Z-TR-90/12-02

Improved Analysis Methods For Retrofit Savings
And Energy Accounting

Progress Report

Energy Research and Applications Program
Project No. 227

Submitted To:

The Texas Higher Education Coordinating Board:
Research Programs Division
Austin, Texas

Prepared by:

David E. Claridge, Ph.D., P.L.
Jeff S. Haberl, Ph.D., P.E.
Kelly Kissock, Research Assistant
David Ruch, Ph.D.
Srinivas Katipamula, Ph.D.

Lu Chen, Research Assistant
Jinrang Wang, Research Assistant

Energy Systems Laboratory
Mechanical Engineering Department
Texas A&M University

December 5, 1990



Executive Summary

This report summarizes progress through November, 1990 for ERAP project No. 227,
"Improved Analysis Methods for Retrofit Savings and Energy Accounting." The major

objectives of this project are to:

1) determine the energy and dollar savings from energy conservation
retrofits;
2) reduce energy costs by identifying and correcting operational and

maintenance problems at retrofitted facilities;

3) identify savings from individual retrofits to help improve future retrofit
selection; and

4) initiate an end-use data base for commercial and institutional buildings to
facilitate the comparison and exchange of building energy use
information.

A grocery store, two nursing homes, an institutional building, and a high school have
been selected as preliminary case study buildings. All of the buildings except the nursing
homes have been instrumented to provide sub-metered and total energy use data.
Additional buildings in the Texas LoanSTAR program are also instrumented and are
being analyzed.

Four preliminary models to predict energy consumption in the case study buildings
have been developed and tested. The Princeton Scorekeeping Method Cooling Only
(PRISM CO) model is an ambient temperature dependent regression model that provides
a good fit (R? = 0.89 and R? = ().97) to the nursing homes' electricity consumption during
cooling season months. A four parameter regression change-point model to predict daily
electricity consumption at the grocery store has an average daily error of only 1.7% for
the period analyzed. Ambient temperature dependent regression models predict hot and
chilled water consumption at the institutional building with goodness of fit statistics R? =
0.90 and R2? = (.87 respectively. A regression model based on the institutional building's

operating hours predicts electricity consumed by lights and receptacles.

The predictive ability of the preliminary models has been tested by comparing
predicted energy consumption to measured energy consumption. Models that can



accurately predict building energy consumption are essential to the effort to determine
retrofit savings and identify and correct operational and maintenance problems. PRISM
CO predicted electricity consumption during the cooling months at the nursing homes
within 3.3% and 6.3% of measured consumption for the period from April to September
1990. The four parameter change-point model predicted daily electricity consumption at
the grocery store for the period from January 1 to October 10, 1990 such that the average
residual between measured and predicted electricity consumption was 3.7%. Hot and
chilled water consumption at the institutional building was predicted within 5.7% and
0.2% of measured consumption for the period from May 24 to October 10, 1990. The
scheduling model for electricity consumed by lights and receptacles at the institutional
building had residuals between predicted and measured consumption of less than 15% of
the maximum electric demand for the period from August 1989 to August 1990.

In addition to predicting energy use, the end-use breakdown of energy at the case
study buildings was estimated using four methods. Peak electric demand was
apportioned to different energy using systems by recording energy consumption data
from the energy using equipment. An engineering simulation model, A Simplified
Energy Analysis Method (ASEAM), estimated the annual energy use break-down at the
high school and a nursing home. PRISM CO estimated base-level and temperature
dependent energy consumption at the nursing homes. Finally, sub-metered energy
consumption data from the institutional building provides the most accurate energy end-

use breakdown.

Three new models promise to be statistically rigorous and applicable to a wide range
of buildings. A four parameter change-point model that determines model parameters by
minimizing mean square error improves the previous four parameter change-point model.
A principle component analysis model improves parameter stability compared to
standard multiple regression models when the independent variables are correlated. A
methodology to identify typical day types for non-weather dependent loads can be used
to quickly and accurately develop calibrated input decks for energy simulation models
such as DOE-2 and BLAST. Three journal papers that describe these models have been
accepted for publication in the Solar Engineering 1991 - Proceedings of the Joint
ASME/ISES International Solar Energy Conferencel991.

The methodologies developed in this project have immediate application in the Texas
LoanSTAR program as part of the effort to determine retrofit savings. Energy savings
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from this project are conservatively estimated as 2.6 x 10!2 Btu/yr by the year 2000 due
to improved retrofit selection and identification and correction of operational and
maintenance problems. Over 70 requests for information about energy analysis methods

and software have been received.

In the next year, efforts will focus on extending the PCA and change-point model
analysis and developing systematic methods for identifying and correcting operational

and maintenance problems.
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CHAPTER 1
Introduction

Energy use in commercial buildings amounts to about 13% of all U.S. energy use
(EIA, 1986). Energy saving retrofits have proven effective at reducing energy related
operating costs for building owners and at moderating total U.S. energy consumption
growth. A study of over 1,700 building energy retrofits reports a median annual energy
savings of 18% of whole-building energy usage with a median payback time of 3.1 years.
In over one-half of the projects, whole-building energy use continued to decrease in the
years following the retrofit (Greely et al. 1990).

While these results are impressive, fewer than one in six predictions of energy savings
came within 20% of measured results (Greely et al. 1990). Reasons for the difficulty in
predicting energy savings include the diversity of potential improvements, the diversity
of buildings in general, and the high rate of change in the bl.{ilding's use and weather
conditions (MacDonald and Wasserman, 1989). The task of predicting building energy
consumption could be improved by sharing information about retrofits and building
energy use. However, the great diversity in building types, functions, energy using
systems, and operating conditions makes comparing the energy use of different buildings
even more difficult than predicting an individual building's energy use. Thus, many
practitioners currently rely on "their own sense of what constitutes an energy efficient
building" (MacDonald and Wasserman, pg. 2, 1989) and "professional judgement"
(Greely et al., pg. 3, 1990 ).

It is apparent that present methods to predict baseline energy use and retrofit energy
savings can be significantly improved. The Department of Energy has identified retrofit
performance data as a key research need (MacDonald, et al. 1988). With this in mind,

the major objectives of this project are to:

1) determine the energy and dollar savings from energy conservation
retrofits;
2) reduce energy costs by identifying and correcting operational and

maintenance problems at retrofitted facilities;

3) identify savings from individual retrofits to help improve future retrofit
selection; and
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4) initiate an end-use data base for commercial and institutional buildings to
facilitate the comparison and exchange of building energy use
information.

This report summarizes the first year's progress towards meeting these goals.

Current Methods to Determine Retrofit Energy Savings

Energy savings are often calculated by direct comparison of pre- and post-retrofit
energy consumption. The advantage of this technique is its simplicity. However, direct
comparison ignores changes in weather, occupancy, and energy using equipment which
may significantly alter post-retrofit energy consumption and estimated savings.

Weather adjusted energy consumption estimates have been shown to differ from
measured energy consumption by up to 12% of pre-retrofit consumption (Greely et al.
1990). Since this is comparable to the median energy savings of 18%, it indicates that if
not accounted for, changing weather conditions may obscure or amplify estimated

savings.

Current single parameter models which consider weather to determine energy savings
are best suited to buildings whose energy use is envelope dominated and dry-bulb
temperature driven. However, many buildings are influenced by other environmental
parameters besides ambient temperature such as latent cooling load and solar-driven
influences. To investigate these buildings, we are considering models which also account
for dry-bulb temperature, ambient humidity, solar radiation, and wind speed, and other
non-environmental factors.

Changes in energy using equipment can also affect retrofit savings estimates. For
example, office information equipment (computers, typewriters, copiers, etc.) has been
shown to equal or surpass the lighting load in some new commercial buildings (Norford,
et al. 1988). If unaccounted for, increased use of this type of equipment can cause

significant underestimation of energy savings.

Operational and system parameters influence the energy use in many buildings which
are eligible for energy conservation retrofits (Haberl and Claridge, 1987). Operational
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parameters are occupant related and change frequently, such as occupancy and custodial

schedules. System parameters are equipment settings, such as temperature setpoints and

economizer damper settings. Operational and system parameters can also be modeled by
dual-state models that "switch" between "occupied” and "unoccupied" periods.

Our objective is to develop models which consider these effects and improve our
ability to predict the energy consumption of a wider variety of buildings. The new
models are based on a combination of measured data, statistical analysis, and engineering
design methods. Our approach can be called a "case study" approach, since the models
are developed for selected instrumented buildings and then generalized to other
buildings.

What's Next

The following chapter describes the buildings that are currently being analyzed and the
buildings to be analyzed in the next phase. Next, we report on preliminary models which
have been developed for selected buildings. The fourth chapter examines the preliminary
models' ability to predict monthly, daily, and hourly energy consumption by comparing
predicted to measured energy use. Chapter five reports the energy end-uses for the
buildings being analyzed, followed by a chapter which presents the methodology of the
change-point, principle component analysis, and scheduling models currently being
explored. We then summarize with a market position and technology transfer chapter

and close with a discussion of future directions.
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CHAPTER 2
Buildings List

This chapter describes the first year, case study buildings, the LoanSTAR buildings
for which metered data is available, and buildings being considered for future research.
Models are being developed and tested on buildings in the first year case study group.
These models will be applied to similar buildings. The pool of LoanSTAR buildings
being monitored is a readily accessible group of buildings to which case study results
will be applied, tested, and validated. The additional LoanSTAR buildings listed in the
third section of this chapter are being considered for new model development and testing.

First Year Case Study Buildings

The primary buildings being analyzed are listed in Table 1.1. The grocery store and
nursing homes are parts of commercial chains operating throughout the south central
United States. A&M Consolidated High School and the Zachry Engineering Center
contain systems which are commonly found in similar buildings throughout the U.S. A
short description of each of these buildings follows.

Buildings Location Floor Area(ft2) Annual Monitored Data
Energy Costs Monthly Hourly

Grocery store College 40,000 $205,000 39 39
Station

Nursing home Austin 58,100 $97,700 38 0

Nursing home Temple 31,000 $45,000 31 0

Zachry College 324,400 $690,300 18 18

Engineering Station

Center

A&M College 209,600 $227,300 13 13

Consolidated Station

High School

Table 2.1;  Original buildings analyzed, Texas location, floor area, annual energy

costs, and number of months of monthly and hourly energy data currently available.

Case Study Grocery Store

The grocery store is located in a small shopping center which houses eight businesses.

It is open 24 hours per day, every day of the year except Thanksgiving and Christmas.
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The building is a single story structure with 16 foot high ceilings and has a total area
of 40,000 ft> (160 by 250 feet). The front 35,000 ft? of space is used for product display,
and the rear 5,000 fi? holds the space conditioning equipment, the walk-in coolers, and

the meat and product preparation areas.

The grocery store shares two interior walls with other businesses on the northwest and
southeast sides although the adjacent spaces are currently unconditioned. The northwest
and southeast walls are 160 feet in length and are constructed of 6-inch poured concrete,
3.5 inches of interior batt insulation and interior drywall. The northeast and southwest
walls are 250 feet long. The northeast wall includes a 60-foot by 16-foot section of
glass. The entrance to the street is an L-shaped vestibule with automatic doors. The roof
is constructed of a lightweight metal deck which supports a 1-1/2 inch layer of foam
insulation, a 2-inch concrete slab and a built-up roof covered with light colored

aggregate.

