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Executive Summary

This report summarizes progress through November, 1990 for ERAP project No. 227,

"Improved Analysis Methods for Retrofit Savings and Energy Accounting." The major

objectives of this project are to:

1) determine the energy and dollar savings from energy conservation
retrofits;

2) reduce energy costs by identifying and correcting operational and
maintenance problems at retrofitted facilities;

3) identify savings from individual retrofits to help improve future retrofit
selection; and

4) initiate an end-use data base for commercial and institutional buildings to
facilitate the comparison and exchange of building energy use
information.

A grocery store, two nursing homes, an institutional building, and a high school have

been selected as preliminary case study buildings. All of the buildings except the nursing

homes have been instrumented to provide sub-metered and total energy use data.

Additional buildings in the Texas LoanSTAR program are also instrumented and are

being analyzed.

Four preliminary models to predict energy consumption in the case study buildings

have been developed and tested. The Princeton Scorekeeping Method Cooling Only

(PRISM CO) model is an ambient temperature dependent regression model that provides

a good fit (R2 = 0.89 and R2 = 0.97) to the nursing homes' electricity consumption during

cooling season months. A four parameter regression change-point model to predict daily

electricity consumption at the grocery store has an average daily error of only 1.7% for

the period analyzed. Ambient temperature dependent regression models predict hot and

chilled water consumption at the institutional building with goodness of fit statistics R2 =

0.90 and R2 = 0.87 respectively. A regression model based on the institutional building's

operating hours predicts electricity consumed by lights and receptacles.

The predictive ability of the preliminary models has been tested by comparing

predicted energy consumption to measured energy consumption. Models that can
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accurately predict building energy consumption are essential to the effort to determine

retrofit savings and identify and correct operational and maintenance problems. PRISM

CO predicted electricity consumption during the cooling months at the nursing homes

within 3.3% and 6.3% of measured consumption for the period from April to September

1990. The four parameter change-point model predicted daily electricity consumption at

the grocery store for the period from January 1 to October 10, 1990 such that the average

residual between measured and predicted electricity consumption was 3.7%. Hot and

chilled water consumption at the institutional building was predicted within 5.7% and

0.2% of measured consumption for the period from May 24 to October 10, 1990. The

scheduling model for electricity consumed by lights and receptacles at the institutional

building had residuals between predicted and measured consumption of less than 15% of

the maximum electric demand for the period from August 1989 to August 1990.

I
In addition to predicting energy use, the end-use breakdown of energy at the case

study buildings was estimated using four methods. Peak electric demand was

apportioned to different energy using systems by recording energy consumption data

from the energy using equipment. An engineering simulation model, A Simplified

Energy Analysis Method (ASEAM), estimated the annual energy use break-down at the

high school and a nursing home. PRISM CO estimated base-level and temperature

dependent energy consumption at the nursing homes. Finally, sub-metered energy

consumption data from the institutional building provides the most accurate energy end-

use breakdown.

Three new models promise to be statistically rigorous and applicable to a wide range

of buildings. A four parameter change-point model that determines model parameters by

minimizing mean square error improves the previous four parameter change-point model.

A principle component analysis model improves parameter stability compared to

standard multiple regression models when the independent variables are correlated. A

methodology to identify typical day types for non-weather dependent loads can be used

to quickly and accurately develop calibrated input decks for energy simulation models

such as DOE-2 and BLAST. Three journal papers that describe these models have been

accepted for publication in the Solar Engineering 1991 - Proceedings of the Joint

ASME/ISES International Solar Energy Conference 1991.

The methodologies developed in this project have immediate application in the Texas

LoanSTAR program as part of the effort to determine retrofit savings. Energy savings
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from this project are conservatively estimated as 2.6 x 1012 Btu/yr by the year 2000 due

to improved retrofit selection and identification and correction of operational and

maintenance problems. Over 70 requests for information about energy analysis methods

and software have been received.

In the next year, efforts will focus on extending the PCA and change-point model

analysis and developing systematic methods for identifying and correcting operational

and maintenance problems.
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CHAPTER 1

Introduction

Energy use in commercial buildings amounts to about 13% of all U.S. energy use

(EIA, 1986). Energy saving retrofits have proven effective at reducing energy related

operating costs for building owners and at moderating total U.S. energy consumption

growth. A study of over 1,700 building energy retrofits reports a median annual energy

savings of 18% of whole-building energy usage with a median payback time of 3.1 years.

In over one-half of the projects, whole-building energy use continued to decrease in the

years following the retrofit (Greely et al. 1990).

While these results are impressive, fewer than one in six predictions of energy savings

came within 20% of measured results (Greely et al. 1990). Reasons for the difficulty in

predicting energy savings include the diversity of potential improvements, the diversity

of buildings in general, and the high rate of change in the building's use and weather

conditions (MacDonald and Wasserman, 1989). The task of predicting building energy

consumption could be improved by sharing information about retrofits and building

energy use. However, the great diversity in building types, functions, energy using

systems, and operating conditions makes comparing the energy use of different buildings

even more difficult than predicting an individual building's energy use. Thus, many

practitioners currently rely on "their own sense of what constitutes an energy efficient

building" (MacDonald and Wasserman, pg. 2,1989) and "professional judgement"

(Greely et al.,pg. 3, 1990).
I

It is apparent that present methods to predict baseline energy use and retrofit energy

savings can be significantly improved. The Department of Energy has identified retrofit

performance data as a key research need (MacDonald, et al. 1988). With this in mind,

the major objectives of this project are to:

1) determine the energy and dollar savings from energy conservation
retrofits;

2) reduce energy costs by identifying and correcting operational and
maintenance problems at retrofitted facilities;

3) identify savings from individual retrofits to help improve future retrofit
selection; and

ERAP Project No. 227 Progress Report November 5, 1990
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4) initiate an end-use data base for commercial and institutional buildings to
facilitate the comparison and exchange of building energy use
information.

This report summarizes the first year's progress towards meeting these goals.

Current Methods to Determine Retrofit Energy Savings

Energy savings are often calculated by direct comparison of pre- and post-retrofit

energy consumption. The advantage of this technique is its simplicity. However, direct

comparison ignores changes in weather, occupancy, and energy using equipment which

may significantly alter post-retrofit energy consumption and estimated savings.
I

Weather adjusted energy consumption estimates have been shown to differ from

measured energy consumption by up to 12% of pre-retrofit consumption (Greeiy et al.

1990). Since this is comparable to the median energy savings of 18%, it indicates that if

not accounted for, changing weather conditions may obscure or amplify estimated

savings.

Current single parameter models which consider weather to determine energy savings

are best suited to buildings whose energy use is envelope dominated and dry-bulb

temperature driven. However, many buildings are influenced by other environmental

parameters besides ambient temperature such as latent cooling load and solar-driven

influences. To investigate these buildings, we are considering models which also account

for dry-bulb temperature, ambient humidity, solar radiation, and wind speed, and other

non-environmental factors.

Changes in energy using equipment can also affect retrofit savings estimates. For

example, office information equipment (computers, typewriters, copiers, etc.) has been

shown to equal or surpass the lighting load in some new commercial buildings (Norford,

et al. 1988). If unaccounted for, increased use of this type of equipment can cause

significant underestimation of energy savings.
I

Operational and system parameters influence the energy use in many buildings which

are eligible for energy conservation retrofits (Haberl and Claridge, 1987). Operational

ERAP Project No. 227 Progress Report November 5,1990
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parameters are occupant related and change frequently, such as occupancy and custodial

schedules. System parameters are equipment settings, such as temperature setpoints and

economizer damper settings. Operational and system parameters can also be modeled by

dual-state models that "switch" between "occupied" and "unoccupied" periods.

Our objective is to develop models which consider these effects and improve our

ability to predict the energy consumption of a wider variety of buildings. The new

models are based on a combination of measured data, statistical analysis, and engineering

design methods. Our approach can be called a "case study" approach, since the models

are developed for selected instrumented buildings and then generalized to other

buildings.

What's Next

The following chapter describes the buildings that are currently being analyzed and the

buildings to be analyzed in the next phase. Next, we report on preliminary models which

have been developed for selected buildings. The fourth chapter examines the preliminary

models' ability to predict monthly, daily, and hourly energy consumption by comparing

predicted to measured energy use. Chapter five reports the energy end-uses for the

buildings being analyzed, followed by a chapter which presents the methodology of the

change-point, principle component analysis, and scheduling models currently being

explored. We then summarize with a market position and technology transfer chapter

and close with a discussion of future directions.

ERAP Project No. 227 Progress Report November 5,1990
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CHAPTER 2

Buildings List

This chapter describes the first year, case study buildings, the LoanSTAR buildings

for which metered data is available, and buildings being considered for future research.

Models are being developed and tested on buildings in the first year case study group.

