Case Study of Two MBCx Projects: Using M&V to Track Energy Performance

David Jump, Ph.D., P.E. Quantum Energy Services & Technologies, Inc.

ICEBO, November 1

)07

E.

Overview

This presentation will discuss:

- Role of M&V in RCx
- Application in two UC Berkeley Buildings
- Results
- Discussion & Conclusion

Situation

- RCx is a means to improve a building's energy efficiency
 - Owners
 - EE Programs
- "RCx Measures"
 - Correct and optimize system operations
 - Operational changes
 - Control system changes
 - Justification provided by measure cost-effectiveness

RCx measure recommendations based on savings <u>estimates</u>

Situation

RCx measure savings <u>estimates</u> are based on:

- Design documentation
- Equipment specifications
- Monitored operational data
 - Independent data loggers
 - Control system trends
- Bin models, engineering models, computer simulations, etc.
- Do savings estimates = "real" savings?
 - Model errors
 - Incomplete or inaccurate data
 - Incorrect assumptions
 - Etc.

Situation

Risks to Owner:

- Savings not delivered, no return on investment
- No ability to track actual savings
- Savings do not last:
 - "Soft" measures that can be and often are defeated

EE Program Risks:

- Program's claimed savings do not stand up to third party review
- Savings lifetimes are short
- Negative impact on program realization rates

Need for Robust M&V in RCx Projects

Needs:

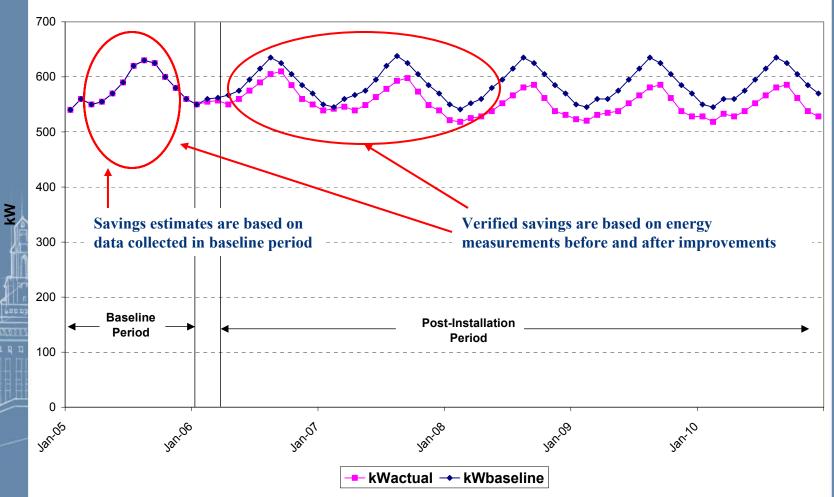
- Demonstrate actual, verified energy savings benefits of RCx
- Provide a mechanism to determine measure savings persistence

Opportunities:

- Standardization of M&V processes for RCx
 - California Commissioning Collaborative Project
- Provide information tools for operators and owners to maintain savings
- Basis for further energy performance improvements

Basic M&V

International Performance Measurement and Verification Protocol (IPMVP) Chapter 3 says:


Energy Savings = Baseyear Energy Use

- Post-Retrofit Energy Use

± Adjustments

- Baseline energy use is modeled
- Model generates what baseline use would have been under post-install conditions
- 'Adjusted baseline' is compared with measured use to generate savings

Quantifying Savings

IPMVP M&V Options

Retrofit Isolation Options:

- Option A: Allows stipulation of some parameters
- Option B: Retrofit isolation continuous monitoring of parameters
 - Focus is on systems and equipment similar to RCx.