The refrigeration system is the biggest energy using system in the store. It is
comprised of twenty R12 compressors in conjunction with 46 refrigeration and freezer
cases. The defrost cycle is controlled by 20 time clocks - one for each compressor. The
HVAC system consists of two 50 ton units for cooling. Heating is provided by heat
reclaim from the refrigeration system and is supplemented by natural gas duct heaters.
Natural gas is also used to provide hot water and for ovens in the delicatessen and
bakery.

Case Study Nursing Homes

The Temple nursing home is a 100 bed nursing home that was 80 per cent occupied
in early 1990. Approximately 40 staff members are present during the day and about 20
during the night. The facility operates 24 hours per day, 365 days per year. Full food

and laundry service are provided.

The single story, slab on grade building was built in 1970 and has an approximate
floor area of 31,000 fi2. Exterior walls consist of an eight foot lower section and a four
foot upper section. The windows are double glazed, gray glass and cover about 15% of
gross wall area. The building has a flat masonry roof with built up roofing and 6" of
fiberglass batt insulation.
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Most of the space conditioning is provided by eight roof-top air conditioning units.
Two of the roof-top units provide heat using electrical resistance heaters and six of the
units use natural gas for heating. Vapor compression cooling is used by all units.
Heating and cooling is supplemented by six small heat pumps located in individual

occupant's rooms.

The Austin nursing home is nearly twice as large: it is a two-story building with
approximately 58,000 & of floor area. Operational schedules and building
characteristics are similar to the Temple nursing home.

Space conditioning is primarily provided by 16 roof-top air conditioning units. Some
small window air conditioners and heat pumps supplement the roof-top units. All roof

top units provide electrical resistance heating and vapor compression cooling.

Case Study Institutional Building

The Zachry Engineering Center (ZEC) is a four-story (plus basement parking level)
building on the Texas A&M University campus with approximately 324,400 gross ft2 of
floor area. Major uses of the building include: 1) offices, 2) class rooms, 3) computer
rooms, and 4) laboratories. The building also includes hallways and a large atrium area
which serves as a common space. It is open 365 days per year, 24 hours per day.

The building is a heavy structure with 6-inch concrete floors and insulated concrete
walls. It is heated and cooled by a constant volume dual duct system. Hot water, chilled

water, and electricity are supplied by the central campus plant.
e St High ol

A&M Consolidated High School is a 209,605 fi2, two-story facility in College Station.
School is in session about nine months per year, with vacations in the summer months
and during portions of December and January.

The original building was built in 1970, with major additions in 1979 and 1982. It is

a primarily concrete structure with brick facia. During the 1982 renovation, the building

was reroofed and ceiling insulation was added.
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The building uses a combination of HVAC systems. Most of the building is serviced
by a constant volume reheat system using centrifugal chillers for cooling and both
electrical resistance and natural gas fired boilers for heating. Roof top units using vapor
compression cooling and electrical resistance heating provide space conditioning for

some class rooms. Electricity dominates energy cost at the school.
LoanSTAR Case Study Buildings

The energy analysis techniques being developed on first year case study buildings
will also be applied to selected buildings in Table 1.2. These buildings are currently
being monitored or will be monitored as part of the Texas LoanSTAR Program. The
Texas LoanSTAR program is an eight year, $98 million revolving loan program, funded
by oil overcharge money, for energy conservation retrofits in Texas state, local
government, and school buildings (Turner, 1990).

As part of this program, a statewide energy Monitoring and Analysis Program (MAP)
has been established. The program's first objective is to determine whether retrofits save
as much as estimated in audits. Another objective is to reduce energy costs by evaluating
a building's energy-using characteristics. Evidence from Lawerence Berkeley Laboratory
(Akbari et al., 1988, and Harrje, 1982), Princeton (Putt et al., 1988), Oak Ridge National
Laboratory (MacDonald et al. 1989), and the University of Colorado (Haberl and
Claridge, 1987) suggests the potential effectiveness of sub-metering large buildings with
major retrofits. The models described in this report are being developed to meet these
objectives. The buildings in Table 1.2 provide an readily accessible pool of buildings for
model testing and validation.
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Location Projected |Cost of #of | # of

Agency Name
Savings* [Monitoring* | Bldgs | Points
Texas A&M College Station | $411.1] $42.0 1 45
Texas Dept. of Health ustin $60.6 $22.4 5 7
MHMR -El Paso El Paso $17.1 $14.2 1 12
MHMR - Austin Hospital Austin $336.5| $11.0 1 5
MHMR - Austin School IAustin $1029] $20.0 1 3
MHMR - Terrel Terrel $343.7| $51.7 6 16
U.T. Arlington Arlington $352.2| $56.2 6 39
Texas A&M, Galveston Galveston $26.6 $27.0 9 8
U.T. Austin Austin $1493.5] $180.8 16 156
U.T. Medical Branch Galveston $1100.8] $87.3 8 26
U.T. Health Science Center [Dallas $283.5| $30.9 4 16
U.T. Dallas Dallas $118.4( $34.3 6 10
T.T. Health Science Center _ [Lubbock $333.3| $15.0 1 15
U.T. Health Science Center Houston $218.3| $32.7 2 12
U.T. Health Science Center San Antonio $110.9( $15.0 2 8
Univ. of North Texas IDenton $65.5 $7.0 1 7
[Capitol Complex Austin $500.0] $130.4 11 56
TOTALS: | $5074.8| $779.9 81 441

Table 2.2; Installations being monitored or having equipment installed in 1990 as part

of the Texas LoanSTAR program. * Amounts are in thousands of dollars. (O'Neal,

1990).

Additional Case Study Buildings

Buildings for which models may be developed and validated in the future are included

in Table 1.3. The Texas Technology University Health Center and a government

building at the Capital Complex in Austin, are currently enrolled in the LoanSTAR

program.
Health Center Texas Technology University Lubbock
Government Building Capital Complex Austin
Additional grocery stores Texas

Table 2.3; Additional buildings for analysis.
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CHAPTER 3
PRELIMINARY MODELS REPORT

Three preliminary models were tested for their ability to predict energy consumption,
including: the Princeton Scorekeeping Method (PRISM), temperature dependent models,
and scheduling models. The next section describes the Princeton Scorekeeping Method
(PRISM) and its application to two nursing homes and A&M Consolidated High School.
In the following section, a four-parameter segmented regression model is presented and
tested on the grocery store. The final section describes a scheduling model applicable to
Zachry Engineering Center and preliminary analysis of A&M Consolidated High School.

The amount of energy saved by a retrofit is determined by comparing a building's
post-retrofit energy consumption to an estimate of how much energy the unretrofitted
building would have consumed during the same period. Post-retrofit energy
consumption is easily determined from the buildings utility bills. The energy prediction
methods described in this chapter will be used to estimate how much energy a building

would have consumed if it had remained in its pre-retrofit condition.

Accurately predicting building energy consumption can also aid in identifying
operational and maintenance problems in buildings. An expert system developed by
Haberal and Claridge for this purpose reduced energy consumption by 15% at a campus
recreation center (Haberal and Claridge 1987). This method compared the building's
measured and predicted energy use and alerted management whenever large deviations

occurred.

The models described in this chapter are appropriate for determining retrofit savings
and identifying operational and maintenance problems in buildings. For this reason, they

are important tools toward achieving the projects objectives.
Princeton Scorekeeping Method

One of the most widely accepted model to determine retrofit savings is the Princeton
Scorekeeping Method (Fels 1986). PRISM is a statistical procedure originally
developed to provide a weather-adjusted index of energy consumption in residences.
PRISM requires whole-building energy consumption data for a building and average
daily temperatures at the location. It produces a weather-adjusted Normalized Annual
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Consumption (NAC) that is composed of three primary parameters which describe
heating-related and non-heating-related consumption. These factors are a slope
(kWh/day-F), base-level consumption (kWh/day) and balance-point temperature (F).
Variations of PRISM are available which consider cooling energy consumption as well

as heating.

PRISM has been adopted as one baseline technique for buildings which are
appropriate for analysis with one-, three- and five- parameter segmented linear, change-
point models. The versions of PRISM which are available or under development include

one-, three- and five- parameter segmented regressions as shown in Figure 3.1.

The one-parameter model is typical of monthly electrical use when heating and
cooling influences are absent. It is also typical of sub-metered daily electricity
consumption data from many buildings expected in the program. One additional step
may include sorting into weekday/weekend data since non-weather dependent use is

highly dependent on scheduled use.

The three-parameter PRISM models represent the classic Heating Only (HO) and
Cooling Only (CO) models and have been used with some success on the nursing homes.

A five parameter, PRISM Heating and Cooling model (HC), is operational at
Princeton. This is a better model for buildings that use one fuel for heating, cooling and
base-level purposes. Future analysis will determine the effectiveness of applying this

model.

PRISM Models of Nursing Home Electricity Use

The PRISM CO model was applied to monthly electricity consumption data at the two
nursing homes. The electric billing data for both facilities are shown in Figure 3.2.
Since some heating influence is visible in both data groups, the PRISM cooling only

model was used with winter data omitted.

The PRISM CO model coefficients for both nursing homes are listed in Table 3.1.
The Temple model provides R’=0.89 with a cooling balance-point temperature of 66.8
F. The model is based on fourteen months of electric consumption data. The Austin

model provides R*= 0.97, a cooling base temperature of 74.2 F and is based on seven
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months of data. The Austin model's higher R? results from having fewer data points than
the Temple model and does not necessarily imply a better fit. The normalized annual
consumption estimated by PRISM is not significant in this case since winter months were

not included in the data set.

Electricity consumption versus cooling degree days per day and PRISM's regression
estimate for these facilities are shown in Figure 3.3. The PRISM CO model appears to
be an adequate estimator of electricity use at both nursing homes during the cooling

Season.
Model: T>Ty,y: Elec/Day =a+ b(T-Tya))  T<Thy,: Elec/Day = a
Toal (F) a b Nac R2
(kWh/day) (kWh/day-F) (kWh/yr)
Temple 66.8 1262 54.02 607,250 .89
Austin 74.2 2762 125.83 1,172,688 97

Table 3.1; PRISM coefficients for two nursing homes.

Other Temperature Dependent Models

PRISM is a segmented, regression model which is appropriate for buildings which
exhibt temperature dependencies. Certain buildings may not be well described by
PRISM. For example, grocery stores have large amounts of "air cooled" refrigeration
equipment with a COP that varies with ambient temperature. Typically, this causes base-
level energy consumption to decrease with decreasing ambient temperature. In stores
where this condition is significant, a four parameter change-point model with a non-zero
slope for the base-level region (RMSE = 169.2) fits the electricity consumption better
than the PRISM CO model (RMSE = 277.8).

The following section describes a four parameter change-point model that has been
developed to model such energy useage in a grocery store. In the next section chilled
water and hot water consumption at Zachry Engineering Center are modeled as functions
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of ambient temperature and interior lighting and electric loads. The final section
describes the results of applying a scheduling model to ZEC electricity use.

