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Abstract 

Der Geruchssinn ist auf unterschiedliche Weise für viele Tiere überlebenswichtig. Im 

Gegensatz zum Menschen sind einige Gruppen von Säugetieren in ihrem Alltag 

darauf angewiesen, um ihre Umgebung wahrnehmen zu können, nach Essen zu 

suchen, zu kommunizieren, Feinde aufzuspüren und sich zu paaren. Diese 

Informationen werden vom Individuum als Geruch, zusammengesetzt aus 

verschiedenen chemischen Stoffen, aufgenommen. Die Aufnahme der Geruchsstoffe 

kann nicht ohne die Atmung funktionieren. Das Einatmen von Luft dient also 

einerseits zur überlebenswichtigen Aufnahme von Sauerstoff in den Körper aber 

andererseits auch als Mechanismus um Gerüche aus der Umgebung aufzunehmen. 

Dabei transportiert die Atmung Geruchsstoffe zu einem spezialisierten Riechepithel, 

wo die chemischen Stoffe von ebenfalls spezialisierten Riechzellen entschlüsselt 

werden. Diese Neuronen leiten die Informationen wiederum direkt an den Bulbus 

olfactorius, eine Vorderhirnregion, in der die meisten Gerüche verarbeitet werden, 

weiter. Die erste größere Weiterverarbeitung des olfaktorischen Inputs findet im 

Bulbus olfactorius statt, wo diese durch die Interaktion verschiedener 

Neuronentypen, die in verschiedenen Schichten voneinander abgetrennt sind, 

vermittelt wird. Der Bulbus olfactorius ist eng verbunden mit höheren 

Verarbeitungsregionen, an die er die zuvor bearbeiteten Informationen weiterleitet. 

Umgekehrt innervieren unterschiedliche kortikale Regionen über zentrifugale Fasern 

den Bulbus und regulieren so dessen Aktivität. Die direkte Verbindung zwischen 

Bulbus olfactorius und dem Verhalten zugeordneten Regionen lässt vermuten, dass 

die Verschaltungen im Bulbus olfactorius direkt mit dem Verhalten verknüpft sind. 

Unterschiedliche Verhaltenzustände können verschiedenen Aktivitätsmustern im 

Bulbus olfactorius zugeordnet werden, welche sich als osszilatorische Aktivität in 

unterschiedlichen Frequenzen darstellen. Bis jetzt wurden die genauen 

Mechanismen und Netzwerke, die die Osszilationen bestimmen, noch nicht völlig 

verstanden. Die Forschung am olfaktorischen System verbunden mit Osszilationen 

wurde zum Teil an akuten Präparaten und/oder an anästhesierten Tieren in vivo 

durchgeführt. 

In dieser Arbeit habe ich neue Alternativen für gängige experimentelle 

Vorgehensweisen erforscht. Dies war begründet durch die Notwendigkeit eine intakte 

und funktionierende olfaktorische Bahn aufrechtzuerhalten, ohne Anästhesie zu 

nutzen. Das zuvor beschriebene semi-intakte Präparat schien eine gute Alternative 
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zum in vivo Präparat zu sein. Trotzdem wurde bisher keines bei Nagetieren 

beschrieben, welches ein Atemwegssystem wie in vivo aufrechterhält. 

Dementsprechend wurde in dieser Arbeit ein neuartiges semi-intaktes Präparat einer 

Ratte entwickelt, bei dem Geruchs- und Atemwegssystem gut erhalten bleiben. 

Dieses Präparat umgeht viele Probleme anderer Vorgehensweisen, besitzt aber trotz 

allem eigene Einschränkungen. Die Vorteile scheinen jedoch zu überwiegen und ich 

konnte in dieser Arbeit die Tauglichkeit des Präparats durch die Anwendung in der 

aktuellen olfaktorischen Forschung verifizieren. Direkte nasale Stimulationen mit 

unterschiedlichen Geruchsstoffen riefen olfaktorische Reaktionen im Bulbus 

olfactorius hervor und lösten spontane und durch Geruch hervorgerufene 

Oszillationen aus. Überdies war die Erhaltung von trigeminalen Afferenzen, die die 

nasale Schleimhaut innervieren, entscheidend, um zu erforschen wie der 

Geruchssinn mit der Atmung in Abwesenheit von Regionen des Mittelhirns welche 

bei chirurgischen Eingriffen entfernt wurden, interagiert. Bisher konnte ich aufzeigen, 

dass die sogenannten trigeminalen Geruchsstoffe das Atemwegssystem regulieren. 

Außerdem löste Stimulierung mit diesen Geruchsstoffen mutmaßliches Schnuppern  

in verschiedenen Frequenzen aus.  

Es ist bekannt, dass synaptische Plastizität auf der Ebene des Bulbus olfactorius in 

direkter Beziehung zur oszillatorischen Aktivität steht. Folglich habe ich für die 

Zielsetzung dieser Arbeit an einem Nebenprojekt mitgearbeitet, in dem wir in akuten 

Präparaten des Bulbus olfactorius zeigen, dass unterschiedliche elektrische 

Stimulationsparadigmen, die schnelle und langsame Oszillationen imitieren, 

neuronale Plastizität hervorrufen. 

Zusammenfassend kann gesagt werden, dass ich in dieser Arbeit die erfolgreiche 

Entwicklung einer neuen experimentellen Technik präsentiere. Diese erlaubt durch 

Geruch hervorgerufene Reaktionen, oszillatorische Aktivitäten und deren Interaktion 

mit dem Atemwegssystem und andere olfaktorische Funktionen auf 

unterschiedlichen Ebenen zu studieren. Schlussendlich zeige ich, dass 

oszillatorische Aktivitäten die neuronale Plastizität im Bulbus olfactorius antreiben. 
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Abstract 

The sense of olfaction is vital for the survival of many animals in different ways. In 

contrast to humans, some groups of mammals rely on it in their daily life to perceive 

their environment in order to search for food, to communicate, detect predators or to 

find mates. This information arrives to an individual as an odor composed by different 

types of chemicals. In land mammals the detection of these chemicals cannot be un-

derstood without respiration, where inspiration of air provides oxygen to the body to 

survive but at the same time serves as an odor sampling mechanism of the surround-

ing. In this respect, the respiration transports odorants to olfactory detection tis-

sues/epithelia where the chemicals are detected by specialized olfactory neurons. In 

turn, these neurons relay this information directly to the olfactory bulb, a forebrain 

area where the processing of odors is mediated by the interaction of different types of 

neurons which are spatially distributed in different layers. The olfactory bulb is dense-

ly connected with higher processing areas to where it relays the information previous-

ly processed. In turn, different cortical areas project back centrifugal fibers to the 

bulb, modulating its activity. The direct connection between olfactory bulb and behav-

ior-related areas suggests that the wiring in the olfactory bulb is directly linked to be-

havior. Different behavioral states relate to different activity patterns in the olfactory 

bulb, which are reflected as oscillatory activity at different frequencies. So far, the 

exact mechanisms and networks ruling oscillations are still not fully understood. Re-

search in the olfactory field related to oscillations has been performed to some extent 

in acute slices and/or in anaesthetized animals in vivo. 

Within this thesis I explored new alternatives to more popular experimental ap-

proaches. This was motivated by the necessity of maintaining an intact and functional 

olfactory pathway while not using anesthesia. Previously described semi intact prepa-

rations seemed to be a good alternative for in vivo preparations. However, none was 

described in rats that maintained an in vivo-like olfactory network. Thus, in this thesis 

a novel semi intact preparation of the rat was developed with well-preserved olfactory 

and respiratory networks. This preparation circumvents many issues from other ap-

proaches but it also has its own limitations. However, the advantages seem to ex-

ceed the limitations, and within this thesis I could verify the suitability of this prepara-

tion to be used in the current olfactory research. Direct nasal stimulation using differ-

ent odorants evoked olfactory responses in the olfactory bulb and elicited spontane-
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ous and odor-evoked oscillations. Moreover, preservation of trigeminal afferents in-

nervating the nasal mucosa was crucial to investigate how olfaction interacts with 

respiration in the absence of midbrain areas which were removed during surgical 

procedures. So far, I could demonstrate that so-called trigeminal odorants modulate 

respiratory networks. Besides, stimulation with these odorants triggered putative 

sniffs at different frequencies.  

Synaptic plasticity at the level of the olfactory bulb is known to be directly related to 

oscillatory activity. Thus, for the purpose of this thesis, I participated actively in a side 

project in which we demonstrate in olfactory bulb acute slices that different electrical 

stimulation paradigms mimicking fast and slow oscillatory components elicits synaptic 

plasticity. 

Conclusively, in this thesis I present the successful development of a new experi-

mental technique. This new technique allows to study olfactory function at different 

levels, odor-evoked responses, oscillatory activity and how it interacts with respirato-

ry networks. Finally, I show that oscillatory activity can drive neural plasticity in the 

olfactory bulb.  
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1. INTRODUCTION 

 

1.1. The importance of the sense of smell 

Olfaction is an active process which enables animals to get information of the air-

borne chemical environment. Some vertebrates, like rodents, critically rely on their 

olfactory sense for their survival. This sense is known to be crucial for diverse behav-

iors such as tracking sources of food, mating, detecting predators or social communi-

cation among others (Doty 1986; Keverne 2004; Restrepo, Arellano et al. 2004). In 

turn, olfaction in humans did not get that much attention in the last century compared 

to research on other sensory systems. Nowadays, it might be accepted that humans 

do not essentially rely on the sense of smell for the daily life. However, olfactory dys-

function can precede different disorders and might have a direct impact on life quality 

(Hummel, Landis et al. 2011). Nevertheless, in the last decades olfaction gained 

more attention since it is a good model to investigate how external sensory infor-

mation is coded in the brain from the molecular to the network level. Impairment of 

olfactory function could indicate early stages of certain neurodegenerative diseases 

(Hummel, Landis et al. 2011; Doty and Kamath 2014; Godoy, Voegels et al. 2015), 

which makes olfactory research a field of interest for different medical studies. Thus, 

much effort has been performed to study the olfactory network architecture, its prop-

erties and interactions and to understand how odor information is processed and 

coded in the OB. The study of the different cell layers forming the OB uncovered dif-

ferent cell types and properties as well as different cellular-regulatory mechanisms 

revealing a complex and dynamic network, based on the interaction between mainly 

glutamatergic and GABAergic neurons (Egger and Urban 2006; Urban and Arevian 

2009; Nunes and Kuner 2015). Besides, the OB is broadly connected to many other 

brain regions. Thus, odor stimuli entail information which will be processed in the OB 

and will afterwards be relayed in different olfactory-related brain areas modulating the 

behavioral output.  

Odors are chemically very diverse and they travel downwind in mixtures as small 

packages of volatile molecules. Odorants are basically small organic molecules of 

less than 400 Da which differ in size, shape, functional groups and charge. Different 

chemical classes form odorant molecules such as alcohols, aldehydes, ketones and 
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esters; chemicals with aromatic, alicyclic, polycyclic or heterocyclic ring structures; 

and innumerable substituted chemicals of each of these types, as well as combina-

tions of them (Gaillard, Rouquier et al. 2004). Its detection depends on their concen-

tration and on the volatility of the chemical although not all the volatile molecules are 

detected. Notably, despite humans have only a small epithelial area and low sensi-

tivity to odorants (Galizia and Lledo 2013) it is reported to be able to discriminate 

over a trillion of odorants (Bushdid, Magnasco et al. 2014), although this statement is 

likely to be imprecise and still under debate (Meister 2015). 
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1.2. Organization of the olfactory system 

Chemosensory stimuli are very diverse, which detection influence our behavior. 

Therefore, two major systems are in charge for detecting and transducing these sen-

sory inputs in vertebrates. On the one hand, the main olfactory system processes 

mostly volatile molecules in the MOB. Their detection occurs at the level of the olfac-

tory epithelium by olfactory sensory neurons (OSNs). Receptors located on the sur-

face of the cilia of the OSNs bind odor molecules and send the signal to the main 

olfactory bulb (MOB). Within the OB interactions between glutamatergic mitral and 

tufted cells with inhibitory granule cells (GCs) process most of the olfactory stimuli. 

Mitral (MC) and tufted (TC) cells project to different cortical areas propagating this 

input onto cortico-limbic networks. In turn, feedback projections from cortical areas 

synapse mostly on GCs shaping odor responses from MCs and TCs. On the other 

hand, the accessory olfactory system detects pheromones via the vomeronasal or-

gan. The vomeronasal organ is a bilateral tubular structure that is enclosed in a carti-

laginous capsule. It is located at the base of the nasal septum and it connects to the 

nasal cavity via a narrow duct. Vomeronasal sensory neurons project their axons to 

few glomeruli in the accessory olfactory bulb. Pheromone responses mediate many 

behaviors that range from aggression, sexual behavior to endocrine changes 

(Meredith 1991; Halpern and Martinez-Marcos 2003; Ackels, von der Weid et al. 

2014).  

There are further other olfactory subsystems which respond to chemosensory cues. 

The Grueneberg Ganglion is a cluster of sensory neurons located on the rostral part 

of the nasal cavities that project directly to the MOB. These neurons are thought to 

play a key role in thermosensation as well as constituting a detector for alarm pher-

omones since the activation of the Grueneberg Ganglion induces freezing behavior 

(Brechbuhl, Klaey et al. 2008). Projections to the OB provide directly social relevant 

chemical information suggesting a role for interactions between individuals (Munger, 

Leinders-Zufall et al. 2010). In the ventral side of the nasal septum, there is the 

septal organ of masera, another olfactory subsystem. It is formed by sensory neu-

rons which project directly to the MOB and are thought to be important for 

mechanosensation (Grosmaitre, Santarelli et al. 2007).  

The interactions between the principal olfactory systems in combination with the dif-

ferent olfactory subsystems might provide an optimal perception of the surrounding 



 

4 

 

for most vertebrates. Because sensory information coming from the different systems 

and subsystems might be synergetic at the level of the OB, it might provide a fast 

and accurate behavioral output which might be crucial for the animal´s development 

and survival.  

 

1.3. Olfactory perception: from detection to processing  

In most vertebrates, the olfactory system samples the chemical environment rhythmi-

cally, detecting and processing different odors. It provides information that is retained 

in small volatile molecules often mixed with other molecules. The detection of odors 

is localized in the nasal epithelium by specialized OSNs while the processing stage 

occurs at different levels in the MOB and in higher olfactory-related cortical areas. In 

the next sections, a description of the different olfactory processing stages is reveal-

ing in detail different cell types distributed in different layers and their connections 

within the OB and with other brain areas. 