Whole Building Options:

- Option C: Utility bill analysis
- Option D: Calibrated computer simulation
 - Sometimes used with isolated systems, as applicable
- Used when savings distinguishable from variation in use (typ. >15%)
- Option B selected for UC Berkeley
 - Magnifies savings as a proportion of use
 - + addresses savings persistence, provides tracking tools
 - Technique also applied at whole-building level

UC Berkeley MBCx Project

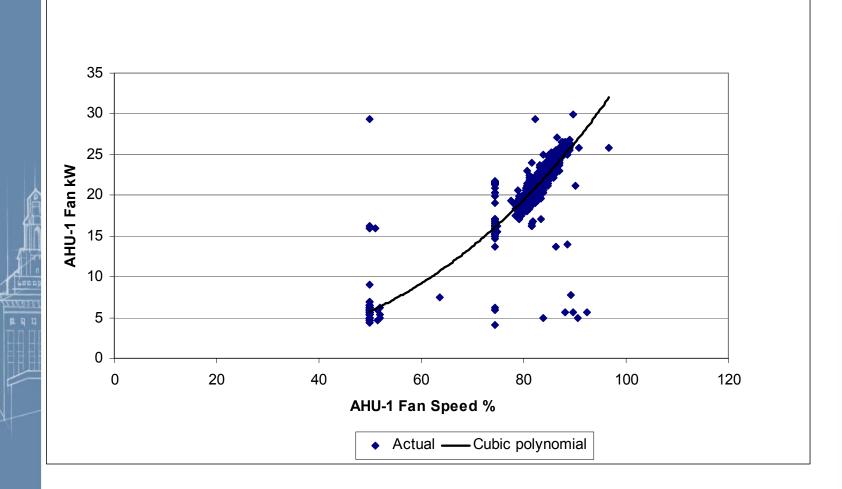
- UC Berkeley has significant monitoring resources to devote to this project
 - Web-based utility information system
 - Whole building kW and steam meters
 - Electric and steam trended at 15 minute intervals
 - Data stored indefinitely
 - Web-based points mapped from BAS
 - Chiller kW
 - BAS points trended at 1 minute intervals
 - Data stored for 6 months

Soda Hall

- UC Berkeley's Computer Science Department (24/7 operation)
- 109,000 ft²
- Energy Use Intensity: 174 kBtu/ft²-yr
- 2 215 ton chillers (lead/lag)
- Constant Speed Primary/Variable Speed Secondary Chilled Water System
- Two 2-speed, forced draft, open loop cooling towers
- 3 Main VAV AHUs,
 - AHU1 serves building core,
 - AHUs 3 and 4 serve the perimeter, with hot water reheat
- 11 computer room DX units, water cooled with variable speed pumps
- Steam to hot water heat exchanger, 2 variable speed HW pumps

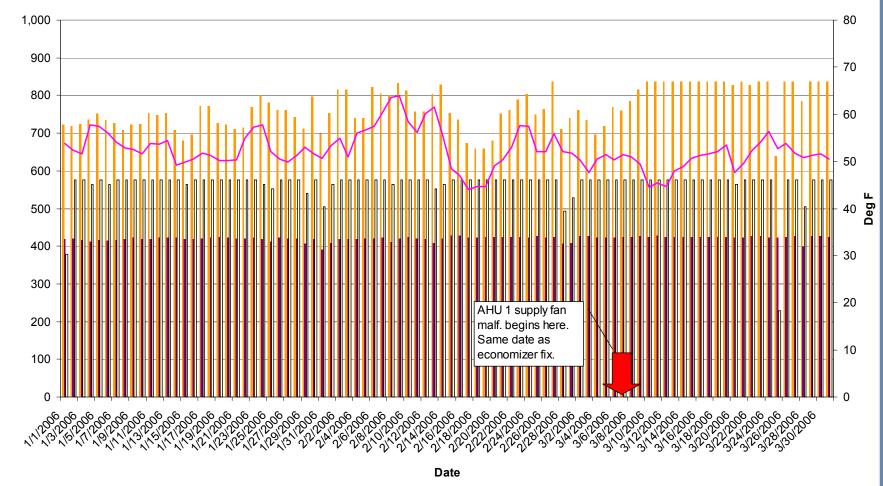
Soda Hall RCx Findings

- Minimum VAV Box Damper Positions at 50%
 - Causes excessive reheat in perimeter zones
 - Little modulation of fan VFD
- Several AHU VFDs broken or not modulating
 - Return to designed VAV operation
 - Return to scheduled operation
- Re-establish supply air temperature set point reset control in AHU1
- Other measures
- Approximately 483,000 kWh (10%), 2.7M lbs/yr steam (51%)
 - Estimated using DOE2 analysis
- Cost reduction \$84,000 (14%), Payback 0.7 years