A Four Parameter Change-Point Model Of Grocery Store Electricity Consumption

Electricity consumption at the grocery store was recorded at 15-minute intervals and
aggregated to provide hourly and daily total consumption. Daily consumption as a
function of average daily ambient temperature is shown in Figure 3.4. In the figure,
there appears to be two essentially linear regions which meet at about 62 F (called the
change point). Physically, the consumption appears to drop slowly with temperature
(below 62 F) due to the increasing COP of the refrigeration compressors. As the
temperature increases above 62 F, the COP of the compressors drops and air
conditioning also becomes necessary, resulting in a sharp increase in the slope of the

electricity consumption.

Consequently, the data were divided into two groups: those collected when the
ambient temperature (as recorded at the local airport) was above 62 F and those
collected when the temperature was at or below 62 F. Each set was then regressed

against the dry bulb temperature to obtain a unique slope.

This process resulted in a four-parameter regression model for the daily average
electricity consumption. The parameters are: (1) a slope for the non-cooling regime, (2)

a slope for the cooling regime, (3) a change-point temperature, and (4) a baseload plus
refrigeration consumption at the change point temperature, T, . The daily average
electricity consumption, E , can then be expressed as:

E =E,+B*TT,) T <=62F
E =E,+B*T T, T,>62F

where Td is the average daily temperature, E_ is the electricity consumption at the

change point of 62 F and Br and Bc are the slope coefficients. The model parameters

obtained are:

E., =310 kWh/day
B =0.868 kWh/day-F
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B_ =4.976 kWh/day-F.

The ability of the daily predictor model to estimate consumption during April 1989 is
shown in Figure 3.5. The model appears to track actual consumption very well.
Excluding anomalies on April 4, 8 and 9, the average residual consumption is 8.6 kWh or
1.7% of the total whole-building electricity use. A more extensive discussion is provided
in Schrock and Claridge (1989).

A Model Of ZEC Chilled Water Consumption

The chilled water consumption for ZEC depends primarily on the ambient
temperature as can be seen in Figure 3.6. There appears to be a slight difference
between weekdays and weekends - physically we expect this difference to be due to

lower intemal heating due to lower electricity consumption on weekends.

Table 3.2 shows our pre-retrofit model for chilled water consumption at the ZEC,
determined using SAS (SAS 1985). Models are shown which depend on temperature
(T) only and which depend on temperature, T, as well as electrical consumption for
lights and office equipment, LE. The second model has a slightly higher R? parameter
and may be preferable since lights and office equipment contribute to the cooling load
and therefore have a physical basis for being included in the model.
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CW=a+bT CW=o+bT+ b LE
R? R2=0.86 R2=(.87
Intercept a=221.8 a=355
Slope b=16.4 b=16.2 b=0.01
Prob Param =0 Pa = 0.0001 Pa =0.4799
P, = 0.0001 P, = 0.0001
P,. = 0.0001

Table 3.2; Model parameters and statistics for two models of chilled water consumption
at the Zachry Engineering Center. R? indicates the fraction of variability in the data
explained by the model. The second model provides a slightly better fit to the data. The
positive slopes indicate the chilled water consumption increases as ambient temperature
increases. The low probabilities (P) indicate that all of the parameters except the
intercept of the lights and equipment model are statistically significant.

Note that the chilled water consumption does not show a change-point. It simply
decreases as temperature decreases. It might show a change point at sufficiently low
temperatures, however, the available data includes some of the coldest weather ever
experienced in College Station and no change point is evident. Therefore we conclude
that a two- parameter model without a change point is appropriate.

A Model Of ZEC Hot Water Consumption

The hot water consumption is similar to the chilled water consumption, except that
hot water consumption decreases as ambient temperature increases. This behavior is
shown in Figure 3.7. The data appear to exhibit a slight dependence on the electricity
consumption for lights and equipment as shown in Table 3.3. In this case the

dependence on electricity use is about three times stronger than for chilled water.
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HW =a + bT HW =a+bT + b, LE
R2 R2 -0.87 R2 =0.90
Intercept a=1808.8 a=2178.3
Slope b=-19.5 b,=-19.2 .= -0.03
Prob Param = 0 P, =0.0001 P, =0.0001
P, =0.0001 P, = 0.0001
P,. = 0.0001

Table 3.3; Model parameters and statistics for two models of hot water consumption at
the Zachry Engineering Center. R? indicates the fraction of variability in the data
explained by the model. The second model provides a slightly better fit to the data. The
negative slopes indicate that hot water consumption increases as ambient temperature
decreases. The low probabilities (P) indicate that all of the model parameters are
statistically significant.

Scheduling Models

Energy use in many buildings is heavily dependent on the building's operating
schedule. In some cases, a model for predicting energy consumption can be developed
simply by correlating measured energy use with the building's operating schedule (Haberl
and Komor, 1989). The next two sections describe scheduling models for electricity
consumption for the Zachry Engineering Center and the applicability of a scheduling
model for A&M Consolidated High School.

A Model Of ZEC Electricity Consumption

The electrical consumed by lights and recepticles at the ZEC from July 1989 through
May 1990 is shown in Figure 3.8. The figure shows hours of the day from front-to-
back, Julian day of the year from right-to-left and hourly electricity use on the vertical
axis. The building is open seven days a week, 24 hours a day, and the HVAC systems
are operated continuously. Light and recepticles electricity consumption shows a diurnal
pattern which varies from a minimum level near 600 kW to a peak of 1 MW on
weekdays with a slightly lower minimum and much lower peak on weekends. Some
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gross characteristics of the data are evident in the figure. Proceeding from right to left,
consumption is seen to be lower during the break period just before Autumn Semester
begins. Christmas vacation period is very evident as the "canyon" near the middle of the
figure. The other "canyons" in the left half of the figure represent missing data.

The data were used to define an average ilourly schedule for weekdays and weekends
when school is in session as shown in Figure 3.9(b). This may be compared with the
measured consumption for February 1990, shown in Fig. 3.9(a). The positive residuals
and absolute values of the negative residuals are shown in Figs 3.9(c) and 3.9(d). The
residual plots indicate: 1) that light and recepticle electricity use is generally well-
described by this simple model (+/- 100 KW out of 1500 kW), 2) that there is a
consistent over-prediction of electricity use on Friday afternoons (days 32,39,46 and 53
of Fig. 3.9(d)); and 3) that Saturday consumption is sometimes higher than expected
(days 40 and 54 of Fig. 3.9(c)).

A Consolidat igh School rici e

Electricity use at A&M Consolidated High School appears to be dominated more by
scheduling and operational influences than by ambient temperature. Figure 3.10 depicts
electricity use as a function of ambient temperature for the Spring semester. The data are
divided into day types with 0,1, and # représenting Saturday, Sunday, and holidays
respectively. Weekdays are represented by numbers 2 through 6. Electricity use is
clearly higher on weekdays than on weekends or holidays; however, no significant
dependence on temperature is evident. Figure 3.11 shows hourly electrical use for most
of the school year. A load shape that corresponds to school operating times is clearly

evident.

Because the building energy use is not highly temperature dependent, we expect low
PRISM R2 values. PRISM analysis of the data is consistent with these conclusions.

This analysis suggests that electricity use at A&M Consolidated High School may be

more appropriately modeled using a scheduling model such as the load-shape
methodology described in chapter six.
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CHAPTER 4
Model Predictive Ability

The preliminary models described in chapter three have been used to predict energy
consumption in selected buildings. Energy predicting models in three different time
frames are presented here: monthly, daily, and hourly. The models' prediction of energy
consumption is compared to actual energy consumption in the sections that follow.

Monthly Nursing Home Electricity Use

The PRISM CO model described in chapter three was used to predict electricity use at
the nursing homes during the summer of 1990. For the Temple nursing home, the model
parameters are based on 14 months of data between February, 1988 and August, 1989.

In Figure 4.1a, those model parameters are used to predict electricity consumption in a
subsequent period between April and September, 1990. These predicted values are

compared to measured data for this period in Figure 4.1.

Electricity consumption predicted by PRISM CO closely follows the trend of actual
electricity consumption. One method to quantify how close predicted consumption is to
actual consumption is to find the difference between the values and divide by the actual
consumption. This method yeilds an average deviation between actual and predicted
consumption of 6.3% of measured consumption. The small deviation between actual and
predicted electricity consumption indicates that PRISM CO is a good predicter of
electricity consumption at this nursing home. The total predicted consumption for the

period shown was 3.3% less than the measured consumption.

Figure 4.1b shows measured and predicted electricity consumption at the Austin
nursing home. For this run, the PRISM CO model parameters were based on seven
months of data between March and October, 1989. These parameters are then used to
predict electricity consumption in a subsequent period between April and September,
1990.

It appears that PRISM CO slightly over-predicts energy use for this period. However,
the nursing home underwent a lighting retrofit that reduced the power required to light

the building after the original parameters were determined. In this case, the bias shown
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in Figure 4.1b actually represents electricity saved by the lighting retrofit. PRISM CO
indicates an average monthly savings of 6.2% of measured consumption. The total
electricity savings during this period was 6.3% of measured consumption.

Daily Grocery Store Electricity Use

The four parameter change-point model described in chapter three was developed
using data from March, 1988 to April, 1989. This model was then applied to electricity
use and temperature data for a new period beginning January 1, 1990 and ending October
10, 1990 to test its ability to predict electricity use at the grocery store. Actual

consumption and the model's predicted consumption are shown in Figure 4.2.

Two regions of differing temperature dependence (slope) are evident in the measured
consumption. The model appears to slightly under-predict electricity consumption,
especially below the change-point. A physical explanation appears plausible, since a
large refrigerated room was added to the store after the model was developed. It is also
possible that sales volume may have increased since the original model was developed.
Although this points to the weakness of models dependent only on temperature, the
model still provides a good fit to the data. The average deviation between measured and

predicted electricity use is 3.7% of measured use.
Daily ZEC Chilled Water Consumption

The ZEC chilled water use model described in chapter three was developed using data
from September 1, 1989 to May 23, 1990. It was applied to new data from May 24,
1990 to October 10, 1990 to test its predictive ability. Both the model's prediction and
measured data from this period are depicted in Figure 4.3 as a function of ambient

temperature.

The model is sensitive to ambient temperature and internal cooling required because
of lights and receptacle use. However, the dependence on lighting and receptacle
electricity is so small in this model that the predicted energy consumption appears in
Figure 4.3 as a straight line dependent only on temperature. The average deviation
between measured and predicted consumption is 5.1% of measured consumption. The

total predicted consumption for the period was within 0.2% of measured consumption,
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indicating that the model was an excellent predictor of chilled water consumption during
this period.

Daily ZEC Hot Water Consumption

The chapter three model for hot water consumption at the ZEC was also tested against
measured data from the most recent time period. The results are depicted in Figure 4.4,
again as a function of temperature. In the hot water model, the inverse dependence on
lighting and receptacle electricity use is much greater than in the chilled water model.
Because of this, the model's predicted consumption appears as a region partly dependent
on temperature and partly dependent on lighting and receptacle electricity use in Figure
4.4.