These models will be applied to similar buildings. The pool of LoanSTAR buildings

being monitored is a readily accessible group of buildings to which case study results

will be applied, tested, and validated. The additional LoanSTAR buildings listed in the

third section of this chapter are being considered for new model development and testing.
I

First Year Case Study Buildings
I

The primary buildings being analyzed are listed in Table 1.1. The grocery store and

nursing homes are parts of commercial chains operating throughout the south central

United States. A&M Consolidated High School and the Zachry Engineering Center

contain systems which are commonly found in similar buildings throughout the U.S. A

short description of each of these buildings follows.

Table 2.1; Original buildings analyzed, Texas location, floor area, annual energy
costs, and number of months of monthly and hourly energy data currently available,

I
Case Study Grocery Store

The grocery store is located in a small shopping center which houses eight businesses.

It is open 24 hours per day, every day of the year except Thanksgiving and Christmas.

ERAP Project No. 227 Progress Report November 5,1990
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The building is a single story structure with 16 foot high ceilings and has a total area

of 40,000 ft2 (160 by 250 feet). The front 35,000 ft2 of space is used for product display,

and the rear 5,000 ft2 holds the space conditioning equipment, the walk-in coolers, and

the meat and product preparation areas.
I

The grocery store shares two interior walls with other businesses on the northwest and

southeast sides although the adjacent spaces are currently unconditioned. The northwest

and southeast walls are 160 feet in length and are constructed of 6-inch poured concrete,

3.5 inches of interior batt insulation and interior drywall. The northeast and southwest

walls are 250 feet long. The northeast wall includes a 60-foot by 16-foot section of

glass. The entrance to the street is an L-shaped vestibule with automatic doors. The roof

is constructed of a lightweight metal deck which supports a 1-1/2 inch layer of foam

insulation, a 2-inch concrete slab and a built-up roof covered with light colored

aggregate.

The refrigeration system is the biggest energy using system in the store. It is

comprised of twenty R12 compressors in conjunction with 46 refrigeration and freezer

cases. The defrost cycle is controlled by 20 time clocks - one for each compressor. The

HVAC system consists of two 50 ton units for cooling. Heating is provided by heat

reclaim from the refrigeration system and is supplemented by natural gas duct heaters.

Natural gas is also used to provide hot water and for ovens in the delicatessen and

bakery.

Case Study Nursing Homes
I

The Temple nursing home is a 100 bed nursing home that was 80 per cent occupied

in early 1990. Approximately 40 staff members are present during the day and about 20

during the night. The facility operates 24 hours per day, 365 days per year. Full food

and laundry service are provided.

The single story, slab on grade building was built in 1970 and has an approximate

floor area of 31,000 ft2. Exterior walls consist of an eight foot lower section and a four

foot upper section. The windows are double glazed, gray glass and cover about 15% of

gross wall area. The building has a flat masonry roof with built up roofing and 6" of

fiberglass batt insulation.

!
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Most of the space conditioning is provided by eight roof-top air conditioning units.

Two of the roof-top units provide heat using electrical resistance heaters and six of the

units use natural gas for heating. Vapor compression cooling is used by all units.

Heating and cooling is supplemented by six small heat pumps located in individual

occupant's rooms.

The Austin nursing home is nearly twice as large: it is a two-story building with

approximately 58,000 ft2 of floor area. Operational schedules and building

characteristics are similar to the Temple nursing home.

Space conditioning is primarily provided by 16 roof-top air conditioning units. Some

small window air conditioners and heat pumps supplement the roof-top units. All roof

top units provide electrical resistance heating and vapor compression cooling.

Case Study Institutional Building

I „
The Zachry Engineering Center (ZEC) is a four-story (plus basement parking level)

building on the Texas A&M University campus with approximately 324,400 gross ft2 of

floor area. Major uses of the building include: 1) offices, 2) class rooms, 3) computer

rooms, and 4) laboratories. The building also includes hallways and a large atrium area

which serves as a common space. It is open 365 days per year, 24 hours per day.
;

The building is a heavy structure with 6-inch concrete floors and insulated concrete

walls. It is heated and cooled by a constant volume dual duct system. Hot water, chilled

water, and electricity are supplied by the central campus plant.

Case Study High School
I

A&M Consolidated High School is a 209,605 ft2, two-story facility in College Station.

School is in session about nine months per year, with vacations in the summer months

and during portions of December and January.

The original building was built in 1970, with major additions in 1979 and 1982. It is

a primarily concrete structure with brick facia. During the 1982 renovation, the building

was reroofed and ceiling insulation was added.

ERAP Project No. 227 Progress Report November 5,1990
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The building uses a combination of HVAC systems. Most of the building is serviced

by a constant volume reheat system using centrifugal chillers for cooling and both

electrical resistance and natural gas fired boilers for heating. Roof top units using vapor

compression cooling and electrical resistance heating provide space conditioning for

some class rooms. Electricity dominates energy cost at the school.

I

LoanSTAR Case Study Buildings

The energy analysis techniques being developed on first year case study buildings

will also be applied to selected buildings in Table 1.2. These buildings are currently

being monitored or will be monitored as part of the Texas LoanSTAR Program. The

Texas LoanSTAR program is an eight year, $98 million revolving loan program, funded

by oil overcharge money, for energy conservation retrofits in Texas state, local

government, and school buildings (Turner, 1990).

As part of this program, a statewide energy Monitoring and Analysis Program (MAP)

has been established. The program's first objective is to determine whether retrofits save

as much as estimated in audits. Another objective is to reduce energy costs by evaluating

a building's energy-using characteristics. Evidence from Lawerence Berkeley Laboratory

(Akbari et al., 1988, and Harrje, 1982), Princeton (Putt et al., 1988), Oak Ridge National

Laboratory (MacDonald et al. 1989), and the University of Colorado (Haberl and

Claridge, 1987) suggests the potential effectiveness of sub-metering large buildings with

major retrofits. The models described in this report are being developed to meet these

objectives. The buildings in Table 1.2 provide an readily accessible pool of buildings for

model testing and validation.
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Table 2.2; Installations being monitored or having equipment installed in 1990 as part
of the Texas LoanSTAR program. * Amounts are in thousands of dollars. (O'Neal,
1990). j

Additional Case Study Buildings

Buildings for which models may be developed and validated in the future are included

in Table 1.3. The Texas Technology University Health Center and a government

building at the Capital Complex in Austin, are currently enrolled in the LoanSTAR

program.

Table 2.3; Additional buildings for analysis.

ERAP Project No. 227 Progress Report November 5,1990
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CHAPTER 3

PRELIMINARY MODELS REPORT

Three preliminary models were tested for their ability to predict energy consumption,

including: the Princeton Scorekeeping Method (PRISM), temperature dependent models,

and scheduling models. The next section describes the Princeton Scorekeeping Method

(PRISM) and its application to two nursing homes and A&M Consolidated High School.

In the following section, a four-parameter segmented regression model is presented and

tested on the grocery store. The final section describes a scheduling model applicable to

Zachry Engineering Center and preliminary analysis of A&M Consolidated High School.

I :
The amount of energy saved by a retrofit is determined by comparing a building's

post-retrofit energy consumption to an estimate of how much energy the unretrofitted

building would have consumed during the same period. Post-retrofit energy

consumption is easily determined from the buildings utility bills. The energy prediction

methods described in this chapter will be used to estimate how much energy a building

would have consumed if it had remained in its pre-retrofit condition.

I
Accurately predicting building energy consumption can also aid in identifying

operational and maintenance problems in buildings. An expert system developed by

Haberal and Claridge for this purpose reduced energy consumption by 15% at a campus

recreation center (Haberal and Claridge 1987). This method compared the building's

measured and predicted energy use and alerted management whenever large deviations

occurred.

The models described in this chapter are appropriate for determining retrofit savings

and identifying operational and maintenance problems in buildings. For this reason, they

are important tools toward achieving the projects objectives.

I

Princeton Scorekeeping Method

One of the most widely accepted model to determine retrofit savings is the Princeton

Scorekeeping Method (Fels 1986). PRISM is a statistical procedure originally

developed to provide a weather-adjusted index of energy consumption in residences.

PRISM requires whole-building energy consumption data for a building and average

daily temperatures at the location. It produces a weather-adjusted Normalized Annual

ERAP Project No. 227 Progress Report November 5,1990
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Consumption (NAC) that is composed of three primary parameters which describe

heating-related and non-heating-related consumption. These factors are a slope

(kWh/day-F), base-level consumption (kWh/day) and balance-point temperature (F).

Variations of PRISM are available which consider cooling energy consumption as well

as heating.

PRISM has been adopted as one baseline technique for buildings which are

appropriate for analysis with one-, three- and five- parameter segmented linear, change-

point models. The versions of PRISM which are available or under development include

one-, three- and five- parameter segmented regressions as shown in Figure 3.1.
I

The one-parameter model is typical of monthly electrical use when heating and

cooling influences are absent. It is also typical of sub-metered daily electricity

consumption data from many buildings expected in the program. One additional step

may include sorting into weekday/weekend data since non-weather dependent use is

highly dependent on scheduled use.

