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Chapter 1

Introduction

These last years, machine learning has emerged as one of the most prolific research
fields in computer science, in conjunction with the availability of large quantities
of data and the increasing interconnection of people and things. With such huge
amounts of information, the most common tools of statistics to describe and predict
from data quickly became outdated, and their results sometimes misleading or in-
complete: that is because most of these tools make the assumption that the relations
that underlie the data are linear. Machine learning models, on the other hand, are
thought and created with the intent to exploit the complex, potentially non-linear,
interactions in the data, that oftentimes lead to a better representation of the prob-
lem and consequently to an improvement of the results. Among the many fields
where machine learning has proven to be successful, we mention image, speech
and sound recognition.

Another field where machine learning proved to be extremely useful is data de-
scription and understanding, especially when large quantities of information are
in play. Algorithms like clustering and dimensionality reduction are nowadays
essential to make sense of data, because their results can be easily translated in
additional domain knowledge by field experts.

One of the fields where machine learning is not yet used up to its full potential is
medical research, in particular in the subfields of diagnosis and outcome predic-
tion. Especially in the medical community, linear models are still preferred when
it comes to predict from data. This scenario is changing with the latest progresses
in medical research, that have been accompanied by a literal flood of data: pa-
tient records, exam outcomes, genomic information are now digitally collected on
a daily basis and have reached a size that cannot be managed anymore if not with
carefully crafted techniques. The choice to use models such as Logistic Regression
for prediction was understandable up until some years ago, since they have strong
theoretical background from statistics and offer an interpretation of the predicting
process that remains unmatched by many machine learning models. In addition,
complex models required an amount of computing power that we did not possess
at the time. Now that the technology gap has been filled and data is everywhere,
however, we believe that machine learning has to be considered the primary tool
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(used alone or together with more traditional methods of analysis) to obtain more
information, and to obtain the correct ones.

1.1 Motivation

The problem of predicting mortality in low birth-weight infants is well studied in
medicine, although not to guide therapeutic decisions. Instead, mortality proba-
bilities are used in comparison studies aimed to identify Neonatal Intensive Care
Units (NICUs) where the observed mortality rate differs significantly from the pre-
dicted rate. A major contribution to this studies comes from networks of hospitals
around the world, which began to collect data from NICUs to improve the quality
of health care of infants. The data used in this study comes from one of such net-
works, the Vermont Oxford Network (VON), and specifically from its Italian mem-
ber centers. This thesis was conceived in partnership with a committee of clinicians
from a VON member center: Dr. Luigi Gagliardi, and Dr. Giulia Placidi, from the
Neonatology ward of Ospedale Versilia, Lido di Camaiore (LU), which provided
us with the data, the expertise that allowed us to gain a basic understanding of the
subject and the intelligence to resolve any technical doubt on the specific task.

In this study, we intend to investigate the problem of predicting mortality in a co-
hort of low birth-weight infants from Italy. To do so, we will use different ma-
chine learning algorithms and techniques and assess their possible qualitative and
quantitative contribution in improving the predictive capabilities of infant mortal-
ity models. Our approach includes:

• the training and evaluation of a pool of of state-of-the-art machine learning
models with different complexities, comparing their results against a well-
established linear probabilistic classifier constructed by the VON, called VON-
Risk Adjusted model (VON-RA), that has been used for many years by the
medical community as a reference;

• the assessment of the impact in performance that a promising set of feature,
identified by the neonatologists, have with respect to the benchmark model,
as well as a survey on how models perform on the task in relation to their
complexity;

• a better characterization of the problem in general, by detecting which fea-
tures are the most influential in the final outcome and whether the data has
inherent structure that might be exploited in the future.

The training and evaluation of the pool of models will be conducted with experi-
ments designed to rigorously follow machine learning best practices. At the highest
level, the trials include choosing a pool of candidate models to be tested, estimat-
ing the performance of the whole class of models to which each candidate belongs,
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build a working model from each candidate with the highest expected performance
on unseen data, and evaluate its behavior in a real-case scenario. The results are ob-
tained, validated and discussed using performance measures and statistical tools
that are widely known and accepted in the medical community, in such a way that
they are understandable by both clinicians and computer scientists.

The experiments spawned a series of challenges inherent of the main objective, that
are typical in machine learning contexts. Some of them are related to the clinical
domain from which the data comes from. Typically, clinical data is incomplete
and badly formatted: this problem is explainable by considering that the data is
aggregated from multiple sources. Although rigid guidelines to collect the data
are in place in multi-center organizations, the differences between hospitals and,
more often, the human error, produce a data base that is heterogeneous and cannot
be processed as-is by algorithms. This problem is initially characterized through
a statistical analysis, in order to detect inconsistencies in the data along with pe-
culiarities that we want to exploit. After that, we transformed the data, with the
two-fold intent to make it suitable to be used by the algorithms, and more easily
analyzable with classical statistics tools. We focus in particular on the handling
of missing data, in the attempt to retain features that make our analysis original,
but at the same time preserving a sufficient number of observations to ensure good
quality of the predictions.

One other challenge in this study comes from the nature of the task itself. Death in
low birth-weight infants is a rare outcome, mainly thanks to the advances of neona-
tology research and new clinical practices, which shrunk the impact of illnesses and
complications that might lead to death before and after birth to a minimum. Even
if the main performance metric used in this work to evaluate the models is not af-
fected by this reassuring disproportion between infants that die and infants that
survive, we will take it into consideration and reason about its implications.

A last challenge is strictly related to machine learning, and comes from the pecu-
liarities of the different models that were examined in our studies. Learning algo-
rithms are generally conceived following paradigms that aim to solve the learning
problem from a specific perspective. When it comes to practice, this heterogeneity
is translated into a variety of algorithm-dependent constraints which have to be
met in order to unleash the true predictive power of the model. Our experiments
are thus designed to be general, in order to provide a unified method of compar-
ison between all the different algorithms, but at the same time flexible enough to
account for such practical differences.

The third scenario we explore in this study is related to interpretation. As we talked
earlier, the size of datasets nowadays is orders of magnitude bigger than it was be-
fore. More than that, data grows in two directions: the number of observations is
increasing, as well as the quantity of information that a single observation holds.
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Large quantities of data are difficult to treat exclusively with descriptive statistics,
since they contain so much variability that common measurements do not express
their true structure. For this reason, we utilized specific machine learning models
such as the Self-Organizing Maps to provide field experts with visual representa-
tions of the data, which can then be used to facilitate their interpretation and dig
up hidden knowledge. Another aspect that we analyzed is the single contribution
that each feature in the data has with respect to the final prediction. To do so, we
utilized pure statistical tools such as box plots and data exploration techniques in
general, along with an analysis that employed a common machine learning model
(Decision Trees) to derive a ranking of features based on their influence in the de-
termination of the final outcome.

1.2 Thesis outline

Chapter 2 provides a brief excursus in the field of machine learning: its main
concepts and the analytical description of the algorithms and tools we will use
throughout this work. Chapter 3 will provide some medical background on the
problem and describe the data we were given; in addition, we will explain how the
information contained in the dataset was processed to be used for training machine
learning models. Finally, we are going to describe in detail how the experiments
were set-up. In Chapter 4, we will present and discuss the results of our experi-
ments, while in Chapter 5 we will draw our conclusions and point towards future
work that might follow from this thesis.
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Chapter 2

Machine Learning

Machine learning is a discipline that provides data-driven methodologies and algo-
rithms to tackle problems where an analytical solution is unknown, or impractical
to obtain. In a typical machine learning use case, there is an unknown function
that one tries to "learn" from data; this function is later used to solve some domain-
specific problem, or task.

Learning tasks are usually categorized into predictive and descriptive. Predictive
tasks, as the name implies, deal with the prediction of outcomes based on histori-
cal data, while descriptive tasks relate to the characterization of a problem and the
discovery of hidden structure in the data. Each task is associated with a specific
form of learning, where with the term learning we intend improving of some per-
formance at the task through the use of data [37]. Predictive tasks are related to
supervised learning, while descriptive tasks are related to unsupervised learning.