Soda Hall Affected Systems

System	Equipment	Affected by ECM?	Available Points
Whole Bu	ilding	Х	
	Main Electric Meters (2)		kW
	Main Steam Meters (2)		lb
Chilled W	ater System	Х	
	Chillers 1 and 2		kW
	Primary Chilled Water Pumps P-5, P-6		Status
	Secondary Chilled Water Pumps, P-3, P-4		VFD speed
Condense	er Water System	Х	
	Cooling Towers		High/Low Status
	Condenser Water Pumps P-7, P-8		Status
<u>Air Distrib</u>	ution System	Х	
	AHU-1, SF-11, EF-12, EF-13		VFD speed
	AHU-2, SF-14, EF-15		Status
	AHU-3, SF-16, SF-17		VFD speed
	AHU-4, SF-18, SF-19		VFD speed
	AHU-5, SF-20		Status
Chiller Ro	om Fans		
	Chiller Room 181, SF-2, EF-2		Status
	Chiller Room 179, SF-3A, SF-3B, EF-1A, EF-1B		Status
AC Units			
	Condenser Water Pumps P-9, P-10		VFD speed
	AC-31 through AC-41		Status
Hot Wate		Х	
	Hot Water Pumps P-1, P-2		VFD Speed

Define the Baseline Period & Collect Data

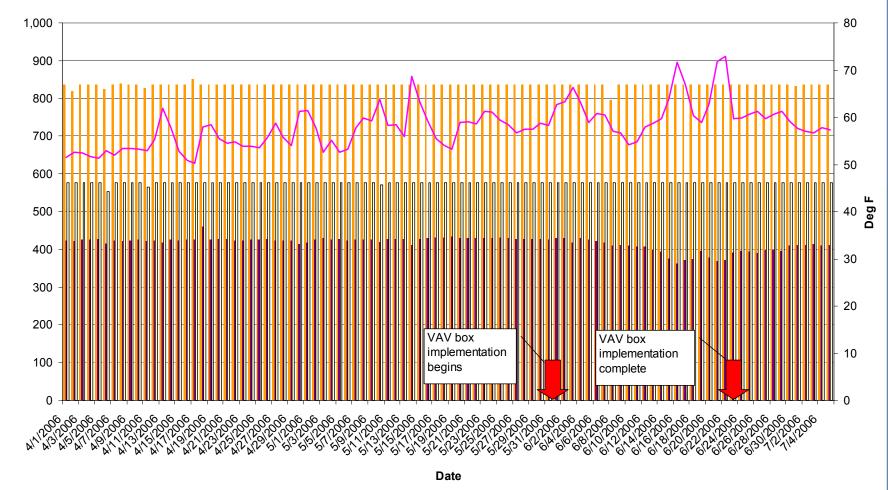

- 8 months of trended data collected
- Baseline period selected to cover widest range of operating conditions ~ 3 months.
- Energy use for each system to be totaled each day
 - Basis for analysis and reporting
- "Proxy" Variables on EMCS:
 - Constant load equipment: measure operating kW
 - Equipment status becomes proxy for kW
 - Variable load equipment: log kW and VFD speed
 - VFD speed signal becomes proxy for kW

"Proxy" Variable: VFD speed for kW

M&V "Diagnostics"

