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1- INTRODUCTION  
 
When sensors malfunction, control systems become unreliable. Even with the most 
sophisticated instruments and control algorithms, a control decision based on faulty data 
will likely lead to incorrect control actions.  “Sensor Fault Detection” is usually 
considered as a subset of fault detection.  One of the well known approaches in Fault 
Detection is the model based approach in which a computational model is designed to 
predict the real system output while receiving the same input ([7], [8], and [9]).  Figure 1 
shows the generic diagram of the model-based technique.   
 

 
Figure 1, Model based approach 

 
In spite of the popularity of the model-based approach in fault detection, this method is 
inappropriate for sensor fault detection.  This is due to the fact that model-based approach 
relies on the correct input data.  It assumes that the input to the real system and the input 
to the model are correct (fault free).  When there is a notable difference between the 
output of the real system and the output of the model, a problem exists.  The control 
actuator, the sensor or the model may have an error.  In sensor fault detection, the focus is 
on finding dysfunctional sensors.    
 
Auto-Associative Neural Networks (AANNs) have emerged as a solution in sensor fault 
detection.  Auto Associative Neural Networks (AANNs) have been used extensively in 
the recent past for sensor fault detection and identification ([1], [2], [3], [5], and [6]).  
The rationale for the use of AANNs in this mode is their capacity to provide a robust 
identity mapping between the input and the output of the network, which could be 
exploited in sensor fault detection.  
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Although AANNs can be used to determine whether there is a sensor problem in a 
system, the problem of locating the faulty sensors still remains.  This problem stems from 
the strong correlation between the sensors.  At the University of Tennessee, Hines and his 
colleagues ([5] and [6]) have proposed a method to locate faulty sensors using AANNs.   
We were unable to reproduce their results.  Our work showed that when a single input 
layer variable degraded (i.e., changed), all output layer variables changed.  The system 
was then unable to determine which input variable was at fault.   
 
This paper presents a new approach for sensor fault detection using Auto-Associative 
Neural Networks.  The approach, Enhanced Autoassociative Neural Networks (E-
AANNs), adds enhancement to AANNs.  This enhancement allows AANNs to identify a 
single faulty sensor.  E-AANNs use a secondary optimization process to identify and 
reconstruct sensor faults.  
 
Section 2 is an introduction to AANNs and their application to sensor fault detection. 
Section 3 explains E-AANNs in detail.  Section 4 covers the performance of E-AANNs 
in noisy situations.  The conclusions and future work needed is discussed in Section 6.      
 
 
2. AUTOASSOCIATIVE NEURAL NETWORKS (AANN) 
 
“Autoassociative Neural Networks (AANNs) are networks in which the outputs are 
trained to emulate the inputs over an appropriate dynamic range.  Plant variables that 
have some degree of coherence with each other constitute the input.  During training, the 
interrelationships between the variables are embedded in the Neural Network connection 
weights” [5] 
 
Autoassociative Neural Networks, which were developed by Kramer ([1] and [2]), are 
essentially feed forward Neural Networks.  Figure 2 shows the general architecture of an 
AANN.  It contains an input layer, a number of hidden layers and an output layer.  
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Figure 2. AANN structure 
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It is theoretically sufficient for an AANN to have three hidden layers [1].  However, in 
practice, it has been shown that additional hidden layers help AANNs improve 
performance [4].  The first hidden layer is called the “mapping layer”.  The second 
hidden layer is called the “bottleneck layer”.  The dimensionality of the bottleneck layer 
is the smallest one in the network, necessary to inhibit the network from “memorizing” 
the data.  The third or last hidden layer is called the “de-mapping layer”. 
 
In sensor fault detection, all data measured from the real system (the input and output 
variables) constitute the input vector to the AANN (Figure 2).  The AANN is trained to 
match the inputs as closely as possible over the training set.  When non-faulty data is fed 
to the trained AANN, the difference between the input and output of the AANN is ideally 
zero.  When the data is contaminated (a sensor is faulty), the difference between the input 
and output of the AANN will be non-zero.  The AANN approach can be used to 
determine whether there is a sensor problem but the issue of locating the faulty sensors 
still remains. 
 
Hines and his colleagues proposed that the difference between each AANN input and 
output contains enough information to locate faulty sensors ([5] and [6]).  In principle 
AANNs map inputs {Xi, i = 1, 2, …, m} to outputs, {Yi, i = 1, 2, …, m} in such a manner 
that Xi = Yi,  i = 1, 2, …, m.  When small perturbations in a given input to the network 
occur as a result of sensor drift or other incipient faults in the sensor measuring Xi, the 
network will produce Yi as a close approximation of the true Xi.  The difference between 
Xi and Yi can be used as an indicator of potential failure of the sensor that produces the 
corresponding reading (Figure 3).   
 
The concept of applying AANN methods is often difficult to put into practice.  This 
problem stems from the inherent nonlinearity of the AANN and the non-orthogonal 
nature of the inputs.  Note that this non-orthogonality is required for AANNs to function.  
When one of the AANN inputs drifts from the value it should have, it affects all the 
AANN outputs.  Finding the difference between the input and output of the AANN is 
useful in determining sensor problems but is not sufficient to localize the faulty sensors.  
We were unable to reproduce the results obtained by Hines et al.   

 
Figure 3.  AANN Approach Proposed by Hines et al. 
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3. ENHANCED AUTOASSOCIATIVE NEURAL NETWORK (E-AANN)  
 
An extension to the AANN concept has been developed, which allows the system to 
identify a single sensor that begins to shift from the “true” value.  This is shown in Figure 
4.  The algorithm iterates through a known set of values to determine the minimum 
difference in the inputs and outputs of the AANN over the n sensor space vector.  It 
should be stressed that this approach only locates single sensor degradation and has yet to 
be applied to the degradation of multiple sensors.   
 