2.1 Binary classification

In supervised learning, data consists of a set of labeled vectors and we wish to
learn the relationship between these vectors and the labels. Based on the domain
of the labels y, we distinguish regression problems, where y ∈ R and classification
problems, where the set of labels is a discrete and finite domain (in the latter case,
the labels are also called classes). Our study is focused on binary classification, which
is a particular instance of classification where the set of labels is a dichotomy (i.e.
it contains exactly two classes, which are often referred to as positive and negative
class).

2.1.1 Problem definition

Notation

We will now briefly describe a basic framework to define binary classification. A
more in-depth definition can be found for example in [52].
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We define our labeled data as a set of N1 pairs D = {xi, yi}Ni=1, where x ∈ Rd

are d-valued real vectors (called feature vectors, and their components features), and
y ∈ Y

def
= {negative, positive}. We assume that the data comes from a fixed but

unknown joint probability distribution F (x, y). D is usually called training data.

From now on, we are going to adopt the convention that the generic index i indi-
cates the i-th row of the training data when it is subscripted, and the i-th feature
of a fixed vector when it is superscripted and parenthesized (for example, the no-
tation x

(i)
j indicates the i-th feature of j-th vector in the training data). Whenever

possible, we will use vector notation to avoid scripting the index at all. As an addi-
tional mathematical convenience, we will use 0 to indicate the negative class and 1
to indicate the positive class, thus y ∈ Y def

= {0, 1}.

Formulation

We can express the binary classification problem as the problem of inferring the
conditional distribution F (y|x) using D, restricting ourselves to the case where F
is a function f : Rd → {0, 1} such that f(x) = y. Since the exact inference of f is
generally impossible because F (x, y) is unknown, we resort to function approxima-
tion: assuming the existence of a space of functions H of the form h : Rd → {0, 1},
we search in this space for the best approximation of f . H is called hypothesis space
and its members hypotheses.

To quantify the error that a hypothesis makes over the all the possible realizations
of the training data, we introduce the risk of a hypothesis as the expected loss under
F (x, y):

R(h) =

∫
L(h(x), y) dF (x, y),

whereL : {0, 1}×{0, 1} → R is a loss function that for a given data point x, measures
how much the prediction h(x) differs from the true output y.

The binary classification problem can thus be posed as the search of an optimal
h∗ ∈ H that minimizes the expected loss:

h∗ = arg min
h∈H

R(h).

2.1.2 Learning algorithms and generalization

To solve a binary classification problem, different learning algorithms can be used.
Informally, a learning algorithm A(L,D) is a function that receives as input a par-
ticular loss function and the training data, and finds h∗ by minimizing the loss
function using the data.

1Unless otherwise specified, for the rest of this chapter we are going to assume that our data has
size N .
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To be able to do so, learning algorithms must have some way to represent the partic-
ular hypothesis space they explore. Usually, this consists in one or more real-valued
vectors θ, called parameters or weights: different hypotheses correspond to different
values of the parameters. To incorporate this notion, we will rewrite the generic
hypothesis h ∈ H as hθ. Such parametrized representation of the hypothesis space
is called model.

Given a particular model, the binary classification problem can be formulated equiv-
alently as the search for the best parameters θ∗ that minimize the expected loss:

θ∗ = arg min
θ
R(hθ), hθ ∈ H.

As stated before,R(hθ) is not directly computable since the joint distributionF (x, y)

is unknown. In practice, the learning algorithm minimizes a related and com-
putable quantity, the so-called empirical risk (or training error) RD, defined as the
average loss over all the training samples:

RD(hθ) =
1

N

N∑
i=1

L(hθ(xi), yi).

Hence, the minimization objective becomes:

θ∗ = arg min
θ
RD(hθ), hθ ∈ H.

This principle is called empirical risk minimization (ERM).

The ultimate goal for a learning algorithm is to achieve generalization: that is, the
final hypothesis must be capable to predict correctly not only the training data,
but especially new, previously unseen examples. Being sure that this happens is
not obvious, since true generalization could be verified only on the whole data
population, but all we have at our disposal is a limited number of examples. Ideally,
we would want the empirical risk (which is the in-sample error of the hypothesis)
to "track" the true risk (the out-of-sample error, on the whole population), resulting
in their absolute difference being minimal.

One useful result coming from the field of statistical learning theory tells us that the
following holds:

R(hθ) ≤ RD(hθ) + ε(N,M, δ).

That is, we can construct an upper bound for the true risk (with confidence 1 − δ),
using the empirical risk of the hypothesis and an additional term ε that depends on
the number of samplesN and the complexity (or capacity) of the modelM , which, for
some classes of models and for our purposes, we can consider roughly equivalent
to the number of parameters of the model2.

2M actually refers to the VC-dimension of the model, whose definition is outside the scope of this
thesis. We strongly recommend reading [56] to understand this concepts in detail.
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The implications of this result are two-fold: on one hand, it provides justification
for using ERM instead of the true risk in the optimization problem; on the other
hand, it gives us insurance that we can indeed construct useful models that are
able to generalize (with an upper bound on the risk) even with a limited amount of
data.

2.1.3 Overfitting and regularization

During the so-called training phase, where the hypothesis space is explored to
search for the optimal h, we oftentimes observe that hypotheses learn perfectly
how to classify the training data, but are not able to generalize their predictions to
unseen examples. This behavior is closely related to the complexity of the model.
As the complexity of a model increases, a hypothesis is able to discriminate bet-
ter and better the training examples, up to a point where it learns aspects of the
data that are present in that particular training set (maybe because of noise or pure
chance), but not in the larger population from which the training set was sampled.
This problem is known as overfitting.

Typically, machine learning algorithms provide "handles" that allow to control the
bias-variance trade-off of the model they implement to prevent overfitting [16]. These
handles are known as regularization techniques, and they basically work by reducing
the variance (the dependence from a particular choice of training set) of the model.

2.2 Models for binary classification

We will now describe models and learning algorithms that were used in this study,
exposing;

• how the predictions are computed (the so-called of prediction rule of the algo-
rithm);

• how the optimal values for the weights are calculated;

• how regularization is achieved.

For in-depth details, we will refer to the corresponding literature where needed.

2.2.1 Logistic Regression

Logistic Regression [20] is the mainstay model for classification used in a broad
variety of fields, especially biostatistics. It originated in the statistics field, but it
fits the supervised learning paradigm as it assumes the same setting we discussed.
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The Logistic Regression model is defined as follows:

H = {hθ0,θ | hθ0,θ(x) = sigm(θ0 + θTx)},

where
sigm(x) =

1

1 + e−x

is the sigmoid function, whose output domain is the real interval (0, 1), and the ad-
ditional weight θ0 is called bias.

The great advantage of using Logistic Regression comes from its simplicity, the
scalability for very large datasets, and the interpretation it provides in terms of
how a unit change in one feature x(i) changes the log-odds of its associated param-
eters θ(i) [27]. In contrast, its main limitation is the shape of the decision bound-
ary (the hyper-surface that a model uses to separate the positive class from the
negative class in feature space) that this model induces. For Logistic Regression,
such decision boundary is linear; depending on the degree of non-linearity of the
true decision boundary, it can fail to capture the true underlying relation between
the feature vectors and the targets, resulting in a poor separation between the two
classes. When this happens, Logistic Regression is abandoned in favor of models
that are able to represent more complex decision boundaries.

Prediction rule

Logistic Regression models directly estimate the conditional distribution F (y|x).
Thus their output is a probability; this relaxation can be constrained back to the
usual Y def

= {0, 1} discrete domain by choosing as the final prediction for a feature
vector x the class that maximizes the conditional probability.

The Logistic Regression model is derived starting from the assumption that the
labels are distributed according to a Bernoulli distribution parametrized by p, the
conditional probability of one of the two classes. In the following, we will assume
p = P(1|x) and consequently 1− p = P(0|x).

The linear combination θ0+θx identifies a hyperplane in Rd (shifted from the origin
by a quantity θ0) that separates the negative from the positive class. In fact, given
a positive example xpos, we have θ0 + θxpos ≥ 0; conversely, if xneg is a negative
example, θ0 + θxneg < 0.