 

1.3.1. Olfactory sensory neurons (OSNs) 

Olfactory sensory neurons (OSNs) are specialized neurons with a dual function being 

responsible for detection and transduction of odor and mechanical stimuli 

(Grosmaitre, Santarelli et al. 2007). They are located in the MOE and are surrounded 

by the Bowman´s gland, basal and supporting cells. OSNs have cilia that innervate 

the mucus of the olfactory epithelium. With each inspiration, volatile molecules get in 

contact with the cilia of the OSNs, binding specifically to olfactory receptors (ORs) 

expressed on the surface of the cilia. Beside the olfactory receptors, there are other 

G-protein coupled receptors known to exist in vertebrates such trace amine-

associated receptors (TAARs) (Borowsky, Adham et al. 2001; Liberles and Buck 

2006) and formyl peptide receptors (Riviere, Challet et al. 2009). Additionally there 

are two more gene families coding for receptors detecting pheromones in the 

vomeronasal organ (for more details see section “Accessory olfactory bulb”). ORs 

represent the biggest family in the nasal epithelium (1000 genes coding for ORs in 

rodents with 370 functional ones in humans; (Mombaerts 2001)), followed by TAARs 

(15 genes in mice and 6 in humans (Liberles and Buck 2006; Johnson, Tsai et al. 
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2012) and FPRs (7 genes in rodents; (Monahan and Lomvardas 2015)). Each OSN 

that expresses one single type of OR from the whole repertoire project its axons 

through the lamina propia and the cribriform plate onto one or two glomeruli in the 

MOB (Mombaerts, Wang et al. 1996). ORs bind epitopes, an integral part of the mol-

ecule that can be present in different types of odors. The combinatorial activation of 

different ORs provides a representation of a certain odor, which is the odor percep-

tion at this early stage (Malnic, Hirono et al. 1999). The repertoire of ORs is well dis-

tributed in different zones in the olfactory epithelium along the rostral-dorsal axis and 

they are different in number across species depending on the number of genes cod-

ing for them.  

At the level of OSNs, odor molecules are transformed into electrical signals which will 

be processed in the OB. When volatile molecules bind receptors, it activates a specif-

ic G-protein named Golf. This results in an increase of cyclic adenine monophosphate 

(cAMP) via activation of adenyl cyclase III (ACIII). Consequently, cAMP opens cyclic 

nucleotide gated channels (CNGC) allowing the entrance of Na+ and Ca2+ ions. The 

influx of Ca2+ ions also activates Ca2+ activated chloride channels (CaCC) leading to 

Cl- ion efflux. The overall result is the generation of an action potential which will be 

relayed to the main olfactory bulb. 

 

1.3.2. Main olfactory bulb (MOB) 

The main olfactory bulb is a multi-layered neural network where olfactory sensory 

inputs are processed as well as different centrifugal inputs. Located in the rostral part 

of the forebrain, it receives inputs directly from the OSNs (Vassar, Chao et al. 1994). 

The OSNs expressing the same receptors, project their axons onto one or few glo-

meruli (Mombaerts, Wang et al. 1996), the first complex processing structures in the 

OB. Different cell types are distinguished depending on their morphology and locali-

zation in different layers in the OB. The main layers I will focus on in this thesis are 

the glomerular layer, the external plexiform layer, the mitral cell layer and the granule 

cell layer. In the next sections I describe first all these layers anatomically, give detail 

of the physiology of the most numerous synapses at the level of the olfactory bulb 

and overview the response dynamics of the main cell types involved in olfactory pro-

cessing. 
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1.3.2.1. Glomerular layer (GL) 

The glomerular layer is formed by glomeruli, neuropil structures located on the super-

ficial layer of the olfactory bulb where presynaptic axons of OSNs synapse with api-

cal dendrites of glutamatergic mitral and tufted cells (De Saint Jan, Hirnet et al. 2009; 

Najac, De Saint Jan et al. 2011; Gire, Franks et al. 2012). Glomeruli are surrounded 

by juxtaglomerular cells, which includes GABAergic periglomerular cells (PGC), su-

perficial short axon cells (sSACs) and external tufted cells (eTC). These cells differ in 

number, size, morphology, innervation pattern of glomeruli and each group can be 

divided into different subtypes (Pinching and Powell 1971; Parrish-Aungst, Shipley et 

al. 2007; Kosaka and Kosaka 2011; Nagayama, Homma et al. 2014). While eTCs are 

glutamatergic, PGCs and sSACs are GABAergic although they can also release do-

pamine. Once the input arrived to the glomerular layer, it propagates downstream to 

tufted cells (TCs) in the external plexiform layer (EPL) and to mitral cells (MCs) in the 

mitral cell layer (MCL) disynaptically or even monosynaptically directly from OSNs 

(De Saint Jan, Hirnet et al. 2009; Najac, De Saint Jan et al. 2011). 

  

1.3.2.2. External plexiform layer (EPL) and mitral cell layer (MCL) 

Tufted (TC) and mitral cells (MC) are the main glutamatergic neurons in the OB. With 

similar morphological and to some extent biophysical properties, a detailed descrip-

tion of these two types of neurons and their interactions is needed to understand their 

crucial functions during odor processing.  

TCs are classified in two subgroups depending on their location in the OB and ana-

tomical differences (depending on the presence or absence of secondary dendrites). 

Middle and internal TCs project secondary dendrites to different areas in the EPL 

while a small portion of TCs have no secondary dendrites (Orona, Rainer et al. 

1984).  

Medial to the EPL there are MCs located in the MCL, which have larger somata 

compared to TCs and most of them extend secondary dendrites into the EPL. They 

are classified into different subtypes depending on their projection to intermediate or 

deeper layers of the EPL (Mori, Kishi et al. 1983; Orona, Rainer et al. 1984).  
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Within the EPL there are different types of interneurons, mostly GABAergic, that in-

teract mostly with projection neurons. These neurons are partially classified depend-

ing on their expression of different calcium-binding proteins such paralbumin (PV), 

calbindin (CB), calretinin (CR) and neurocalcin (Brinon, Martinez-Guijarro et al. 1999) 

and further are classified by their morphology and connectivity as Van Gehuchten 

cells and multipolar type cells. Van Gehuchten short-axon cells are interneurons that 

have some features in common with somatostatin-immunoreactive cells. Both are in 

the same size range and are located throughout the EPL (Schneider and Macrides 

1978) with a more localized presence of somatostatine-immunoreactive cells (~95%) 

in the intermediate-deep EPL (Lepousez, Csaba et al. 2010). Multipolar type cells are 

classified depending on their morphology, exact location and dendritic extension, be-

ing (1) inner horizontal cells, (2) large short axon cells and (3) other types. These 

three different types of cells have different morphology, spatial distribution and syn-

apse with distinct cell types throughout the OB (Schneider and Macrides 1978; 

Kosaka, Heizmann et al. 1994; Brinon, Arevalo et al. 1998; Lepousez, Csaba et al. 

2010).  

 

1.3.2.3. Granule cell layer (GCL) 

The most abundant cell types in the OB are the granule cells (GCs), inhibitory 

axonless interneurons that release gamma - aminobutyric acid (GABA). They have 

small cell bodies (6-8 µm) (Price and Powell 1970) and although they are mostly lo-

cated in the GCL, they could also be found in the IPL and in the MCL (Nagayama, 

Homma et al. 2014). Granule cells are classified in three different groups depending 

on if they project their dendrites to any depth of the EPL (type I), only to deeper layer 

of the EPL (type II) or to the superficial layer of the EPL (type III) (Mori, Kishi et al. 

1983), targeting mostly MCs and TCs. A recent study reported two new types of 

granule cells. They were observed to be generated in the subventricular zone (SVZ) 

and migrate to the GCL (Merkle, Fuentealba et al. 2014). The first new type projects 

their dendrites exclusively to the GCL (type IV GC) while the other new one has 

somata lacking basal dendrites and being restricted to the MCL (type-V GC). Other 

types of GABAergic interneurons in the GCL are deep short-axon cells (dSAC) which 

have larger cell bodies compared to GCs. They synapse onto GCs although they al-

so interact with other cell types depending on which layer they project into. They are 
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classified into three different groups based on their location and morphology. DSACs 

are located at the frontier between the GCL and IPL, with their dendrites being con-

fined within the IPL, but their axons project to the GL. Other dSACs (11-15 µm), are 

located in the medial GCL. They have dendrites that project widely across the MCL, 

IPL and GCL, while their axons extend mostly to the EPL. The last type of dSACs 

(10-20 µm) is located in the GCL and its dendrites project as well to the MCL, IPL 

and GCL but their axons extend to the GCL and some to the olfactory cortex 

(Schneider and Macrides 1978; Eyre, Antal et al. 2008; Eyre, Kerti et al. 2009; 

Nagayama, Homma et al. 2014). 

 

1.3.3. Reciprocal dendrodendritic synapse between mitral cell and granule cells 

Granule cells are the most numerous neurons in the vertebrate olfactory bulb (Egger 

and Urban 2006). Interactions of GCs with MCs are known to be critical in the pro-

cessing of odor information. The MC-GC synapse is dendrodendritic and reciprocal, 

being glutamatergic from MC to GC and GABAergic from GC to MC. In MCs, the re-

lease of glutamate is typically mediated by action potentials (APs) (Xiong and Chen 

2002) which depolarize its dendrites and mediate the opening of high-threshold volt-

age-dependent calcium channels (VDCC). Glutamate released in the synaptic cleft 

binds to NMDA and AMPA receptors in GC spines which contribute to the excitation 

of the GC (Isaacson and Strowbridge 1998; Sassoe-Pognetto and Ottersen 2000). 

Since glutamate binds both receptors, excitability of the GC spine occurs in two 

phases, where first AMPA receptors mediate fast depolarizations of the spines fol-

lowed by NMDA receptor activation being responsible for long lasting depolarizations 

in the GC spine (Schoppa, Kinzie et al. 1998; Isaacson 1999; Isaacson and Murphy 

2001; Egger, Svoboda et al. 2005; Egger and Urban 2006). The outcome of this in-

teraction can lead to three different scenarios (Egger, Svoboda et al. 2003) in which 

(1) excitation of a GC spine by glutamate promotes the release of GABA back to the 

MC (Isaacson and Strowbridge 1998) even without the generation of an AP (Jahr and 

Nicoll 1980; Jahr and Nicoll 1982). (2) activation of a GC spine excites proximal 

spines on the same GC due to subthreshold activity between spines, leading in con-

sequence to potential inhibition of an adjacent MC (Jahr and Nicoll 1982; Woolf, 

Shepherd et al. 1991). The last scenario (3) would be a mechanism of global lateral 

inhibition where a strong suprathreshold activation of the GC leads to the generation 



 

9 

 

of an AP which could propagate throughout the dendritic tree causing global lateral 

inhibition to all connected MCs (Chen, Xiong et al. 2000). Thus, GCs modulate MC 

activity by different inhibition mechanisms suggesting that their contribution might be 

crucial for shaping odor responses.  

GCs activation does not only depend on MCs. There are plenty of centrifugal inputs 

and different neuromodulatory projections coming from higher cortical areas which 

may contribute to the excitation of GCs. As stated above, MC-GC synapses are the 

most predominant connections in the OB and their interactions generate oscillatory 

activity at different frequencies that can lead to different mechanisms of synaptic 

plasticity. Both oscillatory and synaptic plasticity are complex topics and in order to 

get a better understanding I will provide a more detailed description for both neural 

mechanisms in the next sections (see 1.5). 
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Figure 1. Representation of the olfactory bulb circuitry. 
The olfactory bulb is divided in different layers: olfactory nerve layer (ONL), glomerular layer (GL), 
external plexiform layer (EPL), mitral cell layer (MLC), internal plexiform layer (IPL) and granule cell 
layer (GCL). In each layer there are different types of neurons. In the GL there are different cell types 
like periglomerular cells (PG), superficial short-axon cells (dSACs) and tufted cells (TC). In the EPL 
there are internal (iTC) and medial tufted cells (mTC) as well as projections of the lateral dendrites of 
mitral cells (MCs). In the MCL there are glutamatergic mitral cells (MCs). In the GCL there are inhibito-
ry granule cells (GC) and deep short axon cells (dSACs), which project onto different layers as the 
EPL, MCL, IPL and GCL. LOT stands for lateral olfactory tract. 
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1.3.4. Odor - evoked responses in the MOB 

Olfactory information transduced by OSNs is relayed in the glomerular layer, the first 

level of olfactory processing. At that stage, presynaptic OSN axons synapse with jux-

taglomerular cells as well as apical dendrites of TCs and MCs (Imai 2014). Inhibitory 

periglomerular neurons and SACs modulate TC and MC activity at this synapse and 

different centrifugal fibers target these interneurons (Ma and Luo 2012). Odor 

presentation elicits sniffing behavior which, combined with the flow rate, is known to 

have an impact on the dynamics of glomerular responses (Esclassan, Courtiol et al. 

2012) and how this information is relayed to the main glutamatergic neurons in the 

OB.  

As mentioned in the last sections, TCs and MCs share some morphological proper-

ties (more detailed in Nagayama et al 2014). Apically, they both receive 

monoglomerular input since they project dendrites to one glomerulus but still they 

show different response properties. Moreover, there is evidence that an “olfactory 

column” in the ipsilateral bulb might target the contralateral bulb forming symmetric 

odor representations (Imai and Sakano 2008; Yan, Tan et al. 2008). Both TCs and 

MCs project to higher cortical areas. It has been hypothesized that they could en-

gage in different processes since TCs project specifically to the olfactory tubercle 

(OT) and anterior olfactory nucleus (AON) while MCs project their axons more broad-

ly to many more olfactory areas (Igarashi, Ieki et al. 2012; Kay 2014). Distributed in 

different layers, they have different spatio-temporal patterns of activity during basal 

states or in response to odor stimuli (Kollo, Schmaltz et al. 2014). During resting 

states both MCs and TCs show activity locked to respiration (Macrides and Chorover 

1972; Onoda and Mori 1980). More specifically, TCs fire action potentials during in-

spiratory periods while MCs show more delayed activity in the transition period be-

tween inspiration to expiration. During odor presentation, TCs and MCs maintain res-

piratory synchronization with increasing odor concentration. TCs show shorter onset 

latency and respond to lower concentrations than MCs. Thus, MCs and TCs display 

a complex pattern of cell activity depending on excitatory and inhibitory network input 

activity (Wellis, Scott et al. 1989; Laurent 1999).  

These interactions are mediated by AMPA and NMDA receptors, with NMDARs be-

ing of special importance to mediate dendrodendritic inhibition (Isaacson and 

Strowbridge 1998; Chen, Xiong et al. 2000). Granule cells are known to have key 
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roles in bulbar activity patterns since they modulate glutamatergic neuronal activity 

synchronizing their temporal patterns (Friedrich and Laurent 2001; Nusser, Kay et al. 

2001) and sharpening OB network activity. So far, the function of GCs regarding MCs 

is well studied at different levels (Wellis and Kauer 1993; Yokoi, Mori et al. 1995; 

Egger, Svoboda et al. 2003; Egger and Stroh 2009; Abraham, Egger et al. 2010). 

Nevertheless, many open questions remain, especially how the network is regulated 

and how it affects odor discrimination. Most studies concerning GC dynamics (as well 

as MCs) have been performed in vitro using acute slices or in vivo preparations un-

der anesthesia (Isaacson and Strowbridge 1998; Schoppa, Kinzie et al. 1998; Cang 

and Isaacson 2003; Egger, Svoboda et al. 2003; Egger, Svoboda et al. 2005; Egger 

and Urban 2006; Egger and Stroh 2009; Cazakoff, Lau et al. 2014). Studies using 

awake animals revealed another scenario. In contrast to what is observed in anes-

thetized animals, GCs are spontaneously more active and responsive to odors mak-

ing MC odor responses more sparse and temporally dynamic (Rinberg, Koulakov et 

al. 2006; Kato, Chu et al. 2012; Cazakoff, Lau et al. 2014), probably because a more 

active GC network might facilitate more lateral interactions between MCs. Moreover, 

repeated odor presentation can lead to experience-dependent plasticity at the level of 

mitral cells which is odor specific and recovers gradually over time and can be re-

peatable with different odors (Kato, Chu et al. 2012). This is in line with what is ob-

served in studies on oscillatory activity and how oscillations evolve after odor learn-

ing. Thus, temporal dynamics of the spatially different distributed OB neurons across 

layers are state-dependent. Their odor-evoked responses depend on their interaction 

where excitatory and inhibitory neurons process olfactory information which can lead 

to synaptic plasticity mechanisms and generate oscillatory activity at different fre-

quencies. 
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1.3.5. Accessory olfactory bulb (AOB) 

Communication between individuals is crucial for the survival of the population. 