The average deviation between measured and predicted consumption was 83.2% of
measured consumption. The high average error is not particularly troublesome because
the model has been applied to a set of days with daily temperatures which do not
represent the daily temperatures that the model was originally developed for. Most of the
daily temperatures in the new set of data are above 80 F, with correspondingly small
predictions hot water consumption. The model was developed for a data set with a more
even distribution of daily temperatures and larger amounts of hot water consumption.
The total predicted hot water consumption for the period shown was 5.6% greater than

measured consumption.
Hourly ZEC Electricity Use

A methodology to identify typical day types for a building using monitored end-use
data for non-weather dependent electric load (i.e. lights, equipment, etc.) has been
developed. This scheduling model was tested on data from the ZEC with good results.

Electricity consumption at the ZEC can be accurately represented with five typical
load shapes: (a) three in a "LOW" group, (b) one in a "NORMAL" group and (c) one in a
"HIGH" group. Figure 4.5 shows the number of days in each day type. A comparison of
the actual and predicted electric consumption is shown in Figure 4.6. The predicted
electric consumption was calculated from the five typical load shapes. The residual plots
indicate: (a) the predicted consumption is close to the actual consumption (+/- 100 kW),
and (b) the residuals during the holidays/vacations are consistently higher.
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CHAPTER 5
END-USE DISAGGREGATION

Whole-building energy consumption represents the sum of many energy end-uses
within a building. Some of these end-uses such as heating and air conditioning are
driven by the weather. Some, such as lighting and office equipment are driven by the
scheduled use of the building. Accurate models to predict whole building energy use
must consider all of these different energy end uses. To do this, accurate information on
the breakdown of energy consumption within a building is necessary.

In this chapter, the energy consumption of the five original buildings is divided into
end-uses using four different techniques. In the first section, the peak demand is
disaggregated into end-uses at a nursing home, the grocery store, and the high school
using data from equipment name plates. The next section describes an engineering
simulation model's estimates of energy end-use consumption at the Temple nursing home
and at A&M Consolidated High School. Then statistical model estimates of base-level
and cooling related electricity use at the nursing homes are presented. In the last section,
sub-metering at the ZEC provides a breakdown of the building's annual energy

consumption.

Peak Electric Demand Method

Energy using equipment has been inventoried at the grocery store, nursing homes, and
high school. The rated electric demand of each piece of equipment is obtained from the
name plate or by contacting the manufacturer of the equipment. From this information,
the building's electric demand during theoretical peak operation can be apportioned to the

different energy using equipment.

Figure 5.1 shows the estimated contribution of each category during peak operation at
the grocery store. The estimated end-use breakdown of the several electrical systems in
the store is: refrigeration cases and compressors (44.3%), air conditioning (24.6%),
lighting (15.8%), food preparation (12.6%), point-of-sale registers (1.2%) and
miscellaneous end uses (1.5%). Clearly, the best candidates for energy savings are the
systems which use the most energy in the store. Of the total energy use, 84.7% can be

attributed to three systems: refrigeration, air conditioning and lighting.
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The peak electric demand breakdown at the Temple nursing home is depicted two
ways in Figure 5.2. Figure 5.2a shows electricity use by electricity using systems. Air
conditioning is the largest load, representing 57.4% of total demand, followed by lighting
(20.2%), food preparation (18.1%), and laundry services (4.2%).

Electric demand is divided into functional areas within the building in Figure 5.2b.
The estimated peak electric demand end-use breakdown by functional area is: resident
areas (46.5%), utility areas (34.3%), and lobby and dining areas (19.2%). Of the three
areas, the resident areas make up the largest fraction of total floor area (59%), accounting
for the large fraction of peak demand. The utility areas (kitchen and laundry) make up
the smallest amount of floor area (9%), and have the highest power density in the
building.

The peak demand used by major energy using systems at A&M Consolidated High
School is shown in Figure 5.3. Peak end-use demand is estimated as: chillers (65.1%),
lights (16.7%), air handling units (9.0%), pumps (6.7%), and condenser (2.5%).
Miscellaneous energy using equipment is not included in this breakdown.

Engineering Simulation Models

The energy consumed by a building's energy using systems can also be estimated by
engineering simulation models. The building energy use in A&M Consolidated High
School and the Temple nursing home was simulated using A Simplified Energy Analysis
Method (ASEAM, ACEC, 1987) computer software. ASEAM uses the modified bin
method of energy analysis.

ASEAM estimated the annual energy consumption end-uses at the Temple nursing
home as (Figure 5.4). HVAC (50%), lighting (26%), and food preparation and laundry
services (24%). These are estimates of the total annual energy use including electricity

(on a site basis) and natural gas.

ASEAM estimates of the electricity use at A&M Consolidated High School are shown
in Figure 5.5. The electricity consumption breakdown is cooling (36.7%), miscellaneous
equipment (25.8%), lighting (16.5%), fans (15.0%), heating (3.1%), and pumps (3.0%).
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Not included in this breakdown is additional heating for space conditioning and hot water
that is supplied by natural gas.

Statistical Models

PRISM estimates annual base-level (or temperature independent) energy consumption
and energy consumed to heat or cool a building. The results of the PRISM CO analysis
for cooling months at the nursing homes is shown in Figure 5.6. PRISM CO estimates
that cooling requires 28.8% of electricity consumption at the Temple nursing home.
Electricity for cooling is estimated to be 14.0% of total electricity consumption at the

Austin nursing home.

Measured Data

Energy end-use data has been colleéted for the ZEC since May 1989. Electricity,
hot water, and chilled water are provided by the Texas A&M physical plant. The energy
consumption estimates listed here are on a site basis and do not include losses incurred at

the physical plant or in transportation from the physical plant to the ZEC.

For the period from September 1, 1989 to August 31, 1990, the ZEC used 9,727,000
kWh of electricity. The maximum electric demand during the year was 1,395 kW. Air
handlers, pumps, and main frame computers accounted for 42.7%, and lights and "plug
in" loads accounted for 57.3% of annual consumption (Figure 5.7a).

The breakdown of the thermal energy use at ZEC is shown in Figure 5.7b. 48,725
million Btu of chilled water and 17,291 million Btu of hot water was used. Chilled water
accounted for 73.8% of the thermal load and hot water accounted for 26.2%.

ERAP Project No. 227 Progress Report November 5, 1990



23

CHAPTER 6
Model Development

Significant progress has been achieved in developing models for buildings which
exhibit change-point, multivariable dependent, and operational and scheduling dependent
energy use. The following three sections of this chapter describe these three types of
models. Each model was developed to overcome limitations of a preliminary model.
These models promise to be both statistically rigorous and applicable to a wide range of
buildings.

The first model, a four parameter change-point model, grew out of PRISM's
limitations at predicting grocery store energy consumption. The grocery store data
showed that "base-level" electricity consumption increases with temperature. PRISM
attempts to force a temperature independent line through these data, resulting in an
improper fit. The change-point model identifies the change-point temperature, change-
point energy consumption, and slopes that give the lowest least square error over the
entire data set for a segmented regression of energy consumption and temperature. The
model is described in the next section of this chapter.

Ambient dry-bulb temperature is a strong predictor of weather-related energy
consumption in many buildings. However, other environmental, system, and operating
parameters also influence energy consumption and may be useful predictors of energy
consumption when incorporated in a multiple regression model. A persistent problem
with previous attempts to do this has been intercorrelation between predicting variables.
This leads to unstable parameter estimates and may cause large errors when the model is
used to predict energy use for a subsequent period. For example, solar radiation may
contribute a large part of the air conditioning load in a building with large areas of
glazing. However, if both solar radiation and temperature were used in the same
multiple regression model the two variables would be highly intercorrelated, increasing
and decreasing in similar diurnal patterns. This may lead to unreliable estimates of the
model parameters. In the second section, a statistical technique that removes the
collinearity between independent variables and still retains much of the information
content of the original variables is described. This technique is combined with the
change-point model described above and is called a change-point principle component
analysis (CP/PCA) model. This model is described in the second section of this chapter.
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The last section describes a methodology to identify day-types for non-weather
dependent loads from metered data. Hourly energy simulation programs such as DOE-2
and BLAST have been used to predict energy savings from building retrofits. Such
calibrated computer models require information from equipment inventories, operating
schedules, etc., to estimate scheduled electric loads (e.g., lighting, equipment, fans).
With the use of a day-typing routine, monitored hourly data for these loads can be used
to accurately identify typical day types for a building, from which a calibrated input deck
can be prepared quickly and inexpensively, enhancing the wide use of these models to

predict the performance of conservation retrofits.

A Four Parameter Change-Point Model

Change-point behavior characterizes energy use in many buildings. This is because
most buildings use some type of thermostatic control to switch systems on and off.
Furthermore, examination of the fundamental equations governing air-side systems
shows that constant-volume reheat systems (with preheat below a specified outdoor
temperature), and systems which reduce outdoor air intake below a specified outdoor

temperature also exhibit some form of change-point behavior.

The four parameter change-point model is shown in general form in Figure 6.1. It has
two linear regions of differing slopes joined at the "change point." The slopes may be
either positive as shown on the left side of the figure or negative as shown on the right
side. Since the independent variable is ambient temperature, the two regions can
appropriately be called the "low temperature region” and the "high temperature region."
For the specific cooling-related case treated in this report, temperatures below the change
point will be referred to as the "refrigeration” region and those above the change point
will be referred to as the "cooling region" corresponding to the dominant temperature
dependent loads in each temperature region.

The expected electricity consumption per day, E,, is given by
Ey=a+b(Ty-T )t - b(Tep - Tt (1)

where b_ is the cooling slope, b, is the refrigeration slope, T, is the average daily

temperature, and T, is the change-point temperature. The superscript "+" indicates
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zero if the term inside the parentheses is negative. These parameters are shown

graphically in Figure 6.2.

For a given set of data, parameter estimates are chosen that give the best least-squares
fit to the data. A computer program has been developed to determine these parameters
from electricity and temperature data. To initiate the program, a reasonable temperature
interval [RTMIN, RTMAX] that contains the change-point temperature T, must be

specified. The program then implements an algorithm that outputs:

1) the parameter estimates b, b, a, Tcp,
2) the R2 statistics for the entire model and each segment,
3) the root mean-square error (RMSE) for each segment,

4) confidence intervals for the parameter estimates.

Statistical Analysis

Some important statistical problems involved in estimating the model parameters with
variable T, were first solved by Hudson (1966). Several of Hudson's theoretical results

are utilized in this algorithm. The algorithm finds the optimal value of T, by searching
within an interval [RTMIN, RTMAX] known to contain Tcp. For each such feasible
value of Tcp,

squares fit to the data. From this collection of fits to the data, the algorithm chooses the

corresponding values of b, b_, and a are found that give the best least-

one with the best least squares fit (i.e. with a minimum mean-square error).

The reliability of the parameter estimates can be gauged by confidence intervals returned
by the program. The confidence intervals for T, with significance level e are defined such

that there is a 100 x (1 - e) percent chance that the true value of T, is bounded by the

confidence intervals.

The confidence intervals returned by the four-parameter model are approximations to
likelihood-based confidence intervals. In an effort to confirm the accuracy of our method of
approximating the confidence intervals, numerical experiments on the four-parameter

model's error diagnostics using Monte Carlo computer simulations were carried out.