We wish to map this relation to a probabilistic domain. Such mapping is accom-
plished through the logit function, which is the logarithm of the odds-ratio of p,
defined as logit(p) = log

(
p

1−p

)
. To see how this is possible, note that logit(p) ≥ 0

whenever p ≥ 1−p (that is when the odds-ratio is in favor of class 1), and logit(p) <
0 otherwise.
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The Logistic Regression equation can be therefore written as:

log

(
p

1− p

)
= θ0 + θTx,

which we can solve for the distribution parameter p, obtaining the following pre-
diction rule:

p =
1

1 + e−θ0+θTx
def
= sigm(θ0 + θTx)

Indeed, the Logistic function is the inverse of the logit: logit−1(x) = sigm(x). Once
p is estimated, we can calculate the conditional probability of the negative class
with 1− p.

Training Algorithm

In order to provide the best hypothesis, Logistic Regression minimizes its associ-
ated loss function, which is the log-likelihood of the data given the parameters,
defined as:

L(hθ(xi), yi) = L(P(xi), yi|θ))
def
= −

N∑
i=1

yi log(αi) + (1− yi) (1− log(αi))

where αi = sigm(θ0 + θTxi). Thus, the optimal values for the parameters can be
obtained through Maximum Likelihood Estimation (MLE). One common method
to perform MLE is gradient descent, which iteratively updates the weights using the
negative gradient of the log-likelihood (that is indeed differentiable), thus moving
the weight vector in the direction of steepest descent towards the minimum of the
loss function. For a more thorough explanation of gradient descent, see for example
[14].

Regularization

Regularization in Logistic Regression is implemented by adding a penalty term C

to the loss function, in order to penalize hypothesis on the basis of the number
of parameters they use (according to the famous Occam’s razor principle). Among
the schemes that were developed (many of them are illustrated in [20]), the most
common is the L2 penalty term. Logistic Regression with an additional L2 penalty
term is often referred to in literature as ridge regression. The penalty term is defined
as:

C(hθ) = λ ‖θ‖22 = λ
d∑
i=1

θ(i)
2
.

By using this regularization scheme, the values of the weights are shrunk by a factor
λ (which controls the strength of the imposed regularization). Since this penalty
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eventually constrains some parameters to have small values, their contribution in
the Logistic Regression equation becomes less and less important: this results in
the model effectively making use of a minor number of parameters, which serves
to decrease the hypothesis variance.

2.2.2 k-Nearest Neighbor

The k-Nearest Neighbor (k-NN) learning algorithm [20] is an instance of so-called
memory-based models, which do not perform actual learning, but compare new ex-
amples to the available data set, which remains stored to be used for prediction, as
opposed to the other types of learning algorithms that do not need training samples
anymore once the optimal values of the weights are computed. Despite its appar-
ent naivety, k-Nearest Neighbors is seldom utilized in classification problems, for
its simplicity and the fact that the hypothesis complexity increases with the size of
the dataset.

Prediction Rule

The prediction rule for the k-NN learning algorithm is straightforward, and does
not require a previous training phase: all the computation is deferred to the predic-
tion phase. Once a new pattern is presented, the algorithm simply finds k examples
in the training set that are more similar to the example, according to some distance
measure (typically, euclidean distance is chosen but there are also other metrics in
use depending on the specific task). Then, a class is assigned to the new observa-
tion by majority vote among its neighbors. In cases where k is an even number,
ties are broken at random. Note that, to assign probabilities instead of a class, it is
sufficient to compute the ratio between examples in the neighbor belonging to one
class and k.

Regularization

The regularization parameter in the k-NN learning algorithm is the size of the
neighborhood. The larger the value of k, the more populated the neighbor will
be, resulting in a smoother decision boundary that, if set correctly, allows good
generalization. On the other hand, a neighborhood size of 1 generally causes over-
fitting, especially for large datasets, but has some nice theoretical properties: it has
been demonstrated [12] that the 1-NN error rate is at most twice as the Bayes error
rate, which is the optimal error rate that one can theoretically obtain in a classifica-
tion problem, as the size of training set approaches infinity. So, 1-NN classification
is usually helpful to get a sense of what the optimal performance on a certain task
could be.
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2.2.3 Decision Trees

Decision trees [7] are a popular choice among machine learning practitioners, not
really for their predictive power (which has been outperformed by state-of-the-art
models over the years), but mainly because of their simplicity of understanding
and use, and how they allow an easy visualization of the prediction process as a set
of binary rules that are easily interpretable.

The hypothesis space explored by a Decision Tree algorithm is the set of trees ob-
tainable by splitting the features on the basis of some threshold, for every possible
value of such threshold. If all the features are boolean (True/False values), then it
is a finite space of 22

d
trees, where d is the dimension of the feature vector. Even if

the hypothesis space can sometimes be finite, its enumeration is computationally
infeasible even for a small d: as such, the exploration is usually carried out using
greedy heuristics.

Prediction rule

Decision tree algorithms recursively split the training data according to the values
of one of their features at a time. Each node of the tree represents a test performed
on a particular feature: training examples are assigned to the node children based
on the outcome of the test. Usually truthfulness is tested for boolean values, while
continuous values are tested on whether or not their value exceeds some threshold.

The leaves of the tree implement a particular decision function, that returns the label
of an example based on two possible scenarios:

• if the leaf contains only examples of one class, that class is predicted;

• if the leaf contains examples from both classes, the most frequent class is pre-
dicted.

Class predictions are simply shortest length paths from the root to the leaves of the
tree. A test example is sent to one children per level by testing its features; once
arrived at a leaf, it is labeled by the corresponding decision function.

Leaves naturally offer an estimation of the conditional distribution F (y|x), based
on the relative class frequencies with respect to the total number of examples as-
signed.

Training Algorithm

The most sensible part in the Decision Tree learning process is how to select the best
possible split. We remind that the selection is local, since the algorithm is greedy;
it utilizes only the information about the current node to make the choice. Thus,



2.2. Models for binary classification 13

even if the split is indeed optimal for a given node, it is not necessary the best one
overall.

In general, one would wish that the split generates "pure" children, that is nodes
containing only examples belonging to one class: this way, the classification would
be unambiguous. As such, comparison criteria between splits are often called im-
purity measures. Thus, the loss function minimized by Decision Tree models at each
node is its impurity. One usual impurity measure for Decision Trees is entropy, that
is defined (for the binary case) as:

ENTROPY(S) = (−pp log2(pp) + (−pn log2(pn))

where S is the set of examples assigned to a children after the split, and ps are
the empirical frequencies of respectively positive (p) and negative (n) examples
in S. Note that ENTROPY(S) = 0 if only one class is present in the node, and
ENTROPY(S) = 0.5 whenever the number of positive and negative examples is
equal: thus, among the possible splits, the one with the lowest entropy will be se-
lected at each node. Another popular split criterion uses the Gini index instead of
entropy, which for a binary classification problem is defined as:

GINI(S) = S0S1,

where S0 constitutes the fraction of examples in S that belong to class 0, and S1 is
the fraction of examples in S that belong to class 1. Note again that GINI(S) = 0.25

whenever the classes are perfectly balanced, and conversely GINI(S) = 0 whenever
S contains only examples belonging to one class.

Regularization

A common way to achieve regularization in Decision Trees is to make a node be-
come a leaf earlier than expected (usually, a node is considered a leaf if it contains
a single sample): a common strategy is pruning, i. e. discard nodes that violate
a certain constraint, to prevent the tree from adapting to the noise in the training
data. Among pruning criteria, the most used are:

• stop the generation of children nodes whenever the number of samples in the
node is less than a fixed threshold value (this is known as top-down pruning);

• generate the whole tree, and then eliminate all the nodes whose depth from
the root is above a certain threshold (known as bottom-up pruning).
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2.2.4 Ensemble methods

The term ensembling in machine learning refers to combining multiple models to-
gether to improve generalization, such that the performance of the ensemble is
better than the one yielded by each model alone. The intuition behind ensembling
is that a pool of simple models can be better than a unique complex model (which
has strong variance and might end up overfitting the data).

The prediction phase is usually handled by obtaining a prediction for an example
by each component model, eventually assigning its label by majority or weighted
voting. More in general, the key points of ensemble learning are:

• control the bias of each component. This is accomplished by using both trivial
or heavily regularized base components;

• promote diversity among the components. To understand why this is impor-
tant, consider three hypothesis, {h1, h2, h3}. If their output on some feature
vector x is identical, when h1(x) is wrong, h2(x) and h3(x) will also be wrong.
However, if their output is uncorrelated, it might be the case that h1(x) is
wrong, but h2(x) and h3(x) are right. Thus, majority voting would correctly
classify that vector.