!

The three-parameter PRISM models represent the classic Heating Only (HO) and

Cooling Only (CO) models and have been used with some success on the nursing homes.

I ii

A five parameter, PRISM Heating and Cooling model (HC), is operational at

Princeton. This is a better model for buildings that use one fuel for heating, cooling and

base-level purposes. Future analysis will determine the effectiveness of applying this

model.

PRISM Models of Nursing Home Electricity Use
I

The PRISM CO model was applied to monthly electricity consumption data at the two

nursing homes. The electric billing data for both facilities are shown in Figure 3.2.

Since some heating influence is visible in both data groups, the PRISM cooling only

model was used with winter data omitted.

I
The PRISM CO model coefficients for both nursing homes are listed in Table 3.1.

The Temple model provides R = 0.89 with a cooling balance-point temperature of 66.8

F. The model is based on fourteen months of electric consumption data. The Austin

model provides R2= 0.97, a cooling base temperature of 74.2 F and is based on seven

ERAP Project No. 227 Progress Report November 5,1990
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months of data. The Austin model's higher R results from having fewer data points than

the Temple model and does not necessarily imply a better fit. The normalized annual

consumption estimated by PRISM is not significant in this case since winter months were

not included in the data set.
I

Electricity consumption versus cooling degree days per day and PRISM's regression

estimate for these facilities are shown in Figure 3.3. The PRISM CO model appears to

be an adequate estimator of electricity use at both nursing homes during the cooling

season.

Table 3.1; PRISM coefficients for two nursing homes.

Other Temperature Dependent Models

I
PRISM is a segmented, regression model which is appropriate for buildings which

exhibt temperature dependencies. Certain buildings may not be well described by

PRISM. For example, grocery stores have large amounts of "air cooled" refrigeration

equipment with a COP that varies with ambient temperature. Typically, this causes base-

level energy consumption to decrease with decreasing ambient temperature. In stores

where this condition is significant, a four parameter change-point model with a non-zero

slope for the base-level region (RMSE = 169.2) fits the electricity consumption better

than the PRISM CO model (RMSE = 277.8).

The following section describes a four parameter change-point model that has been

developed to model such energy useage in a grocery store. In the next section chilled

water and hot water consumption at Zacliry Engineering Center are modeled as functions

ERAP Project No. 227 Progress Report November 5,1990
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of ambient temperature and interior lighting and electric loads. The final section

describes the results of applying a scheduling model to ZEC electricity use.

A Four Parameter Change-Point Model Of Grocery Store Electricity Consumption
I

Electricity consumption at the grocery store was recorded at 15-minute intervals and

aggregated to provide hourly and daily total consumption. Daily consumption as a

function of average daily ambient temperature is shown in Figure 3.4. In the figure,

there appears to be two essentially linear regions which meet at about 62 F (called the

change point). Physically, the consumption appears to drop slowly with temperature

(below 62 F) due to the increasing COP of the refrigeration compressors. As the

temperature increases above 62 F, the COP of the compressors drops and air

conditioning also becomes necessary, resulting in a sharp increase in the slope of the

electricity consumption.

Consequently, the data were divided into two groups: those collected when the

ambient temperature (as recorded at the local airport) was above 62 F and those

collected when the temperature was at or below 62 F. Each set was then regressed

against the dry bulb temperature to obtain a unique slope.

This process resulted in a four-parameter regression model for the daily average

electricity consumption. The parameters are: (1) a slope for the non-cooling regime, (2)

a slope for the cooling regime, (3) a change-point temperature, and (4) a baseload plus

refrigeration consumption at the change point temperature, Tcp. The daily average

electricity consumption, E , can then be expressed as:

where T is the average daily temperature, Ecp is the electricity consumption at the

change point of 62 F and B andB are the slope coefficients. The model parameters

obtained are:

ERAP Project No. 227 Progress Report November 5,1990
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B = 4.976 kWh/day-F.

The ability of the daily predictor model to estimate consumption during April 1989 is

shown in Figure 3.5. The model appears to track actual consumption very well.

Excluding anomalies on April 4, 8 and 9, the average residual consumption is 8.6 kWh or

1.7% of the total whole-building electricity use. A more extensive discussion is provided

in Schrock and Claridge (1989).

A Model Of ZEC Chilled Water Consumption

The chilled water consumption for ZEC depends primarily on the ambient

temperature as can be seen in Figure 3.6. There appears to be a slight difference

between weekdays and weekends - physically we expect this difference to be due to

lower internal heating due to lower electricity consumption on weekends.
I

Table 3.2 shows our pre-retrofit model for chilled water consumption at the ZEC,

determined using SAS (SAS 1985). Models are shown which depend on temperature

(T) only and which depend on temperature, T, as well as electrical consumption for

lights and office equipment, LE. The second model has a slightly higher R2 parameter

and may be preferable since lights and office equipment contribute to the cooling load

and therefore have a physical basis for being included in the model.

ERAP Project No. 227 Progress Report November 5, 1990



14

Table 3.2; Model parameters and statistics for two models of chilled water consumption
at the Zachry Engineering Center. R2 indicates the fraction of variability in the data
explained by the model. The second model provides a slightly better fit to the data. The
positive slopes indicate the chilled water consumption increases as ambient temperature
increases. The low probabilities (P) indicate that all of the parameters except the
intercept of the lights and equipment model are statistically significant.

Note that the chilled water consumption does not show a change-point. It simply

decreases as temperature decreases. It might show a change point at sufficiently low

temperatures, however, the available data includes some of the coldest weather ever

experienced in College Station and no change point is evident. Therefore we conclude

that a two- parameter model without a change point is appropriate.

A Model Of ZEC Hot Water Consumption

The hot water consumption is similar to the chilled water consumption, except that

hot water consumption decreases as ambient temperature increases. This behavior is

shown in Figure 3.7. The data appear to exhibit a slight dependence on the electricity

consumption for lights and equipment as shown in Table 3.3. In this case the

dependence on electricity use is about three times stronger than for chilled water.
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Table 3.3; Model parameters and statistics for two models of hot water consumption at
the Zachry Engineering Center. R2 indicates the fraction of variability in the data
explained by the model. The second model provides a slightly better fit to the data. The
negative slopes indicate that hot water consumption increases as ambient temperature
decreases. The low probabilities (P) indicate that all of the model parameters are
statistically significant.

Scheduling Models

Energy use in many buildings is heavily dependent on the building's operating

schedule. In some cases, a model for predicting energy consumption can be developed

simply by correlating measured energy use with the building's operating schedule (Haberl

and Komor, 1989). The next two sections describe scheduling models for electricity

consumption for the Zachry Engineering Center and the applicability of a scheduling

model for A&M Consolidated High School.

!

A Model Of ZEC Electricity Consumption

The electrical consumed by lights and recepticles at the ZEC from July 1989 through

May 1990 is shown in Figure 3.8. The figure shows hours of the day from front-to-

back, Julian day of the year from right-to-left and hourly electricity use on the vertical

axis. The building is open seven days a week, 24 hours a day, and the HVAC systems

are operated continuously. Light and recepticles electricity consumption shows a diurnal

pattern which varies from a minimum level near 600 kW to a peak of 1 MW on

weekdays with a slightly lower minimum and much lower peak on weekends. Some

ERAP Project No. 227 Progress Report November 5,1990



16

gross characteristics of the data are evident in the figure. Proceeding from right to left,

consumption is seen to be lower during the break period just before Autumn Semester

begins. Christmas vacation period is very evident as the "canyon" near the middle of the

figure. The other "canyons" in the left half of the figure represent missing data.
I

The data were used to define an average hourly schedule for weekdays and weekends

when school is in session as shown in Figure 3.9(b). This may be compared with the

measured consumption for February 1990, shown in Fig. 3.9(a). The positive residuals

and absolute values of the negative residuals are shown in Figs 3.9(c) and 3.9(d). The

residual plots indicate: 1) that light and recepticle electricity use is generally well-

described by this simple model (+/-100 KW out of 1500 kW); 2) that there is a

consistent over-prediction of electricity use on Friday afternoons (days 32,39,46 and 53

of Fig. 3.9(d)); and 3) that Saturday consumption is sometimes higher than expected

(days 40 and 54 of Fig. 3.9(c)).
I

A&M Consolidated High School Electricity Use

Electricity use at A&M Consolidated High School appears to be dominated more by

scheduling and operational influences than by ambient temperature. Figure 3.10 depicts

electricity use as a function of ambient temperature for the Spring semester. The data are

divided into day types with 0,1, and # representing Saturday, Sunday, and holidays

respectively. Weekdays are represented by numbers 2 through 6. Electricity use is

clearly higher on weekdays than on weekends or holidays; however, no significant

dependence on temperature is evident. Figure 3.11 shows hourly electrical use for most

of the school year. A load shape that corresponds to school operating times is clearly

evident.

