background on variable change-
point models can be found in ASHRAE Research 
Project 1050, or in the 2008 CCC guidelines.  The 
statistical tests from Energy Explorer indicated that a 
2-parameter model (linear) regression was acceptable 
for the large office project.  A 4-parameter regression 
model was the best fit for the grocery store energy use 
profile.  

STATISTICAL METHODS 
In existing guidelines, there are two primary 

approaches to evaluate the uncertainty resulting from 
whole building energy regression models. The method 
described in IPMVP applies traditional regression 
statistics to evaluate the validity of the regression 
model(s) and to calculate relative precision. The GL14 
approach follows a procedure to calculate fractional 
savings uncertainty of avoided energy savings.  Both 
methods require the establishment of a confidence 
interval.  GL14 requires a confidence interval of at 
least 68% for compliance. 

The fractional savings uncertainty methodology 
accounts for potential autocorrelation errors which 
might be present and significant with shorter data 
intervals.  Autocorrelation is a statistical metric that 
defines how much a particular point is dependent on 
the previous value.  High autocorrelation indicates a 
systematic error that will transfer to the final savings 
estimate.  Since the fractional uncertainty was 
developed to include the effects of autocorrelation, this 
method is the basis for this analysis. 
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ENERGY SAVINGS CALCULATION METHODS  
Currently, the existing guidelines focus on the 

avoided energy use method, where savings are 
calculated in the following manor: 

jmeasjprejsave EEE ,,, −=
∧

                             (E-1) 

Where: 
Esave,j is the avoided energy use (savings) that occurred 

over time interval j. 
Êpre,j is the total predicted energy use that would have 

occurred over time interval j if the project had not 
been performed. This value is determined by a 
regression model developed from the baseline 
project data. 

Emeas,j is the total measured energy consumption that 
occurred over time interval j of the post-
implementation period. 

  
For the normalized savings method, a post-

implementation regression is used in place of the 
measured data.  As such, normalized energy savings 
are determined by equation E-2. 

postprenormalizedsave EEE
∧∧

−=,                        (E-2) 

Where: 
Êpost, is the total predicted energy use of the post-

implementation period as determined by a post-
implementation regression.   

Fractional Savings Uncertainty  
Fractional savings uncertainty was first developed 

and presented in 2000 (Reddy, Claridge).  It was 
intended to be used as a metric to help select 
appropriate regression models for avoided energy use 
calculations.  The metric shifts the focus from the 
evaluation of the regression to the uncertainty 
associated with the final savings estimate. 

Fractional savings uncertainty was adopted by 
ASHRAE GL14 (GL14) and is also used in the CCC 
guideline.  Information regarding the full development 
of fractional savings uncertainty, along with examples, 
can be found in these two sources. The CCC guideline 
defines the metric as “…the ratio of the expected 
uncertainty in the savings to the total savings” which is 
shown in Equation E-3.   

Fractional Savings Uncertainty =  
save

save

E

E∆
    (E-3) 

Where: 
∆Esave is the uncertainty of the savings 

 
The fractional savings uncertainty equation, as 

given in GL14, is presented by equation E-4. 
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Where: 

1.26 is a coefficient based on numeric trials that 
simplifies matrix algebra related to regression 
error (Reddy and Claridge, 2000) 

t is the t-statistic evaluated at a given confidence 
interval 

F is the ratio of energy savings to baseline energy use 
n is the number of data-points used to develop the 

regression model 
n’ is the adjusted number of independent observations 

that accounts for autocorrelation  

m is the number of data points expected in the post 
project measurement period 

CV is the coefficient of variation root-mean-squared-
error. 
 