In our Monte Carlo study of the four-parameter model, the errors were assumed to be
identically, independently and normally distributed. Two hundred synthetic data sets were
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randomly distributed in their respective cooling regimes. The refrigeration regime is where
the models differ significantly in their predicted electrical use.

At temperatures below 59.65 F, the four-parameter model has a RMSE (169.2)
significantly lower than PRISM's (277.8). In addition, the residuals of the PRISM CO model
(Figure 6.4) are clearly not randomly distributed because of the model's zero slope in the

base-level regime.

Tcp a bl‘ bc
PRISM 57.14 7262.53 0 94.8474
(1.29) (65.34) * (4.66)
4-par. 59.65 7459.98 19.87 96.22
model  (58.25, 63.25) (7358, 7693) (14.52,27.48)  (92.04,104.34)

Table 6.1; Parameter values and error diagnostics for each model of the grocery store
electricity consumption. The 75% confidence intervals shown for the 4-parameter model are
skewed, reflecting the nature of the curve-fit. Standard errors are given in parentheses for
PRISM. A standard confidence interval for T_, say, is (55.85, 58.43).

cp?

In contrast, the four-parameter model's residuals, shown in Figure 6.5, appear randomly
and independently distributed. A standard statistical test for heteroskedasticity (non-constant
error variance) was carried out which confirmed this observation.

However, the four-parameter model's RMSE is significantly higher for the cooling
regime (382) than for the refrigeration regime (169.2). An F test at a significance level of
0.01 indicated that the variance of the two regimes were unequal. In order to get reliable
error diagnostics for this case study, a weighted least squares (WLS) analysis was
undertaken.

While the WLS analysis results in biased parameter estimates, the (weighted) errors are
randomly distributed, with constant variance. As a consequence, the confidence intervals for
the parameters are valid (Draper and Smith 1981). WLS offers reliable error diagnostics in
compensation for biased parameter estimates. In order to take this into account, the model

(1) must be altered slightly. A reasonable energy model fitting the case study is

Ey= a-b(T,-T,)* +e, if Ty<T, (4)
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generated. Each such data set consisted of 200 observations using random normal deviates
with parameter values T, = 59.5, b=19.9, bc =93, a=7530.5, and variance s?=320.

Temperature values T, ... T, were chosen randomly from a one year data set of average
daily temperatures in the Bryan/College Station area. The results suggest that the
approximate confidence intervals found according to our algorithm are highly accurate, since
they contain the actual parameter values at essentially the percentage rate expected by the
likelihood confidence intervals.

Groc tore Result

The model was applied to data from the grocery store and compared to PRISM runs
for the same data. Clean data were selected from June 1989 through May 1990 resulting
in 191 days for which complete electric and weather data were available. As noted
earlier, when plotted as a function of daily average ambient temperature, these data show
two distinct regions of non-zero slope (Figure 6.3). This physically represents the
behavior of the refrigeration equipment which cools the refrigerated food display cases
and frozen food cases in the store at low temperatures with the addition of the air
conditioning load above the change point.

The model of electricity use for the grocery store data provided by the four parameter
curve-fitting algorithm is:

E, =7459.98 + 96.22(T,- 59.65)% - 19.87(59.65 - T)*t (2)

It is noted that determination of the change point by minimizing RMSE resulted in a change
point 2.35 F lower than the 62 F visually estimated by Schrock and Claridge (1989).

The electricity use predicted by PRISM CO is
E,=7262.53 + 94.85(T, - 57.14)* (3)

By forcing the base-level slope to be zero, PRISM CO estimates T, to be 2.51 F less than

our estimate of 59.65 F. An examination of the two models shows them to be nearly in
agreement at temperatures above 59 F, with predicted electrical use differing by at most 40
kW (9% of maximum use) in the 59 - 90 F range. The residuals of both models appear
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The observations are weighted for a WLS analysis according to their respective regime.
The estimate of Tcp was found to be unchanged (59.65), whereas the other parameter

estimates were altered slightly. The electrical use predicted using WLS was found to be

E, = 7459.67 + 96.26(T ;- 59.65)* - 19.86(59.65 -T)* (5)

An application of White's test and an examination of the weighted residuals show that
heteroskedasticity has been eliminated, which makes the weighted estimates’ error
diagnostics reliable. A comparison of these estimates with those of unweighted least-squares
shows the weighted parameter estimates are not too different from the unweighted estimates.
The weighted method increases the model's R? statistic from 0.9068 to 0.9423; the
respective RMSE's are not comparable due to the weighting.

These error diagnostics, while reliable, are made under the assumption that Tcp is fixed

at 59.65 F, an assumption not made under normal circumstances, (i.e. when the variance is

constant and an unweighted least-squares fit is satisfactory). A future report will attempt to
determine reliable error diagnostics for all parameter estimates with variable T_.

Change-Point Model Summary

In summary, a rigorous procedure for determining the change point for a general four
parameter linear change-point model of energy use has been presented and applied to a
case study grocery store. It is shown that determination of the change point by
minimizing RMSE resulted in a change point 2.3 F lower than the visual estimate
reported earlier. For the case study data, it is shown that the four parameter model
provides a comparable fit to PRISM CO above the change point, but provides an RMSE
of 169.2 kWh/day vs 277.8 kWh/day provided by PRISM CO below the change point.
Furthermore, the residuals of the four parameter model were shown to be randomly
distributed. Standard errors were obtained for the model parameters after performing a
weighted least squares analysis to eliminate heteroskedasticity due to differences in
RMSE in the cooling and base-level regimes. The four parameter model appears to

provide a highly satisfactory model for the electricity use of the case study grocery store.
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A Change-Point Principal Component Analysis (CP/PCA) Model

Numerous investigators have attempted to use multiple linear regression analysis to
develop improved models of building energy consumption. These attempts have often
been frustrated by the significant collinearity between the predictors used. Principal
Component Analysis (PCA}) has been used to tackle similar problems for some time by
climatologists and more recently by Hadley and Tomich (1986) to examine influences on
heating energy consumption in residences. This approach appears promising as a way of
combining physical models and insight with measured data to achieve improved

empirical models for determining retrofit savings.

The CP/PCA model described in this section combines the change point methodology
described in the last section with the flexibility to incorporate other variables besides
temperature which may affect electricity consumption. Temperature, humidity, solar
radiation, and sales are regressed against electrical consumption for data from each of the
two segments of the electrical consumption versus temperature line shown in Figure 6.6.
If standard multiple regression were used, the variances in the estimates of each
regression coefficient would be large because the "independent” variables are highly
correlated. PCA is a mathematical transformation that removes this correlation and
decreases the error in the regression parameters. This improves our confidence in the
parameters when used as predictors for a new set of data. The trade-off that PCA

imposes for decreased parameter error is a less accuracy fit (Rz) to the original data set.

The PCA Method il

Standard Multiple Linear Regression (MLR) may suffer from significant stability
problems when predictor variables in the regression analysis are intercorrelated. The
collinearity of the variables will cause the variances of some of the estimated regression
coefficients to be quite large, resulting in an unstable and misleading estimate of the

regression equation.

The PCA method transforms the original variables into an uncorrelated set of
orthogonal variables that are linear combinations of the original variables (the
mathematical details of this transformation are described at length in Jolliffe [1986]).
Together these new variables, called principal components (PCs), retain all of the

information found in the original variables.
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The PCs can be mathematically ranked according to their ability to "explain" variance
in the data set. A PC with sufficiently low variance rank can be eliminated from the data
base without losing a significant amount of information. It is advantageous to eliminate
PCs with low variance rank to increase the stability of the model. Most authors suggest
70 - 80% as a minimal level of the generalized variance explained by a PCs (see Jolliffe
[1986], Section 6.1).

While the importance of a PC can be judged using its variance rank, there is another -
and sometimes conflicting - measure of the importance of a PC : its merit as a predictive
variable. The goal is to use the minimum number of PCs while maximizing the
predictive ability. That is, deleting a well-chosen PC will greatly reduce the standard
error of the regression coefficients of the original variables. The trade-off is that this
statistically stable model will not fit the given data quite as well as the unstable standard
MLR model, so deleting PCs must be done with care. If none of the PCs are deleted, the
resulting regression equation is equivalent to the standard MLR model.

PCA Applied To The Grocery Store

Variables which could plausibly influence electrical consumption and for which data
are available are temperature, humidity, solar radiation, and sales. These data were
available for 191 days between June 1989 and May 1990.

Dry-bulb temperature is the dominant non-scheduled predictor of changes in
electricity consumption for most buildings. Ambient specific humidity is a major
contributor to the latent load in buildings when there is excess moisture in the outdoor air
that must be removed at the cooling coils. Enthalpy was tried as a combined measure of
temperature and humidity, but separate treatment of these variables proved superior. The
case study building has only a small amount of glazing, but as a single story building has
a large horizontal roof exposure; consequently, horizontal solar radiation is a logical
predictor. Sales data is plausibly correlated with door openings on refrigeration cases,
and other restocking activity as well as internal gain from occupants; so it was also

tested as a predictive variable.
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Cooling Regime Model

For the range of temperature data above the change-point temperature (which
includes space-cooling, refrigeration, and base-level electrical loads), the
intercorrelation between temperature, solar gain and humidity was great enough to
consider a PCA approach. In addition, these variables were all significantly correlated
with electrical consumption, confirming their predictive value. The correlation between
electricity and sales was insignificant, with a correlation coefficient of -0.07. Sales
would thus contribute only "noise" to the model and so was dropped from consideration.
For these reasons, electricity consumption in the cooling regime was modeled as a linear
function of temperature, humidity and solar radiation. A PCA analysis was performed,

followed by a regression of electricity consumption against the resulting PCs.

As shown in Table 6.2, the first two PCs, PC1 and PC2, have high variance ranks and
a collective variance rank (94.67%) well above the required 70%, whereas PC3 has a
low variance rank and contributes little to the collective variance rank. Because of this,
two models of electricity use were considered: as a function of all three PCs (Model 1),
and as a function of only PC1 and PC2 (Mdde] 2). Referring to Table 6.3, note that PC3
can be deleted with a negligible drop in the RZ statistic, and only a 5.33% drop in the
variance rank. Moreover, PC3 has an unstable regression coefficient: its standard error
is more than 50% of the coefficient itself. For these reasons, the optimal solution for our
modeling problem in the cooling regime is to express electrical consumption as a linear
function of the first two PCs only:

E =48220(PCl1) + 106.41(PC2) + 9349.12 (1)
While this regression equation does not give the best fit to this particular data set, it is
more stable than a MLR fit, and hence, we can be confident of its reliability with a new

set of data. By dropping PC3, the stability of the model has been improved, which

should result in a better predictor of future electrical consumption.
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Component
variable PC1 PC2 PC3
Normalized Temperature J32 178 -.658
Normalized Humidity 660 -425 619
Normalized Solar 170 887 428
R2 Contribution 7158 0245 0088
Variance Rank 556 391 053

Table 6.2; Principal Components in the Cooling Regime. The first three entries of each
column define the eigenvector v; associated with the given PC.