Machine learning literature lists an extensive number of different ensembling strate-
gies. In particular, we will focus on:

• bagging, which stands for bootstrap aggregation, an approach that aims to de-
crease the variance of the component models by decoupling them from the
original dataset;

• boosting, which trains a set of so-called weak learners, that perform poorly on
the data, and then aims to increase the overall performance by combining
them in some way. Usually this is achieved by making subsequent models in
the combination focus on examples that the previous learner misclassified.

In this work, we used ensembles of Decision Trees - that is, ensemble models where
the basic component is a Decision Tree. Next, we will look at two popular imple-
mentations: Random Forests and Gradient Boosting Machines.

Random Forests

Random Forests [6] are an implementation of the bagging principle. Given the
dataset D, at each step n examples are sampled with replacement to form a new
dataset D̂, of the same size as D. A Decision Tree is fitted to the new dataset and
the whole process is repeated for every tree in the forest. By giving each component
a fresh dataset at each iteration, the variance of the overall predictor is decreased
without increasing its bias. Final predictions for a new example are then cast by
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outputting the most frequently predicted class by the trees in the forest (majority
voting).

In addition to this "pure" bagging approach, Random Forests add an additional
randomization step: each tree in the forest performs classification using only a ran-
dom subset of the features, i.e., if x ∈ Rd, then 0 < d′ ≤ d features are selected. This
determines that on average, features that are strong predictors are excluded from
the training set half of times, and that leads to a decrease of the correlation between
the outputs of different trees in the forest.

Gradient boosting machines

Gradient boosting machines [17] combine a series of weak learners to obtain a
stronger predictor. The way they work is by initially training a very simple model
(the base learner) for the data. For example, this might be a model that naively pre-
dicts just one class out of the two. Then, another model hJ is trained to minimize
the residual error function J(y, h(x)) = y − h(x) of the base learner, where h(x) is
the output of the model. J is also called binary deviance. Note that this formula-
tion leaves the choice of h(x) unspecified, though in practice common choices are
Logistic Regression or Decision Trees.

Gradient boosting is basically a technique to create a series of subsequent models,
such that latter models learn how to correct the errors that the former ones made.
These models are then combined in a linear fashion

hi+1 = hi + αihJi ,

where hi+1 is the model at iteration i+ 1, hJi is the model trained with the residual
errors of hi, and αi is the step size that specifies how much the residual error model
accounts in the combination. This procedure can be thought of as a gradient ascent
optimization of h using hJi as the error gradient. After m steps, a final model hm is
obtained and predictions for a new example can then be cast by feeding it to all the
m models, weigh their prediction with their corresponding α and then taking the
average.

h(x) =
1

m

m∑
i=1

αi hi(x).

Regularization

Regularization in ensemble methods is for the most part achieved implicitly by
construction, since the ensemble components have low-variance (are heavily reg-
ularized). To this extent, Random Forests often offer the possibility to control the
regularization of each tree in the forest with pruning. Gradient boosting machines
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use the parameter α to control the influence of single component in the final model.
Both methods allow to further tune the complexity of the final model by changing
the number of components they utilize.

2.2.5 Support Vector Machines

Support Vector Machines (SVMs) [5] are a learning algorithm that implements the
concept of maximum margin classifier. It originated in the context of statistical learn-
ing theory [56]. As of today, it is one of the most widely used learning algorithms
together with Neural Networks, because it provides good generalization and, with
a simple "trick", allows its use even in case of non-linear decision boundaries. Al-
though SVMs were a learning algorithm originally not thought to be used as a
probabilistic classifier, a technique has been developed to constrain its predictions
to a probabilistic output [42].

Training algorithm

The idea behind SVMs is that points that are distant from the decision bound-
ary should have their class predicted with more "confidence" than points that lie
nearby, because, in the latter case, a small change in the decision boundary would
cause a change in prediction. Thus, finding the margin with the largest distance
from points of the two classes would result in more confident predictions. For no-
tational convenience, in this section we will assume Y def

= {−1, 1}, and denote the
bias with the letter b. Furthermore, we will assume that the data is linearly sep-
arable. If that is the case, then we can choose two parallel hyperplanes such that
the distance between the two closest points belonging to different classes is the
largest possible. We call the bounding region inside the two hyperplanes margin,
the hyperplane that lies halfway between the two "supporting" hyperplanes opti-
mal margin, and the data points with which the two hyperplanes are constructed
support vectors. The distance between these two hyperplanes is geometrically equal
to 2
‖θ‖ . We can thus formulate the optimization objective for SVMs as follows:

minimize
1

2
‖θ‖

subject to yi(θ
Txi − b) ≥ 1 ∀{xi, yi}, i = 1, ..., n,

where we reversed 2
‖θ‖ to change the type of problem from maximization to min-

imization and added the additional constraint to prevent points belonging to one
class to lie inside the margin (indeed, the constraint is a mathematical convenience
to express the following conditions: θTxi − b ≥ 1 if yi = 1 and θTxi − b ≤ 1 if
yi = −1).
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This formulation can be solved with linear programming libraries to obtain the
values of θ and b that characterize the margin (most libraries actually do not solve
this problem directly, but its dual). Once the values of the weights and the bias are
obtained, new examples can be classified with:

h(x) = sign(θTx− b).

Hinge loss and regularization

The formulation of the optimization problem of SVMs is valid only if the data is
linearly separable, otherwise the two constraints are not satisfiable. When this is the
case, it is said that the SVM implements a hard-margin. To extend SVMs to handle
the case where data is not linearly separable, the optimization objective needs to be
slightly modified with the introduction of the so-called hinge loss function, defined
as:

hinge(xi, yi) = max(0, 1− yi(θTxi − b)), i = 1, ..., n,

which assumes the value of 0 if the margin constraint is satisfied, otherwise has a
value proportional to the distance of the point from the margin. This results in a
new formulation of the objective function, which is implemented with a vector of
so-called slack variables ξ3:

minimize
1

2
‖θ‖+ C

n∑
i=1

ξi

subject to yi(θ
Txi − b) ≥ 1− ξi ∀{xi, yi}, i = 1, ..., n,

This is also known as the soft-margin SVM. This formulation allows some points to
lie outside the margin, at the cost of a penalty Cξi per point in the minimization.
The parameter C reflects how regularization is added to a SVM. It is a constant
which trades off the size of the margin against how many errors the classifier is
allowed to commit. Large values of C decrease the size of the margin, increasing
the quality of the fitting at the risk of overfitting, while smaller values allow some
points to be misclassified, decreasing overfitting and increasing generalization.

Kernel trick

Another limitation with these formulations of SVM, both hard and soft margin, is
that the decision boundary they implement is strictly linear. To overcome this issue,
SVMs provide an easy and efficient way to map the original feature space to some

3Slack variables are basically a clever way to implement the hinge loss, since it is not a differen-
tiable function, and does not allow to solve the dual problem with the use of Lagrangian multipliers.
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higher-dimensional feature space where the training set is separable. This proce-
dure is known as kernel trick, and it is what allows SVMs to retain their predictive
power even in complex classification problems.

Informally, a kernel function K is a function that corresponds to a dot product in
some unspecified feature space, that is:

K(xi,xj) = φ(xi)
Tφ(xj),

where φ is a function that maps points from feature-space to points in the above
mentioned extended feature space. Since going through the whole explanation of
kernels is outside the scope of this study (for an extended survey, see [51]), we will
limit ourselves to say that kernel functions can be precomputed using the training
data and used in the dual formulation of the SVM optimization problem to achieve
the search for a maximum margin hyperplane in a new feature space. One common
choice for kernel functions is the so-called Radial Basis Function (or RBF kernel),
defined as:

K(xi,xj) = e
−(xi−xj)

2

2σ2 .

2.2.6 Artificial Neural Networks

Artificial Neural Networks [22] are a machine learning model loosely inspired by
the way our brain learns. The key idea is that neurons can be thought of as compu-
tational units that acquire signal from other neurons through connections and prop-
agate it if the signal strength exceeds a certain threshold (a pioneering study in this
sense is [46]). Over the years, Neural Networks have emerged as the algorithm of
choice for many classification problems, mostly due to their high predictive power
and ability to represent complex, non-linear decision boundaries.