The adjusted number of independent observations 
during the baseline period due to autocorrelation is 
given by equation E-5 

ρ

ρ

+

−
⋅=
1

1
' nn          (E-5) 

 Where: 
ρ is autocorrelation coefficient defined as the square 

root of the coefficient of determination, R2, 
between the model residuals and the residuals 
shifted by a single time increment 

 
The ratio of energy savings to baseline energy use 

for the normalized savings method is given by 
equation E-6. 

pre

postpre

E

EE
F

∧

∧∧

−
=                                         (E-6) 

 
 The original form of the fractional savings 
uncertainty (E-4) is not readily suited for use with 
normalized savings.  As developed, E-4 assumes only 
the baseline regression error will impact the final 
savings uncertainty.  Substituting equations E-2 and E-
6 into the fractional savings uncertainty formula, 
produces the following results: 
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 Solving equation E-7 for the regression 
uncertainty, ∆E, yields an equation that can be applied 
to each regression, baseline and post-implementation, 
independently as shown by equations E-8 and E-9. 
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 The variable m in equations E-8 and E-9 
originally refers to the number of measured post-
implementation data.  Since the regressions in the 
following case studies will use TMY3 temperature 
data as the driving variable, m is interpreted as the 
number of TMY3 points (8760 for hourly models and 
365 for daily models).  The variable m will be the 
same value in both equations whereas n and n’ will 
depend on each regression.   

Once uncertainty is determined for each 
independent regression, a single combined uncertainty 
value can be calculated and reported for the final 
savings using the standard additive error equation 
shown by equation E-10. 

 
22

postpretotal EEE ∆+∆=∆                         (E-10) 

 
The combined uncertainty can then be applied to 

the normalized savings value using the original 
fractional savings uncertainty from equation E-3. As 
mentioned earlier, uncertainty due to measurement 
error has been excluded. 

 
Application to Case Studies 

Data from the two case studies were utilized to 
evaluate the savings resulting from the projects. The 
avoided energy use approach was first used to develop 
a point of comparison for the normalized models.  The 
original fractional savings uncertainty method was also 
applied to use as a base of comparison.  
 
Large Office Analysis 

The large office included in this study contains 
over 300,000 ft2 (27,870 m2) of conditioned space and 
is located in Southern California.  As part of a retro-
commissioning process, two identified measures were 
implemented: duct static pressure reset and supply fan 
scheduling. 

As mentioned earlier, the desired analysis period 
was hourly intervals.  Unfortunately, the hourly large 
office regressions did not pass a GL14 stipulation that 
net determination bias of the regression model does 
not exceed 0.005%.  The net determination bias 
compares the ratio of total predicted and total 
measured values.  The hourly data was rolled into 
average daily temperature and daily energy use. The 
results using daily intervals now produce a net 
determination bias less than 0.005%.  GL-14 also 
stipulates that fractional uncertainty shall not exceed 
50% at the 68% confidence level (e.g. 10% ± 2.5%).  
The 68% confidence interval is quite low so 95% 
confidence was chosen for this analysis. 
Avoided energy use method:  
 Regression models were developed for baseline 
and post installation periods.  The results are shown in 
Figure 1.  A simple linear regression provided as good 
a fit as the more complicated change-point models and 
was chosen for this analysis.  A noticeable 
improvement in the models was observed when the 
data was separated by day type (e.g. weekday or 
weekend), but as a main goal of this study was to 
investigate uncertainty calculations, the analysis was 
conducted without separating by day type. 
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Figure 1: Baseline and post-implementation regression models

Avoided savings: 
The actual ambient conditions during the post 

period consumption were input into the baseline model 
and the results were compared directly with the 
measured post period.  These results are shown in 
Table 1. 

 
690,235

12.7%

30.7%

690,235 ± 105,854

Avoided Energy use (kWh)

F (savings percentage)

Traditional Frac. uncert.

Traditional Savings  
Table 1: Avoided energy use results 

 
Annualized Savings: 

Post installation models were developed from the 
12 months of post data. TMY3 from a local weather 
station was averaged to provide a daily value that 
could be used to drive the baseline and post-
implementation regression models.  The results are 
shown in Table 2. 

 
662,205

12.5%

207,086

126,978

242,915

36.7%

662,205 ± 121,458Project Savings

∆Esav,total (kWh)

Combined Frac. uncert.