Pheromones are chemical substances secreted from the body which can be per-

ceived by another individual of the same species (Wyatt 2003). They are found in 

many fluids ranging from saliva to vaginal secretions and are known to play an im-

portant role in aggression and reproduction. Pheromones are detected by G-protein 

coupled receptor neurons in the vomeronasal organ (VNO) (Berghard and Buck 

1996). Located in the nasal septum, the VNO is a tubular structure enclosed in a car-

tilaginous capsule that connects to the oral cavities through the narrow duct. Re-

sponses of vomeronasal sensory neurons (VSNs) depend on a vascular pumping 

mechanism of the stimuli into the lumen of the VNO. Once the stimuli are pumped in 

the VNO, it binds to receptor neurons. So far, two major types of receptor neurons 

have been identified in the VNO which are thought to detect different types of stimuli. 

On one hand, there are V1Rs located in the apical layer of the VNO which respond to 

small volatile chemosignals such as testosterone molecules present in mouse urine. 

On the other hand, VNO neurons expressing V2Rs are located in the basal layer of 

the VNO and respond to a wide variety of stimuli such as mouse urine proteins 

(MUPs), major histocompatibility complex (MHC) peptides and exocrine-gland secre-

tion peptides (ESPs) (Brennan 2010). The VNO neural pathway has a similar archi-

tecture as the MOB in terms of OSN projections. VSNs project their axons exclusive-

ly to glomerular neuropil in the anterior or posterior AOB depending on their expres-

sion of V1Rs or V2Rs, respectively. This input synapses onto mitral cell apical den-

drites which in turn project their axons to different cortical regions such the medial 

amygdala (MeA), posteromedial amygdala (PMCoA), bed nucleus of the stria 

terminalis (BNST) and bed nucleus of the accessory olfactory tract (BNAOT) reach-

ing at last hypothalamic areas (Gutierrez-Castellanos, Pardo-Bellver et al. 2014). 

Bulbar and cortical processing of pheromone detection provides behavioral and en-

docrine outputs that are important for interaction between individuals. So far, the be-

havior from an individual depends on their environment. Volatile molecules and pher-

omones provide sensory cues regarding basic needs like feeding, reproduction or 

aggression behaviors necessary for survival. 
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1.3.6. Cortico-bulbar feedback projections 

Different cortical networks receive direct input from glutamatergic mitral and tufted 

cells. In turn, there are centrifugal inputs reaching the olfactory bulb which are in their 

majority glutamatergic and arise mostly from the anterior olfactory nucleus (AON), 

piriform cortex (PCx) and the entorhinal cortex (ECx). Moreover, it also receives 

GABAergic, neuromodulatory and hormonal inputs thought to be important during 

different olfactory behaviors (Apicella, Yuan et al. 2010; Boyd, Sturgill et al. 2012; Ma 

and Luo 2012; Nunez-Parra, Maurer et al. 2013; Rothermel and Wachowiak 2014; 

Otazu, Chae et al. 2015). Centrifugal inputs are state-dependent (Boyd, Kato et al. 

2015) and are thought to shape sensory processing in the olfactory bulb. 

AON feedback projections represent a major source of cortical input to the OB. The 

AON receives inputs from the OB, but also send projections to olfactory and non-

olfactory areas including the anterior piriform cortex, olfactory tubercle, ECx and 

periamygdaloid cortex from which it also receives feedback projections (Brunjes, Illig 

et al. 2005; Rothermel and Wachowiak 2014). The AON neural architecture is orga-

nized in different zones depending on different cell types and is classified as (1) pars 

externa, (2) pars medialis and (3) pars ventroposterior, lateralis and dorsalis. Most 

glutamatergic fibers project to the ipsilateral bulb (pars medialis) and in a minority to 

the contralateral bulb (pars externa) (Reyher, Schwerdtfeger et al. 1988) showing 

differences in the distribution of AON fibers (Davis and Macrides 1981; Schoenfeld 

and Macrides 1984; Shipley and Adamek 1984). AON fibers synapse mostly on in-

terneurons in the granule cell layer and more sparsely in the glomerular layer modu-

lating MC activity disynaptically. Nevertheless, they also synapse monosynaptically 

on MCs, depolarizing them (Markopoulos, Rokni et al. 2012). Sensory input activates 

AON feedback projections to both bulbs rapidly, although this activation might be al-

so influenced by interactions with other neuromodulatory centers.  

Centrifugal inputs from the PCx, mostly from pyramidal cells in layer II and layer III 

(Davis and Macrides 1981), also target mainly inhibitory GCs. Moreover, they contact 

dSACs which inhibit at the same time GCs. Electrical or optogenetic activation of 

cortico-bulbar projections targeting PG cells and sSACs modulate M/T cells indirect-

ly, suppressing their activity (Nakashima, Mori et al. 1978; Boyd, Sturgill et al. 2012). 

Still the impact of their activation across layers is unknown since mitral and tufted 

cells project differently to many cortical areas. So far, top-down inputs from the PCx 
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are spontaneously active and show exclusively enhanced or suppressed responses 

to odor presentation, with a small percentage of fibers showing both types of re-

sponses independent of the odor concentration (Otazu, Chae et al. 2015).  

Sensory information processed in the OB is also modulated by different 

neuromodulatory systems including serotonergic, cholinergic and noradrenergic pro-

jections innervating the OB. Serotonergic projections originating in the dorsal and 

medial raphe nuclei are known to densely innervate the OB (McLean and Shipley 

1987; Steinfeld, Herb et al. 2015; Brunert, Tsuno et al. 2016). They project to inhibito-

ry interneurons in the glomerular layer as well as glutamatergic M/T cells (Liu, Aungst 

et al. 2012; Schmidt and Strowbridge 2014; Brill, Shao et al. 2016; Kapoor, Provost 

et al. 2016). The exact mechanism of sensory input modulation by serotonergic fibers 

is still not fully understood. Nevertheless, activation of serotonergic centrifugal projec-

tions suppresses OSNs and activates GABAergic populations in the glomerular layer 

(Brunert, Tsuno et al. 2016). Besides, it can excite ETCs and it can suppress or en-

hance odor responses in MCs (Kapoor, Provost et al. 2016). Cholinergic fibers aris-

ing from the basal forebrain also modulate OB activity (Devore and Linster 2012). 

They act on nicotinic and muscarinic receptors in the glomerular and granule cell lay-

ers (Heimer, Zahm et al. 1990; Castillo, Carleton et al. 1999; Pressler, Inoue et al. 

2007). While nicotinic receptors are found in glomerular and mitral cell layers, musca-

rinic receptors are found mostly in the granule cell layer showing a distributed segre-

gation across layers. Cholinergic inputs enhance inhibition on periglomerular and 

mitral cells which affects temporal dynamics of MCs odor responses. The OB inte-

grates as well noradrenergic projections (40%) from the locus coeruleus. These fi-

bers are known to be dense in the granule and internal plexiform layer, being sparse 

in the glomerular layer (McLean, Shipley et al. 1989). There are three major nora-

drenaline receptors which are expressed in different bulbar layers. The result of nor-

adrenergic modulation is an enhancement of network excitability at the level of the 

mitral cells (Devore and Linster 2012). Thus, it is clear that neuromodulation of the 

olfactory network by serotonin, choline and noradrenaline has a direct impact on 

sensory perception. While serotonin has diverse effects on early olfactory processing 

(Kapoor, Provost et al. 2016) and is implicated in reward behavior, choline and nora-

drenaline are involved in odor discrimination and modulation of signal-to-noise ratio, 

respectively (Escanilla, Alperin et al. 2012). Moreover, activation of both α and β NE 

receptors play an important role for discrimination between similar odors (Doucette, 
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Milder et al. 2007). Granule cells represent the biggest population in the OB and they 

receive dense cholinergic and noradrenergic fibers which activate them and conse-

quently modulate M/T cells activity. Besides, there are also GABAergic projections 

arising from the horizontal limb of the diagonal band of Broca (HDB) and 

magnocellular preoptic area (MCPO) projecting preferentially to the granule cell layer 

(Gaykema, Luiten et al. 1990; Gracia-Llanes, Crespo et al. 2010). These fibers inhibit 

granule cells and it has been shown that they have a direct impact on odor discrimi-

nation (Nunez-Parra, Maurer et al. 2013). 
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1.4. Oscillatory activity in the olfactory bulb 

 The OB is a complex and dynamic neuronal network. The main OB neurons display 

neural activity at different frequency bands in the presence or absence of an odor 

and their activity is correlated to the respiratory rhythm in a basal state. At the single 

cell level, different neurons in the OB show firing patterns locked to respiration  

(Cazakoff, Lau et al. 2014). At the population level, different types of measurements 

such as the electroencephalogram (EEG) or local field potentials (LFPs) revealed the 

presence of neural oscillatory activity known to be dependent on the behavioral state 

and to be different across species (Boudreau 1962; Bressler and Freeman 1980; 

Gelperin and Tank 1990; Kleinfeld, Delaney et al. 1994; Laurent and Davidowitz 

1994; Dorries and Kauer 2000; Lam, Cohen et al. 2000; Friedrich and Laurent 2001; 

Hall and Delaney 2001). Reminiscent of other brain areas, these phenomena reflect 

synchronized activity from a large population of neurons. Generally they arise from 

feedback connections between neurons that result in the synchronization of their fir-

ing patterns. However, they can also occur in a subthreshold regime which is known 

to be sufficient to sustain bulbar oscillatory activity (Bathellier, Lagier et al. 2006). 

Nevertheless, in response to sensory stimuli, changes in the oscillatory activity are 

reflected as changes in frequency, amplitude or phase resetting. Within the OB, in-

teractions between main glutamatergic cells (MCs and TCs) with GABAergic GCs 

form a large network that is known to be essential for olfactory processing. A main 

feature of this network is the presence of slow and fast oscillatory activity. At the level 

of mitral cells, interactions between different types of oscillations create a phenome-

non called theta-gamma coupling which is thought to be crucial for olfactory coding. 

Oscillatory activity can be classified in different classes depending on the frequency 

of the oscillations. The classification I describe below is standard for rodents and 

might be different for other species. Nevertheless, it is possible that within the litera-

ture this classification for oscillations in the rat olfactory bulb might differ a bit in no-

menclature. In general, bulbar oscillations are classified in slow oscillatory activity 

(delta and theta frequencies) and in fast oscillations (beta and gamma frequencies). 
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1.4.1. Slow oscillatory activity 

 

1.4.1.1  Delta (δ) oscillations 

Delta rhythms, also called ultra-slow waves, oscillate at a frequency between 0.5 - 2 

Hz and they are considered as a physiological signature for the deepest sleeping 

states (Fontanini, Spano et al. 2003; Jessberger, Zhong et al. 2016). They are most 

likely the least studied oscillations in the olfactory bulb since activity at higher fre-

quencies was considered more important in the last decades. So far, their exact func-

tion and which specific networks are involved in generating them are still unknown. 

Nevertheless, it is thought that more superficial layers in the OB are responsible for 

their generation (Fourcaud-Trocme, Courtiol et al. 2014). They are a biomarker for 

deep sleeping states where they are locked to respiration maintaining a basal level of 

activity in the olfactory bulb and consequently in higher cortical areas (Fontanini, 

Spano et al. 2003). Interestingly, delta activity has been reported to be important for 

processes such as memory consolidation in the neocortex during slow-wave sleeping 

states when the breathing rate is relatively slow in contrast to the awake state 

(Fontanini, Spano et al. 2003; Tsuno, Kashiwadani et al. 2008; Barnes and Wilson 

2014).  Rodents are mostly olfactory animals and the fact that the olfactory bulb and 

neocortex showed synchronized activity at this frequency during sleeping states indi-

cates that olfaction might have had an important role during neocortical evolution 

(Kaas 2005). Besides, there is evidence that suggest that olfactory cortical areas 

generate top-down inputs to the olfactory bulb to synchronize activity at this frequen-

cy (Manabe, Kusumoto-Yoshida et al. 2011), potentially to maintain uninterrupted 

different cognitive processes during sleeping states. Nevertheless, odor presentation 

during sleep enhances slow wave activity and reactivates memories while maintain-

ing synchronized activity (Perl, Arzi et al. 2016). 
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1.4.1.2. Theta (θ) oscillations 

Bulbar theta oscillations refer to activity between 4-12Hz and they are also called 

respiratory oscillations since it has been observed that they follow the respiratory 

rhythm. As bulbar theta waves are the signature for respiration, changes in the be-

havioral state might change the respiratory theta rhythm. These changes might affect 

the way in which this information is carried by other brain areas which receive input 

from the OB. Nevertheless, during active sampling behaviors, e.g. sniffing, it is still 

unknown if there is coherence between theta and all sniffing frequencies. It is known 

that waves at a theta frequency coexist with fast oscillatory activity during normal 

respiration. At the beginning of one theta wave, which corresponds to the inspiratory 

phase, there is a slight increase in frequency thought to be caused by glutamatergic 

tufted cells. At the transition point from inspiration to expiration, it governs activity at a 

gamma frequency corresponding to the firing of mitral cells followed by the expiration 

phase in which activity at a beta frequency is predominant (Buonviso, Amat et al. 

2003). The circuits involved in its generation have been under debate for many 

years, since theta rhythm in both olfactory bulb and hippocampal networks matched 

under some behavioral states (Colgin 2013). In fact, this frequency band is called 

theta rhythm in the OB similar to the brain area that this frequency oscillation was 

first observed, the hippocampus. So far, it has been recently shown that theta waves 

generated in the olfactory bulb closely match in frequency the oscillations observed 

in the hippocampus. However, a hippocampal theta rhythm independent from respi-

ration is thought to influence activity in the olfactory bulb (Nguyen Chi, Muller et al. 

2016). Within the olfactory bulb, glomeruli networks receiving direct input from OSN 

have been shown to be crucial for theta generation which seems to be confined to 

this layer (Fourcaud-Trocme, Courtiol et al. 2014). Nevertheless, in this thesis I show 

evidence that the OB might have all the necessary intrinsic machinery to generate 

theta rhythms without a respiration-like pattern (for more details see Perez de los 

Cobos Pallares et al, 2015), similar to what has been demonstrated in hippocampal 

acute slices (Colgin 2013). 

The respiratory rhythm, which is reflected in glomerular activity, is not exclusively 

dependent on the input stimulus. There are centrifugal inputs from respiratory net-

works in the brainstem and different neuromodulators that modulate activity in OB 

neurons (Castillo, Carleton et al. 1999; Devore and Linster 2012; de Almeida, Idiart et 



 

 

al. 2013; Schmidt and Strowbridge

relate to different respiratory

plasticity in the olfactory bulb

multisensory processing (Kay

 

 

 

 

 

 

 

 

Figure 2. Representation of theta
potential. 
Bulbar theta oscillations are locked
known to play a key role in their
activity at higher frequencies a
during exhalation (β) mediated

20 

Strowbridge 2014). Moreover, since diverse 

respiratory rates, inputs at these frequencies might

bulb and it could serve as a model for sensory

Kay 2005). 

theta (θ) oscillatory activity in the rat olfactory bulb

locked to the respiratory rhythm, where the glomerular
their generation. Within the same theta oscillation,

at the transition point between inspiration to exhalation
mediated by deeper layers in the bulb. 

 behavioral states 

might favor synaptic 

sensory coupling in 

 

bulb local field 

glomerular circuitry is 
oscillation, it is observed 

exhalation (γ) and 



 

21 

 

1.4.2. Fast oscillations 

 

1.4.2.1. Beta (β) oscillations 

Discovered primarily in the early 1990´s in the hippocampus, beta waves oscillating 

between 15 - 35 Hz have been mostly described in the motor and olfactory systems. 