 
Figure 4.  E-AANN Block Diagram 

 
E-AANNs have been used to locate single faulty sensors in synthetic data and also to 
reproduce the real value of the faulty sensor output.  It is important to note that although 
final validation of this methodology will have to occur on real data, synthetic data 
provides a valuable environment for testing to determine if the methodology functions as 
planned.    Identifying a faulty sensor has also been accomplished with synthetic data 
with over 15% noise superimposed on all input data.  The input to the E-AANN takes 
data measured from a chiller model using both chiller input and output variables.  The 
output from the E-AANN provides reconstructed data.  If the input data is fault free, then 
the E-AANN output will be the same as the input and the difference between the output 
and the input will be zero. When one of the inputs drifts or varies from the normal value, 
the corresponding output will not track the input and their difference will be non-zero.  
This technology has use with embedded in an energy management and control system 
(EMCS) which  monitors and controls a chiller.  To test the E-AANN methodology 
developed, a chiller model1 was used to generate the values for the chiller input and 
output variables.   

                                                 
1 A chiller model was used as a system to test the developed diagnostic approach using 
synthetic data. The model simulates the performance of a reciprocating chiller. The 
detailed specifications of the model can be found in [10]. The inputs to the chiller model 
are:  cinTw _ (temperature of water into condenser), einTw _ (temperature of water into 
evaporator), and evapMw (mass flow rate of water into evaporator). The outputs to the 
model are: coutTw _  (temperature of water existing condenser),  eoutTw _ ( temperature of 
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The chiller model generates 1000 synthetic “noise free” data sets of eight (8) correlated 
points with the chiller parameters shown below.  Seven-hundred (700) data sets provided 
the training data sets and the remaining three-hundred (300) were used to perform the 
testing described in this paper.  This synthetic data provided an ideal way to test the E-
AANN, since the data could be kept noise-free for the initial testing.  Then noise could be 
added in known amounts to each of the data inputs to use in testing the noise tolerance of 
the E-AANN methodology.   The AANN embedded in the extended E-AANN contained 
an 8-11-5-11-8 neural network.   
 
Figure 5 illustrates the complete normalized test data of 300 sets of 8 parameters without 
any induced faults or noise.   Each set of 8 values for the parameters is referred to as a 
“sample”.  The values of Sensor #3 were modified with an accumulating offset from 
sample 1 through sample 300.   

Figure 5.  Noise-free Normalized Test Set (sorted) 
 
This “drifted” or “contaminated” data set shown in Sensor 3, was then inputted to the E-
AANN.  This data set then had a linear drift superimposed on the Sensor 3 data starting at 
the first sample set and continuing through the entire 300 samples used in testing.  The 
reconstructed data shows excellent agreement with the original noise-free synthetic data.  
The original, drift and the reconstructed data results are shown in Figure 6.   

                                                                                                                                                 
water existing evaporator), COP (coefficient of the chiller performance), W (power 
consumed by the compressor), compη (efficiency of compressor).    
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Figure 6, Sensor #3 Reconstruction by the E-AANN 
 

 
4. E-AANN PERFORMANCE IN NOISY SITUATIONS  
 
Another major advantage of the E-AANN is the ability to process noisy data.  Sensor 
diagnostics methodologies have usually had poor performance in noisy situations because 
the difficulty to reproduce the actual sensor behavior under noisy signal conditions.  E-
AANNs are capable of detecting and isolating sensor faults even when the data is noisy. 
To locate faulty sensors in noisy situations, the difference between the E-AANN input 
and output must be evaluated in a range of time domain.   
 
This noisy (5%) “drifted” or “contaminated” data set was input to the E-AANN.  This 
data set then had a linear drift superimposed on the Sensor 3 data starting at the first 
sample set and continuing through the entire 300 samples used in testing.  The 
reconstructed data shows excellent agreement with the original synthetic data with 5% 
noise.  The results are shown in Figures 7 and 8.  Although the noise is slightly amplified, 
the mean value follows the original data quite well.   
 
In a high noise environment, the performance of the E-AANN degrades.  No distinct 
boundary for the maximum level of noise tolerated by E-AANN was found.  As the noise 
level increased beyond 15% to 20%, the E-AANN accuracy decreases.  Further work in 
quantifying this noise sensitivity needs to be done.  
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Figure 7.  Normalized Test Set with 5% Noise (sorted) 
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Figure 8, Sensor #3 Reconstruction with 5% Noise 
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5. CONCLUSION  
 
The use of AANNs in sensor fault detection has been extended to allow the isolation of 
an individual sensor fault.  This extension implements a secondary process, which 
enables the user to extend the use of AANN concepts to E-AANN methods useful in 
diagnosing sensor faults.  The examples given illustrate the effectiveness of this 
approach.  E-AANN performance was studied under noisy conditions.  The results, which 
use synthetic data, showed that sensor faults can be detected and corrected in noisy 
situations ranging up to 10% to 15% noise using the E-AANN method described.  
Synthetic data was used to remove biases which usually occur in real data.  The E-AANN 
concepts were tested with synthetic data and are now ready to be tested with actual data 
from a chiller.   
 
Another major investigation needs to focus on solving sensor fault detection with 
multiple sensor faults.  The methodology described in this paper assumes that only one 
faulty sensor can be detected.  Detecting multiple sensor faults are much more complex.  
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