Normalized savings or Esav  (kWh)

F (savings percentage)

∆Esav,baseline (kWh)

∆Esav,post ECM (kWh)

 
Table 2: Normalized savings results (12 month post) 

  
The slight difference observed between the final 

savings values from the normalized method and the 
avoided energy use method is expected.  The avoided 
energy use method is driven by actual measured values 
during the post monitoring period. The normalized 
savings method uses TMY3 temperatures, which are 
averaged over several years.  Figure 2 indicates there 

were differences between the temperature data used for 
each method.  The temperatures in both the baseline 
and post periods exceeded averages by 2 and 5 
percent, respectively. 
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Figure 2: Actual temperature deviation from TMY 

The difference in final savings between the 
avoided energy and normalized methods is within 5% 
for this case study, with the avoided energy savings 
higher than normalized as expected due to the 
temperature deviations.  The normalized savings 
method also has the expected, higher fractional savings 
uncertainty due to the inclusion of the post-
implementation regression uncertainty. 

 
Post monitoring period length impact on final savings:  

The results presented to this point have required a 
year of data collection for each baseline and post-
implementation period.  When project constraints 
prohibit a delay of one year to claim annual savings, it 
might be possible to create post-implementation 
regression models using less than a year of data.  With 
the shorter post regression model, the savings can be 
annualized using the normalized savings method.  The 
impact of monitoring length on normalized savings 

ESL-IC-09-11-23

Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009



  6 

was investigated for this project by developing 
regression models from data sets of 9, 6 and 3 months 
of post-implementation data.   

The post-implementation period began on June 1st 
for this particular project.  As a result of the actual 
starting point, the 3-month regression plot contains 
data from only summer months.   

Figure 3 shows a direct comparison between the 
regressions with various monitoring period lengths. 
The statistical values of each regression are provided 
in Table 3.  The potential impact of monitoring period 
length on the predictive ability of the regression can be 
seen from the data in Figure 3.  The 9-month 

regression overlaps very closely with the original 12 
month profile.  The 6-month regression has a slightly 
steeper slope and deviates from the original regression 
at the extremes of the temperature range.  The 3-month 
regression deviates substantially from all regressions.  
The deviation of the 3-month post regression plot is 
likely due to the inclusion of summer months only.   

These results are project specific as the shorter 
monitoring periods around alternate times of year 
would likely yield different regression profiles.  
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Figure 3: Comparison of post-implementation length on regression development 

 
 

Monitoring 

period
R

2 CV(RMSE)

Avoided Energy Use-Baseline 12 months 0.26 21.1%

12 months 0.30 19.4%

9 months 0.32 19.2%

6 months 0.18 19.9%
3 months 0.02 19.4%

Normalized Savings - Post ECM

 

Table 3: Statistical values of all regressions 
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Annual savings were calculated using the original 12-
month baseline and each post-period regression.  The 
associated combined fractional savings uncertainty 
was calculated for each result.   A summary of the 
combined fractional savings results is provided in 
Table 4 and the final savings for each regression is 
summarized in Table 5.  A graphical representation of 
the savings, with the associated fractional uncertainty 
error bars, is provided in Figure 4. 

 
Post period Fractional Uncertainty

Avoided Energy 

Use
12 months 30.7%

12 months 36.7%

9 months 42.7%

6 months 34.2%
3 months 178.3%

Normalized 

Savings

 

Table 4: Combined fractional savings uncertainty 

summary 

Based on the results of this project, the 3-month 
post period is the only data set that did not meet the 
50% fractional uncertainty requirement of GL-14.  A 
fractional savings uncertainty greater than 100% 
indicates the uncertainty in the savings greater than 
the actual savings estimate.  As such, the 3 month 
post regression would not be appropriate to claim 
savings for this project. 