Because the building energy use is not highly temperature dependent, we expect low

PRISM R.2 values. PRISM analysis of the data is consistent with these conclusions.
I

This analysis suggests that electricity use at A&M Consolidated High School may be

more appropriately modeled using a scheduling model such as the load-shape

methodology described in chapter six.
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CHAPTER 4

Model Predictive Ability

The preliminary models described in chapter three have been used to predict energy

consumption in selected buildings. Energy predicting models in three different time

frames are presented here: monthly, daily, and hourly. The models' prediction of energy

consumption is compared to actual energy consumption in the sections that follow.

!

Monthly Nursing Home Electricity Use

I
The PRISM CO model described in chapter three was used to predict electricity use at

the nursing homes during the summer of 1990. For the Temple nursing home, the model

parameters are based on 14 months of data between February, 1988 and August, 1989.

In Figure 4.1a, those model parameters are used to predict electricity consumption in a

subsequent period between April and September, 1990. These predicted values are

compared to measured data for this period in Figure 4.1.

I
Electricity consumption predicted by PRISM CO closely follows the trend of actual

electricity consumption. One method to quantify how close predicted consumption is to

actual consumption is to find the difference between the values and divide by the actual

consumption. This method yeilds an average deviation between actual and predicted

consumption of 6.3% of measured consumption. The small deviation between actual and

predicted electricity consumption indicates that PRISM CO is a good predicter of

electricity consumption at this nursing home. The total predicted consumption for the

period shown was 3.3% less than the measured consumption.

Figure 4.1b shows measured and predicted electricity consumption at the Austin

nursing home. For this run, the PRISM CO model parameters were based on seven

months of data between March and October, 1989. These parameters are then used to

predict electricity consumption in a subsequent period between April and September,

1990.

It appears that PRISM CO slightly over-predicts energy use for this period. However,

the nursing home underwent a lighting retrofit that reduced the power required to light

the building after the original parameters were determined. In this case, the bias shown
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in Figure 4.1b actually represents electricity saved by the lighting retrofit. PRISM CO

indicates an average monthly savings of 6.2% of measured consumption. The total

electricity savings during this period was 6.3% of measured consumption.

I
Daily Grocery Store Electricity Use

The four parameter change-point model described in chapter three was developed

using data from March, 1988 to April, 1989. This model was then applied to electricity

use and temperature data for a new period beginning January 1,1990 and ending October

10,1990 to test its ability to predict electricity use at the grocery store. Actual

consumption and the model's predicted consumption are shown in Figure 4.2.

!

Two regions of differing temperature dependence (slope) are evident in the measured

consumption. The model appears to slightly under-predict electricity consumption,

especially below the change-point. A physical explanation appears plausible, since a

large refrigerated room was added to the store after the model was developed. It is also

possible that sales volume may have increased since the original model was developed.

Although this points to the weakness of models dependent only on temperature, the

model still provides a good fit to the data. The average deviation between measured and

predicted electricity use is 3.7% of measured use.

I
Daily ZEC Chilled Water Consumption

1

The ZEC chilled water use model described in chapter three was developed using data

from September 1, 1989 to May 23, 1990. It was applied to new data from May 24,

1990 to October 10,1990 to test its predictive ability. Both the model's prediction and

measured data from this period are depicted in Figure 4.3 as a function of ambient

temperature.

The model is sensitive to ambient temperature and internal cooling required because

of lights and receptacle use. However, the dependence on lighting and receptacle

electricity is so small in this model that the predicted energy consumption appears in

Figure 4.3 as a straight line dependent only on temperature. The average deviation

between measured and predicted consumption is 5.1% of measured consumption. The

total predicted consumption for the period was within 0.2% of measured consumption,

I
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indicating that the model was an excellent predictor of chilled water consumption during

this period.

Daily ZEC Hot Water Consumption
I

The chapter three model for hot water consumption at the ZEC was also tested against

measured data from the most recent time period. The results are depicted in Figure 4.4,

again as a function of temperature. In the hot water model, the inverse dependence on

lighting and receptacle electricity use is much greater than in the chilled water model.

Because of this, the model's predicted consumption appears as a region partly dependent

on temperature and partly dependent on lighting and receptacle electricity use in Figure

4.4.

The average deviation between measured and predicted consumption was 83.2% of

measured consumption. The high average error is not particularly troublesome because

the model has been applied to a set of days with daily temperatures which do not

represent the daily temperatures that the model was originally developed for. Most of the

daily temperatures in the new set of data are above 80 F, with correspondingly small

predictions hot water consumption. The model was developed for a data set with a more

even distribution of daily temperatures and larger amounts of hot water consumption.

The total predicted hot water consumption for the period shown was 5.6% greater than

measured consumption.

I

Hourly ZEC Electricity Use

A methodology to identify typical day types for a building using monitored end-use

data for non-weather dependent electric load (i.e. lights, equipment, etc.) has been

developed. This scheduling model was tested on data from the ZEC with good results.

I
Electricity consumption at the ZEC can be accurately represented with five typical

load shapes: (a) three in a "LOW" group, (b) one in a "NORMAL" group and (c) one in a

"HIGH" group. Figure 4.5 shows the number of days in each day type. A comparison of

the actual and predicted electric consumption is shown in Figure 4.6. The predicted

electric consumption was calculated from the five typical load shapes. The residual plots

indicate: (a) the predicted consumption is close to the actual consumption (+/-100 kW),

and (b) the residuals during the holidays/vacations are consistently higher.
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CHAPTER 5

END-USE DISAGGREGATION

Whole-building energy consumption represents the sum of many energy end-uses

within a building. Some of these end-uses such as heating and air conditioning are

driven by the weather. Some, such as lighting and office equipment are driven by the

scheduled use of the building. Accurate models to predict whole building energy use

must consider all of these different energy end uses. To do this, accurate information on

the breakdown of energy consumption within a building is necessary.

I
In this chapter, the energy consumption of the five original buildings is divided into

end-uses using four different techniques. In the first section, the peak demand is

disaggregated into end-uses at a nursing home, the grocery store, and the high school

using data from equipment name plates. The next section describes an engineering

simulation model's estimates of energy end-use consumption at the Temple nursing home

and at A&M Consolidated High School. Then statistical model estimates of base-level

and cooling related electricity use at the nursing homes are presented. In the last section,

sub-metering at the ZEC provides a breakdown of the building's annual energy

consumption.

Peak Electric Demand Method

Energy using equipment has been inventoried at the grocery store, nursing homes, and

high school. The rated electric demand of each piece of equipment is obtained from the

name plate or by contacting the manufacturer of the equipment. From this information,

the building's electric demand during theoretical peak operation can be apportioned to the

different energy using equipment.

Figure 5.1 shows the estimated contribution of each category during peak operation at

the grocery store. The estimated end-use breakdown of the several electrical systems in

the store is: refrigeration cases and compressors (44.3%), air conditioning (24.6%),

lighting (15.8%), food preparation (12.6%), point-of-sale registers (1.2%) and

miscellaneous end uses (1.5%). Clearly, the best candidates for energy savings are the

systems which use the most energy in the store. Of the total energy use, 84.7% can be

attributed to three systems: refrigeration, air conditioning and lighting.
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The peak electric demand breakdown at the Temple nursing home is depicted two

ways in Figure 5.2. Figure 5.2a shows electricity use by electricity using systems. Air

conditioning is the largest load, representing 57.4% of total demand, followed by lighting

(20.2%), food preparation (18.1%), and laundry services (4.2%).

I
Electric demand is divided into functional areas within the building in Figure 5.2b.

The estimated peak electric demand end-use breakdown by functional area is: resident

areas (46.5%), utility areas (34.3%), and lobby and dining areas (19.2%). Of the three

areas, the resident areas make up the largest fraction of total floor area (59%), accounting

for the large fraction of peak demand. The utility areas (kitchen and laundry) make up

the smallest amount of floor area (9%), and have the highest power density in the

building.

The peak demand used by major energy using systems at A&M Consolidated High

School is shown in Figure 5.3. Peak end-use demand is estimated as: chillers (65.1%),

lights (16.7%), air handling units (9.0%), pumps (6.7%), and condenser (2.5%).

Miscellaneous energy using equipment is not included in this breakdown.

I
Engineering Simulation Models

The energy consumed by a building's energy using systems can also be estimated by

engineering simulation models. The building energy use in A&M Consolidated High

School and the Temple nursing home was simulated using A Simplified Energy Analysis

Method (ASEAM, ACEC, 1987) computer software. ASEAM uses the modified bin

method of energy analysis.

I "
ASEAM estimated the annual energy consumption end-uses at the Temple nursing

home as (Figure 5.4): HVAC (50%), lighting (26%), and food preparation and laundry

services (24%). These are estimates of the total annual energy use including electricity

(on a site basis) and natural gas.