Model 1 Model 2 St. MLR Model
variables PCl1, PC2, PC3 PC1,PC2 Temp, sph, solar
temp coef/std error * * 71.71 /9.30
sph  coef/std error * * 36001 / 13098
solar coef/st error * * 1.48/0.71
PC1 coef/std error 482.20 / 27.86 482.20 / 28.21 *
PC2 coef/std error 106.41 /33.26 106.41 / 33.68 *
PC3 coef/std error -172.59 /90.08 * -
Constant coef/std error 9349.12 /35.83 9349.12/36.28 2838.55/525.05
R2 0.7490 0.7403 0.7490
Root MSE 374.08 378.76 374.08
Variation % Explained 100 94.67 100

Table 6.3; Cooling Regime regression summary. Note that Model 1 is equivalent to the
standard MLR model since none of the PCs are deleted.

The model for the cooling regime found using standard multiple linear regression
without PCA is

E =71.71(temp F) + 1.48(solar W/m®) + 36001(sph Ib-mois/ib-air) + 2838.55 (2)
P
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where daily average values are used for all predictive variables. Referring again to Table
6.3, note the significant standard errors of the standard MLR model's regression
coefficients. These large standard errors reflect the high collinearity between the
variables, and indicate instability in the MLR model. The PCA model (Model 2) has
substantially better stability, while maintaining a goodness-of-fit competitive with the
standard MLR model. Further insight into the PCA model is gained by a transformation
of PC1 and PC2 back into the physical variables, which yields

E = 54.90(temp) + 2.55(solar) + 59227(sph) + 3666.68 (3)

It is interesting that the importance of the solar and humidity variables is nearly doubled
in the PCA model.

The Refrigeration Regime Model

The regime below the change-point temperature contains refrigeration and base-level
electrical loads, with the refrigeration loads being temperature dependent. Among the
133 days in the complete data set, 24 fell into this regime. Proceeding as in the cooling
regime, the correlation between each of the potential predictor variables was examined.
As before, both humidity and temperature appeared to be significant (see Table 6.4).

temp sph sales solar elec.

variable
temp 1.00 0.69 0.27 0.24 0.77
sph 1.00 0.29 -0.06 0.67
sales 1.00 0.10 0.56
solar 1.00 0.17
elec. 1.00

Table 6.4; Correlation coefficients for the refrigeration regime

ERAP Project No. 227 Progress Report November 5, 1990



34

Component
Variable PC1 PC2 PC3
Normalized Temperature .628 -.342 700
Normalized Humidity 634 -.298 -714
Normalized Sales 452 8391 030
R2 Contribution 4870 0283 0744
Variance Rank .594 267 140

Table 6.5; Principal Components in the Refrigeration Regime. The first three entries of
each column define the eigenvector v; associated with the given PC.

Model 1 Model 2 St. MLR Model
variables PCl1, PC2, PC3 PC1,PC3 Temp, sph, sales
temp coef/std error * * 29.96 /9.51
humidity coef/std error * * -4182 /29125
sales coef/std error » * 4.96 / 1.80
PC1 coef/std error 118.74 / 24.37 118.74 / 24.59 »
PC2 coef/std error 42.74 / 36.37 » .
PC3 coef/std error 095.74 / 50.24 95.74 / 50.69 ¥
Constant coef/std error 7269.51 /31.84 7269.51/32.13 5416.84 / 440.61
R2 5898 5615 5898
Root MSE 155.97 157.38 155.97
Variance Rank 100 73.34 100

Table 6.6; Refrigeration Regime 24 day regression summary. Model 1 is equivalent to
the standard MLR model since it uses all three PCs.

In contrast with the cooling situation, solar gain was statistically insignificant in the
refrigeration regime. This makes sense physically because the space-cooling systems are
not active in this regime; only the refrigeration systems, lights and equipment are
consuming electricity. Heating is primarily provided by a constant volume system with
heat recovery from the refrigeration system and so has a negligible impact on electrical
consumption. Thus for both statistical and physical reasons, solar was not included as a

predictor.
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On the other hand, sales -- an indicator of occupancy gain, (i.e., opening and closing
of refrigeration doors, etc.) appears to be mbderately correlated with electrical use in the
refrigeration regime (0.56) and was consequently included as a predictor variable. This
flip-flopping of the significance of sales and solar gain between the regimes is
noteworthy, and further substantiates the usefulness of the change-point data separation.

From this analysis, it was determined that electricity use in the base-level regime
could best be modeled as a linear function of temperature, humidity, and sales. The
high correlation between humidity and temperature (0.69) made a PCA analysis
worthwhile. Of the three PCs, PC1 was clearly most important in variance rank and R?
contribution (Table 6.5). The predictive power of PC3 was also significant, so it was
also included as a variable in the two models considered. Observe that PC1 and PC3
have a collective variance rank of 73.34%, a satisfactory level according to our criterion.

Model 1 is equivalent to the standard MLR equation since it uses all three PCs. It has
a variance rank of 100%, but the (85%) standard error of PC2 indicates high statistical
instability (Table 6.6). In addition, the R2 contribution of PC2 is quite small (see Table
6.5). The statistical instability of Model 1, which is largely due to PC2, makes it an

unsatisfactory model.

Model 2, using only PC1 and PC3, looks more promising. Its Root MSE and R?
statistic are comparable with those of the standard MLR model, however, Model 2 does
not suffer from the standard MLR model's severe statistical instability (note in particular
that the standard error of the humidity coefficient is approximately seven times the
coefficient itself). If the PCs are transformed back into the physical variables, Model 2

is

E = 33.14(temp) + 2.96(sales) + 5347.85(sph) + 5320.70 (4).

A Comparison of the Goodness-of-fit In The Two Regimes

The reader may have noticed that the PCA model has a significantly higher R2 value
in the cooling regime (.7403) than in the refrigeration regime (.5615). This is not
disturbing, for the electrical consumption in the base-level regime is relatively flat, and a

low R? value is expected when the dependent variable is near-zero slope (Draper and
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Smith 1981). For this reason, we argue that an acceptable R2 value depends on the

temperature regime.

Another way to compare the fits is by examining the model's RMSE in each regime.
A smaller RMSE indicates a more precise prediction, and is independent of the flatness
of the consumption. The refrigeration-level's RMSE (157.38) is quite low, indicating a
good fit. The somewhat larger RMSE in the cooling regime (378.76) reflects the greater
volatility of the electrical consumption in this regime. Events that are difficult to
measure, e.g. leaving store doors open for deliveries, affect the electrical consumption
much more in the cooling regime, and consequently raise the RMSE in this temperature

range.

Discussion Of PCA Model

The change-point PCA model has several advantages over standard MLR for the case-
study data. In the case of significantly correlated predictor variables, a transformation of
these variables into uncorrelated PCs, followed by the elimination of unstable PCs,
allows construction of a more statistically stable predictor model. This method sacrifices
a small drop in the model's explanation of the current data set in return for greatly
reducing the high variability of the parameter estimates often seen in a standard MLR.

The use of a change point enables better selection of predictor variables. For
example, solar radiation was a significant influence on consumption in the cooling
regime, but would only have contributed "noise" to the model in the refrigeration
regime. Temperature was an important linear predictor in both regimes, but its influence
changed dramatically at the change point, a phenomenon that the change-point method
incorporated into the model.

While a CP/PCA model is not trivially simple, its construction is systematic.
Depending on the relationship between consumption and temperature, the optimal data
split into two regimes, can be easily found using the four parameter change point model
(Ruch and Claridge 1991). A standard statistical software package will do the PCA
analysis, and then the PCs to be dropped can be chosen according to clear criteria: the
PC's variance rank, contribution to the model's R2, and the standard errors of the

regression coefficients.
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A Load Shape Methodology For Non-Weather Dependent Electricity Use

This section summarizes a methodology to identify typical day types for a building
using monitored end-use data for non-weather dependent electric load (i.e. lights,
equipment, etc.). Load shapes can be generated from the data for each typical day type
and used as schedules in building energy simulation models such as DOE-2 and BLAST.

These simulation models can then be used to estimate retrofit savings.

To start the process, one year of hourly !hon-weather dependent electric consumption
data (i.e. lights, equipment, etc.) is preferred. Calculate the mean and the standard
deviation at each hour for the entire data set (i.e. 24 separate calculations). The
regularity index, given by Eq. 1, provides a good measure of the lack of regularity within

a sample.

£ 100xStandard Deviation
- Hourly Mean

(D)

The choice of the maximum acceptable RI depends on how much variation is permissible
within a given day type. It is felt that 10% variation is acceptable for buildings
considered in this report. If the RI for all 24 hours stays within a pre-determined value
of X, then the building is classified as 7-day type (i.e. all seven days of the week have
identical load shape).

In addition, if the mean across each hour for the day type is identical, then the
building is classified as continuously operating type. If the building is not a 7-day type,
the total data set is then sorted into day type groups, with days in each group having

similar consumption patterns.

One way to sort the data is by comparing daily consumption patterns. To accomplish
this the hourly data are summed to daily data. The mean daily consumption and standard
deviation are then calculated and the days are divided into three groups: (a) LOW_D,
which are days with daily consumption less than average daily consumption minus 10%
of one standard deviation, (b) HIGH_D, which are days with daily consumption greater
than average daily consumption plus 10% of one standard deviation and (c)
NORMAL_D, the remaining days. Once the three groups are formed, typical day types
are identified within each group.
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For a typical commercial building the days in the LOW group would generally be:
weekends, holidays, vacation days, special events and erratic days. The next step is to
sort the days in the LOW group into weekdays (WD) and weekends (WE). This is done
by calculating the model using a calendar time line. Next, every day in the weekday
group is checked to determine if it is either a holiday (H), a vacation day (V), or a special
event (S). This is performed by comparing time line dates to a pre-assembled list of
known holidays. The days which is not a holidays, vacations or special events, are
classified as erratic events (E). A flag (H, V, S, & E) is then attached to each day in the
weekday group. Next, the weekday group is sorted into Mon. through Fri. and the
weekend group is sorted into Sat and Sun. bins. Then the mean and the standard
deviation for each hour are calculated for all bins.

At this stage we have seven load shapes (Mon. - Sun.) for the LOW group. Using a
similar procedure, the data can then be further grouped as LOW_LOW_XX,
LOW_HIGH_XX and LOW_NORMAL_XX where XX can be WD, WE or a
combination of days. If groups still remain that do not satisfy the RI criteria, another

level of groups may be required.

The NORMAL-D and HIGH_D groups can be similarly subdivided. Load shapes

for all of these groups can then be generated.

Day-Type Methodology Applied To ZEC

This procedure has been applied to the ZEC with good results. Those results are

presented in chapter four.
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CHAPTER 7
Technology Transfer and Energy Saving Potential

The methodologies developed and tested in this project have immediate application in
Texas LoanSTAR Program. This program is an eight year, $98 million revolving loan
program, funded by oil overcharge money which provides energy conservation retrofits
in Texas state, local government and school buildings (Turner, 1990). The program
began in 1989 and the first retrofits were installed in the latter part of 1990. Institutions
and agencies participating in the program must repay the conservation loans according to

estimated savings from an energy audit.