Soda Hall

kWh

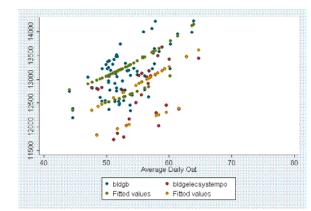

16

AHU 1 Daily kWh 📩 AHU 3 Daily kWh 🧰 AHU 4 Daily kWh

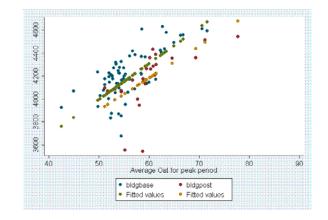
OAT Daily Average

M&V Diagnostics

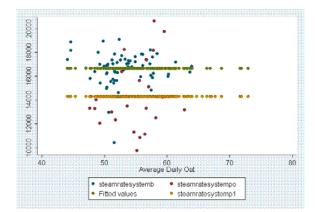
Soda Hall

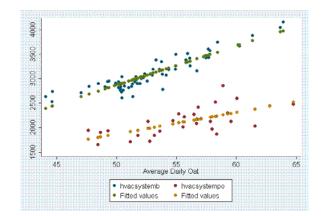

17

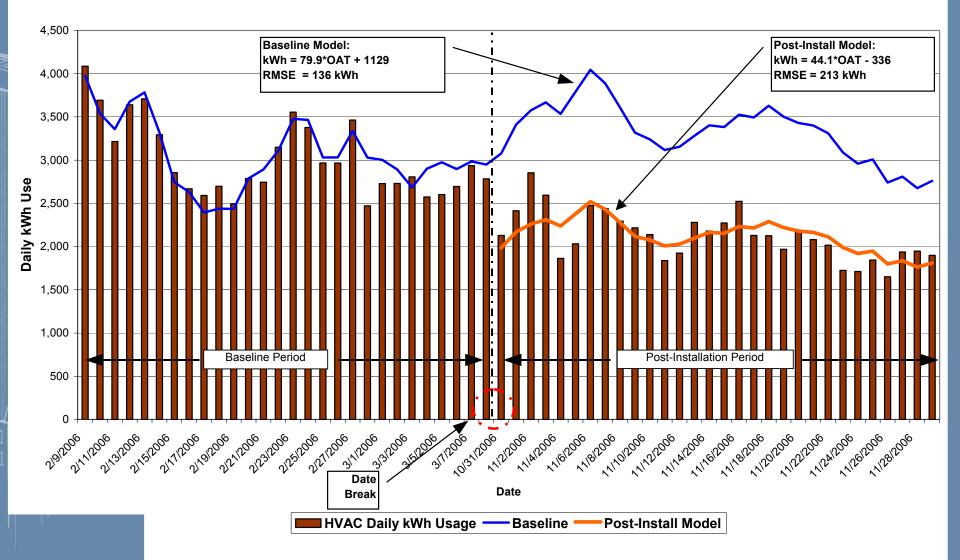
AHU 1 Daily kWh 📩 AHU 3 Daily kWh 🥅 AHU 4 Daily kWh — OAT Daily Average


kWh

Baseline Model: Soda Hall


Total Building Electric


Peak Period Electric


Building Steam

HVAC System Electric

Soda Hall M&V: HVAC Systems

Soda Hall: Estimated vs. Verified Savings

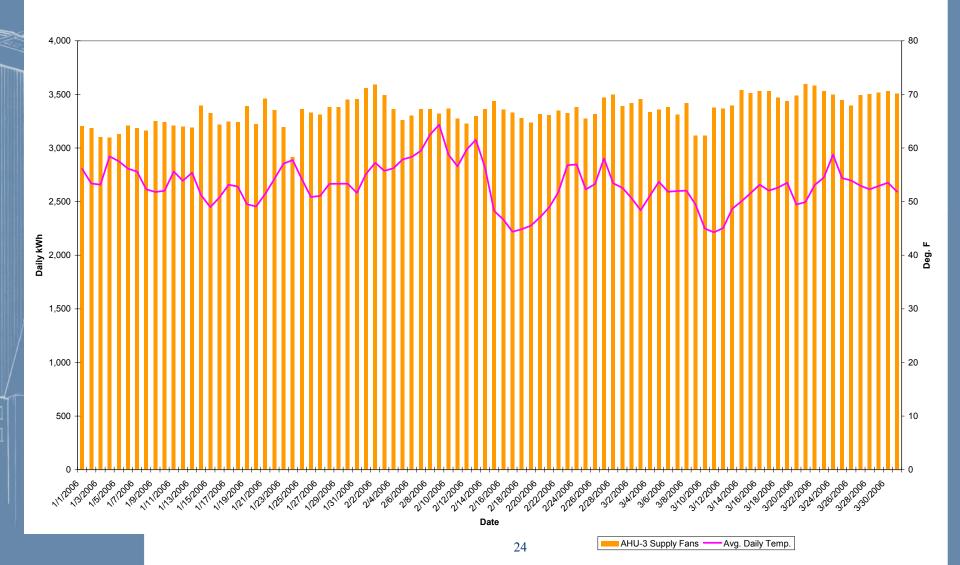
	Estimated	Verified Savings**				
Source	Savings*	Whole Building	HVAC System			
kWh	483,008	216,716	462,472			
kW	-	22	50			
Lbs. Steam	2,713,650	854,407				