I
ASEAM estimates of the electricity use at A&M Consolidated High School are shown

in Figure 5.5. The electricity consumption breakdown is cooling (36.7%), miscellaneous

equipment (25.8%), lighting (16.5%), fans (15.0%), heating (3.1%), and pumps (3.0%).
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Not included in this breakdown is additional heating for space conditioning and hot water

that is supplied by natural gas.

Statistical Models

PRISM estimates annual base-level (or temperature independent) energy consumption

and energy consumed to heat or cool a building. The results of the PRISM CO analysis

for cooling months at the nursing homes is shown in Figure 5.6. PRISM CO estimates

that cooling requires 28.8% of electricity consumption at the Temple nursing home.

Electricity for cooling is estimated to be 14.0% of total electricity consumption at the

Austin nursing home.

Measured Data

Energy end-use data has been collected for the ZEC since May 1989. Electricity,

hot water, and chilled water are provided by the Texas A&M physical plant. The energy

consumption estimates listed here are on a site basis and do not include losses incurred at

the physical plant or in transportation from the physical plant to the ZEC.
I

For the period from September 1,1989 to August 31,1990, the ZEC used 9,727,000

kWh of electricity. The maximum electric demand during the year was 1,395 kW. Air

handlers, pumps, and main frame computers accounted for 42.7%, and lights and 'plug

in" loads accounted for 57.3% of annual consumption (Figure 5.7a).
I

The breakdown of the thermal energy use at ZEC is shown in Figure 5.7b. 48,725

million Btu of chilled water and 17,291 million Btu of hot water was used. Chilled water

accounted for 73.8% of the thermal load and hot water accounted for 26.2%.

ERAP Project No. 227 Progress Report November 5,1990



23

CHAPTER 6

Model Development

Significant progress has been achieved in developing models for buildings which

exhibit change-point, multivariable dependent, and operational and scheduling dependent

energy use. The following three sections of this chapter describe these three types of

models. Each model was developed to overcome limitations of a preliminary model.

These models promise to be both statistically rigorous and applicable to a wide range of

buildings.

The first model, a four parameter change-point model, grew out of PRISM's

limitations at predicting grocery store energy consumption. The grocery store data

showed that "base-level" electricity consumption increases with temperature. PRISM

attempts to force a temperature independent line through these data, resulting in an

improper fit. The change-point model identifies the change-point temperature, change-

point energy consumption, and slopes that give the lowest least square error over the

entire data set for a segmented regression of energy consumption and temperature. The

model is described in the next section of this chapter.

I
Ambient dry-bulb temperature is a strong predictor of weather-related energy

consumption in many buildings. However, other environmental, system, and operating

parameters also influence energy consumption and may be useful predictors of energy

consumption when incorporated in a multiple regression model. A persistent problem

with previous attempts to do this has been intercorrelation between predicting variables.

This leads to unstable parameter estimates and may cause large errors when the model is

used to predict energy use for a subsequent period. For example, solar radiation may

contribute a large part of the air conditioning load in a building with large areas of

glazing. However, if both solar radiation and temperature were used in the same

multiple regression model the two variables would be highly intercorrelated, increasing

and decreasing in similar diurnal patterns. This may lead to unreliable estimates of the

model parameters. In the second section, a statistical technique that removes the

collinearity between independent variables and still retains much of the information

content of the original variables is described. This technique is combined with the

change-point model described above and is called a change-point principle component

analysis (CP/PCA) model. This model is described in the second section of this chapter.
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The last section describes a methodology to identify day-types for non-weather

dependent loads from metered data. Hourly energy simulation programs such as DOE-2

and BLAST have been used to predict energy savings from building retrofits. Such

calibrated computer models require information from equipment inventories, operating

schedules, etc., to estimate scheduled electric loads (e.g., lighting, equipment, fans).

With the use of a day-typing routine, monitored hourly data for these loads can be used

to accurately identify typical day types for a building, from which a calibrated input deck

can be prepared quickly and inexpensively, enhancing the wide use of these models to

predict the performance of conservation retrofits.

A Four Parameter Change-Point Model

Change-point behavior characterizes energy use in many buildings. This is because

most buildings use some type of thermostatic control to switch systems on and off.

Furthermore, examination of the fundamental equations governing air-side systems

shows that constant-volume reheat systems (with preheat below a specified outdoor

temperature), and systems which reduce outdoor air intake below a specified outdoor

temperature also exhibit some form of change-point behavior.

The four parameter change-point model is shown in general form in Figure 6.1. It has

two linear regions of differing slopes joined at the "change point." The slopes may be

either positive as shown on the left side of the figure or negative as shown on the right

side. Since the independent variable is ambient temperature, the two regions can

appropriately be called the "low temperature region" and the "high temperature region."

For the specific cooling-related case treated in this report, temperatures below the change

point will be referred to as the "refrigeration" region and those above the change point

will be referred to as the "cooling region" corresponding to the dominant temperature

dependent loads in eaph temperature region.
I

The expected electricity consumption per day, Ed, is given by

Ed = a + bc(Td - Tcp)+ - b r(Tcp - Td)+ (1)

where bc is the cooling slope, br is the refrigeration slope, Td is the average daily

temperature, and Tcp is the change-point temperature. The superscript"+" indicates
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zero if the term inside the parentheses is negative. These parameters are shown

graphically in Figure 6.2.

I
For a given set of data, parameter estimates are chosen that give the best least-squares

fit to the data. A computer program has been developed to determine these parameters

from electricity and temperature data. To initiate the program, a reasonable temperature

interval [RTMIN, RTMAX] that contains the change-point temperature T must be

specified. The program then implements an algorithm that outputs:

I
1) the parameter estimates br, b c , a, Tcp,

2) the R.2 statistics for the entire model and each segment,

3) the root mean-square error (RMSE) for each segment,

4) confidence intervals for the parameter estimates.

Statistical Analysis

Some important statistical problems involved in estimating the model parameters with

variable T were first solved by Hudson (1966). Several of Hudson's theoretical results

are utilized in this algorithm. The algorithm finds the optimal value of Tcp by searching

within an interval [RTMIN, RTMAX] known to contain Tcp. For each such feasible

value of T , corresponding values of br, b c , and a are found that give the best least-

squares fit to the data. From this collection of fits to the data, the algorithm chooses the

one with the best least squares fit (i.e. with a minimum mean-square error).

!

The reliability of the parameter estimates can be gauged by confidence intervals returned

by the program. The confidence intervals for Tcp with significance level e are defined such

that there is a 100 x (1 - e) percent chance that the true value of Tcp is bounded by the

confidence intervals. I

The confidence intervals returned by the four-parameter model are approximations to

likelihood-based confidence intervals. In an effort to confirm the accuracy of our method of

approximating the confidence intervals, numerical experiments on the four-parameter

model's error diagnostics using Monte Carlo computer simulations were carried out.

I
In our Monte Carlo study of the four-parameter model, the errors were assumed to be

identically, independently and normally distributed. Two hundred synthetic data sets were
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randomly distributed in their respective cooling regimes. The refrigeration regime is where

the models differ significantly in their predicted electrical use.

I
At temperatures below 59.65 F, the four-parameter model has a RMSE (169.2)

significantly lower than PRISM's (277.8). In addition, the residuals of the PRISM CO model

(Figure 6.4) are clearly not randomly distributed because of the model's zero slope in the

base-level regime.

Table 6.1; Parameter values and error diagnostics for each model of the grocery store
electricity consumption. The 75% confidence intervals shown for the 4-parameter model are
skewed, reflecting the nature of the curve-fit. Standard errors are given in parentheses for
PRISM. A standard confidence interval for T' , say, is (55.85, 58.43).

I
In contrast, the four-parameter model's residuals, shown in Figure 6.5, appear randomly

and independently distributed. A standard statistical test for heteroskedasticity (non-constant

error variance) was carried out which confirmed this observation.

However, the four-parameter model's RMSE is significantly higher for the cooling

regime (382) than for the refrigeration regime (169.2). An F test at a significance level of

0.01 indicated that the variance of the two regimes were unequal. In order to get reliable

error diagnostics for this case study, a weighted least squares (WLS) analysis was

undertaken.

While the WLS analysis results in biased parameter estimates, the (weighted) errors are

randomly distributed, with constant variance. As a consequence, the confidence intervals for

the parameters are valid (Draper and Smith 1981). WLS offers reliable error diagnostics in

compensation for biased parameter estimates. In order to take this into account, the model

(1) must be altered slightly. A reasonable energy model fitting the case study is

I
Ed = a - br(Td - Tcp)+ + e, if Td < Tcp (4)

Ed = a + bc(Td - Tcp)+ + e2 if Td > Tcp

!
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generated. Each such data set consisted of 200 observations using random normal deviates
with parameter values Tcp = 59.5, br= 19.9, b c = 93, a = 7530.5, and variance s2 = 320.

Temperature values T,,... T200 were chosen randomly from a one year data set of average

daily temperatures in the Bryan/College Station area. The results suggest that the

approximate confidence intervals found according to our algorithm are highly accurate, since

they contain the actual parameter values at essentially the percentage rate expected by the

likelihood confidence intervals.