They have been observed in the OB and PCx in response to highly volatile molecules 

as well as during associative learning in odor discrimination tasks (Vanderwolf 1992; 

Kay 2005; Kay and Beshel 2010; Martin and Ravel 2014). Little is known concerning 

the circuits involved in their generation. Nevertheless, there is evidence suggesting 

that beta waves rely on intact loops between the olfactory bulb and higher cortical 

areas (Neville and Haberly 2003; Martin, Gervais et al. 2006). This statement is 

based on some studies in which isolation of the OB from the rest of the brain abol-

ishes these oscillations, in contrast to what is observed for gamma oscillatory activity. 

Within the OB, some studies showed evidence of the implication of different layers in 

the OB (Fourcaud-Trocme, Courtiol et al. 2014) in generating activity at this frequen-

cy range. Interactions between the OB and centrifugal inputs from cortical areas 

might be crucial for their generation although the exact mechanisms are not fully un-

derstood. There are some studies suggesting a network phenomenon in which oscil-

lations at higher frequencies are transformed into waves at a beta frequency 

(Olufsen, Whittington et al. 2003; Traub, Bibbig et al. 2004). Whereas the functional 

role of these oscillations is still unknown, there is coherence at this frequency be-

tween different olfactory brain areas during odor presentation, suggesting that they 

might favor temporal coordination of sensory information across brain areas (Varela, 

Lachaux et al. 2001; Siegel, Donner et al. 2012; Martin and Ravel 2014).   
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1.4.2.2. Gamma (γ) oscillations 

Waves between 40 and 120 Hz are probably the most studied oscillatory events at 

the level of the olfactory bulb. During eupneic respiratory patterns, they appear at the 

transition between inspiration and exhalation and although this phase relationship is 

quite robust, the amplitude and frequency can vary. Gamma oscillations have been 

classified in two subgroups depending on the frequency, being gamma 1 (60-120 Hz) 

and gamma 2 (40-60 Hz; also called low-gamma) (Bressler 1988; Kay 2003; Manabe 

and Mori 2013; Mori, Manabe et al. 2013) which relates to different behaviors  (Kay, 

Beshel et al. 2009). Several studies have shown the importance of the reciprocal 

dendrodendritic synapse between mitral and granule cells to generate activity at this 

frequency (Buzsaki and Wang 2012; Fourcaud-Trocme, Courtiol et al. 2014). More 

specifically, GCs seemed to have a key role since inactivation of the granule cell lay-

er reduced significantly the generation of gamma oscillations (Kay 2014). In contrast 

to beta oscillations, cutting top-down inputs to the OB causes an increase of gamma 

activity (Neville and Haberly 2003). Centrifugal input from the piriform cortex contacts 

mostly GABAergic granule cells, which might interfere with reciprocal connections 

between mitral and granule cells (Kay, Beshel et al. 2009) desynchronizing local ac-

tivity. Since gamma oscillations have been observed in bulbar acute slices and also 

in an OB isolated from the rest of the brain (Buzsaki and Wang 2012), activity at a 

gamma frequency is suggested to be a local phenomenon. Nevertheless, in vivo re-

cordings show periods of coherence with other higher cortical areas (Kay 2014) and 

some studies suggest that OB inputs tune the piriform cortex into a proper excitatory 

state to produce activity at this frequency (Mori, Manabe et al. 2013). So far, the 

same effect has been observed in the entorhinal cortex (Ahrens and Freeman 2001). 

Within the OB, the exact circuits generating low-gamma frequencies (gamma 2) are 

still not fully known.  

There are two hypotheses which potentially might give an explanation concerning the 

generation source of gamma 2. The first one is based on studies with beta3 knockout 

mice which lack functional GABA-A receptors on olfactory bulb granule cells (Nusser, 

Kay et al. 2001). These knockout mice show no low - gamma activity, suggesting that 

local inhibitory circuits might be responsible. The second one claims that TCs and 

MCs might be responsible for fast and slow gamma activity respectively. This is in 

line with the observed gamma in the respiratory cycle. TCs fire action potentials early 
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generating high frequency gamma oscillations
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Nomenclature 

 

 
Frequency (Hz) 

 
Circuits involved in their 

generation 
 

 
Function 

 
Behavioural output 

 

 
 
 
 
 
 
 

Slow oscillations 

 
 

Delta 

 
 

0.5 - 2  

 
Glomeruli networks are thought 
to be involved 
 
 

 
Marker for sleeping 
states 
 
Locked to respiration 
during sleep 
 
Mantainance of 
cognitive processes 
during sleep 

 
Slow- wave sleep 

 
 
 

Theta 

 
 
 

4 - 12 

 
Interaction between neurons in 
the glomerular layer 
 

 
Follow respiration in 
the awake state. 
 
Synchronization with 
hippocampus. 
 

 
Resting states 
 
Sniffing behaviours 
 
Odor learning and  
memory 
 

 
 
 
 
 
Fast oscillations 

 
 
 

Beta 

 
 
 

15 - 35 

 
Loop networks between the OB 
and cortical areas 
 
Dendrodendritic synapses in 
the OB 

 
Related to odor 
responses 
 
Temporal coordination 
of sensory stimulus 
across brain areas 

 
Odor discrimination 
 
Learning association 
processes 

 
            Gamma 

 
  Gamma 1 

 
  Gamma 2 

 
 
 

60 - 120 
 

40 - 60 

 
Local networks in the OB 
 
Importance of granule cell layer 
 
MC - GC synapse 
 

 
Related to odor 
responses 
 
Temporal coordination 
of sensory stimulus 
across brain areas 

 
Odor discrimination 
Exploration 
Odor association 
Alert 
Grooming 

    Table 1. Summarized standard classification of the oscillatory activity in the olfactory bulb. 
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1.5. Oscillatory activity and synaptic plasticity 

As described above, different physiological states show oscillations at different fre-

quencies but also underlie neural plasticity mechanisms. At the level of the olfactory 

bulb, reciprocal dendrodendritic synapses between MCs and GCs are crucial for odor 

processing which involves the generation of oscillatory activity. These MC-GC syn-

apses integrate fast and slow components of signaling (Isaacson and Strowbridge 

1998), coupling activity at a theta and gamma frequency (theta-gamma coupling) 

which might be crucial for olfactory coding. Being the most abundant connections in 

the bulb, they experience changes in their structure, membrane excitability and syn-

apse efficiency leading to neural plasticity, which is related to different processes 

such as odor memory (Sailor, Valley et al. 2016). Thus, the relation between bulbar 

oscillatory activity and neural plasticity seems evident. Oscillatory activity in the OB is 

reminiscent of what is observed in the hippocampus (HPC), where waves at a theta 

frequency appear during odor-memory tasks and are coherent with the ones ob-

served in the OB. Theta burst stimulation in the HPC is known to elicit long-term po-

tentiation and there is also data suggesting similar plasticity mechanisms in the OB. 

In the OB, the synapses from the MC to a GC are glutamatergic while they are 

GABAergic from the GC to the MC. Glutamate release activates NMDARs and 

AMPARs. Importantly, the blockade of NMDARs abolishes neural plasticity at this 

synapse, suggesting the important role of NMDARs to elicit plasticity. Besides, cen-

trifugal inputs from cortical areas and different neuromodulators targeting MCs and 

GCs might contribute to establish plasticity at this synapse (Pandipati, Gire et al. 

2010; Eckmeier and Shea 2014). 
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1.6. Physiology of respiration 

Respiration is an autonomic process controlled by a complex network in the brain. 

Neural networks located in the pons and medulla oblongata are so-called central pat-

tern generators and their interactions ensure an eupneic respiratory pattern maintain-

ing a proper oxygenation of the body. 

 

1.6.1. Organization of respiratory networks 

Respiration is needed for life since it is the first and the last process in a living ani-

mal. No matter the situation, respiratory activity links sensory information to motor 

output. Therefore respiration adapts to most situations showing a big malleability of 

its neural activity revealing a neural network flexible for physiological and behavioral 

integration. Breathing is a primal homeostatic process and the neural circuits underly-

ing this function must be stable to be responsible for different challenges affecting 

O2, CO2 and pH levels in the body depending on the individual needs (Feldman, 

Mitchell et al. 2003; Feldman and Del Negro 2006). Respiratory movements occur 

automatically in which different muscles are involved. Skeletal muscles are known to 

be largely related to respiration although the autonomic control of respiration is cou-

pled to smooth muscles. The physical act of respiration is based on inspiratory and 

expiratory periods. However,  the respiratory motor cycle is traditionally divided in 

three different phases starting with an inspiration (I), followed by a post-inspiration 

(E1) and finished by a late expiration (E2) (Richter and Spyer 2001). As stated be-

fore, different muscles coordinate these phases. So-called pump muscles like the 

diaphragm and external intercostal muscles control inspiration while others, e.g. ab-

dominal and internal intercostals muscles control expiration (Bianchi and Gestreau 

2009). Brainstem motorneurons innervating the oro-pharyngeal area and its respec-

tive nerves control these muscles. Some of the cranial nerves are implicated during 

inspiration to dilate the pharynx (glossopharyngeal nerve, IX CN) or to prevent 

tongue protrusion (hypoglossal nerve, XII CN). During expiration, constriction of the 

pharynx is driven by the recurrent laryngeal nerve, a branch of the vagus nerve (X 

CN). The trigeminal nerve (V CN) is also related to respiration since it innervates 

most of the face controlling muscles that are also involved in breathing. Most of the 
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CNs arise from the brainstem where, as described above, some of them control res-

piration-related muscles.  

Respiratory networks located in the brainstem play a key role in breathing control. 

Neural networks located in the medulla oblongata and the pons constitutes two res-

piratory centers and their interactions form a functional respiratory network. Medul-

lary respiratory networks are formed by the dorsal respiratory group (DRG) in the 

nucleus of the solitary tract (NTS) region and the ventral respiratory group (VRG) 

located in the ventro-lateral medulla which is closely associated with the nucleus am-

biguous (NA) (Ballanyi, Onimaru et al. 1999; Bianchi and Gestreau 2009). Moreover, 

another important respiratory-related area is the pontine respiratory group (PRG) lo-

cated in the dorso-lateral pons. The PRG consists of a network of neurons distributed 

in the Kölliker-Fuse (KF) nucleus and the medial parabrachial nucleus. The VRC has 

the largest mass of respiratory neurons (Alheid, Gray et al. 2002) and is thought to 

be responsible for rhythm generation. Divided in different “compartments”, they are 

distributed from rostral to caudal in the retropezoid nucleus, the Bötzinger Complex 

(BötC), the preBötzinger Complex (preBötC), the rostral VRG (rVRG) and the caudal 

VRG (cVRG) (Alheid, Gray et al. 2002; Feldman and D.R. 2003; Feldman, Mitchell et 

al. 2003). The neurons forming the last four different groups serve different functions 

in respiration. The BötC and the cVRG have a population of neurons mostly active 

during expiration while neurons in the rVRG are predominant in inspiratory periods. 

The preBötC is formed by a neural population exhibiting inspiratory and expiratory 

activity thought to be needed for rhythm generation. Therefore, putative neurons in 

the preBötC are thought to be responsible for the generation of basic respiratory 

rhythms (Smith, Ellenberger et al. 1991; Ramirez and Richter 1996; Sun, Goodchild 

et al. 1998; Koshiya and Smith 1999; Guyenet and Wang 2001). Different types of 

studies support this statement (Schwarzacher, Smith et al. 1995; Alheid, Gray et al. 

2002; Wang, Germanson et al. 2002). Besides, rhythmic activity observed in medul-

lary slices including the PreBötC is abolished upon application of CNQX (an AMPA 

receptor antagonist) (Smith, Ellenberger et al. 1991). More evidence supporting this 

is that different subsets of neurons in the PreBötzC expressing Neurokinin-1 receptor 

(NK1R) were identified in in vitro and in vivo studies to be critical for generation of 

rhythmic activity (Gray, Rekling et al. 1999; Gray, Janczewski et al. 2001; Guyenet 

and Wang 2001). 
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 In pontine respiratory networks, the PRG is thought to mediate the total duration of 

the post-inspiratory phase (Dutschmann and Herbert 2006; Smith, Abdala et al. 

2007). Interactions with the DRG and VRG, more specifically from the KF nucleus, 

are thought to mediate apneic responses associated with protective breath holds 

such as the diving reflex (Dutschmann and Herbert 1996) coordinating respiratory 

muscles during respiratory and non-respiratory behaviors (Bianchi and Gestreau 

2009). The trigeminal nerve (V CN) is known to be involved in protective responses. 

Activation of nasal trigeminal afferents (ethmoidal nerve) innervating the nasal muco-

sa might interact with the PRG to favor these protective responses. Neurons in the 

parabrachial region are thought to determine respiratory phase transition(Cohen 

1971; Cohen and Shaw 2004).  

 

In different scenarios, the respiratory networks need to adapt to a certain situation. 

Neuroplasticity in respiratory networks could be elicited under several conditions 

such as hypoxia, abnormal O2 levels, hypercapnia, sensory denervation, neural inju-

ry or conditioning (Millhorn and Eldridge 1986; Baker, Fuller et al. 2001; Gallego, 

Nsegbe et al. 2001; Carroll 2003; Forster 2003). Serotonergic, dopaminergic or nora-

drenergic neuromodulation plays an important role in order to maintain neural plastic-

ity in respiratory networks (Mitchell and Johnson 2003) and thus maintain a normal 

function during diseases, environmental changes or normal development.  

Taken together, normal breathing activity depends on excitatory and inhibitory inter-

actions between different regions in the brainstem. These regions of the brainstem 

receive diverse neuromodulatory inputs under different situations which might favor 

neural plasticity in respiratory networks. The final outcome of this complex interaction 

is to maintain proper levels of oxygen in the body to ensure the survival of the animal. 

Breathing depends directly on information provided by different O2, CO2 and pH-

sensitive chemoreceptors. While O2-sensitive chemoreceptors are totally external to 

the brain located in the carotid bodies, CO2 and pH-sensitive chemoreceptors, so-

called central chemoreceptors, are located both in the carotid bodies and also in ma-

jor sites within the lower brain (Coates, Li et al. 1993; Bernard, Li et al. 1996; Nattie 

1999; Nattie 2000; Ballantyne and Scheid 2001). 
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1.6.2. Trigeminal-mediated modulation of respiratory networks 

Preservation of nasal trigeminal afferents has been crucial in this thesis to study in-

teractions between olfaction and respiration in the absence of midbrain networks. 