A statewide energy Monitoring and Analysis Program (MAP) has been established as
part of the LoanSTAR Program. The major objectives of the MAP are to: 1) verify
energy and dollar savings of the retrofits, 2) reduce energy costs by identifying
operational and maintenance improvements, 3) improve retrofit selection in future rounds
of the LoanSTAR Program, and 4) initiate a data base of energy use in institutional and
commercial buildings in Texas. Texas A&M is the prime contractor for the MAP, so any
methodologies developed in this ERAP Project will be immediately implemented within
the LoanSTAR MAP.

Improved models should provide better estimates of the energy savings achieved by
the retrofits, but the energy savings from this project will come from improved abilities
to use the monitored data from the buildings to identify and diagnose operational
improvements. Previous work (Haberl and Claridge, 1987; Haberl and Vadja, 1988;
MacDonald and Wasserman, 1989; Haberl and Komor, 1989) has shown that careful
analysis of monitored building consumption data can identify operational changes which
lead to energy cost savings of 5-15%. The LoanSTAR Program hopes to achieve
significant operational savings as a result of data analysis in addition to those from the
capital measures installed. This will be the first large scale application of these
techniques, so average savings are expected to be somewhat lower than those achieved in
heavily analyzed pilot studies. However, the analysis developments resulting from this
ERAP project are expected to augment the savings which would have been identified
without this project.
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Energy savings due to this project are conservatively estimated as 2.6x1012 Btu by
the year 2000, considering only the buildings which will participate in the LoanSTAR
Program. Details of this calculation are provided in Appendix A.

Additional savings can be expected from implementation of these techniques in other
public and private sector buildings. There is a very high level of interest in the
techniques and software being developed in both the private and public sectors. Over 70
inquiries have already been received. Individuals and groups requesting information as
of December 1, 1990 are shown in Appendix B.
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CHAPTER 8
Future Plans

During the next year, effort will focus on three areas:

1) Examination of PCA methodology on buildings with submetered data;

2) Development and implementation of systematic methods for identifying
operational improvements in buildings; and

3) Examination of the change-point model in at least one more building and

identification of building/system types where this approach is expected to
be useful.

The overall progress on this project is meeting or exceeding the milestone descriptions
and dates listed in the Project WorkPlan. This report summarizes completion of the

following tasks:

1) Select preliminary SRDLP buildings for analysis;

2) Select and instrument one grocery store and one nursing center;

3) Develop preliminary models for energy use of buildings in task 1 and 2;
4) Test predictive ability of models of Task 3;

5) Assemble end-use data for preliminary buildings;

6) Select and analyze additional buildings;

7 Refine predictive models based on data from Task 6.

In addition, major progress has been made on Task 11 "Develop generalized
predictive model framework" and the stated milestone 13 "Publication of at least three
papers at conferences and in journals" by 1/93 has already been achieved with
publication of three conference papers and acceptance of three more for publication in
March, 1991. ‘
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Figure 3.1; PRISM model types. One-, three-, and five-parameter models of energy use
as implemented in the Princeton Scorekeeping Method (PRISM) are shown.
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Figure 3.2a; Electric utility billing history for Temple nursing home.
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Figure 3.2b; Electric utility billing history for Austin nursing home.
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Figure 3.3a; Electricity consumption vs. cooling degree days for Temple nursing
home. PRISM CO model for cooling season month sfrom March, 1988 to August, 1989.
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Figure 3.3b; Electricity consumption vs. cooling degree days for Austin nursing
homes. PRISM CO model for cooling seasons months from April, 1989 to October,

1989.
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Figure 3.4; Grocery store daily electricity use vs. average daily ambient temperature

for March 1988 to April 1989.
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Figure 3.5; Measured, predicted, and residual daily electricity use for the grocery store
Jor April 1989.
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Figure 3.6; Daily chilled water use vs. ambient temperatitre Jor the ZEC from
September 1, 1989 to May 23, 1990.
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Figure 3.7; Daily hot water use vs. ambient temperature for the ZEC from September
1, 1989 to May 23, 1990.
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Figure 3.8; Hourly lights and receptacles electricity consumption for the ZEC from
August 1, 1989 to July 31, 1990. The day of the year forms the x-axis and the hour of
the day forms the y-axis. Hourly lights and receptacles electricity use is displayed as the

height above the x-y plane.
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Figure 3.9; Measured, predicted and residual hourly whole-building electricity use for
the ZEC for F ebruary, 1990. The day of the year forms the x-axis and the hour of the
day forms the y-axis. Hourly whole building electricity use is displayed as the height
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Figure 3.10; Daily electricity use vs. ambient temperature for A&M Consolidated
High School from January 1, 1990 to May 8, 1990. Data labels are: (0-1) weekends,
(2-6) weekdays, and (#) holidays. Electricity use is much more dependent on scheduling

than on ambient temperature.
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Figure 3.11; Hourly electricity use for A&M Consolidated H igh School from October
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Figure 4.1a; Predicted and measured monthly electricity use for the Temple nursing
home.
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Figure 4.1b; Predicted and measured monthly electricity use for the Austin nursing
home.
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Figure 4.2; Predicted and measured daily electricity use for the grocery store.
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Figure 4.3; Predicted and measured daily chilled water use for the ZEC.
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Figure 4.4; Predicted and measured daily hot water use for the ZEC.
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Figure 4.6; Actual, predicted and residual lights and receptacles electricity use for the
ZEC. A graphical analysis such as this can help identify changes in operating and
maintenance practices. The positive residuals occuring between days 300 and 270
resulted from the removal of a computer center from the ZEC.
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Refrigeration Cases (14.0%)

Miscellaneous (1.5%) Compressors (30.3%)

Lighting (15.8%)

Registers (1.2%)
Food Preparation (12.6%)

Air Conditioning (24.6%)

Figure 5.1; Grocery store estimated peak electricity use. This figure shows the
estimated breakdown of electrical systems in the store. The breakdown is for the peak
electric demand of the store which could occur during refrigeration defrost cycles.
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Figure 5.2a; Estimated Temple nursing home peak electricity use by function.
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Figure 5.2b; Estimated Temple nursing home peak electricity use by area.
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Lights (16.7%)

Condensors (2.5%)

Figure 5.3 A&M Consolidated High School estimated peak electricity use. This figure
shows the estimated breakdown of major electrical systems in the school. It does not
include smaller miscellaneous loads.
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HVAC (50.0%)

Figure 5.4; ASEAM estimate of annual Temple nursing home electricity use.
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Figure 5.5; ASEAM estimate of annual A&M Consolidated High School electricity
use.
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Cooling Related (28.8%)

Figure 5.6a; PRISM estimate of Temple nursing home base-level and cooling
electricity use.

Cooling Related (14.0%)

Base-Level (86.0%)

Figure 5.6b; PRISM estimate of Austin nursing home base-level and cooling
electricity use.
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Fans,
Pumps,Computers (42.7%)

Lights & Misc. Electric (57.3)

Figure 5.7a; Measured breakdown of ZEC electricity use. Misc. Electric includes all
"plug in" loads at wall receptacles.

Hot Water (26.2%)

Chilled Water (73.8%)

Figure 5.7b; Measured breakdown of the ZEC thermal energy use. Hot and chilled
water are supplied by the Texas A&M physical plant.
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Figure 6.1; Generalized four parameter models of energy use with positive and

negative slopes.
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Figure 6.3; Change-point model and PRISM CO model fits to grocery store data.
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Appendix A
ERAP Energy Savings Worksheet
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ERAP ENERGY SAVINGS WORKSHEET

Date: 12-5-90 __ ERAP Project No.: 327

PI: p. E. Claridge

76

Project Title: Improved Analysis Methods Evaluator:
Expected Date cf Proof of Concept ! 93
Month Year
1990 1901 1992 1963 1984 1698 1996 1997 1998 1999
7.34 7.45 7.72 7.92 8.13 8.13 8.36 8.57 8.77
Targeted BTUs ~°Ur°®
g Us cite 2.16 2.19 2.27 2.33 2.39 2.39 2.46 2.52 2.58] x 1074/yr
1990 1991 1993 1908 1904 1996 1906 1997 1998 1999
Savings Factor 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
X 1990 1991 1993 1998 1994 1996 1996 1007 1908 1999
Feasibility Factor
0.55f 0.95} 1.0 {1.0 1.0 1.0 1.0 1.0 t.0
X ' 1990 1991 1993 1998 1994 1906 1996 1997 1998 1999
Penetration Factor
.008 | .016} .024} .032} .040] .048] .052} 0521 .052
x 1990 1991 1992 1903 1994 1905 1908 1997 1998 1999
’*Adoptlon Factor*
1.6 1.6 1.04 1.0§ 1.031.0 §1:04 1.0 1 1.0
— 3 ———————— - = = = .
1990 1901 1992 1998 1904 1906 1996 1007 1008 1999
Calculated Energy
Savings 2.94}18.94]18.5 }25.3}432.5139.0} 43.5} 44.6} 45.6] x 1010
1990 1991 1992 _ 1993 1904 1906 1006 1997 1998 1999

~» *Default Adoption Factors
From Product Acceptance Curve

Time Corrected*®

TEN YEAR TOTAL BTU'’S SAVED

2.6 X 1012

** Time correction determined by date of
proof of concept. Time correction adoption
factors determined by multiplying adoption
factors by time correction. (See tables)
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REFERENCES AND SOURCES OF ESTIMATES
ERAP ENERGY SAVINGS WORKSHEET

Targeted BTU’s:

Commercial sector electric consumption estimates from Public Utility Commission
of Texas, "End-Use Modeling Project Interim Report" February 1989.

Saviangs Factor:

10% savings typical based on Haberl & Claridge, ASHRAE Trans 1987. We estimate
ERAP work will inprove from 10% to 11% for incremental savings of 1%.

Feasibility Factor:

Concept will be implemented beginning in 1991. We assign 0.5 for 1991, reading
1.0 in 1993.

Penetration Factor:

The penetration factor is based on the energy consumption of buildings expected
to participate in the Texas LoanSTAR Program. Additional use of techniques by
private sector may improve this impact.

Adoption Factor:

Assumed to be 1.0 for LoanSTAR buildings where contract is in place to implement
these techniques.

Notes:
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REQUESTS FOR INFORMATION
ABOUT ENERGY ANALYSIS METHODS AND SOFTWARE

no. date name/address mailed to what was mailed
mailed
1 5-25-89 | Michael N. Hart information about Zachry Engineering Center:
President monthly plots of dry bulb temperature, solar
Energy Engineering Associates, Inc. radiation, electric consumption, chilled and hot
PO Box 49134 water consumption; channel table for data
Austin, TX 78765 logger; building survey data; assumption
used for modeling building and typical
measured load profiles
2 7-9-90 Raj Gopal list of software packages
The Anco Group
231 W. Michigan Ave. #P141
Milwaukee, Wl 53203
3 7-9-90 Robert Tyls lists of software packages
AT&T Contract Services
One Oak Way Rm. 3Wc135
Berkeley Heights, NJ 07922
4 7-9-90 Dominick Chirico lists of software packages
Stone & Webster Engineering
250 W. 34th Street
New York, NY 10119
5 7-9-90 James Elleson, P.E. lists of software packages
Dorgan & Associates
5610 Medical Cir. #31
Madison, Wl 53719-1227
6 7-9-90 Lew Harriman lists of software packages
Mason-Grant Company
PO Box 6547
Portsmouth, NH 03801
rd 7-9-90 Robert Hough, P.E. lists of software packages
The Fleming Group
6310 Fly Road
East Syracuse, NY 13057
8 7-9-90 Dr. Hiroshi Yoshino lists of software packages

Department of Architecture
Tohoku University
AOBA SENDAI 980 JAPAN
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7-9-90

Emie Freeman
U.S.D.O.E.