* based on eQUEST model

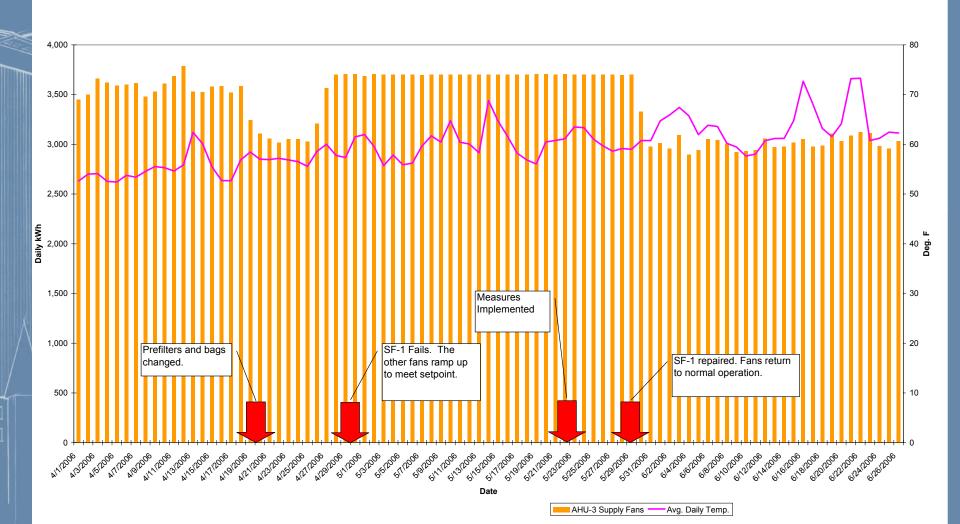
** based on baseline and post-installation measurements and TMY OAT data

Tan Hall

- UC Berkeley's Chemistry and Chemical Engineering Departments
- 7 above-grade, 2 below-grade levels
- 106,000 ft²
- 100% outside air through 4 VFD-controlled 100 HP supply fans
- Steam heating and CHW cooling coils in AHU
- Separate exhaust system on roof: 4 VFD-controlled 60 HP exhaust fans
- 1 475-ton chiller, constant speed primary loop
- Constant speed CW loop Tower shared among buildings
- Steam-to HW HX system, circulated to perimeter zone boxes

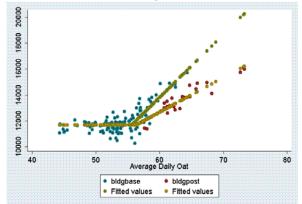

Tan Hall RCx Findings

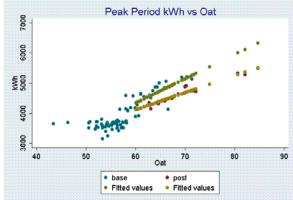
- Chilled water and condenser water pumps operating in parallel instead of lead/lag
 - Balancing vales on each were closed down
 - Shut off one pump, rebalance flow and operate in lead/lag mode as intended
- Chiller outside air lockout temperature sequence not functioning
 - OAT set point also too high
 - Correct operation and lower set point 2 °F
- Leaky steam valve in AHU caused simultaneous heating and cooling
- Savings: 654,000 kWh (14%), 90 kW, 10.5 M lbs steam (62%)
 - Estimated using bin analysis
- Cost reduction \$154,000 (19%), Payback 0.02 years


