A FIELD COMPARISON OF PERFORMANCE BASED ENERGY EFFICIENT AND CONVENTIONALLY CONSTRUCTED HOMES IN SOUTH TEXAS

SAM SCHERTZ JEFF STRACENER Central Power and Light Company Corpus Christi, Texas

ABSTRACT

The Residential Good ¢ents Program is a program designed to reduce energy use and electrical demand of residences. It was introduced to residential developers and contractors in the Spring of 1983 in the Central Power and Light service area. The program, originally developed at Gulf Power Co., is an energy efficiency designation and implied the inclusion of some or all of ten recommended construction features. Central Power and Light Company's criteria for qualification as a "Good ¢ents Home" requires: 1) proper sizing of the air conditioning equipment through a calculated heat-gain of not more than 12,000 Btu's per 1000 square foot of conditioned space and, 2) the total energy requirement for heating, cooling, and water heating be approximately 50 percent less than a conventionally built home.

The load data gathered for this study included wholehouse HVAC Compressor, HVAC Air handler heating and water heater KWH by a 15 minute interval. The data was gathered using multi-channel magnetic tape recorder, remote sensors and power line carrier end use equipment. All loads presented in this study are on an hourly basis unless otherwise noted. Both energy use and demand are compared for the Good Cents and conventional built homes.

Central Power and Light Company's Good ¢ents Program was designed and implemented to promote increased efficiency in the electrical operating characteristics of new residential homes being constructed for todays market while improving the comfort levels experienced by the customer. To measure the effectiveness of this program, a sample was drawn from the available homes in 1983. A comparison sample was selected from non-Good ¢ents homes to act as a control group.

End use metering was installed to monitor energy consumption on the whole house, HVAC compressor, HVAC air handler heating, and water heaters. Also monitored was the inside and outside temperatures and in most cases a refrigerator/freezer.

Analysis of the available demographics data showed that the good cents home tended to be a larger home. The sample selected averaged 1869 sq. ft. for the good cents and 1613 sq. ft. for the control group.

The coincident demands of the two customer groups, as summarized in Table 1, indicates the program's ability to significantly reduce a customer's demand requirements at the time of the system peak. This demand reduction occurred in 10 of the 12 months in the study and was 2.52 KW and 3.34 KW at the systems summer and winter peaks respectively.

GOOD CENTS

The same trend appears in the maximum diversified demand and the non-coincident maximum demands.

The KWH consumption of the two customer groups (table 2) shows that the good cents construction features reduced the sample's annual energy requirement by 7,146 KWH, representing a 29.2 percent reduction in billed energy. On a per square footage basis this represents a 38.9 percent reduction in required whole house energy. The energy used in heating and cooling was reduced by 65.8 percent and 40.7 percent respectively. The good cents customer's annual consumption also reflected a savings of 1650 KWH for water heating; thus, the combined energy savings for heating, cooling and water heating were 43.7 percent over the energy required by by the control group.

SOURCE OF GOOD ØENTS KWH

SAMPLE DESIGN

The first problem encountered in designing a sample for the Good Cents Program was the scarcity of completed units from which to draw the sample. It was determined at the time that a random selection would exclude company districts in which construction activity was slow or newly constructed homes were still unoccupied. Therefore, 16 homes for which monitoring equipment was available would be selected proportionately from each of the six company districts based on the number of customers in the district.

The same procedure was used to select 12 customers for the control group.

Sample Distribution By District

District	Good ¢ents	Standard Construction
Valley	3	2
Gulf Coast	3	2
Mid Coast	3	2
Corpus Christi	3	2
Winter Garden	2	2
Laredo	2	2
Total	16	12