1000 Independence S.W.
Washington, D.C. 20585

lists of software packages

10

7-9-90

Lester Shen

Underground Space Center
Civil & Mineral Engr. Bldg.
500 Pillsbury Dr. SE

University of Minnesota

Minneapolis, MN 55455

lists of software packages

11

7-9-90

Charles Cromar, P.E.

Florida Solar Energy Center

300 State Road #401

Cape Canaveral, FL 32920-4099

lists of software packages

12

7-9-90

Harry Misurello

The Fleming Group

1511 K. Street NW #331
Washington, DC 20005

lists of software packages

13

7-9-90

William Mixon

O.R.N.L. MS6070

PO Box 2008, Bldg. 3147
Oak Ridge, TN 37831

lists of software packages

14

7-9-90

Robert McDowell, P.E.
Physical Plant

89 Freedman Crescent
Winnipeg, Manitoba CANADA
Canada R3T 2N2

lists of software packages

15

7-9-90

David Saum

Infiltec

PO Box 1533

Falls Church, VA 22041

lists of software packages

16

7-9-90

Robert Briggs
Battelle PNL

Battelle Boulevard
Richland, WA 99352

lists of software packages

17

7-9-90

William Fleming

The Fleming Group

6310 Fly Road

East Syracuse, NY 13057

lists of software packages

18

7-9-80

Julie Oliver
U.S.D.O.E.
1000 Independence S.W.
Washington, D.C. 20585

lists of software packages
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19

7-9-90

Dr. Jan Krieder
ICEM/CEAE

University of Colorado
Boulder, CO 80309-0428

lists of software packages

20

7-9-90

Richard Mazzucchi
Battelle PNL

Battelle Boulevard
Richland, WA 99352

lists of software packages

21

8-15-80

Jeff Wheless

180 Technology Road
Norcross, GA 300092
Schlumberger, Inc.

Hot & Humid preprints

10-08-90

Ken Keating

U.S. Department of Energy
Bonneville Power Administration
PO Box 3621

Portland, OR 97208-3621

Hot & Humid preprints and copies of recent
articles conceming an exploratory analysis of
the energy audit process

23

10-08-90

Jim Vajda

U.S.D.O.E.

1000 Independence Ave. SW
Washington, DC 20585

Hot & Humid preprints and ASHRAE Journal
articles

24

10-8-90

David Feng

Civil Engineering Department
University of Colorado
Boulder, CO 80309-0428

ASHRAE Joumal articles

25

10-11-90

Howard Reichmuth

Pacific Power

920 SW 6th Ave., 440 PFFC
Portland, OR 97204

Hot & Humid preprints

26

10-11-90

William Jones

Ontario Hydro

800 Kipling Ave. KR263
Toronto, Ontario M8Z 5S4
CANADA

Hot & Humid preprints

27

10-11-90

Michael Kaplan

Kaplan Engineering

623 Atwater Road

Lake Oswego, OR 97034

Hot & Humid preprints

28

10-11-90

Mukesh Khattar

EPRI - Commercial Applications
3412 Hillview Ave.

PO Box 10412

Palo Alto, CA 94303

Hot & Humid preprints
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10-11-90

M. J. DelLaHunt

BR Associates, Inc.
2323 Eastlake Ave. East
Seattle, WA 98102

Hot & Humid preprints

30

10-11-90

-Palo Alto, CA 94303

Ron Wendland

EPRI - Thermal Storage Technology
3412 Hillview Ave.

PO Box 10412 %

Hot & Humid preprints

31

10-11-90

Manuel Carabott

PRISM Engineering

145 West 15th Street #102

North Vancouver, B.C. V7M 1R9
CANADA

Hot & Humid preprints

32

10-11-90

John Proctor
45 Massasoit St. #102
San Francisco, CA 94110

Hot & Humid preprints

33

10-11-90

Chris Soper
1126 Sinex Ave.
Pacific Grove, CA 93950

Hot & Humid preprints

10-11-90

David Myers
Honeywell
MN63-C010
Sensor and System Development Cent
1000 Boone Ave. ;
Golden Valley, MN 55427

Hot & Humid preprints

35

10-11-90

Stuart Harrison

Domestic Automation

353 D. Vintage Park Drive
Foster City, CA 94404

Hot & Humid preprints

36

10-11-90

George Baird

School of Architecture

Victoria University of Wellington
PO Box 600

Wellington, New Zealand

Hot & Humid preprints

37

10-11-80

Paul Meagher

EPRI - Demand Side Planning
3412 Hillview Ave.

PO Box 10412

Palo Alto, CA 94303

Hot & Humid preprints
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38 10-11-90 | Laurence Carmichael Hot & Humid preprints
EPRI
3412 Hillview Ave.
PO Box 10412
Palo Alto, CA 94303

39 10-11-90 | Ame Boysen papers for publication in his proceedings:
Arne Boysen AB reprints of articles from ASHRAE, Hot &
Hersbyvagen 23 Humid, ACEEE proceedings
S-181 42 Lidingo
SWEDEN

40 10-16-90 | Mark Opal preprints of papers describing the program &
Sycom Corporation related papers
1050 Thomas Jefferson St. NW
(6th floor)
Washington, D.C. 20007

41 10-16-90 | Edward McGee preprints of papers describing the program &
Bramalea Texas related papers
801 Main Street
Dallas, TX 75202

42 10-16-90 | Larry Kramer preprints of papers describing the program &
TU Electric related papers
PO Box 151325
Irving, TX 75015-1325

43 10-16-90 | Jack Wolpert paper dealing with potential DOE-2.1¢
Environmental Research Group problems;
1536 Cole Boulevard #145 Forrestal & shopping center papers;
Golden, CO 80401

44 10-16-90 | Davor Novosel paper on study done grocery store in Texas
Gas Research Institute
8600 West Bryn Mawr Ave.
Chicago, IL 60631

45 10-16-90 | Mark Krebs background papers on techniques developed
Southern Union Gas for tracking, analyzing and displaying building
400 West 15th Street energy usage and early study done on a
Austin, TX 78701 grocery store

46 10-16-90 | Alan Ash background papers on techniques developed
The Trane Company for tracking, analyzing and displaying building
PO Box 814609 (75381-4609) energy usage
Dallas, TX 75234

47 10-16-90 | George Grant background papers on techniques developed

Grant Engineering
990 Bennett Ave.
Winter Park, FL 32789

for tracking, analyzing and displaying building
energy usage; Forrestal & New Jersey
shopping center papers
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10-18-90

Richard Flora

Fermitek Corporation
25117 SW Parkway Ave.
Wilsonville, OR 97070

Hot & Humid preprints

49

10-19-90

Michael Anderson

Landis & Gyr

3601 Sagamore Parkway North
PO Box 7180

‘Lafayette, IN 47903

Hot & Humid preprints

50

10-19-90

Ed Cunnie

Gulton Industries -- Rustrak
Gulton Industrial Park

East Greenwich, Rl 02818

Hot & Humid preprints

51

10-19-80

Ron Gumina

Synergistics Control Systems, Inc
6600 Plaza Drive, Suite 200

New Orleans, LA 70124

Hot & Humid preprints

52

10-19-90

Ralph Kellar
Process Systems
24 Starway
Willis, TX 77378

Hot & Humid preprints

53

10-19-90

Dave Repko

Campbell Scientific, Inc.
PO Box 551

Logan, UT 84321

Hot & Humid preprints

10-22-90

Dave Simms

SERI - Wind Systems
1617 Cole Blvd.
Golden, CO 80401

Hot & Humid preprints

55

10-23-90

Joe Holzer
ServiceMaster

5340 S. Quebec St.
Englewood, CO 80111

Hot & Humid preprints

56

10-24-90

Herb Muther

Honeywell, Inc.
Honeywell Plaza
Minneapolis, MN 55408

Hot & Humid preprints

57

10-25-90

Barbara Trent
ASHRAE Program
1791 Tullie Circle NE
Atlanta, GA 30329

information concerning recent research
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58

10-25-90

Don Peavy

GFE Energy Management
1980 Post Oak Blvd. #1495
houston, TX 77056

Hot & Humid preprints

59

10-30-90

Bruce Long
Engineering Division
Prudential Realty Group
Three Gateway Center

‘Newark, NJ 07102-4082

Hot & Humid proceedings & related articles
and the ESL brochure

60

10-30-90

Dr. Gideon Shavit

Honeywell

Commercial Buildings Group
1500 W. Dundee Rd.

Arlington Heights, lllinois 60004

Hot & Humid preprints & ESL brochure

61

10-31-90

John Short

Lambert Engineering
601 NW Harmon
Bend, OR 97701

hot & Humid preprints

62

10-31-90

Dr. Peter Brothers
Johnson Controls
507 East Michigan St.
PO Box 423
Milwaukee, WI 53201

Hot & Humid preprints

63

11-8-90

Scott Seitz

PEPSI

Route 35 and 100
Somers, New York 10589

Hot * Humid papers & recent ASHRAE
Journal articles

11-8-90

Ms. Sandy Robinson
Meta Systems

1 Kendall Square #2200
Cambridge, MA 02139

Hot & Humid papers

65

11-15-90

Ms. Marisa Gurjao Pinheiro
Fundacao Centro Tecnologico De
Minas Gerias

CETEC, Setor de Informacao
Tecnologico STI

Av. Jose Candido da Sliveira, 2000,
Horto

Ramal 346, Caixa Postal 2306
31170 Belo Horizonte - MG, BRAZIL

copies of articles referenced in the 8/80 and
9/90 ASHRAE Journal articles & copies of
papers describing work done here

66

11-20-90

Gary Lawson

Washington Water Power
PO Box 3727

Spokane, WA 99220-3727

Hot & Humid papers, Thermal Envelopes IV
paper, draft copy of the PSC Final report,
1990 ACEEE poster paper
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67

11-20-90

Moncef Krarti

Steven Winter Associates
50 Washington Street
Norwalk, CT

Hot & Humid papers, ASME preprints

68

11-20-90

Martha Hewett
C.E.UE
510 1st Avenue North #400

Minneapolis, MN 55403

Hot & Humid papers, 3 ASME preprints

69

11-23-80

Dr. Forrest Stoddard
Alternative Energy Institute
WTSU Box 248

Canyon, TX 79016-0248

several preprints, printout of weather
channels

70

11-28-90

Professor David Klett

Mechanical Engineering

North Carolina AT&T State Universtiy
Greensboro, NC 27411

copies Hot & Humid and ASME preprints

71

11-28-80

Prof. Bill Beckman

240 ME Building
University of Wisconsin
Madison, Wl 53706

copies Hot & Humid and ASME preprints

72

11-28-90

Boyce Farror, P. E.
6931 Lakewood Blvd.
Dallas, TX 75214

copies Hot & Humid and ASME preprints