Tan Hall Affected Systems

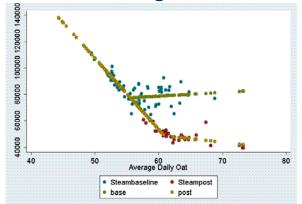
System	Equipment	Affected by ECM?	Available Points
Whole Building	<u>1</u>	Х	
	Main 480/277 Electric Meter		kW
	Main 220/110 Electric Meter		kW
	Main Steam Meter		lbs/hr
Chilled Water	<u>System</u>	Х	
	Chiller (VS)		kW
	Primary Chilled Water Pumps CHWP-1, CHWP-2 (CS)		Status
Condenser Wa	ater System	Х	
	Condenser Water Pumps CDWP-1, CDWP-2 (CS)		Status
	Cooling Tower (CS, 2-speed)		Not Avail.
<u>AHU-3</u>		Х	
	AHU-3 Supply Fans SF-1, SF-2, SF-3, SF-4 (CS)		S/S & Speed
	AHU-3 Exhaust Fans EF-1, EF-2, EF-3, EF-4 (CS)		S/S & Speed
	Terminal Boxes and Fume Hoods associated with AHU-3		NA
<u>AHU-1</u>			
	AHU-1 Chemical Storage AH-1, SE-1		Status
<u>AHU-2</u>			
	AHU-2 Chemical Storage AH-2, SE-2		Status
Heating Water	- System	Х	
	Heat Exchanger HWC-1		
	Hot Water Pumps HHWP-1, HHWP-2		Status
Lighting Syste	m		
	 Lighting Circuits		NA
Plug Loads			
	Plug Load Circuits		NA
Domestic Wat	er		
	Domestic Water Pumps		NA

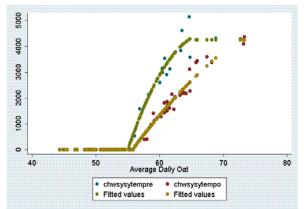
Tan Hall Diagnostics

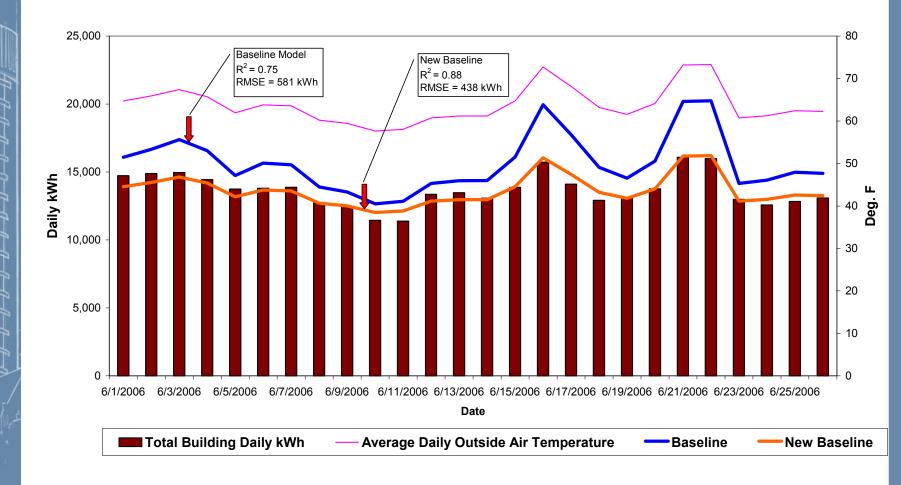

Tan Hall Diagnostics – cont.