The trigeminal nerve (V cranial nerve) is a sensory motor nerve and it rises in the 

pons bilaterally forming the trigeminal ganglion. At this point, it splits up into three 

different nerves: maxillary, mandibulary and ophthalmic nerve. Each one covers dif-

ferent regions across the face. The maxillary and ophthalmic are purely sensory 

while the mandibulary has sensory and motor functions. The ophthalmic is a sensory 

nerve that ramifies in the frontal, lacrimal and nasocilliary nerve. The latter branches 

in the infratrochlear and the anterior ethmoidal nerve. The anterior ethmoidal nerve 

projects some fibers into the nasal septum providing trigeminal sensation during sen-

sory stimulation (more details in Perez de los Cobos Pallarés et al., 2016; result sec-

tion).The trigeminal nerve innervates most of the face. Therefore there are trigeminal 

receptors (TRs) at the main entrances to the body, the nostrils and the mouth (Silver 

and Maruniak 1981) as well as provides non-visual sensory innervation of the eye 

(Guzman-Aranguez, Gasull et al. 2014). TRs detect extreme temperatures and po-

tential noxious molecules that can harm the body and prevent us to smell or ingest 

them. The repertoire of receptors varies from vanillioid receptor 1 (TRPV1), 

purinergic receptors (P2X), acid-sensing ion channels (ASIC) (also found in mouse 

OB M/T neurons, see (Li, Liu et al. 2014) and nicotinic acetylcholine receptors 

(nAChR) (Alimohammadi and Silver 2000; Ichikawa and Sugimoto 2002; Dinh, 

Groneberg et al. 2003; Silver, Clapp et al. 2006). Nasal trigeminal receptors detect a 

wide range of chemicals. Some molecules can activate both olfactory and trigeminal 

receptors in parallel, with the detection threshold for the latter being lower compared 

to ORs. Thus, potential noxious molecules detected by TRs, relay this information 

directly onto respiratory networks in order to safeguard the upper ways. Besides de-

tection of harmful molecules, the nasal trigeminal pathway triggers a protective 

breath hold in mammals when fluid enters the nostrils due to the diving reflex. 
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1.7. Interaction between odor sensing and respiration 

Respiration is an autonomic function known to be coupled to olfaction. Because 

odorants cannot be detected without movement of air into the nostrils, breathing at 

different frequencies is crucial for odor sensing (Wachowiak 2011). In the absence of 

sensory input, nasal airflow itself modulates olfactory bulb activity (Westecker 1970; 

Delaney and Hall 1996; Rojas-Libano, Frederick et al. 2014) and drives neurons in 

higher cortical areas such as the hippocampus at the same frequency as in the OB  

(Nguyen Chi, Muller et al. 2016). Coherence between respiration and olfactory bulb 

activity has been shown in many LFP recordings (Adrian 1942; Eeckman and 

Freeman 1990; Buonviso, Amat et al. 2003; Kay 2005; Buonviso, Amat et al. 2006; 

Rojas-Libano, Frederick et al. 2014). In fact, respiration modulates OB neurons ac-

tivity having strong effects on olfactory dynamics. Mitral and tufted cells have a tem-

poral firing pattern locked to the inspiration and to the transition period between inspi-

ration and expiration, respectively (Buonviso, Amat et al. 2003). Granule cell activity 

is also coupled to respiration in the anesthetized state (Ravel, Caille et al. 1987) alt-

hough in the awake state they are broadly tuned and asynchronous to respiration 

(Cazakoff, Lau et al. 2014). During odor sampling, rodents exhibit different sniffing 

behaviors based on changes in frequency and flow rate which is thought to have a 

direct impact on response dynamics (Courtiol, Amat et al. 2011; Esclassan, Courtiol 

et al. 2012). Moreover, increases in frequency during sniffing is correlated to increas-

es of the odorant concentration during odor-detection tasks (Youngentob, Mozell et 

al. 1987), but not when performing an odor-discrimination task (Wesson, Verhagen et 

al. 2009) since it is known that rodents might be able to accurately discriminate dif-

ferent odor stimuli with a single sniff (Kepecs, Uchida et al. 2006). 
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1.8. Semi intact preparations 

Rodents, as olfactory animals, are excellent animal models to investigate how olfac-

tory neuronal networks function, from the molecular to the neural network level. So 

far, in the last century research in olfaction has been restricted to two main different 

approaches. On the one hand, in vitro acute slices have been widely used in electro-

physiological studies despite of their reduced connectivity, and lack the possibility of 

natural odor stimulation. On the other hand, in vivo studies have own ethical con-

cerns, the access to the bulb is limited to the dorsal side and they are restricted by 

the use of anesthesia and its effects on cell properties (Kato, Chu et al. 2012; Li, 

Zhang et al. 2012).   

Semi intact preparations represent a potential good alternative for research that cir-

cumvents many of these problems. Within this thesis, I present a novel semi-intact 

preparation based on previously described perfused preparations in order to study 

olfaction combined with respiration. To understand how this preparation was devel-

oped and its innovative features, it is necessary to describe the most representative 

developments of other en bloc and in situ preparations in the last 35 years. Briefly, in 

the 1980s, the workgroup of M. Sugimori (Llinas, Yarom et al. 1981; Llinas and 

Muhlethaler 1988) used an isolated and perfused mammalian brain in vitro for the 

first time to study electrical activity of brainstem networks. Since then, different types 

of preparations have been developed. E.g. in the mid 1990s, a frog preparation with 

a functionally intact olfactory pathway was used to study odor-evoked oscillatory ac-

tivity (Delaney and Hall 1996). At around the same time, a working heart-brainstem 

preparation of the mouse was developed to study synaptic and cellular mechanisms 

within the medulla that regulate cardio-respiratory activity (Paton 1996). This devel-

opment is crucial for the characterization of eupneic inspiratory events recorded via 

the phrenic nerve which is different compared to other events, e.g. gasping. Later, in 

the 2000s, the first whole brain preparation in mammals (guinea-pig) with an intact 

olfactory pathway was developed (Ishikawa, Sato et al. 2007). Few years later, we 

developed the first perfused nose-olfactory bulb brainstem preparation (NOBBP) of 

the rat.  

The innovation of this preparation is that it is the first semi intact preparation devel-

oped in rat (as described in Paton 1996) which, in the absence of cortico-limbic net-

works, maintains an in vivo-like intact olfactory pathway. Furthermore, preservation of 
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the respiratory network allows to study interactions between odor sensing and respi-

ration simultaneously. New features characterizing this preparation in contrast to pre-

vious described preparations are for instance the removal of different organs such as 

the lungs or the heart to avoid mechanical and electrical artifacts. Last, the stability of 

this preparation is monitored based on the characterization of spontaneous inspirato-

ry activity and the ability of recording odor-evoked responses over time with direct 

nasal stimulation. The reappearance of spontaneous inspiratory activity is achieved 

by tuning different variables like the perfusion flow rate of the preparation. This chal-

lenging process is defined by the age and size of the animal as well as the physiolog-

ical  performance of the preparation.  
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2.  Aims of the thesis  

Research in olfactory neuronal processing is mostly restricted to in vivo or in vitro 

acute slices preparations. Nevertheless, in the last decade, awake head - fixed ani-

mal preparations became more popular. Within this thesis I present a new in vitro 

technique that represents a good alternative to study bulbar networks at the first 

stage of olfactory processing. The difficulties shown within in vitro and in vivo ap-

proaches led to one of the main aims of this thesis: to develop and stablish a semi-

intact preparation based on previous described preparations (Aim 1). The novelty of 

this preparation is that in the absence of the midbrain, it has an intact olfactory path-

way as well as a preserved respiratory brainstem. The lack of use of anesthesia, the 

fast performance of the surgery, and the stability of the preparation makes it a good 

alternative for research in the olfactory field. The preservation of the olfactory bulb 

(OB) and the brainstem (BS) allow for simultaneous recordings of OB activity and 

inspiratory activity via the phrenic nerve. Evidence of the stability and functionality of 

the preparation to record odor-evoked field potentials and multi-unit activity as well as 

to study bulbar oscillatory activity is reflected in the publication Pérez de los Cobos 

Pallarés et al., 2015.  

This preparation allows to study oscillatory activity in the olfactory bulb (Aim 2), 

showing spontaneous slow frequency activity during baseline and high frequency 

activity during odor presentation (Pérez de los Cobos Pallarés et al., 2015). 

As olfaction and respiration are directly coupled, I was also interested in investigating 

interactions between odor sensing and respiration (Aim 3). Modulation of respiration 

has been thought to depend on cortico-limbic networks. Preservation of nasal trigem-

inal afferents irrigating the nasal mucosa allowed to investigate these interactions in 

the absence of cortico-limbic networks. The trigeminal nerve (V cranial nerve) has 

receptors in the nasal mucosa that connect directly to the brainstem, where it inter-

acts with respiratory networks. Inspiratory recordings from the phrenic nerve reflected 

trigeminal modulation of respiratory networks during odor presentation. Faster phren-

ic bursts compared to eupneic inspiration, similar to putative sniffing, shed light on a 

potential influence of the trigeminal pathway on the generation of sniffing-like behav-

iors (Perez de Los Cobos Pallares, Bautista et al. 2016).  
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Oscillatory and synaptic plasticity events are correlated. Thus, in a side project I 

demonstrated in olfactory bulb acute slices that electrical inputs combining fast and 

slow components, as occurring in oscillatory activity, can lead to bulbar neural plas-

ticity. For this study, different stimulation paradigms were tested, such single sniff or 

theta-gamma coupling (Chatterjee et al 2016). 
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3.2. Brainstem-mediated sniffing and respiratory modulation during odor stimulation. 
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Abstract 

The trigeminal and olfactory systems interact during sensory processing of odor. 

Here, we investigate odor-evoked modulations of brainstem respiratory networks in a 

decerebrated perfused brainstem preparation of rat with intact olfactory bulbs. In-

tranasal application of non-trigeminal odors (rose) did not evoke respiratory modula-

tion in absence of cortico-limbic circuits. Conversely, trigeminal odors such as men-

thol or lavender evoked robust respiratory modulations via direct activation of pre-

served brainstem circuits. Trigeminal odors consistently triggered short phrenic nerve 

bursts (fictive sniff), and the strong trigeminal odor menthol also triggered a slowing 

of phrenic nerve frequency. Phrenic and vagal nerve recordings reveal that fictive 

sniffs transiently interrupted odor evoked tonic postinspiratory vagal discharge. This 

motor pattern is significantly different from normal (eupneic) respiratory activity. In 

conclusion, we show for the first time the direct involvement of brainstem circuits in 

primary odor processing to evoke protective sniffs and respiratory modulation in the 

complete absence of forebrain commands.  

 

Key words: trigeminal, brainstem, behavior,  
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1. Introduction 

The processing of odorants within the main olfactory epithelium involves two primary 

and anatomically distinct neural systems. The first ‘classic’ olfactory pathway consists 

of axonal projections from the olfactory sensory neurons of the nasal epithelium into 

the glomeruli of the olfactory bulb. Within the glomeruli, the sensory input is forward-

ed to the mitral and tufted cells, which in turn widely project to forebrain structures 

such as the piriform cortex, hippocampus and amygdala (Doty, 2001; Firestein, 

2001). The second ‘naso-trigeminal brainstem’ pathway is associated with the trigem-

inal system (Hummel et al., 2002; Brand, 2006). The anterior ethmoidal and 

infraorbital nerves, both of which are branches of the ophthalmic division of the tri-

geminal nerve, also innervate the nasal mucosa. Contrary to the forebrain projection 

of the olfactory system, the trigeminal sensory fibers project to spinal trigeminal nu-

clei such as the sub-nucleus caudalis and the sub-nucleus interpolaris (Anton and 

Peppel, 1991; Anton et al., 1991), which are located in the caudal brainstem.  

Most odorants have the ability to co-activate both systems. This was demonstrated 

by simultaneous electrophysiological recording of olfactory and trigeminal sensory 

fibers of the nasal epithelium, which revealed a trigeminal response following expo-

sure to a variety of odors that predominantly stimulated olfactory receptors (Beidler 

and Tucker, 1956). Thus, sensory processing of odors appears to involve the inter-

play between the top-down cortico-limbic olfactory system and a bottom-up trigeminal 

brainstem pathway. Both systems contribute to the processing and perception of 

smell via converging multi-synaptic projections to somatosensory cortico-thalamic, 

and limbic brain areas.  

While, both systems contribute to sensory perception of odorants, the trigeminal 

pathway may serve additional functions (Hummel et al., 2002). The trigeminal system 

also safeguards the lower airways (lungs) to prevent inhalation of potentially noxious 

substances via protective reflexes, including a protective breath-hold or sneeze 

(Widdicombe, 1996). The latter underpins the tight association of olfaction and 

breathing. Respiratory modulation of olfactory bulb activity is well established and 

may involve peripheral sensory feedback from nasal airflow, as well as ascending 

modulation of olfactory bulb activity via the primary respiratory networks of the brain-

stem (Buonviso et al., 2006; Kepeces et al., 2006; Wachowiak, 2011).  

The tight interaction between breathing and olfaction is seen in several olfactory be-

haviors, for example fast sniffing to enhance odor detection during active sensing in 
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the context of exploration or olfactory tasks (Wachowiak, 2011). The general view is 

that a switch from breathing to sniffing depends on behavioral forebrain (cortical 

and/or limbic) commands (Kepeces et al., 2006; Wachowiak, 2011), while the prima-

ry pattern generator for sniffing resides in close proximity to aspects of the respiratory 

pattern generator in the medulla oblongata (Moore et al., 2013; 2014). The modula-

tion of brainstem respiratory cell activities during sniffing has been shown (Batsel and 

Lines, 1973; Du Pont, 1987). The precise source and anatomical pathways of the 

sniffing command that triggers the changes in respiratory neuron activity, however, 

are unknown so far; it might arise from either the trigeminal brainstem pathway or 

descending input from the cortico-limbic olfactory system, or both.  

In the present study, we specifically address the potential contribution of the naso-

trigeminal brainstem pathway to the mediation of respiratory modulations elicited by 

odorants; to this end we apply trigeminal and non-trigeminal odorants intra-nasally in 

an in situ perfused, decerebrated, olfactory-bulb-brainstem preparation (Pérez de los 

Cobos Pallarés et al., 2015). While this experimental approach can be used to study 

odor processing in the olfactory bulb (Pérez de los Cobos Pallarés et al., 2015), it 

also provides a unique opportunity for the investigation of trigeminally-mediated odor 

processing in the brainstem in the absence of confounding influences by the cortico-

limbic systems. Previous work demonstrated that stimulation of the trigeminal 

ethmoidal nerve, or mechanical stimulation of the nasal mucosa (including its irriga-

tion with cold water), reliably triggers cardio-respiratory reflexes such as the diving 

response in the in situ perfused brainstem preparation (Dutschmann and Paton, 

2002a,b; Pérez de los Cobos Pallarés et al., 2015). Thus, the trigeminal innervation 

of the nasal cavity, including the primary sensory relay within the brainstem, remains 

intact under these experimental conditions. Since specific odorants stimulate the ol-

factory and the trigeminal system differentially (Doty et al., 1978), we analyzed res-

piratory responses to odors that are known to trigger a pure olfactory response (e.g. 

rose odor) vs. irritant odors such as menthol or lavender (linalool) that produce robust 

co-activation of the trigeminal system. The trigeminal odors menthol and lavender 

may act via TRP channels (Peer et al., 2002, Elsharif, 2015) expressed in the nasal 

mucosa (see Bessac and Jordt, 2008). For the remainder of the manuscript we refer 

to these odors as non-trigeminal and trigeminal odors, respectively.  
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We demonstrate that the brainstem alone can initiate short bursts of phrenic nerve 

activity that are evocative of fictive sniffing as well as subsequent respiratory depres-

sion, in the complete absence of the forebrain.   
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2. Material and Methods 
 

2.1  Ethical approval 

All experimental procedures were performed either in accordance with the Australian 

code of practice for the care and use of animals for scientific purposes or with the 

stipulations of the German law governing animal welfare (Tierschutzgesetz). The eth-

ics committee of the Florey Institute approved the study design.  