Grocery Store Results

I
The model was applied to data from the grocery store and compared to PRISM runs

for the same data. Clean data were selected from June 1989 through May 1990 resulting

in 191 days for which complete electric and weather data were available. As noted

earlier, when plotted as a function of daily average ambient temperature, these data show

two distinct regions of non-zero slope (Figure 6.3). This physically represents the

behavior of the refrigeration equipment which cools the refrigerated food display cases

and frozen food cases in the store at low temperatures with the addition of the air

conditioning load above the change point. lf

I
The model of electricity use for the grocery store data provided by the four parameter

curve-fitting algorithm is:

Ed = 7459.98 + 96.22(Td - 59.65)+ -19.87(59.65 - Td)+ (2)

It is noted that determination of the change point by minimizing RMSE resulted in a change

point 2.35 F lower than the 62 F visually estimated by Schrock and Claridge (1989).

i
The electricity use predicted by PRISM CO is

Ed = 7262.53 + 94.85(Td - 57.14)+ (3)

By forcing the base-level slope to be zero, PRISM CO estimates T to be 2.51 F less than

our estimate of 59.65 F. An examination of the two models shows them to be nearly in

agreement at temperatures above 59 F, with predicted electrical use differing by at most 40

kW (9% of maximum use) in the 59 - 90 F range. The residuals of both models appear

i
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The observations are weighted for a WLS analysis according to their respective regime.
The estimate of Tcp was found to be unchanged (59.65), whereas the other parameter

estimates were altered slightly. The electrical use predicted using WLS was found to be

I
Ed = 7459.67 + 96.26(Td- 59.65)+ - 19.86(59.65 -Td)+ (5)

An application of White's test and an examination of the weighted residuals show that

heteroskedasticity has been eliminated, which makes the weighted estimates' error

diagnostics reliable. A comparison of these estimates with those of unweighted least-squares

shows the weighted parameter estimates are not too different from the unweighted estimates.

The weighted method increases the model's R2 statistic from 0.9068 to 0.9423; the

respective RMSE's are not comparable due to the weighting.

I
These error diagnostics, while reliable, are made under the assumption that Tcp is fixed

at 59.65 F, an assumption not made under normal circumstances, (i.e. when the variance is

constant and an unweighted least-squares fit is satisfactory). A future report will attempt to

determine reliable error diagnostics for all parameter estimates with variable Tcp.

I
Change-Point Model Summary

| #

In summary, a rigorous procedure for determining the change point for a general four

parameter linear change-point model of energy use has been presented and applied to a

case study grocery store. It is shown that determination of the change point by

minimizing RMSE resulted in a change point 2.3 F lower than the visual estimate

reported earlier. For the case study data, it is shown that the four parameter model

provides a comparable fit to PRISM CO above the change point, but provides an RMSE

of 169.2 kWh/day vs 277.8 kWh/day provided by PRISM CO below the change point.

Furthermore, the residuals of the four parameter model were shown to be randomly

distributed. Standard errors were obtained for the model parameters after performing a

weighted least squares analysis to eliminate heteroskedasticity due to differences in

RMSE in the cooling and base-level regimes. The four parameter model appears to

provide a highly satisfactory model for the electricity use of the case study grocery store.
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A Change-Point Principal Component Analysis (CP/PCA) Model

Numerous investigators have attempted to use multiple linear regression analysis to

develop improved models of building energy consumption. These attempts have often

been frustrated by the significant coUinearity between the predictors used. Principal

Component Analysis (PCA) has been used to tackle similar problems for some time by

climatologists and more recently by Hadley and Tomich (1986) to examine influences on

heating energy consumption in residences. This approach appears promising as a way of

combining physical models and insight with measured data to achieve improved

empirical models for determining retrofit sayings.

I
The CP/PCA model described in this section combines the change point methodology

described in the last section with the flexibility to incorporate other variables besides

temperature which may affect electricity consumption. Temperature, humidity, solar

radiation, and sales are regressed against electrical consumption for data from each of the

two segments of the electrical consumption versus temperature line shown in Figure 6.6.

If standard multiple regression were used, the variances in the estimates of each

regression coefficient would be large because the "independent" variables are highly

correlated. PCA is a mathematical transformation that removes this correlation and

decreases the error in the regression parameters. This improves our confidence in the

parameters when used as predictors for a new set of data. The trade-off that PCA

imposes for decreased parameter error is a less accuracy fit (R.2) to the original data set.

The PCA Method

Standard Multiple Linear Regression (MLR) may suffer from significant stability

problems when predictor variables in the regression analysis are intercorrelated. The

coUinearity of the variables will cause the variances of some of the estimated regression

coefficients to be quite large, resulting in an unstable and misleading estimate of the

regression equation.

The PCA method transforms the original variables into an uncorrelated set of

orthogonal variables that are linear combinations of the original variables (the

mathematical details of this transformation are described at length in Jolliffe [1986]).

Together these new variables, called principal components (PCs), retain all of the

information found in the original variables.
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The PCs can be mathematically ranked according to their ability to "explain" variance

in the data set. A PC with sufficiently low variance rank can be eliminated from the data

base without losing a significant amount of information. It is advantageous to eliminate

PCs with low variance rank to increase the stability of the model. Most authors suggest

70 - 80% as a minimal level of the generalized variance explained by a PCs (see Jolliffe

[1986], Section 6.1). j

While the importance of a PC can be judged using its variance rank, there is another -

and sometimes conflicting - measure of the importance of a PC : its merit as a predictive

variable. The goal is to use the minimum number of PCs while maximizing the

predictive ability. That is, deleting a well-chosen PC will greatly reduce the standard

error of the regression coefficients of the original variables. The trade-off is that this

statistically stable model will not fit the given data quite as well as the unstable standard

MLR model, so deleting PCs must be done with care. If none of the PCs are deleted, the

resulting regression equation is equivalent to the standard MLR model.

PCA Applied To The Grocery Store

I
Variables which could plausibly influence electrical consumption and for which data

are available are temperature, humidity, solar radiation, and sales. These data were

available for 191 days between June 1989 and May 1990.
j

Dry-bulb temperature is the dominant non-scheduled predictor of changes in

electricity consumption for most buildings. Ambient specific humidity is a major

contributor to the latent load in buildings when there is excess moisture in the outdoor air

that must be removed at the cooling coils. Enthalpy was tried as a combined measure of

temperature and humidity, but separate treatment of these variables proved superior. The

case study building has only a small amount of glazing, but as a single story building has

a large horizontal roof exposure; consequently, horizontal solar radiation is a logical

predictor. Sales data is plausibly correlated with door openings on refrigeration cases,

and other restocking activity as well as internal gain from occupants; so it was also

tested as a predictive variable.
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Cooling Regime Model

For the range of temperature data above the change-point temperature (which

includes space-cooling, refrigeration, and base-level electrical loads), the

intercorrelation between temperature, solar gain and humidity was great enough to

consider a PCA approach. In addition, these variables were all significantly correlated

with electrical consumption, confirming their predictive value. The correlation between

electricity and sales was insignificant, with a correlation coefficient of -0.07. Sales

would thus contribute only "noise" to the model and so was dropped from consideration.

For these reasons, electricity consumption in the cooling regime was modeled as a linear

function of temperature, humidity and solar radiation. A PCA analysis was performed,

followed by a regression of electricity consumption against the resulting PCs.

I
As shown in Table 6.2, the first two PCs, PCI and PC2, have high variance ranks and

a collective variance rank (94.67%) well above the required 70%, whereas PC3 has a

low variance rank and contributes little to the collective variance rank. Because of this,

two models of electricity use were considered: as a function of all three PCs (Model 1),

and as a function of only PCI and PC2 (Model 2). Referring to Table 6.3, note that PC3

can be deleted with a negligible drop in the R^ statistic, and only a 5.33% drop in the

variance rank. Moreover, PC3 has an unstable regression coefficient: its standard error

is more than 50% of the coefficient itself. For these reasons, the optimal solution for our

modeling problem in the cooling regime is to express electrical consumption as a linear

function of the first two PCs only:

!

E = 482.2O(PC1) + 106.41(PC2) + 9349.12 (1)

I
While this regression equation does not give the best fit to this particular data set, it is

more stable than a MLR fit, and hence, we can be confident of its reliability with a new

set of data. By dropping PC3, the stability of the model has been improved, which

should result in a better predictor of future electrical consumption.
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Table 6.2; Principal Components in the Cooling Regime. The first three entries of each
column define the eigenvector V( associated with the given PC.

Table 6.3; Cooling Regime regression summary. Note that Model 1 is equivalent to the
standard MLR model since none of the PCs are deleted.