The final energy savings estimates from the 12, 9 
and 6 month monitoring periods range from 
approximately 90% to 112% of the base value 
determined by the avoided energy use method.  The 
differences in savings observed between the various 
monitoring period lengths can likely be attributed, at 
least in part, to the variations in the average 
temperatures shown in Figure 5.   

 

 

Post period Total Savings (kWh) % Savings Project Savings (kWh)

Avoided Energy Use 12 months 690,235 12.7% 690,235 ± 105,854

12 months 662,205 12.5% 662,205 ± 121,458

9 months 627,695 11.8% 627,695 ± 134,092

6 months 770,793 14.5% 770,793 ± 131,910
3 months 151,522 2.9% 151,522 ± 135,067

Normalized Savings

 

Table 5: Savings summary 
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Figure 4: Summary of savings with combined fractional uncertainty 
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Figure 5: Average Temperature Comparison 

 
 
The possibility exists that shortened monitoring 

periods will not capture a representative range of 
operation and skew the final result, shown particularly 
by the results of the three-month post-implementation 
data set.  Further research will be required to develop 
standards or guidance in just how much data is 
required to achieve a representative data set.  Based on 
this project, a post-implementation monitoring period 
of nine months is sufficient for a conservative savings 
estimate.  A six month monitoring period can also be 
argued as a valid representation. 
Grocery Store Analysis 

The grocery store was a large, (greater than 
50,000 sqft) supermarket located in Northern 
California, built during the 1990s. The retro-
commissioning project began in late September, 2007, 
concluding in early December, 2007.  The project 
affected the HVAC system, interior and exterior 
lighting, and refrigeration system.   

Fifteen minute increment utility meter data (kW) 
was acquired from the utility for a full year prior to the 
initiation of the project, and was collected throughout 
the implementation period, as well as a full year after 
the conclusion of the project.  Weather data was 
collected from the nearest NOAA weather station for 
these time periods, as well as TMY3 averages.  Sales 
data were not available (or any other potential 
independent variable).  Universal Translator was used 
to create align the time stamps of hourly weather and 
power consumption data. 

Determining the driving variable: 
Microsoft Excel was used to run multivariable 

regression analysis to correlate the various NOAA 
weather data to the power data.  Ambient dry bulb 
temperature was found to have the strongest 
correlation with the hourly kW data.   
Model Development: 

Regression models for grocery stores typical 
exhibit a four parameter (4P) change-point model, as 
do many other buildings (Fels, 1986).  Energy 
Explorer was used to create the 4P change point 
regression models for the following scenarios: 
• Baseline: 1 Year Pre-Project:  9/06 to 9/07 
• 1 Year Post Project: 12/07 to 12/08 
• 9 Months Post Project: 12/07 to 9/08 
• 6 Months Post Project: 12/07 to 6/08 
• 3 Months Post Project: 12/07 to 3/08 

 
Figure 6 displays an overlay of the full year data 

for baseline and post-implementation periods, with the 
corresponding regression models.  This visualization 
demonstrates how the energy conservation project has 
reduced overall power and energy consumption.  For 
the avoided energy use calculation method, the savings 
would be the difference between the 4P (baseline) 
regression model driven by the post measured OAT 
values, and the post-implementation scatter points.  
For the annualized savings method, the savings would 
be the difference between the two regression models, 
driven by TMY data. 
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Figure 6 - Grocery Pre and Post Scatter Plots 

Figure 7 shows a direct comparison between the 
regressions with various monitoring period lengths.  
The statistical values of each regression are provided 
in Table 6.  All of the post period models predict 
lower hourly consumption values at each temperature, 
as expected.  All of the post period models have a 
steeper slope than the baseline model in the low 
temperature section, indicating that the energy 
conservation measure is taking advantage of the extra 
cooling capacity at low temperatures, as provided by 
the refrigeration floating head pressure adjustment.   