 

2.2. The perfused olfactory bulb brainstem preparation  

As described previously (Paton 1996), juvenile Sprague Dawley rats (p17-21) were 

deeply anesthetized with isoflurane (1-Chloro-2,2,2-trifluoroethyl-difluoromethylether, 

Isoflurane, Forene®, Abbott GmbH & Co. KG, Wiesbaden, Germany). As soon as the 

animal failed to respond to a tail pinch, it was transected caudal to the diaphragm 

and transferred into an ice-cooled chamber filled with ACSF (mM: 1.25MgSO47HO2, 

1.25KH2PO4, 3 KCL, 125 NaCL, 25 NaHCO3, 2.5 CaCl2·2H2O, D-glucose 10). The 

animal was decerebrated at the pre-collicular level functionally preserving the brain-

stem including the periaqueductal gray (Farmer et al., 2014) and the skull was 

opened. The forebrain was entirely removed by suction, leaving intact solely the ol-

factory bulb, small adjacent fragments of the piriform cortex and the brainstem (Pérez 

de los Cobos Pallarés et al., 2015). After removing the lungs, the phrenic nerve was 

isolated on the right hand side and was cut at the level of the diaphragm to subse-

quently record respiratory (inspiratory) activity (Paton, 1996). To prevent mechanical 

and electrical artifacts, the heart was removed after ligation of the aortic arch. Next, 

the preparation was transferred to the recording chamber, and the descending aorta 

was cannulated to perfuse (peristaltic pump: Watson-Marlow 520S, Massachusetts, 

USA) the preparation with ACSF containing 1.25% Ficoll PM70 (Sigma), to provide 

oncotic pressure during experiments. Flow rates were adjusted according to the age 

of the animal and perfusion pressure was maintained at 50-70 mmHg (Paton, 1996). 

The perfusate was continuously gassed with carbogen (95% O2, 5% CO2) and 

warmed to a temperature of 30 °C. The phrenic nerve was aspirated with a suction 

electrode. While the olfactory bulb was oxygenated via the ophthalmic artery, the 

brainstem was oxygenated via the basilar artery (for details see Pérez de los Cobos 
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Pallarés et al., 2015). Both arteries were simultaneously perfused via the cannulated 

aorta.  

After a few minutes of perfusion, respiratory movements appeared, and spontaneous 

rhythmic activity in the phrenic nerve was observed. The neuromuscular blocker 

vecuronium bromide (Sigma; 0.3 µg ml-1) was added to the perfusate to prevent 

movement artifacts.  

 

2.3. Odor application 

Preparations (n=12) were stimulated randomly with several non-diluted fragrant oils 

(menthol, JHP Rödler, Ulm, Germany; lavender and rose, TAOASIS GmbH, 

Bielefeld, Germany) using a four-channel computer controlled olfactometer, which 

produced a constant airflow of 70 cc/min (Knosys Olfactometers, Florida). Exposure 

of the olfactory epithelium to odorants (15-30 s) was achieved via cannulation of the 

nasal cavities, using a custom-made set of small adaptors for the nostrils (1-3 mm 

diameter range).  

 

2.3. Recording phrenic nerve activity and field potentials and multi-units in the 

olfactory bulb 

The phrenic nerve activity (PNA) was recorded via suction electrodes (DP-311 Dif-

ferential Amplifier Warner Instruments, Connecticut, USA), digitized and displayed 

via a Powerlab 26T data acquisition device (ADInstruments, Australia) in all experi-

ments. For recording of olfactory bulb activity (n=12 preparations) we used glass mi-

croelectrodes filled with 2 M NaCl. For field potential recordings, the electrode tips 

were adjusted to an electrical resistance of 0.5 - 2 MΩ. Recordings were usually per-

formed in the deeper layers of the dorsal olfactory bulb, well below the glomerular 

layer. Phrenic nerve and olfactory bulb activity were sampled at 1 kHz, amplified and 

filtered (low pass 10 kHz; high pass 300 Hz).  

In another subset of experiments (n=5 preparations), we recorded vagal nerve activi-

ty (VNA) to assess trigeminal odor-evoked respiratory changes in laryngeal motor 

activity (inspiratory abductor activity and postinspiratory abductor activity, see 
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Dutschmann and Paton 2002c). Integration of PNA, VNA and olfactory bulb activity 

was performed with a decay time constant of 100 ms. 

 

2.4. Data analysis and statistics 

For the analysis and offline filtering of raw data, we used LabChart software (version 

7.2, ADInstruments). We analyzed basic respiratory parameters: namely total res-

piratory cycle length (Ttot) and inspiratory burst duration (Ti). We analyzed these res-

piratory parameters for 5 respiratory cycles prior to odor application and compared 

them to respiratory activity during odor exposure and to 5 respiratory cycles after 

termination of the sensory stimulus. Comparison of respiratory parameters before, 

during and after odor applications were performed using a two way ANOVA followed 

by a Fisher LSD post-hoc test (GraphPad-Prism). For statistical analysis of the Ti dur-

ing eupnea (control) and odor stimulation, we used a two-tailed unequal variance t-

test (Excel). Comparison of frequency and Ti before, during and after odor application 

within the same application groups were performed using an ANOVA for repeated 

measures followed by a Bonferroni post-hoc test (IBM SPSS Statistics 22). All data 

are expressed as mean ± standard error of the mean (SEM).  

 

 

 

 

3. Results 

We applied the strong trigeminal odor menthol, the mild trigeminal odor lavender, as 

well as the non-trigeminal odor rose to the nasal mucosa in a total of 12 in situ olfac-

tory bulb-brainstem preparations. We used an olfactometer for all odor applications 

(for details see, Pérez de los Cobos Pallarés et al., 2015). We only analyzed odor 

applications that evoked a detectable local field potential in the olfactory bulb (Fig. 1) 

and thus verified the specificity of the odor stimulus (total n = 84 odor applications: 

rose n = 42, menthol n = 26, lavender n = 16).   
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3.1  Odor evoked respiratory modulation by trigeminal odorants in absence 

of the forebrain.  

Rose odor (n = 42 applications in 11 preparations, Fig. 1A) evoked no significant 

changes of respiratory cycle length (Ttot) or inspiratory burst duration (Ti) between the 

control phase prior to odor application, (Ttot 3.72 ± 0.16 s; Ti 0.96 ± 0.24 s) during 

odor stimulation (Ttot 3.92 ± 0.20 s; Ti 0.96 ± 0.24 s) and during the post-stimulus re-

bound (Ttot 3.72 ± 0.17 s; Ti 0.98 ± 0.24 s). The lack of changes in respiratory fre-

quency and inspiratory duration are summarized in Figure 2A.  

In contrast, exposure of the nasal mucosa to the trigeminal odorants menthol and 

lavender consistently evoked significant changes in respiratory activity. An example 

of a respiratory response to menthol is illustrated in Fig. 1B. The most prominent re-

sponse feature was the occurrence of 1-4 short duration PNA bursts during the initial 

1-5 seconds after either menthol (Fig. 1B) or lavender application (not shown). At 

least one single short PNA burst was observed in all trigeminal odor applications. A 

total of n = 90 short PNA bursts (at least 50% reduction of baseline PNA burst dura-

tion) in response to 42 odor exposures were analyzed. These short PNA bursts had a 

mean duration of 0.29 ± 0.01 s and were significantly (p < 0.0001, paired Students t-

test) shorter compared to normal respiratory PNA burst duration measured before 

odor application (1.00 ± 0.28 s). Due to the distinct PNA pattern and duration, we re-

fer to these short bursts as fictive sniffs (see Fig. 1B, and discussion). In cases where 

odor application triggered multiple fictive sniffs (n = 21 stimulations with either men-

thol or lavender), the total duration of sniff cycles was significantly shorter compared 

to baseline breathing (sniff 0.80 ± 0.05 s vs. baseline 3.70 ± 0.14 s; p < 0.001, paired 

students t-test).  

 

 

 

 

 

 

 



 

 

Figure 1. Respiratory modulation
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 Responses of the olfactory bulb local field potentials (OB-LFP, lower trace) confirmed that 

the odor presented reached  the nasal epithelium. 

(B) Exposure of the nasal epithelium triggered to trigeminal odors (menthol or lavender es-

sential oils, n=42) triggered field potentials in the olfactory bulb. Moreover, short-duration 

PNA bursts, so-called “fictive sniffs” were observed during odor presentation in the absence 

of midbrain areas. 

 

Following the trigeminal odor-evoked fictive sniffs (Fig. 1B), normal (eupneic) PNA 

during odor application showed a respiratory depression as indicated by an increase 

in Ttot from 3.85 ± 0.24 s (baseline) to 5.15 ± 0.41 s (p < 0.01, ANOVA). Ti decreased 

from 0.98 ± 0.06 s (baseline) to 0.85 ± 0.05 s (p < 0.01). After termination of the tri-

geminal odor exposure, Ttot immediately returned to baseline values (3.75 ± 0.22 s), 

as well as Ti (1.00 ± 0.07 s). The overall changes in respiration are summarized in 

Figure 2B.  

Further analysis revealed that respiratory depression was most pronounced during 

the application of the strong trigeminal odor menthol (n = 26; Ttot control 3.88 ± 0.30 s 

vs. stimulation 5.83 ± 0.68 s; p<0.01) while the mild trigeminal odor lavender (n = 16) 

triggered only a mild and insignificant increase in Ttot (3.80 ± 0.30 s vs. 4.07 ± 0.33 s, 

n.s.).  

In summary, our data suggest that trigeminal odors can evoke respiratory patterns 

resembling fictive fast sniffing and subsequent respiratory depression in the complete 

absence of the cortico-limbic networks. In contrast, the non-trigeminal odor rose 

failed to trigger respiratory responses in absence of cortico-limbic systems. Since 

non-trigeminal and trigeminal odors were applied with identical experimental settings, 

the rose odor application can serve as an intrinsic control for odor evoked respiratory 

modulations. Only 3 out of 42 (7%) stimulations with rose odor evoked respiratory 

responses (see Fig. 2A) and were most likely caused by contamination of the 

olfactometer with previously used trigeminal odors. This data set excludes the possi-

bility that respiratory changes were evoked by mechanical or other unspecific stimu-

lation of the olfactory epithelium since stimulation with trigeminal odor consistently 

(100%) evoked respiratory responses (see Fig.2B). Finally, adequate odor stimula-

tion was verified since all reported respiratory changes were associated with evoked 

or modulated field potentials of the olfactory bulb. Thus, the observed respiratory ef-
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respective odor application group, i.e. preparation means (black dots) consisting of several 

measurements are weighted corresponding to the number of incorporated measurements. 

*  p < 0.05 vs. before and post Using ANOVA for repeated measures followed by post-hoc 

comparison corrected with Bonferroni. 

 

3.2  The respiratory motor pattern of fictive sniffs. 

We further characterized the fictive sniff motor pattern by the simultaneous recording 

of VNA (vagal nerve activity, see Fig. 3) in an additional n = 5 preparations. The ex-

posure of the nasal mucosa to menthol triggered fictive sniff responses in all prepara-

tions (Fig. 3B) as per our definition of fictive sniffs (short PNA bursts with decreased 

Ttot; see above). A total of 26 fictive sniff responses (at least n = 3 per preparation) 

could be analyzed. PNA burst duration during fictive sniffs was significantly shorter 

compared to normal baseline activity (0.30 ± 0.02 s vs. 0.90 ± 0.14 s; p < 0.001, 

paired t-test).   

 

Parallel recording of VNA revealed that menthol elicited tonic vagal discharge during 

sniffing sequences. It has been proven experimentally in perfused brainstem prepa-

rations that postinspiratory VNA mediates laryngeal adduction (Dutschmann and Pa-

ton 2002a,b,c). Thus, the physiological function of this laryngeal constriction during 

sniffing might be to increase upper airway resistance in order to generate the high 

nasal airflow pressure (for further details see discussion). However, the robust 

postinspiratory discharge was transiently interrupted during the short PNA bursts that 

indicate fictive sniffs (Fig.3). This pattern was fundamentally different from the bipha-

sic VNA during eupneic inspiration and postinspiration as observed before odor ap-

plication (see Fig. 3B). Sniff-associated VNA was characterized by significantly re-

duced VNA during inspiration (simultaneous discharge of PNA and VNA), compared 

to the eupneic pattern that is associated with robust inspiratory VNA (see Fig. 3C).  

After the initial fictive sniff response, the slowed respiration during the stimulation 

period was also associated with prolonged tonic postinspiratory discharge during the 

entire expiratory interval, however the peak amplitude of integrated postinspiratory 

VNA was reduced compared eupneic breaths at baseline (302 ± 21 vs 198 ± 44 µV/s, 

p<0.05) 

 



 

 

Figure 3. Simultaneous PNA, VNA
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and all respiratory responses are directly modulated via the trigeminal pathway. (B) Repre-

sentative experiment showing simultaneous recordings of the phrenic nerve activity (PNA), 

vagus nerve activity (VNA) and olfactory bulb local field potentials (OB-LFP) and correspond-

ing integrated traces during trigeminal odor presentation (n=5 preparations). Exposure to 

menthol elicited a trigeminal response consisting of a change in the duration and amplitude 

of eupneic PNA bursts as well as the presence of fictive sniffing. Simultaneous recording of 

the VNA showed robust tonic activation during odor presentation. Grey boxes during base-

line (i) and during odor presentation (ii) are magnified in (C). (i) Inspiratory (in  phrenic and 

vagus nerves) and post-inspiratory (in vagus nerve) activity during baseline respiration (ii) 

Short-duration PNA bursts (fictive sniffing) in response to menthol. Note the difference of 

duration and amplitude of a normal burst of the PNA and VNA during baseline compared to 

stimulation. Note that VNA discharge is clearly interrupted during fictive sniffs. (D) Group 

data, sniff-associated VNA was significantly reduced in amplitude compared to eupneic VNA 

during inspiration (n= 5 preparations). Lower column bar graph: PNA burst during fictive 

sniffs showed a significant decrease in duration compared to baseline (p<0.001, paired t-test, 

n= 5 preparations) 
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4. Discussion 
 

4.1  Respiratory responses to trigeminal odor. 

The contribution of naso-trigeminal afferents to the modulation of primary cardio-

respiratory networks of the brainstem is well established in the context of protective 

upper airway reflexes. Mechanical stimulation as well as irrigation and electrical 

stimulation of the anterior ethmoidal nerve can each trigger the diving response, 

which is characterized by breath-hold and bradycardia (Dutschmann and Paton 

2002a; McCulloch et al., 1999; Panneton, 2013) or sneeze (Batsel and Lines, 1975; 

Wallois et al., 1995). The role of brainstem circuitries in the processing of trigeminal 

odorants was recognized decades ago (Allen, 1936; Adria, 1953), but remains poorly 

investigated compared to the perception and emotional significance of trigmeminal 

odors associated with activity in the cortico-limbic brain areas (Doty, 2001; Hummel 

et al., 2002; Iannilli et al., 2013; Jacquot et al., 2004). Although subconscious odor 

detection was proposed (Jacquot et al., 2004), the present study is the first to show 

the direct impact of trigeminal odor stimulation in a decerebrated, arterially perfused 

brainstem preparation. Our findings imply that trigeminal odors are perceived in the 

brainstem where they can trigger short sniffs and respiratory modulation.  