Prediction rule

Based on the biological inspiration we described above, a single neuron is a unit
that computes a certain function of an input vector. That is, takes as input a linear
combination of the input features, weighted by their connection to the unit, and
produces an hypothesis g(x), were g is a non-linear mapping of the inputs, called
activation function. For example, g can be the sigmoid function; in this case, a single
neuron basically performs Logistic Regression. Other common activation functions
are:

• the hyperbolic tangent function

tanh(x) =
ex − e−x

ex + e−x
,
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Figure 2.1: The structure of a Neural Network unit.

which has basically the same properties as the sigmoid function but is defined
in the real interval (−1, 1);

• the rectified linear unit functions, which is a family of functions that compute
exact or approximated forms of max(0, x).

Fig. 2.1 shows a graphical representation of a neuron.

An example of the structure of a Neural Network is shown in Fig. 2.2. The idea
is to attach the input vector to a layer of neuron units, and use their output as the
input for a subsequent layer. This process can be iterated arbitrarily many times
until an output layer is reached. The output layer is responsible for providing the
prediction for the given input. The layers created between the input layer and the
output layer are usually called hidden. The number of layers and the number of
neurons that each of them contains constitute the architecture of the network.

Feature 1

Feature 2

Feature 3

Feature 4

Output

Input
Layer

Hidden Layer Output
Layer

Figure 2.2: A Neural Network consisting of a 4-units input layer,
5-units hidden layer and a single-unit output layer.
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This formulation expresses a very complex, non-linear hypothesis space. To give an
example, the space spanned by a Neural Network for inputs of size d, one hidden
layer and a single-neuron output layer is:

hθ(x) = gk

 h∑
j=1

θkj gh

(
d∑
i=1

θjixi

) ,

where the subscripts are used to index a particular weight between two units. Al-
though theoretically each activation function can be different from unit to unit, in
practice one tends to assign a given activation function for all the units in a layer.

The equation above provides the corresponding prediction rule for Neural Net-
works. When the network is trained and its final weights θ are computed, new
inputs x are simply fed to the network: the prediction is then the value calculated
at the output layer. The prediction phase is known as forward propagation, in con-
trast with backpropagation that is the procedure that learns the proper values of the
weights. For binary classification, how the output is calculated depends on the ar-
chitecture and the activation function of the output layer. Specifically, two common
choices for binary classification with probabilistic outputs are:

• a single-neuron output layer which computes the sigmoid function; the out-
put can then be treated as a probability or cast into an outcome as seen for the
Logistic Regression algorithm;

• a two-neuron output layer where each neuron computes a piece of the softmax
function

gk(x)i =
exi∑

j∈{0,1} e
xj
, i ∈ 0, 1.

The softmax function basically transforms its input into a posterior probabil-
ity.

Since these two approaches are basically different ways to compute the same condi-
tional probability P(y|x), both produce comparable results. In this work, the single-
neuron architecture for the output layer was chosen.

Training Algorithm

Learning the weights of a Neural Network is not trivial, because of the presence of
the hidden layer. Usually computing the values of the weights involves calculating
the gradient of the loss function4, which is then utilized to perform the minimiza-
tion. For the hidden layers, the concept of loss function is less clear, since they really
are non-linear representations of the layer below them and nothing more. Thus, a

4For Neural Networks with sigmoid activation functions, this is exactly the log-likelihood of the
data given the parameters, same as the Logistic Regression.
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way is needed to calculate how the output of a hidden layer influences the final
output of the network.

This problem was solved by the famous backpropagation algorithm, that was de-
veloped in the early eighties [50]. It basically consists of a four-step procedure:

• initialize the weights with random values;

• perform forward propagation to calculate predictions for the training data;

• use those predictions to calculate the gradient of the loss function at the out-
put layer;

• propagate backwards the derivative of the activation function to calculate the
loss gradient in the layer below.

The gradient is then used to update the weights according to the rule:

θ(t+ 1) = θ(t) + ∆ θ(t),

where t indicates a time step or iteration, and ∆ is an expression that includes the
gradient of the loss function.

Backpropagation is implemented in different flavors, all with their pros and cons.
Among the most common implementations, we list:

• stochastic backpropagation, where the update is staged to occur every time a
single example from the dataset is presented to the network;

• mini-batch backpropagation, where the update is staged to occur once the gra-
dients of m examples in the dataset are calculated (where 1 < m� N , and N
as usually denotes the training set size);

• full-batch (sometimes just batch) backpropagation, where the update is staged
to occur once the gradients for the entire training set are calculated.

A full forward propagation pass on the training set is called epoch: backpropaga-
tion updates the weights for a certain number of epochs until the loss function is
minimized or cannot be decreased further.

Mathematically, the gradient of the loss function for a given layer is calculated
through multiple applications of the chain rule for function composition. We will
not step into the details, but provide the final formula for the gradient5, which can
be summarized as

∂L

∂θji
= δioj ,

5In this and the following formulas, j indicates the layer above a given layer i, while the notation
li indicates the number of neurons in the generic layer indexed by i.
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where:

δi =


(oi − yi) gi′, if i is an output neuron;
lj∑
j=1

δjθji gi′, if i is an inner neuron.

This formula makes clear that for backpropagation to succeed, the activation func-
tion must be differentiable (although in practice several tricks have been proposed
to allow the use of non-differentiable activation functions, like the rectifiers) and
that all the error derivatives of the layer above must be calculated beforehand (for
the output layer, this corresponds to the derivative of the loss function). Since we
now know how to calculate the gradient of the loss function, we can expand the ∆θ

part of the update formula as:

∆θji = −η ∂L
∂θji

=


−α oj(oi − yi) gi′, if i is an output neuron;

−α oj
lj∑
j=1

δjθji gi′, if i is an inner neuron.

The parameter η is known as learning rate, and determines the relative size of the
update. We will discuss later how one can choose "good" values for the learning
rate and the other parameters (such as the architecture) that a Neural Networks
implicitly defines.

Regularization

One way to achieve regularization in Neural Networks uses the L2 penalty we
described for Logistic Regression, which in the context of Neural Networks is of-
ten referred to as weight decay, to emphasize its role in shrinking the value of the
weights.

However, over the last years, a new technique as emerged to regularize Neural
Networks, known as dropout. The working principle of dropout is simple: when
forward propagation is performed in the training phase, the output of each neuron
is allowed to be zeroed with probability p. Hence, that neuron would be excluded
from that particular training iteration. Since the number of effectively active neu-
rons for a given training pass becomes random, dropout has been shown to con-
struct the average model (a form of what Gradient Boosting Machines do) between
a large number of different Neural Networks. This means that the variance of the
whole network can be easily controlled to prevent overfitting by changing the value
of p. The dropout technique is best described in [54].
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2.3 Performance metrics for binary classification

After a model is trained, one needs to assess how good are its predictions. This is
in general a different problem than learning, since the loss that is minimized dur-
ing the learning phase might not be the metric one is interested in to measure the
goodness of the classifier. To this purpose, several performance metrics are used in
machine learning. For the moment, we can loosely define a performance metric as
a function P (h,D) that takes a particular hypothesis and a dataset and assigns a
real-valued "grade" to that hypothesis on that dataset. There is no best evaluation
performance overall: each one serves its own purpose and it is good at explaining
a certain aspect of the model behavior. We remind that since these metrics are cal-
culated from a sample of a much larger population, we are performing estimations
of the true performance. We will see the implications of this in the next sections.
All the performance metrics discussed in this section and many other are analyzed
with greater detail in [53].