KW Demand 12 Month Ending May, 1985 Avg. Per Customer

	Jun84	Ju184	Aug84	Sep84	Oct84	Nov84	Dec84	Jan85	Feb85	Mar85	Apr85	May85	12 Mo. Avg.
Coincident Peak KW													
Standard Construction	5.72	5.30	5.15	2.90	2.96	2.68	8.85	8.67	8.47	2.07	1.45	4.99	4.93
Good Cents	3.01	2.83	2.63	2.43	2.68	3.02	5.15	5.33	5.78	1.67	2.57	2.74	3.32
Difference	2.71	2.47	2.52	0.47	0.28	-0.34	3.70	3.34	2.69	0.40	-1.12	2.25	1.61
Max. Group KW													
Standard Construction	5.90	6.28	8.26	6.57	5.11	7.11	8.85	9.73	9.68	4.87	5.27	6.13	6.98
Good Cents	3.95	4.53	4.09	3.73	3.80	3.78	4.81	6.06	6.50	4.39	3.93	3.69	4.44
Difference	1.95	1.75	4.17	2.84	1.31	3.33	4.04	3.67	3.18	0.48	1.34	2.44	2.54
Individual Max. KW(60)													
Standard Construction	10.85	10.73	12.88	11.14	9.33	11.41	11.20	14.94	13.88	10.61	9.35	9.72	11.34
Good Cents	8.62	8.44	8.86	8.68	9.08	8.74	8.64	12.79	11.71	9.27	8.62	8.85	9.36
Difference	2.23	2.29	4.02	2.46	0.25	2.67	2.56	2.15	2.17	1.34	0.73	0.87	1.98

TABLE 1

KWH Consumption 12 Months Ending May, 1985 Avg. Per Customer

	Jun84	Jul84	Aug84	Sep84	Oct84	Nov84	Dec84	Jan85	Feb85	Mar85	Apr85	May85	
Standard Construction													
Whole House	2309.3	2499.0	2482.1	1989.6	1764.0	1591.1	1763.6	2870.0	2226.0	1565.2	1407.1	1995.8	24463 8
HVAC - Compressor	901.0	1269.9	1237.1	748.3	521.5	173.2	143.7	135.9	102.5	140.3	224.6	642.2	6240.2
HVAC - Air Handler	129.5	156.8	192.6	90.6	79.9	232.7	298.1	1532.3	1040.4	141.9	43.2	94.5	4032.5
Water Heating	290.8	308.9	326.6	306.9	354.9	377.2	435.3	544.7	462.6	488.5	408.1	383.4	4687.9
Base Load Per Customer	988.0	763.4	725.8	843.8	807.7	808.0	886.5	657.1	620.5	795.5	731.2	875.7	9503.2
Good Cents Construction													
Whole House	1583.7	1687.6	1731.4	1373.9	1385.6	1117.3	1192.1	1776.7	1488.8	1245.7	1286.5	1448.5	17317.8
HVAC - Compressor	516.7	703.8	774.0	489.7	340.7	150.1	162.1	364.4	278.4	152.4	269.6	476.9	4678.8
HVAC - Air Handler	124.3	135.0	173.9	141.8	91.3	68.3	50.6	247.5	173.8	47.9	67.6	95.3	1417.3
Water Heating	132.1	213.7	168.5	153.9	205.2	301.8	306.4	358.6	342.1	339.7	287.8	228.2	3038.0
Base Load Per Customer	810.6	635.1	615.0	588.5	748.4	597.1	673.0	806.2	694.5	705.7	661.5	648.1	8183.7

TABLE 2

GOOD CENTS KMH CONSUMPTION BILLED 12 MONTHS ENDING MAY, 1985

CUST ID	MAY85	APR85	MAR85	FEB85	JAN85	DEC84	NOV84	00784	SEP84	AUG84	JUL84	JUN84	12 MDS. E 5/85
1J111 1J112 1J215 1J215 1J216 1J317 1J318 1J319 1J520 1J522 1J522 1J623 1J624 1J725	1890 2217 1018 2636 1072 1079 1758 1767 920 784 678 988 988 1102 738	1958 1868 1023 2099 1913 1138 1232 1469 516 903 529 970 1108 595	2026 1912 1439 2266 2467 1593 1006 875 719 674 1344 1344 893 937	1657 2239 1528 2716 1561 1689 2051 1982 1982 1295 1186 1723 1723 1723 1412 1005	1953 2865 994 1949 1230 951 1654 1411 1000 1032 815 1183 1561 834	1844 2017 1001 2503 1460 1406 1320 1307 951 809 606 1152 1124 671	1592 1912 1077 2423 1670 1467 1090 1540 745 888 975 1108 773 721	1410 1935 1471 2257 2095 1627 1411 2082 648 1010 1295 1293 816 1042	1654 2584 1373 3271 1818 1521 1828 2102 1402 1079 1369 1525 1525 1525 1502	1628 2290 1651 3090 2027 1507 1744 2610 1311 1082 1007 1766 1766 1063 1129	1829 2460 1305 2812 1431 1387 1826 2238 1876 870 1009 2129 2129 1295 1000	1707 2090 1198 2237 1286 1266 1574 1091 1046 624 736 1035 972	21148 26389 15078 30259 20030 16631 18494 22396 12612 11517 10767 15917 13382 10646
AVG/CUS	1332	1237	1446	1666	1388	1298	1284	1457	1695	1708	1676	1333	17519