The model for the cooling regime found using standard multiple linear regression

without PCA is

E = 71.71(temp F) + 1.48(solar W/m2) + 36001(sph lb-mois/lb-air) + 2838.55 (2)
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where daily average values are used for all predictive variables. Referring again to Table

6.3, note the significant standard errors of the standard MLR model's regression

coefficients. These large standard errors reflect the high collinearity between the

variables, and indicate instability in the MLR model. The PCA model (Model 2) has

substantially better stability, while maintaining a goodness-of-fit competitive with the

standard MLR model. Further insight into the PCA model is gained by a transformation

of PC1 and PC2 back into the physical variables, which yields

I
E = 54.90(temp) + 2.55(solar) + 59227(sph) + 3666.68 (3)

! u

It is interesting that the importance of the solar and humidity variables is nearly doubled

in the PCA model.

The Refrigeration Regime Model

!

The regime below the change-point temperature contains refrigeration and base-level

electrical loads, with the refrigeration loads being temperature dependent. Among the

133 days in the complete data set, 24 fell into this regime. Proceeding as in the cooling

regime, the correlation between each of the potential predictor variables was examined.

As before, both humidity and temperature appeared to be significant (see Table 6.4).

Table 6.4; Correlation coefficients for the refrigeration regime
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Table 6.5; Principal Components in the Refrigeration Regime. The first three entries of
each column define the eigenvector Vi associated with the given PC.

Table 6.6; Refrigeration Regime 24 day regression summary. Model 1 is equivalent to

the standard MLR model since it uses all three PCs.

In contrast with the cooling situation, solar gain was statistically insignificant in the
refrigeration regime. This makes sense physically because the space-cooling systems are
not active in this regime; only the refrigeration systems, lights and equipment are
consuming electricity. Heating is primarily provided by a constant volume system with
heat recovery from the refrigeration system and so has a negligible impact on electrical
consumption. Thus for both statistical and physical reasons, solar was not included as a
predictor.
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On the other hand, sales — an indicator of occupancy gain, (i.e., opening and closing

of refrigeration doors, etc.) appears to be moderately correlated with electrical use in the

refrigeration regime (0.56) and was consequently included as a predictor variable. This

flip-flopping of the significance of sales and solar gain between the regimes is

noteworthy, and further substantiates the usefulness of the change-point data separation.

I
From this analysis, it was determined that electricity use in the base-level regime

could best be modeled as a linear function of temperature, humidity, and sales. The

high correlation between humidity and temperature (0.69) made a PCA analysis

worthwhile. Of the three PCs, PCI was clearly most important in variance rank and R2

contribution (Table 6.5). The predictive power of PC3 was also significant, so it was

also included as a variable in the two models considered. Observe that PCI and PC3

have a collective variance rank of 73.34%, a satisfactory level according to our criterion.

Model 1 is equivalent to the standard MLR equation since it uses all three PCs. It has

a variance rank of 100%, but the (85%) standard error of PC2 indicates high statistical

instability (Table 6.6). In addition, the R2 contribution of PC2 is quite small (see Table

6.5). The statistical instability of Model 1, which is largely due to PC2, makes it an

unsatisfactory model.

I
Model 2, using only PCI and PC3, looks more promising. Its Root MSE and R2

statistic are comparable with those of the standard MLR model, however, Model 2 does

not suffer from the standard MLR model's severe statistical instability (note in particular

that the standard error of the humidity coefficient is approximately seven times the

coefficient itself). If the PCs are transformed back into the physical variables, Model 2

is

E = 33.14(temp) + 2.96(sales) + 5347.85(sph) + 5320.70 (4).

A Comparison of the Goodness-of-fit In The Two Regimes

The reader may have noticed that the PCA model has a significantly higher R2 value

in the cooling regime (.7403) than in the refrigeration regime (.5615). This is not

disturbing, for the electrical consumption in the base-level regime is relatively flat, and a

low R2 value is expected when the dependent variable is near-zero slope (Draper and
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Smith 1981). For this reason, we argue that an acceptable R^ value depends on the

temperature regime.

Another way to compare the fits is by examining the model's RMSE in each regime.

A smaller RMSE indicates a more precise prediction, and is independent of the flatness

of the consumption. The refrigeration-level's RMSE (157.38) is quite low, indicating a

good fit. The somewhat larger RMSE in the cooling regime (378.76) reflects the greater

volatility of the electrical consumption in this regime. Events that are difficult to

measure, e.g. leaving store doors open for deliveries, affect the electrical consumption

much more in the cooling regime, and consequently raise the RMSE in this temperature

range.

Discussion Of PCA Model

I
The change-point PCA model has several advantages over standard MLR for the case-

study data. In the case of significantly correlated predictor variables, a transformation of

these variables into uncorrelated PCs, followed by the elimination of unstable PCs,

allows construction of a more statistically stable predictor model. This method sacrifices

a small drop in the model's explanation of the current data set in return for greatly

reducing the high variability of the parameter estimates often seen in a standard MLR.

The use of a change point enables better selection of predictor variables. For

example, solar radiation was a significant influence on consumption in the cooling

regime, but would only have contributed "noise" to the model in the refrigeration

regime. Temperature was an important linear predictor in both regimes, but its influence

changed dramatically at the change point, a phenomenon that the change-point method

incorporated into the model.

!

While a CP/PCA model is not trivially simple, its construction is systematic.

Depending on the relationship between consumption and temperature, the optimal data

split into two regimes, can be easily found using the four parameter change point model

(Ruch and Claridge 1991). A standard statistical software package will do the PCA

analysis, and then the PCs to be dropped can be chosen according to clear criteria: the

PC's variance rank, contribution to the model's R2, and the standard errors of the

regression coefficients. ,
I
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A Load Shape Methodology For Non-Weather Dependent Electricity Use
I

This section summarizes a methodology to identify typical day types for a building

using monitored end-use data for non-weather dependent electric load (i.e. lights,

equipment, etc.). Load shapes can be generated from the data for each typical day type

and used as schedules in building energy simulation models such as DOE-2 and BLAST.

These simulation models can then be used to estimate retrofit savings.
I

To start the process, one year of hourly non-weather dependent electric consumption

data (i.e. lights, equipment, etc.) is preferred. Calculate the mean and the standard

deviation at each hour for the entire data set (i.e. 24 separate calculations). The

regularity index, given by Eq. 1, provides a good measure of the lack of regularity within

a sample.

lOOxStandard Deviation
~ Hourly Mean

The choice of the maximum acceptable RI depends on how much variation is permissible

within a given day type. It is felt that 10% variation is acceptable for buildings

considered in this report. If the RI for all 24 hours stays within a pre-determined value

of X, then the building is classified as 7-day type (i.e. all seven days of the week have

identical load shape).

1

In addition, if the mean across each hour for the day type is identical, then the

building is classified as continuously operating type. If the building is not a 7-day type,

the total data set is then sorted into day type groups, with days in each group having

similar consumption patterns.

One way to sort the data is by comparing daily consumption patterns. To accomplish

this the hourly data are summed to daily data. The mean daily consumption and standard

deviation are then calculated and the days are divided into three groups: (a) LOW_D,

which are days with daily consumption less than average daily consumption minus 10%

of one standard deviation, (b) HIGH_D, which are days with daily consumption greater

than average daily consumption plus 10% of one standard deviation and (c)

NORMAL_D, the remaining days. Once the three groups are formed, typical day types

are identified within each group.
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For a typical commercial building the days in the LOW group would generally be:

weekends, holidays, vacation days, special events and erratic days. The next step is to

sort the days in the LOW group into weekdays (WD) and weekends (WE). This is done

by calculating the model using a calendar time line. Next, every day in the weekday

group is checked to determine if it is either a holiday (H), a vacation day (V), or a special

event (S). This is performed by comparing time line dates to a pre-assembled list of

known holidays. The days which is not a holidays, vacations or special events, are

classified as erratic events (E). A flag (H, V, S, & E) is then attached to each day in the

weekday group. Next, the weekday group is sorted into Mon. through Fri. and the

weekend group is sorted into Sat and Sun. bins. Then the mean and the standard

deviation for each hour are calculated for all bins.

At this stage we have seven load shapes (Mon. - Sun.) for the LOW group. Using a

similar procedure, the data can then be further grouped as LOW_LOW_XX,

LOW_HIGH_XX and LOW_NORMAL_XX where XX can be WD, WE or a

combination of days. If groups still remain that do not satisfy the RI criteria, another

level of groups may be required.

The NORMAL-D and HIGH_D groups can be similarly subdivided. Load shapes

for all of these groups can then be generated.

Dav-Tvpe Methodology Applied To ZEC

This procedure has been applied to the ZEC with good results. Those results are

presented in chapter four.
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CHAPTER 7

Technology Transfer and Energy Saving Potential

The methodologies developed and tested in this project have immediate application in

Texas LoanSTAR Program. This program is an eight year, $98 million revolving loan

program, funded by oil overcharge money which provides energy conservation retrofits

in Texas state, local government and school buildings (Turner, 1990). The program

began in 1989 and the first retrofits were installed in the latter part of 1990. Institutions

and agencies participating in the program must repay the conservation loans according to

estimated savings from an energy audit.
!