2.3.1 Accuracy and the class imbalance problem

A classic measure of performance for binary classification problems is the accuracy,
which is the proportion of examples that were correctly classified by the model
among the total number of examples in a generic dataset D of size N :

ACCURACY(h,D) =
correct

total
=

TP (D) + TN(D)

TP (D) + TN(D) + FP (D) + FN(D)
.

where:

• TP (D) =
∑N

i=1 tp(xi, yi), {xi, yi} ∈ D, with tp being defined as

tp(x, y) =

1 ifh(x) = 1 and y = 1

0 otherwise,

which stands for True Positives, positive instances that were correctly classi-
fied as positive by the model;

• TN(D) =
∑N

i=1 tn(xi, yi), {xi, yi} ∈ D, with tn being defined as

tn(x, y) =

1 ifh(x) = 0 and y = 0

0 otherwise,

which stands for True Negatives, negative instances that were correctly clas-
sified as negative by the model;
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• FP (D) =
∑N

i=1 fp(xi, yi), {xi, yi} ∈ D, with fp being defined as

fp(x, y) =

1 ifh(x) = 1 and y = 0

0 otherwise,

which stands for False Positives, instances that the model classified as posi-
tive but were in fact negative;

• FN(D) =
∑N

i=1 fn(xi, yi), {xi, yi} ∈ D, with fn being defined as

fn(x, y) =

1 ifh(x) = 0 and y = 1

0 otherwise,

which stands for False Negatives, instances that the model classified as nega-
tive but were in fact positive.

In cases where the proportion of examples is biased towards one of the two classes,
accuracy by itself does not tell much about the overall performance of a model. As
an example, consider the problem of predicting whether a patient has a rare disease
or not given its medical condition: it is clear that the large majority of the examples
would be labeled as negative and only a small fraction would fall in the positive
class. Say, for example, that only 1% of training cases are labeled as positive. Such
situations are easily detectable by computing the null accuracy of a classifier, that
is the performance of a "dumb" model that predicts only the most frequent class.
If the null accuracy is largely different from 50%, accuracy becomes not the best
performance metric one would evaluate.

This issue is known as the class imbalance problem. Some common solutions to class
imbalance are:

• choose a different performance evaluation than accuracy, or at least accom-
pany accuracy with other measures that take into account class imbalance;

• rebalance the proportion of the classes in the dataset with random sampling
with replacement from the dataset. We distinguish oversampling, that increases
the proportion of the minority class, from undersampling, where the propor-
tion of the majority class is decreased;

• use cost-sensitive techniques. These approaches are based on the intuition that
not all the misclassified examples have the same cost. For example, think of a
setting where a model is trying to predict the malfunctioning of a device given
features regarding its production process. It is clear that the cost of making a
false negative (that is, devices that are faulty but are considered functioning)
is greater than the cost of a false positive (where a devices is flagged as faulty
but is in fact functioning).
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For a discussion about cost-sensitive learning, we refer to [31].

2.3.2 Imbalance-aware metrics

Since a great number of binary classification problems in imbalanced, there is a
wide variety of performance metrics that are independent from the particular pro-
portion between the two classes. To illustrate them, one useful tool is the confusion
matrix, a contingency table that compares the predictions of the model against the
ground truth (the true labels)6. Table 2.1 shows one example of confusion matrix.

Actual
Positive Negative Total

Predicted
Positive TP FP TP + FP
Negative FN TN FN + TN

Total TP + FN FP + TN M

Table 2.1: An example of confusion matrix.

From the confusion matrix, a series of useful metrics can be derived:

• precision measures the proportion of true positives in the total of positives
predicted by the classifier. It can be derived from the first row of the confusion
matrix:

PRECISION(h,D) =
TP

TP + FP
;

• recall, also known as true positive rate or sensitivity, measures the proportion
of positive examples that were correctly classified with respect to the actual
number of positive examples in the data. It can be derived from the first
column of the confusion matrix:

RECALL(h,D) = TPR(h,D) =
TP

TP + FN
;

• specificity, also known as true negative rate, measures the proportion of nega-
tive examples that were correctly classified with respect to the actual number
of negative examples in the data. It can be derived from the second column
of the confusion matrix:

SPECIFICITY(h,D) =
TN

TN + FP
.

Precision and recall are usually combined into a single measure that is robust to
class imbalance, known as the F1 measure, which basically consists in the harmonic

6From now on, for notation simplicity, we will drop the dependence from D on the functions TP ,
TN , FP , FN , considering it implicitly assumed.



26 Chapter 2. Machine Learning

mean of the two metrics:

F1(h,D) =
2× PRECISION(h,D)× RECALL(h,D)

PRECISION(h,D) + RECALL(h,D)
.

2.3.3 Metrics for probabilistic classifiers

In cases where the output of a classifier is a probability, the evaluation metric
of choice is usually the Receiver Operating Characteristics curve, shortened ROC. A
ROC curve depicts how the true positive rate TPR(h,D) and the false positive rate
FPR(h,D) = 1 − TPR(h,D) vary as one moves a threshold parameter α. It is
drawn as a curve plot where the x-axis represents the false positive rate, and the
y-axis represents the true positive rate, both with values between 0 and 1. A point
of the curve has thus coordinates (FPR(h,D, α),TPR(h,D, α), for a fixed value of
α, with point (0; 0) being associated with α = 1 and point (1; 1) being associated
with α = 0. The point (0; 1) is the optimum of the curve, since the false positive rate
is minimized and the true positive rate is maximized. An example of ROC curve is
shown in Fig. 2.3.
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Figure 2.3: An example of ROC curve. The dashed line is the ROC
curve of a random classifier.

To illustrate how the curve behaves, it is useful to consider its three extremes:

1. for a perfect classifier, which makes no errors, the curve goes from (0; 0) to
(1; 0) to (1; 1);

2. for a totally random classifier, which whatever the threshold always produces
the same number of false positives and true positives, the curve created is the
line segment bounded by the points (0; 0) and (1; 1);
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3. no reasonable classifier is assumed to produce a ROC curve whose points are
located under the (0; 0), (1; 1) segment.

ROC curves are usually expressed numerically by computing the Area Under the
ROC curve, or AUC-ROC - that is, the integral of the area under the ROC curve.
Thus, an AUC-ROC value of 0.5 describes a totally random classifier (since it is
equal to the area under the segment described in case 2), while an AUC-ROC of 1
describes a perfect classifier. In general, AUC-ROC scores higher than 0.8 define a
classifiers with good predictive ability.

Besides being a metric not affected by class disproportions, the AUC-ROC also
offers a nice probabilistic interpretation. In fact, the AUC-ROC score of a classifier
is equal to P(score(xpos) > score(xneg), the probability that it will rank a randomly
chosen positive example higher than a randomly chosen negative example. This
is particularly useful in medicine for example, where score could be the result of a
clinical test. For an extensive survey of ROC curves, see for example [15].

2.4 Model evaluation

One thing that can go wrong when evaluating the performance of a classifier is that
the estimation can be overly optimistic or biased (very different from the true out-of-
sample performance). That is the case, for example, if we measure the performance
of a classifier on the same data used to fit the training set: if overfitting occurs, the
model would probably obtain a good in-sample performance, while performing
bad out-of-sample. In this section, we will describe two different methods that are
used to ensure that the evaluation of a model is as unbiased as possible.

2.4.1 The hold-out validation estimator

A first approach towards unbiasedness is to hold-out some part of the data from
training. Such reserved data is called validation set, to emphasize the fact that is
used for evaluation purposes. Since the validation set does not enter the training
process, we are guaranteed that the evaluation takes place on a fresh dataset, giving
a less biased estimation of the out-of-sample performance of the model. In addition,
overfitting can be easily detected by observing if the performance in validation
decreases as the training performance increases. However, hold-out validation is
still a biased estimator, because we could obtain a good performance on a particular
statistically favorable validation set. This suggests that to decrease the bias, we
have to repeat the hold-out process multiple times on different datasets.



28 Chapter 2. Machine Learning

2.4.2 The cross-validation estimator

The cross-validation approach aims to mitigate the estimation bias of the hold-out
technique. It is based on the use of resampling to create multiple different versions
of the dataset, and then combine their result to obtain the final estimation.

The most used variant of cross-validation isK-fold cross-validation, where the dataset
is split into K disjoint partitions of almost equal size, termed folds; for each k =

1, ...,K we train the model on D/Dk and evaluate on Dk, thus obtaining K dif-
ferent performance scores using K different training sets (although with a bit of
overlap) and K different validation sets. The final estimation of the out-of-sample
performance is then computed as the mean of the K different performance scores:

CVK(hθ) =
1

K

K∑
i=k

P (hk̂θ , Dk),

where the classifier hk̂θ is the output of the learning algorithm A(L,D/Dk) and P

is the general formulation of a performance score, as defined in Section 2.3. Since
it employs different datasets at each iteration, K-fold cross-validation concretely
decreases the bias of the hold-out approach, giving a more realistic estimation.