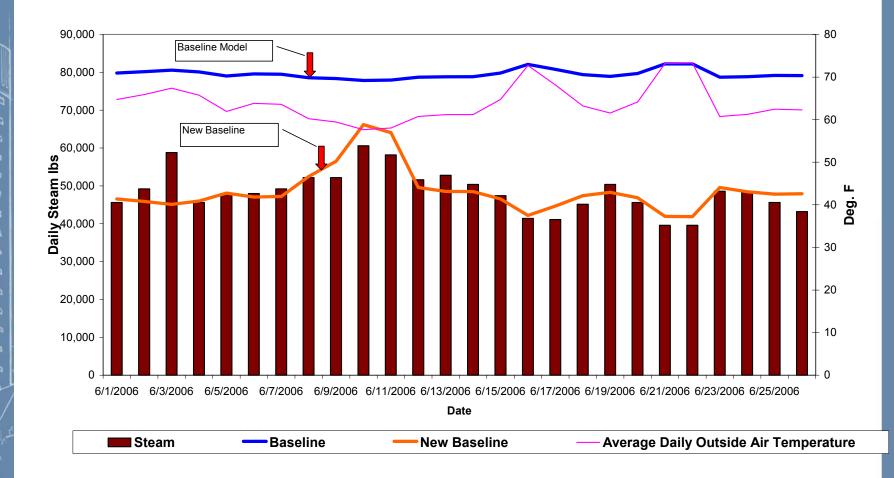

25

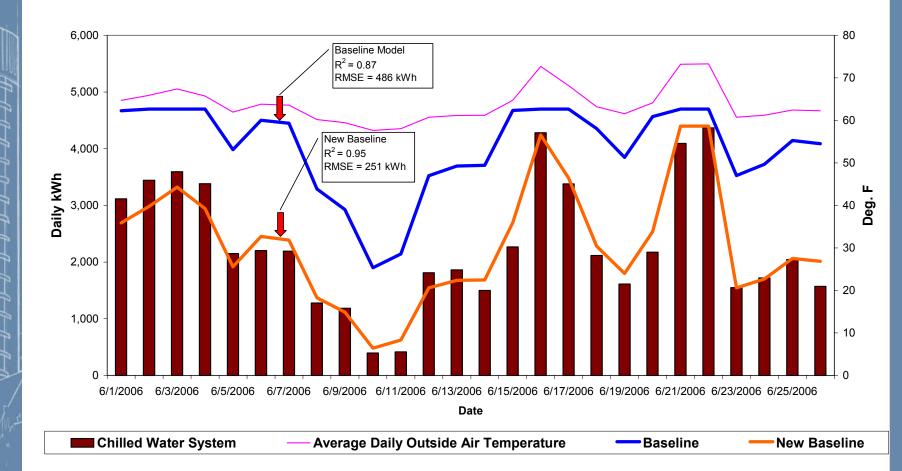
M&V Models: Tan Hall


Whole Building Electric


Peak Period Electric


Whole Building Steam


Chilled Water System Electric


Tan Hall M&V: Whole-Building Electric

Tan Hall M&V: Whole-Building Steam

Tan Hall M&V: Chilled Water System

Tan Hall: Estimated vs. Verified Savings

	Estimated	Verified Savings**				
Source	Savings*	Whole Building	CHW System			
kWh	653,575	663,184	686,519			
kW	91	69				
Lbs. Steam	10,543,991	5,995,232				

* based on engineering calculations

** based on baseline and post-installation measurements and TMY OAT data

Building	Metering Costs		MBCx Agent Costs		In-House Costs		Total	
Soda Hall	\$	4,442	\$	62,160	\$	51,087	\$	117,689
Tan Hall	\$	22,573	\$	53,000	\$	15,300	\$	90,873

• Including all costs, project remains cost-effective:

- Soda Hall: 1.7 year payback
- Tan Hall: 0.7 year payback
- Added costs of metering hardware and software did not overburden project's costs
- In private sector metering costs lower
 - Existing electric meters
 - Sophisticated BAS systems
 - MBCx approach should be viable

Discussion

- Consider new approach:
 - Focus project resources on verified savings instead of estimated savings approach
 - More rigorous savings analysis, more reliable results
 - Install all low-cost measures
 - Estimate savings for only higher cost measures
 - Leave in place capability to track & tally savings
 - Diagnostic benefits of approach
 - Addresses savings persistence

Barrier

- Lack of understanding of M&V
- M&V training required

Conclusion

- Soda & Tan Hall projects showed technique to integrate M&V into RCx
- Technique as tools:
 - Diagnostic capability,
 - Verify savings, track energy use
- Other benefits
 - Persistence of RCx savings
 - Less uncertainty in savings
 - Establish new baselines for next project

Related Work

M&V Guidelines:

- Energy Valuation Organization's International Performance Measurement and Verification Protocol (IPMVP)
 - New 2007 release available now at: <u>www.evo-world.org</u>
- ASHRAE Guideline 14: <u>www.ashrae.org</u>
- California Commissioning Collaborative: Verification of Savings Project
 - Review current M&V methods within RCx projects
 - Recommend best practices for M&V in RCx
 - Disseminate results