BASELINE KMH CONSUMPTION BILLED 12 MONTHS ENDING MAY, 1985

CUST ID	MAY85	APR85	MAR85	FEB85	JAN85	DEC84	NOV84	OCT84	SEP84	AUG84	JUL84	JUN84	12 MOS. E 5/85
1J151	1054	1200	2002	2405	1240	1114	1136	1656	1772	2583	1866	1788	19816
1J152	2631	1900	2379	2578	2554	2560	2462	2371	2884	2300	2831	3371	30821
1J253	1654	1620	3175	4204	2085	1928	2328	2630	2839	3386	3033	2831	31713
1J254 1J355 1J356 1J557	2162 770 2147 1572	1798 996 2529	1932 3039 3730	2038 3036 4068	2360 1439 2531	2078 1019 2411	1779 1250 2324	2234 1871 2803	2421 1904 3477	2776 2220 3521	2725 1829 2850	3042 1265 2595	27345 20638 34986
1J558	1336	1252	1709	2812	1573	2693	1355	1659	2537	2248	2483	2316	23973
1J659	851	543	1153	2703	1314	1334	1189	1315	1692	1144	1156	1215	15609
1J660	1003	1143	1929	2418	1519	1539	1361	2048	1729	2459	1938	1941	21027
1J761	1898	1668	1956	3239	2119	1749	2029	2376	2873	2547	2767	2416	27637
1J762	1416	1730	1893	2855	2059	1822	1342	1387	2407	2118	1586	1473	22088
AVG/CUS	1541	1465	2163	2846	1890	1785	1662	1983	2389	2434	2310	2181	24650

TABLE 3

STUDY RESULTS

The average whole house billed energy use for the 12 months ending May 1985 was 17,519 KWH versus 17,318 KWH recorded by the test equipment. This is 29.2 percent less than the 24,464 KWH for the baseline group without adjustment for the difference in square footage of conditioned space.

The lowest individual annual usage billed was 10,646 KWH and the highest was 30,259 KWH (Table 3.) This represents a range of 39.2 percent below and 72.7 percent above the group average of 17,519 KWH. Table 2 contains the average use by calendar month and average use by major end-use category.

The maximum diversified demand for the group averaged 6.5 KW and occurred at 9:00 a.m. on February 2, 1985. The weighted system average temperature was 33°F on that day. The baseline group peaked at 10:00 a.m. on January 20, 1985 with an average of 9.73 KW. The system weighted average temperature on that day was 33.6°F. The difference between the average maximum demands is 3.23 KW or 33 percent below that of the baseline group.

The average individual (non-diversified) peak demand for the good cents homes was 12.79 KW, 2.15 KW less than the average for the baseline group which occurred in the same month. This peak demand yields an annual group coincidence factor of 38.2 percent for the good cents customer and 51.3 percent for the control group.

Analysis of the relationship between study's energy and demands yields an annual load factor for the good cents group of 30.8 percent and 28.7 percent for the control group. The average individual load factors are 15.5 percent for good cents and 18.7 percent for the control group indicating that while the Good ¢ents Program reduces KWH more than the individual's maximum demand, it also produces increased diversity among the Good ¢ents customers.

The maximum one-hour demand for the system during the study period occured on August 20, 1984 at 4:00 p.m. The whole house demand of the good cents sample was 2.63 KW versus 5.15 KW for the control group, a difference of 2.52 KW. These coincident peak demands yield load factors of 75.2 percent for the good cents sample and 54.2 percent for the control group.