Cross-validation is especially useful when data is scarce, since its approach allows
to use large percentages of the data for model training, and, at the same time, the
whole data for model evaluation (although in different stages). In common ma-
chine learning practice, it is advised on empirical basis [21] to use 5-fold or 10-fold
CV, since they provide a good trade-off between quality of the estimation and com-
putational cost. Many other cross-validation strategies are described in detail in
[2].

2.5 Model Selection

Constructing a model does not usually involve just the calculation of the optimal
values of the weights. There are also a number of algorithm-dependent parameters
to set properly: examples are the number of trees composing a Random Forests, or
the learning rate and the number of neurons for a Neural Network. These addi-
tional parameters are referred to as hyper-parameters, to distinguish them from the
usual free parameters of a model. Discovering good hyper-parameters is critical,
since their values can either boost or dump the performances of a classifier. Thus,
a proper machine learning system must include, besides the usual learning phase,
an additional procedure to tune the hyper-parameters in order to maximize the
performance. At a higher level,this problem is tackled using two nested loops:
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• the inner loop is used to minimize the loss function of one model. To avoid
bias in the estimation, usually its generalization error is estimated with the
use of cross-validation;

• the outer loop is used to optimize a performance criterion (which is usu-
ally different from the loss and measures the predictive ability of the model,
such as accuracy or ROC-AUC) by exploring different values of its hyper-
parameters.

This process produces a set of scores for different models instantiated with different
configurations of their hyper-parameters, from which the classifier with the best
score can be eventually selected. For this reason, this technique is referred to with
the term model selection.

In general, this hyper-parameter optimization is not trivial, because the space of hyper-
parameters is a mathematically difficult object to explore. Indeed, it can include
continuous (i. e. regularization coefficients or learning rates), discrete (i. e. the
number of trees in a Random Forest) or even mutually dependent (i. e. we can as-
sociate different activation functions to different layers in a Neural Network) com-
ponents. As a result of this complexity, the optimization function associated to this
space is not differentiable, hence it cannot be solved with common techniques such
as gradient descent.

Even though many clever algorithms have been developed recently to address this
issue (see [4]), the main approaches in practice are oriented to exploring the hyper-
parameters space through brute-forcing (grid-search) or random-walk (randomized
search), mainly because they can be trivially parallelized and can exploit the power
of multi-core machines. The latter approach, described in [3], is the one that was
used in this work.

2.5.1 Double cross-validation

Machine learning practitioners sometimes misuse cross-validation for model selec-
tion, obtaining estimations that do not reflect the real out-of-sample performance
of a model. Two common mistakes that are committed are:

• select supposedly relevant features on the model that optimized the model se-
lection criteria, instead of performing the selection inside each cross-validation
fold (discussed in [20]);

• selecting the final model based only on the model selection performance,
without evaluating its out-of-sample performance separately.

The latter mistake could result in situations where the model selection criterion is
such heavily optimized that the out-of-sample performance is affected negatively.
This problem is discussed in [8] and referred to as "overfitting the model selection
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procedure". To prevent such mistakes, the right approach is to set aside a portion
of the data for evaluation purposes only, perform the model selection on the rest of
the data, and finally evaluate the model on the reserved test set.

A more sophisticated approach is to employ cross-validation in both the model
selection and evaluation steps. This is useful in a scenario where one is trying to
compare the performances of different learning algorithms. For a fixed learning
algorithm, in fact, it allows to get a sense on what the out-of-sample generalization
performance of the set of models represented by different choices of the hyper-
parameters might be. This procedure, known as nested or double cross-validation,
can be described as follows:

• the data is split in K folds;

• a number of hyper-parameter configurations is chosen (either with grid search
of random search);

• all these configurations are evaluated in a model selection step that uses the
data of K − 1 folds and a J-fold cross-validation internally;

• the resulting best model is evaluated on the remaining fold;

• the process is repeated K times.

Since the K model selections are likely to result in models with different hyper-
parameters (because each model selection is performed using different portions of
the dataset), one can get a sense of which range of performances we should expect
from a particular learning algorithm. Furthermore, overfitting in model selection
can be detected by observing if the selected models estimations are over-optimistic
in comparison to their respective evaluation scores. Fig. 2.4 shows a graphical rep-
resentation of a typical double cross-validation algorithm workflow.

Figure 2.4: Workflow of a K-fold outer loop, J-fold inner loop dou-
ble cross-validation algorithm to optimize the AUC-ROC perfor-
mance criterion.
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2.6 Model comparison

Our study concerns the test of multiple machine learning models. A natural ques-
tion that arises in this sense is: how can we assess that the potential differences in
performance between the various models we are going to construct are meaning-
ful and not just caused by statistical variability in the samples? This is a problem
that in machine learning is addressed by using statistical hypothesis testing [33]. The
process is straightforward: to start off, one assumes that the difference between the
two measured performances is not statistically relevant (i. e. its expected value
is 0). We call this initial hypothesis the null hypothesis, indicated with H0. Then,
experiments are performed (in our case, a classifier is trained) and the outcomes
observed (its performance is tested). If the results fall in a so-called rejection region
of outcomes which represent evidence against the null hypothesis, it can be rejected
in favor of the alternative hypothesis, indicated with H1, which in our case is the fact
that the difference between the two performances is significant (i. e. its expected
value is not equal to 0). Note that if the results do not fall in the rejection region, we
are not proving the null hypothesis: we can only claim that we do not have enough
evidence against it. The probability that observations fall in the rejection region is
the significance level of the test, and it is usually fixed in statistics to be 5% (although
sometimes 1% or 10% significance level tests are performed). This is just a scratch
in the surface of hypothesis testing, which serves for the purposes of our work (a
thorough discussion would require a thesis by itself). More information, especially
regarding the use of hypothesis testing in the context of classification, can be found
for example in [29].

2.7 Unsupervised Learning

With the term unsupervised learning, we describe a broad category of problems
that are tackled by processing unlabeled data. Among the most known we can list:

• clustering, where we look for natural groupings, or "clusters", in the data;

• density estimation, where we assume that data comes from a certain probabil-
ity density function and we try to estimate its parameters;

• dimensionality reduction, where we project the data in a smaller dimension, in
a way that the information it contains is preserved up to a desired amount;

• anomalies and outliers detection, where we look in the data for uncommon ex-
amples that do not conform to regular patterns.

In this work, we are going to direct our focus towards the clustering task.
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We can use probability to describe unsupervised learning as we did before for
supervised learning: in this case, since data is unlabeled, it has now the form
D = {xi}Ni=1. Once again, we can assume that there is an unknown probability
distribution F (x) from which our data set comes from, and we are required to esti-
mate an unknown function f that helps characterize F (in density estimation, f is
the distribution itself).

Note however that unsupervised learning is not as crisply defined as the super-
vised counterpart. This depends on the different notions of what a "structure" can
be, which sometimes involve some degree of subjectivity (like in clustering for ex-
ample, where the notion of "right cluster" may vary from person to person, or den-
sity estimation, where the whole task is biased by an a-priori assumption of what
the final distribution will be).

The power of unsupervised methods is in their ability to "compress" the data: for
example, with clustering we could represent a whole cloud of points by just the
mean point of the cluster. This allows a much more simple interpretation, which
might come in handy when one is trying to "make sense" of a great number of data
points, or even trying to display graphically what the data "looks like".

2.7.1 Clustering

Clustering [35] is an unsupervised learning task in which a partition of the data
is sought, such that observations that end up in a certain partition are similar be-
tween themselves, and dissimilar to observations in other partitions. From a ma-
chine learning point of view, it is convenient to treat clustering as a problem of
vector quantization, because it is posed in terms of minimizing an error function like
supervised problems.

Vector quantization tries to obtain an optimal encoding of a (possibly infinite) set of
vectors X ⊆ Rd using a finite set ofK prototypes or codebooks mi ∈ Rd, i = 1, 2, ...,K.
The criterion that guides the choice of the prototypes is the minimization of the so-
called expected distortion error, defined as

E(x,mc) =

∫
‖x−mc‖2 p(x) dx,

where c is the index of the "winning" prototype, the one in the set of prototypes
that has the minimum Euclidean distance7 from the considered example xi:

c = arg min
i
‖x−mi‖2,

and p(x) is the density function of x.