A statewide energy Monitoring and Analysis Program (MAP) has been established as

part of the LoanSTAR Program. The major objectives of the MAP are to: 1) verify

energy and dollar savings of the retrofits, 2) reduce energy costs by identifying

operational and maintenance improvements, 3) improve retrofit selection in future rounds

of the LoanSTAR Program, and 4) initiate a data base of energy use in institutional and

commercial buildings in Texas. Texas A&M is the prime contractor for the MAP, so any

methodologies developed in this ERAP Project will be immediately implemented within

the LoanSTAR MAP.

Improved models should provide better estimates of the energy savings achieved by

the retrofits, but the energy savings from this project will come from improved abilities

to use the monitored data from the buildings to identify and diagnose operational

improvements. Previous work (Haberl and Claridge, 1987; Haberl and Vadja, 1988;

MacDonald and Wasserman, 1989; Haberl and Komor, 1989) has shown that careful

analysis of monitored building consumption data can identify operational changes which

lead to energy cost savings of 5-15%. The LoanSTAR Program hopes to achieve

significant operational savings as a result of data analysis in addition to those from the

capital measures installed. This will be the first large scale application of these

techniques, so average savings are expected to be somewhat lower than those achieved in

heavily analyzed pilot studies. However, the analysis developments resulting from this

ERAP project are expected to augment the savings which would have been identified

without this project.
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Energy savings due to this project are conservatively estimated as 2.6x10^2 Btu by

the year 2000, considering only the buildings which will participate in the LoanSTAR

Program. Details of this calculation are provided in Appendix A.
I

Additional savings can be expected from implementation of these techniques in other

public and private sector buildings. There is a very high level of interest in the

techniques and software being developed in both the private and public sectors. Over 70

inquiries have already been received. Individuals and groups requesting information as

of December 1,1990 are shown in Appendix B.
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CHAPTER 8

Future Plans

During the next year, effort will focus on three areas:
I

1) Examination of PCA methodology on buildings with submetered data;

2) Development and implementation of systematic methods for identifying
operational improvements in buildings; and

3) Examination of the change-point model in at least one more building and
identification of building/system types where this approach is expected to
be useful.

The overall progress on this project is meeting or exceeding the milestone descriptions

and dates listed in the Project WorkPlan. This report summarizes completion of the

following tasks:

1) Select preliminary SRDLP buildings for analysis;

2) Select and instrument one grocery store and one nursing center;

3) Develop preliminary models for energy use of buildings in task 1 and 2;

4) Test predictive ability of models of Task 3;

5) Assemble end-use data for preliminary buildings;

6) Select and analyze additional buildings;

7) Refine predictive models based on data from Task 6.

In addition, major progress has been made on Task 11 "Develop generalized

predictive model framework" and the stated milestone 13 "Publication of at least three

papers at conferences and in journals" by 1/93 has already been achieved with

publication of three conference papers and acceptance of three more for publication in

March, 1991.
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Figure 3.1; PRISM model types. One-, three-, and five-parameter models of energy use
as implemented in the Princeton Scorekeeping Method (PRISM) are shown.
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Figure 3.2b; Electric utility billing history for Austin nursing home.
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Figure 3.2a; Electric utility billing history for Temple nursing home.
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Figure 3.3b; Electricity consumption vs. cooling degree days for Austin nursing
homes. PRISM CO model for cooling seasons months from April, 1989 to October,
1989.
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Figure 3.3a; Electricity consumption vs. cooling degree days for Temple nursing
home. PRISM CO model for cooling season month sfrom March, 1988 to August, 1989.
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Figure 3.4; Grocery store daily electricity use vs. average daily ambient temperature

for March 1988 to April 1989.
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Figure 3.5; Measured, predicted, and residual daily electricity use for the grocery store
for April 1989.
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Figure 3.6; Daily chilled water use vs. ambient temperature for the ZECfrom
September 1,1989 to May 23,1990.
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Figure 3.7; Daily hot water use vs. ambient temperature for the ZEC from September
1,1989 to May 23,1990.
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Figure 3.8; Hourly lights and receptacles electricity consumption for the ZEC from
August 1,1989 to July 31,1990. The day of the year forms the x-axis and the hour of
the day forms the y-axis. Hourly lights and receptacles electricity use is displayed as the
height above the x-y plane.
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Figure 3.9; Measured, predicted and residual hourly whole-building electricity use for
the ZEC for February, 1990. The day of the year forms the x-axis and the hour of the
day forms the y-axis. Hourly whole building electricity use is displayed as the height
above the x-y plane.
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Figure 3.10; Daily electricity use vs. ambient temperature for A&M Consolidated
High School from January 1,1990 to May 8,1990. Data labels are: (0-1) weekends,
(2-6) weekdays, and (#) holidays. Electricity use is much more dependent on scheduling
than on ambient temperature.
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Figure 3.11; Hourly electricity use for A&M Consolidated High School from October
1,1989 to May 8,1990.
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Figure 4.1a; Predicted and measured monthly electricity use for the Temple nursing
home.

Figure 4.1b; Predicted and measured monthly electricity use for the Austin nursing
home.
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Figure 4.2; Predicted and measured daily electricity use for the grocery store.
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Figure 4.3; Predicted and measured daily chilled water use for the ZEC.
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Actual & Predicted Hot Water Use
Zachry Engineering Center

5/24/90-10/10/90

Figure 4.4; Predicted and measured daily hot water use for the ZEC.
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Figure 4.5; Number of days in the five primary day types for the ZEC.
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Figure 4.6; Actual, predicted and residual lights and receptacles electricity use for the
ZEC. A graphical analysis such as this can help identify changes in operating and
maintenance practices. The positive residuals occur ing between days 300 and 270
resulted from the removal of a computer center from the ZEC.
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Figure 5.1; Grocery store estimated peak electricity use. This figure shows the
estimated breakdown of electrical systems in the store. The breakdown is for the peak
electric demand of the store which could occur during refrigeration defrost cycles.
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Figure 5.2a; Estimated Temple nursing home peak electricity use by function.

Figure 5.2b; Estimated Temple nursing home peak electricity use by area.
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Figure 5.3 A&M Consolidated High School estimated peak electricity use. This figure
shows the estimated breakdown of major electrical systems in the school. It does not
include smaller miscellaneous loads.
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Figure 5.4; ASEAM estimate of annual Temple nursing home electricity use.
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Figure 5.5; ASEAM estimate of annual A&M Consolidated High School electricity

use.
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Figure 5.6a; PRISM estimate of Temple nursing home base-level and cooling

electricity use.

Figure 5.6b; PRISM estimate of Austin nursing home base-level and cooling

electricity use.
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Figure 5.7a; Measured breakdown of ZEC electricity use. Misc. Electric includes all
"plug in" loads at wall receptacles.

Figure 5.7b; Measured breakdown of the ZEC thermal energy use. Hot and chilled
water are supplied by the Texas A&M physical plant.
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(J.I; Generalized four parameter models of energy use with positive and

negative slopes.
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Figure 6.2; Generalized change-point model and parameters.
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Figure 6.3; Change~point model and PRISM CO model fits to grocery store data.
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Figure 6.4; PRISM CO model residuals for base-level regime of the grocery store.
Note the trend of residuals increasing with temperature.
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Figure 6.5; Change-point model residuals for refrigeration regime of the grocery
store. Residuals are nearly normally distributed.
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Appendix A
ERAP Energy Savings Worksheet
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ERAP ENERGY SAVINGS WORKSHEET

TEN YEAR TOTAL BTU'S SAVED

2 . 6 X 1 0 1 2

•• Time correction determined by date of
proof of concept. Time correction adoption
factors determined by multiplying adoption
factors by time correction. (See tables)
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REFERENCES AND SOURCES OF ESTIMATES

ERAP ENERGY SAVINGS WORKSHEET

Targeted BTU's:
Commercial sector electric consumption estimates from Public Utility Commission
of Texas, "End-Use Modeling Project Interim Report" February 1989.

Savings Factor:

10% savings typical based on Haberl & Claridge, ASHRAE Trans 1987. We estimate
ERAP work will inprove from 10% to 11% for incremental savings of 1%.

Feasibility Factor

Concept will be implemented beginning in 1991. We assign 0.5 for 1991, reading
1.0 in 1993.

Penetration Factor:

The penetration factor is based on the energy consumption of buildings expected
to participate in the Texas LoanSTAR Program. Additional use of techniques by
private sector may improve this impact.

Adoption Factor:

Assumed to be 1.0 for LoanSTAR buildings where contract is in place to implement
these techniques.

Notes:
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Appendix B
Requests for Information

About Energy Analysis Methods and Software
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REQUESTS FOR INFORMATION
ABOUT ENERGY ANALYSIS METHODS AND SOFTWARE
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