The one year post, 9 month post, and 6 month 
post period models all show similar behavior to the 
baseline model in that they have a similar change- 
point value, as well as a similar high temperature 
slope.  The 3 month post period model varies from 

the other models greatly, in that its change-point is 
much lower, and its high temperature section has a 
lower slope than the low temperature section.  This 
behavior is probably due to the fact that the 3 month 
post-implementation monitoring period occurred only 
during winter months, resulting in low average 
temperatures. The lack of higher ambient temperature 
data did not allow an accurate high temperature slope.   

The 9 month post period model demonstrates 
similar behavior to the 1 year post period model, 
almost completely overlapping the 1 year model.  The 
6 month post period model is relatively close to the 1 
year post period model, while the 3 month post period 
model varies greatly at the mid and high temperature 
sections.   
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Figure 7 - Grocery Regression Models 

 
 

 

 

Table 6 - Statistics for Grocery Regression Models 

 
The main goals of this study was to develop a 

method to determine annualized fractional savings 
uncertainty and understand the effect of modifying 
the post project monitoring duration on the savings 
calculation.  Figure 8 displays the final savings 

estimates, as well as the fractional savings uncertainty 
for the various savings calculations.  The fractional 
savings uncertainty values were calculated at the 95% 
confidence level. 
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Figure 8 - Grocery Annualized Savings and Uncertainty vs. Method 

 
 

 

Table 7 - Grocer Savings and Uncertainty vs. Method 

 
The annualized savings for all post period length 

regressions range from 101% to 147% of the avoided 
energy base established at the start of the 
investigation.  If the 3-month post period regression 
was removed from the comparison, the higher limit of 
the savings range decreases to 117% of the avoided 
energy use method.    

To better understand the effect of the monitoring 
period temperature characteristics, Figure 9 displays a 
comparison of average temperature during the 
monitoring periods and the calculated annualized 
savings.  The annualized savings are normalized by 
the avoided energy use savings and the mean 
temperatures are normalized by the average measured 

temperature during the 1 year post-implementation 
period. 

Figure 9 indicates that as the mean ambient 
temperature deviates from the 1 year post period 
mean temperature, the estimated savings increase.  
This is likely because the 3-month period develops a 
regression model that only explains one half of the 
change-point model, exhibiting an almost linear 
behavior.  The 3- month model appears to be accurate 
for the low temperature range of the post period, on 
one side of the change-point.  However, if the model 
is extrapolated to the high side of the change point, 
there will be a large difference between the baseline 
and the post period model, regardless of which half is 
accurately defined. This is demonstrated in Figure 7.
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Figure 9 - Grocery Mean Temp and Annualized Savings 

 

CONCLUSIONS 
Whole building energy meter analysis was used 

to analyze savings for a large office and a large 
grocery store.  The fractional savings uncertainty 
equation, which was developed only for the avoided 
energy use method, was modified to apply to 
independent regressions that are required for the 
normalized savings method.  The strategy presented 
in this paper provides a means to quantify uncertainty 
in savings that are developed from separate 
regression models.   

The modified fractional savings uncertainty 
allows for an estimation of error based on regression 
characteristics, but does not predict the possible 
estimation errors caused by reduced monitoring 
periods.  These bias errors might be present if data is 
not collected over full operating cycles but is still 
used to extrapolate annual savings.  ASHRAE has 
recently approved funding for RP-1404 which will 
develop protocols for short term monitoring of whole 
building performance. 

For now, the two projects analyzed in this case 
study indicate that a 3 month post-monitoring period 
provides inadequate results or annual savings 
estimates.  A post-implementation monitoring period 
of 9 months aligns closely with the annual data in 
both projects.  Deviations from annual savings begin 
to develop in both projects when the post monitoring 
period is reduced to 6 months.  The large office 
normalized savings range is between 90% and 112% 
of the base avoided energy use when post-
implementation monitoring regressions at least 6 
months of post-implementation data is used.  The 
large grocery normalized savings range is between 

101% and 117% when at least 6 months of post-
implementation data is used.  Further research is 
needed to determine if these results are project 
specific or a finding that can be extrapolated to future 
projects. 
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