 

4.2. Sniffing is not breathing: The respiratory motor pattern during brainstem 

mediated naso-trigeminally-evoked sniffing.  

Sniffing is usually discussed in the context of exploratory and therefore conscious 

behavior (Ranade et al., 2013; Wesson et al., 2008). Sniffing is often described as 

breathing at elevated respiratory frequency that can be easily detected with thermo-

couples or plethysmograph recordings of respiratory activity during olfactory tasks or 

in response to sensory-evoked arousal in behaving animals (Bondarenko et al., 

2015; Canevali et al., 2013; Welker, 1964; Wesson et al., 2008, 2011; Wesson 

2013). 

 

The data obtained in the present study indicate that the motor pattern of sniffing is 

different from normal, eupneic breathing. The sniff-like motor pattern observed in the 

perfused brainstem preparation was characterized by significantly shorter inspiratory 

duration compared to eupneic respiratory activity. The short inspiratory burst duration 
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is in accordance with laryngeal-evoked reflex sniffs (Batsel and Lines, 1973; Tomori 

and Widdicombe, 1969), and with short duration diaphragm (100 ms) EMG bursts 

during odor sampling (Rojas-Libano and Kay, 2012). Furthermore, the eupneic res-

piratory motor pattern is defined by augmenting inspiratory activity in phrenic and 

vagal nerve recordings, followed by a distinct decrementing postinspiratory discharge 

during the early phase of expiration. The biphasic discharge of the vagal nerve is 

functionally linked to the dynamic regulation of upper airway patency (Dutschmann 

and Paton 2002c). The inspiratory discharge component reflects laryngeal abduction 

causing glottal dilation while the postinspiratory phase of the vagal discharge corre-

lates with laryngeal adduction and ensuing transient glottal constriction. Contrary to 

this pattern, during fictive sniffs, the vagal nerve motor activity displayed tonic 

postinspiratory activity during the sniff-cycle interval that was transiently suspended 

during the short inspiratory bursts. Laryngeal adduction is also observed in humans 

during voluntary sniffing (Mukai, 1989) and was also suggested to occur during sen-

sory-evoked sniffing in cat (Lawson et al., 1991).  

The functional consequence of the present observations is that the glottis is mostly 

constricted during sniffing, except for the passive relaxation during the active inspira-

tory component of the sniff. At least three physiologically relevant implications ensue: 

(i) airway resistance needs to increase in order to generate the characteristic high 

nasal flow pressures during sniffing; (ii) restricted pulmonary inspiratory and particu-

larly expiratory airflow would prevent excessive CO2 exhalation during the high fre-

quency sniffing, thus actively counteracting the rapid emergence of pathological 

hypocapnia (Gardner, 1996); and (iii) the limitation of inspiratory airflow would protect 

the lungs from the inhalation of larger amounts of potentially noxious substances 

(Dutschmann and Paton, 2002a; Panneton , 2013).  

In addition to the observed laryngeal constriction, nasal resistance is actively modu-

lated during sniffing. However, activity patterns of facial motor nerves innervating the 

intra-nasal musculature were not investigated in the present study.  
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4.4. The anatomical framework for the processing of naso-trigeminally-

mediated olfaction.   

Tracing studies have identified the primary terminal fields of the anterior ethmoidal 

and infraorbital nerves in the caudal nucleus of the sensory spinal-trigeminal tract 

(Sp5C, Jacquin and Rhoades, 1983; Panneton, 1991; Panneton et al., 2006). Addi-

tional terminal fields of the ethmoidal nerve are located in the nucleus of the solitary 

tract (NTS) and the pontine Kölliker-Fuse nucleus (KF, Panneton, 1991; Panneton et 

al., 2006). The second order projections of the caudal nucleus show a dense connec-

tivity with the lateral ponto-medullary respiratory column (Panneton, 1991; Feil and 

Herbert, 1995). These pathways are consistently activated by nasal or ethmoidal 

nerve stimulation producing a sneeze or the diving response as shown in c-fos map-

ping studies (Dutschmann and Herbert, 1997; Jakus et al., 2004; McCulloch and 

Panneton, 1997; Wallois et al., 1995); however, no data are available for nasal stimu-

lation with odorants.  

 

 

4.5 Location and gating of a central pattern generator (CPG) for sniffing.  

Our study shows that the sniff motor pattern is significantly different from the normal 

respiratory motor pattern. The differential motor patterns suggest that sniffing and 

eupneic breathing could be generated by separate CPGs. The existence of CPGs for 

specific oro-facial motor activities (e.g. swallowing, coughing and vocalizing) that 

functionally and anatomically partly overlap with the respiratory CPG is well accepted 

(Bianchi and Gestreau, 2009; Moore et al., 2014), but the anatomical location of the 

CPG for sniffing has not been explicitly identified. Since sniffing and whisking are 

highly coupled motor oscillations Moore et al., 2014; Welker, 1964), it is conceivable 

that the CPG for sniffing co-localizes with the recently identified CPG for whisking in 

the intermediate reticular formation dorso-medial to the pre-Bötzinger complex 

(Moore et al., 2013). While neither direct nor second order projections of the 

ethmoidal nerve appear to target this area (Panneton et al., 2006), the intermediate 

reticular formation is significantly activated after nasal stimulation with ammonia va-

pors (McCulloch and Panneton, 1997) and after naso-pharyngeal evoked sniff-like 

aspirations (Jakus et al., 2004).  



 

65 

 

The lack of direct trigeminal projections into the putative CPG for sniffing suggests 

that its activity is gated by other neural substrates that receive direct trigeminal input. 

A good candidate for the gating of the sniffing CPG could be the pontine KF nuclei, 

since they receive primary and secondary innervation from the naso-trigeminal sys-

tem (Jacquin and Rhoades, 1983; Panneton, 1991; Panneton et al., 2006) and have 

a prominent role in the control of postinspiratory motor activity (Dutschmann and 

Herbert, 2006). Interestingly, KF-mediated modulation of postinspiratory motor output 

to the laryngeal constrictor muscles is already implicated in a large variety of oro-

pharyngeal behaviors, including breath-hold during the ethmoidal nerve-mediated 

diving response (Dutschmann and Dick, 2012). The latter seems to be an important 

part of sniffing motor patterns as well. Further indirect evidence for a role of the KF in 

the gating of oro-facial motor CPGs is provided by a previous study that demonstrat-

ed KF-mediated gating of the medullary CPG for swallowing (Bautista and 

Dutschmann, 2014). Interestingly, both sniffing and swallowing are accompanied by 

high tonic postinspiratory drive towards laryngeal constrictor muscles. Thus, the initial 

modulation of airway resistance might be a prerequisite for the release of oro-facial 

motor CPGs.  

Finally, the same brainstem pathways that convey nasal sensory information of the 

ethmoidal nerve could be activated via descending cortico-limbic projections. Evi-

dence in support of this concept is provided by a recent study that showed a similar 

c-fos activation pattern in the ponto-medullary brainstem in naturally diving rats after 

transection of the ethmoidal nerves (McCulloch et al., 2016). These data suggest that 

the same brainstem circuits can be gated either by sensory protective reflex mecha-

nisms (i.e. ethmoidal nerve stimulation) or behavioral commands arising from cortico-

limbic systems after bilateral ethmoidal nerve transection (McCulloch et al., 2016). 

While, these data are restricted to the diving response so far, similar mechanisms 

may apply for the sniffing associated with odor perception.   
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Conclusions 

The present study provides compelling evidence for brainstem-mediated processing 

of the trigeminal component of odorants that can trigger sub-consciously initiated fast 

sniffing and other respiratory modulations.  
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3.3. Sniff-like patterned input results in long-term plasticity at the rat olfactory bulb 

mitral and tufted cell to granule cell synapse. 

 

 

V.E designed experiments; M.C., F.P.d.l.C.P., M.L., and V.E. performed experiments; 

M.C., F.P.d.l.C.P., and V.E. analyzed data; A.L. contributed to the quantal modeling 

and the respective parts of the paper; V.E. wrote the paper. 
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4. DISCUSSION 

 

4.1.  Clinical importance of the olfactory system 

The olfactory bulb is a highly plastic neural network that changes continuously. Its 

volume varies across an animal’s life followed by changes in the olfactory function 

(Buschuter, Smitka et al. 2008). So far, aging has been reported to be the major 

cause of olfactory dysfunction which relates to olfactory bulb volume and functionality 

and might have a direct impact on well-being and quality of life (Landis, Konnerth et 

al. 2004; Doty and Kamath 2014). Dysfunction of the olfactory system has been re-

lated to different neurodegenerative diseases such as Alzheimer (AD) (Wilson, 

Arnold et al. 2009; Wesson, Levy et al. 2010; Wesson, Wilson et al. 2010; Stamps, 

Bartoshuk et al. 2013; Alves, Petrosyan et al. 2014), Parkinson (PD) (Doty 2007; 

Haehner, Hummel et al. 2009; Haehner, Hummel et al. 2011; Doty 2012; Casjens, 

Eckert et al. 2013), multiple sclerosis (MS) (Caminiti, De Salvo et al. 2014; Li, Yang 

et al. 2016; Lucassen, Turel et al. 2016; Yaldizli, Penner et al. 2016) and Huntington 

disease (HD) (Hamilton, Murphy et al. 1999; Barrios, Gonzalez et al. 2007; Lazic, 

Goodman et al. 2007; Barresi, Ciurleo et al. 2012; Delmaire, Dumas et al. 2013) and 

has been proposed as a biomarker for these diseases (Barresi, Ciurleo et al. 2012). 

Different factors might account for age-related olfactory dysfunction like damage of 

the olfactory epithelium, ossification of the cribriform plate and loss of selectivity of 

receptor cells to odor molecules. Moreover, synaptic failure and/or degeneration of 

different neuromodulatory systems targeting dendrodendritic synapses in the OB 

might account for alterations in OB activity leading to loss of olfaction. In other brain 

areas this is reflected at the population level where oscillatory activity and its syn-

chronization has been shown to be altered at different frequency bands in patients 

with some disorders or diseases including depression, schizophrenia, epilepsy, au-

tism or previously mentioned neurodegenerative diseases when compared to healthy 

subjects (Uhlhaas and Singer 2006). Since neural oscillations are involved in the 

maturation and synaptic plasticity of neural networks, desynchronization of neural 

activity might be critical at different stages of development as well as for age-related 

neurodegeneration (Uhlhaas and Singer 2006; Barresi, Ciurleo et al. 2012). 
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4.2. Characteristics of the nose - olfactory bulb - brainstem preparation  (NOBBP) 

In the early stages of the method´s development, semi intact preparations did not 

become popular due to experimental limitations, such as tissue hypoxia. The nose-

olfactory bulb preparation is a good alternative to more popular in vivo and in vitro 

approaches. It has obvious advantages like the lack of anesthesia, an intact olfactory 

pathway and a preserved in-vivo like olfactory network. The coupling to respiratory 

networks makes the preparation suitable to study local networks in the olfactory bulb 

and its interaction with respiration. In this preparation, adjacent fragments of the 

piriform cortex are preserved not to compromise the anatomical integrity of the OB. 

These fragments are thought to suffer hypoxia since branches of the corticostriate 

artery supplying part of the piriform cortex are completely removed during surgery. 

Therefore, this preparation is suitable to study odor processing at the level of the ol-

factory bulb lacking centrifugal inputs. The viability of this preparation is based on 

proper oxygenation of the remaining bulbar and respiratory networks and proper ox-

ygenation of the latter triggering physiological phrenic bursts is a good indicator of 

the preparation’s viability.  

Characterization of eupneic phrenic bursts in a semi intact preparation compared to 

in vivo was adressed in detail in several papers (see Richter and Spyer 2001). Thus, 

inspiratory events observed using the perfused nose-brain preparation are not gasp-

ing events. This implies that the perfusion pressure and flow rate are sufficient to ox-

ygenate the BS and consequently the OB properly. Unfortunately there is no defined 

protocol that could be applied to reactivate the respiratory network since these as-

pects are complex and variable across experiments. Even so, proper oxygenation of 

the OB does not guarantee an active olfactory network. I observed that the OB need-

ed to be “reactivated” via prolonged odor stimulation. A possible explanation for this 

“rebooting” process could be a potential collapse of the olfactory network during early 

stages of the preparation since it lacked constant rhythmic airflow or other sensory 

stimuli. Nevertheless, proper “tuning” of the preparation elicits spontaneous respirato-

ry activity which can last up to four hours while recording odor-evoked responses.  
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4.3. Odor - evoked responses in the NOBBP 

Proof of the success of this preparation is to give evidence of its functionality. Nasal 

stimulation with a computer controlled olfactometer elicited odor-evoked activity. 

“Rebooting” of the olfactory network implies an initial reactivation of OSNs detecting 

odor molecules and changes in mechanosensation. Continuous stimulation succeed-

ed to reactivate the olfactory network. In line with what is observed in in vivo studies, 

observation of excitatory and inhibitory responses to stimulation with oil-diluted odor-

ants confirms the proper preservation of the olfactory network and its functionality 

(Davison and Katz 2007). The generation of spontaneous and odor-evoked oscilla-

tions confirms that the neuronal networks distributed in the different layers are 

properly preserved and oxygenated. Most of the responses observed were locked to 

stimulation. In some cases, some neurons became tonically active after odor presen-

tation, which can be explained as an OFF response. Maritan et al. showed the pres-

ence of odorant receptors at the axon terminals of the OSNs. Lacking a proper odor-

ant suction system, the remaining volatile molecules after stimulation, which poten-

tially bind receptors on the growth cone, could partly explain these delayed respons-

es (Maritan, Monaco et al. 2009). As explained in the introduction, many centrifugal 

projections and different neuromodulators project to the OB, shaping bulbar activity. 

Due to ethical issues, removal of the midbrain was needed. Thus, all responses were 

localized in the OB in the absence of centrifugal or neuromodulatory modulation. 

This preparation might be suitable to study how odors are represented in the OB. 

Stimulation with odorants sharing similar molecular features tends to activate similar 

areas in the OB. However similar odors do not necessarily activate nearby glomeruli 

(Ma, Qiu et al. 2012; Imai 2014). Still, the olfactory map representation is state-

dependent where a well preserved and intact olfactory network is vital, as it occurs in 

the in vivo awake approach. Awake animals show more sparse responses to odors 

due to a stronger activation of the GCL. That implies that odor representations in the 

OB might depend on spatio-temporal patterns (Uchida, Poo et al. 2014), known to be 

dependent on the response latency of glomeruli, odor identity and to be concentra-

tion-specific (Spors and Grinvald 2002; Kepecs, Uchida et al. 2006; Shusterman, 

Smear et al. 2011; Fukunaga, Berning et al. 2012). 
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Moreover, exposure of the lateral sides of the olfactory bulb migh allow mapping of 

hitherto inaccessible OB glomeruli contributing to understand how odors are repre-

sented in the OB. 

 

4.4. Oscillatory activity 

Oscillatory activity in the bulb has been widely studied since the pioneer work of E.D. 