HVAC RESULTS

The average HVAC energy used for the test period was 6,096 KWH or 35.2 percent of the total consumption. This is 4,178 KWH or 40.7 percent less than the 10,274 KWH by the control group. Approximately 4820 KWH of the HVAC total was used for cooling and the remaining 1276 KWH or 20.9 percent was used for heating. Table 2 shows the monthly energy consumption by the HVAC system.

The average HVAC demand at the time of the system peak was 2.01 KW or 76 percent of the total contribution to system peak for the good cents sample. The control group's HVAC contributed 3.40 KW or 66 percent of the total. This reflects a reduction of 1.39 KW in HVAC demand or 41 percent. The Good ¢ents HVAC Compressor non-diversified demand averaged 2.59 KW for a diversity factor of 68 percent at the time of system peak and the control group non-diversified demand was 3.82 KW for a diversity factor of 81 percent.

At the time of the Systems winter peak, January 21, 1985 at 8:00 a.m., the good cents customer's HVAC System contributed 3.06 KW compared to 5.93 KW for the control group, a reduction of 48 percent.

The average good cents customer's HVAC non-diversified demand for January 1985 was 8.72 KW versus 10.51 KW for the control group. This represents 68 percent and 70 percent of the winter maximum demand for the good cents and control group respectively.

ANNUAL ENERGY CONSUMPTION

As A Percent of Whole House

(Average per customer)

	Good ⊄ents	Baseline	Diff. (KWH)	%Reduction over baseline
Whole House	100%	100%	7146	29.2%
HVAC Cooling	27.8%	28.7%	2202	31.4%
Heating	7.4%	13.3%	1976	60.7%
Water Heating	17.5%	19.2%	1650	35.2%

HEATING & COOLING LOAD

Annual KWH Per Square-Foot

	Good ⊄ents	Baseline	Diff. (KWH)	%Reduction over baseline
Whole House	9.27	15.17	5.90	38.9%
HVAC Cooling	2.58	4.35	1.77	40.7%
Heating	.69	2.02	1.33	65.8%
Combined	3.27	6.37	3.10	48.7%

WATER HEATING

The energy required for water heating was 3038 KWH for the average good cents customer. This was 1650 KWH less than the 4688 KWH required by the average baseline customer. Water heating KWH expressed as a percentage of total KWH consumption was relatively the same for both groups: 17.5 percent and 19.2 percent for the good cents customer and baseline customer respectively. The difference of 1650 KWH can be primarily attributed to:

- placement of the water heater closer to the point of use,
- the inclusion of heat recovery devices on 4 of the good cents customers,
- 3) the water heater heat pump installed at one location.

These consumption levels are in line with a previous end-use study of electric water heating (Residential Electric Water Heating For the 12 months ending 4/30/84 dated 6/5/84). That study found that 17.6 percent of the customer's annual consumption was for water heating, and averaged 3768 KWH. It is interesting to note, that the average consumption for the good cents and baseline samples was 3800 KWH which is close to the previous study results.

As expected, the non-coincident demands for the baseline sample was equal to the rated element wattage of 4.5 KW, while the good cents sample averaged 3.64 KW.

The contribution to the January 1985 system peak was 1.92 KW for the baseline and .80 for the good cents group. The contribution to the August 20, 1984 System peak was .66 KW for the baseline and .10 KW for the good cents sample yielding an annual load factor based on summer CP demand of 81.08 percent for baseline and in excess of 100 percent for the good cents customer.

CONCLUSION

The quality of construction and proper sizing of air conditioning equipment in the good cents home significantly reduced the heating and cooling requirements compared to the conventionally built all electric home. The data shows a 49 percent reduction in total HVAC energy use and a reduction in whole house energy use of 29.2 percent.

A similar reduction occurred in the demand requirements with a 33 percent decrease in maximum diversified demand (whole house) and a 49 percent reduction in demand coincident with the company's summer peak.

The reduction is both energy and peak demand resulted in a two percent increase in an annual group load factor for the good cents customer from 28.7 percent to 30.4 percent. Since the start of this study, the program has been well accepted in the market place; and a large number of good cents homes have been or are currently being built. Continued research with a larger sample is planned for the calendar year 1986.

JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN 84 - MAY 85

0