Adrian in which he observed oscillatory activity in the hedgehog olfactory bulb 

(Adrian 1942; Adrian 1952). Since then, much research on that field has been per-

formed studying electroencephalograms (EEG) and local field potentials (LFP) in the 

OB in both in vitro and in vivo (anesthetized and awake head-fixed) (Freeman 1978; 

Freeman and Schneider 1982; Chabaud, Ravel et al. 1999; Buonviso, Amat et al. 

2003; Martin, Gervais et al. 2004; Kay 2005; Litaudon, Garcia et al. 2008; Cenier, 

David et al. 2009; Fourcaud-Trocme, Courtiol et al. 2014; Martin and Ravel 2014; 

David, Courtiol et al. 2015). Oscillatory activity has been also studied in different semi 

intact preparations with natural odor stimulation (in the frog, Delaney and Hall 1996; 

in guinea-pig, Ishikawa 2007). So far, it has never been tested in rodents keeping an 

intact olfactory pathway combined with a preserved respiratory network. In the nose 

olfactory bulb preparation I show evidence for a well preserved and oxygenated ol-

factory network. Reactivation of the olfactory function leads to the generation of 

spontaneous and odor-evoked oscillations. Activity at a low frequency is known from 

many in vivo studies to be coupled to the respiratory rhythm (Margrie and Schaefer 

2003; Buonviso, Amat et al. 2006). Nevertheless, since this preparation lacks a respi-

ration-like rhythm, the observation of slow oscillations suggests that the olfactory 

network might have sufficient intrinsic machinery to generate activity at this frequen-

cy. This is reminiscent of what is observed in other brain areas such as the HPC, 

where generation of activity at a theta frequency occurred spontaneously in in vitro 

acute slices (Colgin and Moser 2009; Goutagny, Jackson et al. 2009; Colgin 2013). 

Bulbar networks generating theta activity might couple to external inputs, like respira-

tory networks or the HPC, and since this preparation lacks bottom-up inputs, it might 

help to decipher bulbar contributions to odor-induced plasticity in the absence of 

higher cortical areas. Coherence between olfactory bulb and hippocampal theta ac-

tivity has been reported in several studies and it has been associated with different 

cognitive processes (Kay 2005; Colgin 2013). Importantly, a recent study has shown 



 

93 

 

that bulbar theta locked to respiration causes theta activity in the HPC at exactly the 

same frequency. Nevertheless, activity in another theta frequency band is also ob-

served in the HPC which directly modulates bulbar networks at the same frequency 

(Nguyen Chi, Muller et al. 2016). Odor-evoked responses display activity at high fre-

quencies, which was observed in many in vivo awake or anesthetized studies 

(Davison and Katz 2007; Kato, Chu et al. 2012). The generation of beta oscillations is 

known to be dependent on distal cortico-bulbar networks while gamma oscillations 

are thought to be generated by local networks (Neville and Haberly 2003; Galan, 

Fourcaud-Trocme et al. 2006). Notably, this preparation allows the study of local 

networks just within the OB responsible for gamma oscillations while is more unlikely 

for beta oscillations since it lacks cortical centrifugal input. Cortical feedback to the 

OB is known to modulate bulbar oscillations (Boyd, Sturgill et al. 2012) and their con-

tribution as well as the role of different neuromodulators to oscillatory activity is well 

known since isolation of the OB from the rest of the brain abolishes beta waves while 

gamma activity increases (Neville and Haberly 2003). Noradrenergic modulation is 

known to contribute to network excitability (Devore and Linster 2012). Supporting 

this, there are studies that have shown an increment of gamma activity in bulbar 

acute slices in the presence of noradrenaline (Gire and Schoppa 2008). Reminiscent 

of other cortical areas, different bulbar subpopulations might generate activity at dif-

ferent frequencies based on synapses between excitatory-inhibitory neurons or inhib-

itory-inhibitory neurons. Still, more research is needed to clarify the contribution of 

these interactions. This raises the question how these different oscillations might in-

teract. For cortical areas it is hypothesized that these oscillations might cooperate or 

compete, in which the oscillatory event with a higher frequency might “win” and 

thereby synchronizes with the other population (Viriyopase, Memmesheimer et al. 

2016). Still, these mechanisms are not fully understood despite the advances made 

in the electrophysiological and computational field to understand how these popula-

tions communicate. 

Importantly, maintenance of the preparation at a non physiological temperature 

(31°C) might influence the oscillatory activity observed. Nevertheless, in a set of ex-

periments, controls for temperature were performed setting the perfusion tempera-

ture at 36°C or 26°C observing increases or decreases in frequency activity, respec-

tively. In any case, there was no abolishment of oscillatory activity. 
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4.5. Plasticity of the OB network 

To cope with the environment, different brain areas have the ability to modify their 

internal functionality in response to different stimuli. The mechanisms underlying 

plasticity are represented as structural changes, formation of new synapses, modifi-

cations in membrane excitability or changes in synaptic efficiency, e.g. via an altered 

number of neurotransmitter receptors located on a synapse. These changes could 

lead to long-term plasticity and they are thought to be essential for different cognitive 

processes like learning and memory, which was first discovered in the hippocampus 

(Bliss and Lomo 1973). However, there is evidence that the OB circuitry might be 

involved in these processes, which imply a plastic circuitry. At the level of the OB, 

plasticity mechanisms occur at different levels, e.g. at the stage of odorant detection, 

where OSN axon terminals undergo changes which are likely to be behavior-

dependent (Kass, Rosenthal et al. 2013) and to be modulated by centrifugal projec-

tions and interneurons in the glomerular layer. Within the OB, synaptic plasticity at 

the level of MCs is mediated via dendrodendritic synapses with GABAergic GCs 

(Dietz and Murthy 2005; Egger and Urban 2006; Gao and Strowbridge 2009) and has 

been proposed as a mechanism for olfactory memory (Wilson, Best et al. 2004; 

Fletcher and Chen 2010; Lepousez, Nissant et al. 2014), sensory adaptation (Li 

1990) and olfactory discrimination (Wilson, Best et al. 2004). Specifically, NMDARs 

are known to play a key role in this synapses being crucial to mediate synaptic plas-

ticity. Besides MC-GC interactions, lateral excitation between MCs exhibits also bidi-

rectional plasticity (Pimentel and Margrie 2008). These mechanisms could serve to 

normalize sensory information and provide similar output patterns to downstream 

structures (Suzuki and Bekkers 2006). Still, it is hypothesized that the major form of 

plasticity at the level of the OB relies on neurogenesis where adult-born neurons are 

continuously integrated in the OB circuitry over time (Lledo, Alonso et al. 2006; 

Mizrahi 2007). 
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4.6. An olfactory nasal - trigeminal pathway modulates respiration 

Rhythmogenesis of breathing has been studied in the last decades using in vivo 

(Alheid, Gray et al. 2002) and in vitro (Smith, Ellenberger et al. 1991; Ballanyi, 

Onimaru et al. 1999) preparations as well as semi intact perfused animals (Paton 

1996; Dutschmann and Paton 2003). In the latter, resuscitation of the network via 

oxygenation of the brainstem elicits spontaneous respiratory movements. Eupneic 

inspiratory bursts have been shown to be comparable to the in vivo approach since 

there is no disruption of synaptic connections. They display similar rhythmic patterns 

and are distinct from different “normal” behavioral rhythms such as gasping, sighing 

or sneezing (Richter and Spyer 2001). Sniffing behavior, described as high frequency 

eupneic breathing is observed during specific behaviors. It has been studied by dif-

ferent workgroups and it is defined based on its short duration which has been 

measured with a thermocouple device or in diaphragm EMG bursts during olfactory 

tasks (Rojas-Libano and Kay 2012). So far, the specific neural networks responsible 

for these fast and short duration bursts are still unknown. Within this thesis, I give 

evidence of a potential involvement of a trigeminal pathway to modulate respiratory 

networks during odor presentation as well as to generate putative sniffs. Trigeminal 

afferents located in the nasal mucosa have been characterized in several studies for 

triggering protective breath holds like the diving reflex or sneeze to prevent the inha-

lation of potential noxious molecules (Wallois, Gros et al. 1995; Hummel, 

Mohammadian et al. 2003). Nasal-trigeminal pathways have been mostly investigat-

ed using behavioral paradigms involving cortical and limbic neural networks. Using 

the nose - brain preparation in the absence of midbrain structures allowed to prove 

the direct impact of trigeminal odor stimulation on the respiratory brainstem. So-

called trigeminal odors triggered putative short sniffs and also respiratory modulation, 

suggesting a potential mechanism of subconscious odor detection which has been 

proposed a decade ago (Jacquot, Monnin et al. 2004). The localization of networks in 

the brainstem responsible for sniffing generation is still under debate. Nasal-

trigeminal afferents from the ethmoidal nerve have terminal fields in the caudal nu-

cleus of the sensory spinal trigeminal tract (Sp5C). Besides, there are terminal fields 

in the NTS and in the KF. Stimulation of the ethmoidal nerve activates these path-

ways triggering sneeze responses or the diving reflex (Dutschmann and Herbert 

1997; Jakus, Halasova et al. 2004) as it has also been shown to be activated during 

odor presentation. Since the sniff motor pattern described in detail in this thesis (see 
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for details section 3.2) is different from eupneic respiratory activity it suggests the 

involvement of different central pattern generators. A possible candidate to gate sniff-

ing generation is the KF since it receives direct naso-trigeminal input (Panneton 

1991) and it is also involved in ethmoidal nerve-mediated responses like breath holds 

(Dutschmann and Dick 2012). Moreover, this is supported by the fact that similar 

brainstem pathways could be activated via cortico-limbic projections similar to what 

has been shown in a recent study (McCulloch, Warren et al. 2016). In that way, the 

same respiratory networks in the brainstem might be targeted by different pathways 

to provide a fast respiratory response to odor stimuli, on the one hand a naso-

trigeminal pathway to evoke fast protective reflexes and on the other hand cortico-

limbic networks gating behavioral inputs. 
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4.7. Future perspectives 

This thesis is based on the description of a new promising technique to study bulbar 

network properties as well as a good method to study interactions between olfaction 

and respiration. Still, the spectrum of possibilities that this preparation offers are quite 

variable. This preparation has been performed in juvenile Wistar rats at the age be-

tween 12 and 17 post-natal days. Nevertheless, it could be possible to adapt this 

technique to neonate rats since they already have a functional olfactory system 

(Wilson and Sullivan 1994) as well as in older animals (Paton 1996). This could allow 

studies concerning neural development and oscillatory patterns at the level of the 

olfactory bulb. Moreover, the experimental setup allows pharmacological studies to 

investigate synaptic mechanisms and its effects in oscillatory activity.  

Similar to conventional in vivo experiments, all the data presented in this thesis have 

been recorded from the dorsal side of the olfactory bulb. Nevertheless, one promising 

adaptation of this preparation is the exposure of the lateral sides of the olfactory bulb 

for the first time, which might allow different electrophysiological recordings. Moreo-

ver, it could be possible to study bulbar network properties both in dorsal and lateral 

sides of the bulb during odor presentation using two-photon calcium imaging applying 

the bolus loading technique (Stosiek, Garaschuk et al. 2003; Garaschuk, Milos et al. 

2006). All the existing defined protocols using this technique have been established 

under in vivo or in vitro conditions. Application of these defined protocols are likely to 

not succeed in perfused semi intact animals because the perfusion condition of the 

preparation might wash out part of the dye, the maintenance of the preparation oc-

curs at a non-physiological temperature and the preparation lacks internal mecha-

nisms to counteract the toxicity effects of the dye´s solvent. These protocols are es-

tablished taking into account different variables such as concentration, duration time 

and injection pressure of the dye. Unfortunately, there is still no effective bolus load-

ing protocol defined for injections in the OB in semi intact preparations of rats and 

variations of these parameters might be crucial for its optimization. Another potential 

future pathway concerning imaging techniques related to this preparation, might be 

the loading of the nasal epithelium with dextran dyes (Wachowiak and Cohen 2001). 

Staining of OSNs might allow to visualize glomerular neuropil and to study intra and 

interglomerular networks during odor presentation which are thought to be crucial for 

generation of slow wave activity (Fourcaud-Trocme, Courtiol et al. 2014). Although 
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not shown in this thesis, I performed some proof of principle experiments for both 

imaging techniques which showed promising results for future experiments. Never-

theless, more experimental data is needed for both techniques to be further devel-

oped and to establish practicable imaging techniques for upcoming new semi intact 

preparations.  

The odor set used for experiments within this thesis was restricted to a few oil-based 

odors using a computer controlled olfactometer. However, single odor molecule stim-

ulation could be also a potential alternative to investigate odor map representations 

at the level of the olfactory bulb. Moreover, using an olfactometer with a higher tem-

poral resolution might improve the precision of the odor presentation.   

 

4.8. Final remarks 

Conclusively, the olfactory bulb underlies many processes which are vital for the sur-

vival of many animals. This thesis presents a new valuable research technique as an 

alternative to different approaches. Its suitability is based on the recording of odor 

responses compared to already established techniques. The preservation of an intact 

olfactory pathway allows to study olfactory network properties at different levels. Fur-

thermore, the possibility to link directly olfaction to respiration in the absence of corti-

cal areas represents a good direction for research in both olfactory and respiratory 

fields as well as the study of their interaction. 
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6. Appendix 

6.1. Nomenclature 

ACIII: adenylil cyclase III 

AD: Alzheimer´s disease 

AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

AOB: accessory olfactory bulb 

AON: anterior olfactory nucleus 

ASIC: acid-sensing ion channel 

BötzC: Bötzinger complex 

BNAOT: bed nucleus of the accessory olfactory tract 

BNST: bed nucleus of the stria terminalis 

BS: brainstem 

cAMP: cyclic adenosin monophosphate 

cVRG: caudal VRG 

CaCC: calcium activated chloride channels 

CN: cranial nerve 

CNGC: cyclic nucleotide gated channels 

CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione 

dSAC: deep short axon cell 

DRG: dorsal respiratory group 

eTC: external tufted cell 

ECx: entorhinal cortex 

EEG: electroencephalogram 

ESP: exocrine-gland secretion peptide 

GABA: gamma - aminobutyric acid 

GC: granule cell 

GG: Grueneberg Ganglion 

GL: glomeruli layer 

HD: Huntington´s disease 

HPC: hippocampus 

KF: Kölliker-Fuse 

LFP: local field potential 

MeA: medial amygdala 
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MC: mitral cell 

MHC: major histocompability complex 

MOB: main olfactory bulb 

MOE: main olfactory epithelium 

MS: multiple sclerosis 

MUP: mouse urine protein 

nAChR: nicotinic acetylcholine receptor 

NA: nucleus ambigous 

NE: noradrenaline 

NK1R: neurokinin-1 receptor 

NMDAR: N-methyl-D-aspartate receptor 

NTS: nucleus of the solitary tract 

OB: olfactory bulb 

ORN: olfactory receptor neuron (see OSN) 

OSN: olfactory sensory neuron 

preBötzC: preBötzinger complex 

PCx: piriform cortex 

PD: Parkinson´s disease 

PGC: periglomerular cell 

PMCoA: posteromedial amygdala 

PRG: pontine respiratory group 

P2X: purinergic receptor 

rVRG: rostral VRG 

sSAC: superficial short axon cell 

Sp5C: Spinal trigeminal tract 

SO: septal organ 

TAAR: trace amine-associated receptor 

TC: tufted cell 

TR: trigeminal receptor 

TRPV1: transient receptor potential cation channel subfamily V member 1 

VNO: vomeronasal organ 

VRG: ventral respiratory group 

VSN: Vomeronasal sensory neuron 
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