7In this section, as well as the SOM part, we assume Euclidean distance to measure similarity. In
practice, different measures of similarity can be used.
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The discrete version of the error distortion function is:

E(x,mc) =
N∑
i=1

K∑
j=1

‖x−mc‖2 δwinner(i, j),

where δwinner is defined as:

δwinner(i, j) =

1 if j is the index of the winning prototype for xi,

0 otherwise.

From this general formulation, a wide variety of clustering algorithms can be de-
rived; among them the famous K-Means clustering algorithm [34] and Self-Organizing
Maps, the latter of which we will discuss later.

2.7.2 Self-Organizing Maps

Self-Organizing Maps (SOMs) [30] can be loosely described as a Neural Network
based approach to solve the vector quantization problem for clustering. They are
widely used in science due to their power and the outstanding visual capabilities.
In particular, the main advantage with respect to classical methods such as the K-
Means algorithm is that they are able to map high-dimensional input spaces to a
low-dimensional grid (generally two dimensional), enabling the user to visualize
the results of the clustering, which in turn allows easy interpretation and reasoning
about the data.

Training Algorithm

The basic SOM algorithm begins by defining a two dimensional grid of m = m1 ×
m2 prototype neurons. Each input pattern is connected with weights θ to every
neuron in the grid, and the weights are initialized with random values. The ob-
jective of the SOM training is to provide a topology preserving mapping from the
input space to the map units. Since the neurons are usually organized in a two-
dimensional lattice, what it is obtained after the training is a mapping from the
input space to a plane. The training phase of a SOM implements a form of compet-
itive learning, which means that the neurons compete to "own" the input examples.
The inputs are assigned to their Best Matching Unit (BMU), i. e. the closest unit
according to its Euclidean distance. This phase is identical to the learning vector
quantization algorithm.

After the competitive training, a cooperative phase starts, where the weights of the
map receive an update weighed by their topological relation with the BMU: units
receive a rate of update that is inversely proportional to their distance from the
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BMU in the map. This process is repeated until a convergence criterion is met (usu-
ally whenever the decrease in quantization error becomes null or not significant).
The cooperative phase literally moves units in the neighborhood of the BMU to-
wards it: this principle is called Hebbian learning [23]. The corresponding update
rule at iteration t+ 1 is defined as:

θ(t+ 1) = θ(t) + η(t)κi,i∗(t) ‖x− θ(t)‖2,

where:

• η(t) is the learning rate, staged to decrease after every successive iteration t;

• i is the index of a generic neuron;

• i∗ is the index of the BMU for the input x;

• κi,i∗(t) is the neighborhood function, a function that decreases monotonically
with the distance from the BMU.

A popular choice for κ is a Gaussian function centered in the winning neuron:

κi,i∗(t) =
‖ri − ri∗‖

2σ2

where ri and ri∗ indicate the topological distance of units i and i∗ in the map. An-
other common choice is a stepwise function that assigns 1 to the winning neuron, a
constant value B < 1 to its adjacent neighbors in the map, and 0 otherwise, known
as the zero-one neighborhood function.

Visualization in SOMs

As we said before, the true power of the SOM is in its visualization capabilites.
The common basis of each one of this visualizations is to represent the neurons
in a hexagonal grid where every hexagon is a unit. After that, units are colored
according to various properties, such as distances, values of the features of their
prototypes, density, and many more. Some common SOM visualizations are:

• hit maps (Fig. 2.5), which are a visualization of the grid where each hexagon is
resized based on the number of input patterns that were assigned to it. With
this visualization, high density regions are revealed, which might indicate
clusters if bordered by regions of low density;

• component planes (Fig. 2.6), where the grid is colored according to the value of
a particular prototype feature (for example, large values receive a more light
color and small values receive a darker one). Again, this visualization can
help find zones where inputs with similar values for a given feature lie;
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Figure 2.5: An example of SOM hit map.
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Figure 2.6: An example of a SOM component plane.

• color coding (Fig. 2.7) of the map, obtained by assigning similar colors to units
that have similar values of their prototypes.

Figure 2.7: An example of SOM color coding.

There are many other visualizations the SOM can offer. For a complete review,
as well as a technical explanation of how the ones shown in this thesis are imple-
mented, see for example [57].
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Chapter 3

Background and Methodology

This chapter is structured as follows: in the first part (consisting of the first three
sections), we provide some background information, to pinpoint the research area
where this study was conceived and provide a general description of the reference
model that we compared our results against. The following sections serve to de-
scribe the data we were given, and illustrate the methodology that we utilized to
set-up and carry on our experiments, listing in detail the approach we utilized to
work on the problem.

3.1 Background

3.1.1 The Vermont Oxford Network

Our entire analysis is based on data collected from the Vermont Oxford Network, a
nonprofit voluntary collaboration of health care professionals established in 1988.
As of today, the Network is comprised of nearly 1000 NICUs around the world. The
purpose of the VON is to improve the effectiveness and efficiency of medical care
for newborn infants and their families through a coordinated program of research,
education, and quality-improvement projects [24].

To help participants fulfill its mission in the particular context of neonatal care,
the VON provides two main databases regarding low and very low birth-weight
infants and infants meeting other eligibility requirements. In particular:

• the Very Low Birth-Weight (VLBW) Database, which contains data from in-
fants whose birth weight spans from 401 to 1500 grams, or whose gestational
age spans from 22 weeks 0 days to 29 weeks 6 days;

• the Expanded Database, which comprises the VLBW Database, plus data
from infants who are admitted to a NICU at a member center or who died
at any location in the center within 28 days of birth without first having gone
home.
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Members of VON can submit patient data by conforming to the instructions pro-
vided in a Manual of Operations [38], which is updated on a yearly basis and spec-
ifies eligibility criteria, data definitions and infant forms.

These databases are used extensively for randomized clinical trials, outcomes re-
search1, and health care quality improvement in general. Examples of studies based
on these datasets can be found in [59] and [25].

3.1.2 Risk-adjustment for severity of illness

Our task of concern descends from the general problem of estimating the risk of
death in hospital patients. Although medical research is still far from obtaining
risk estimates that are sufficiently precise to guide therapeutic decisions, mortality
predictions are used widely and with success to perform comparisons of outcomes
across hospitals, for example to assess the quality of health care they provide. How-
ever, such comparisons need to take into account the severity of illness of patients
treated in institutions. To understand why this is important, consider two hospitals,
A and B, which have equal mortality rates, but hospital A treats relatively healthy
patients, while B treats relatively sick patients. Without a proper measurement of
how sick a patient is, a comparison study would wrongly infer that A and B pro-
vide approximately the same quality of health care, even though hospital B is prob-
ably better than hospital A. The process of statistically accounting for differences in
illness criticality that influence health care outcomes is called risk adjustment.

In neonatology, the adjustment of risk for severity of illness is of particular interest
especially in populations of very low birth-weight infants - i. e. neonates whose
birth-weight is below 1500 grams, which constitute the clinical group where most
deaths occur and where most advancements in clinical practices were made [43].
Indeed, severity of illness in the first hours of life is considered to have a prominent
impact in the survival of low and very low birth-weight infants, along with more
clinically obvious factors such as gestational age and birth-weight [18].

In this sense, several scoring schemes based on probabilistic outputs of logistic re-
gression models have been developed by researchers, with the intent of adjusting
mortality rates to account for the different illness severity levels of infants treated
in NICUs. Most of them employ among their predictors birth-weight and Apgar

1Outcomes research seeks to understand the relationship between clinical services and practices
and their end results, in order to provide scientific evidence which can help health carers make better
decisions.
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scores2. Much recently, more sophisticated scores were created, which use mea-
surements of physiological variables in the first 12 or 24 hours of life of the infants.
A wide range of such scoring methods is reviewed in [40].

Given that clinical practices in the treatment of low and very low birth-weight in-
fants are constantly evolving in hope to reach better survival rates, it is crucial
that state-of-the-art predictive models are constantly developed to adapt to such
changes. At the same time, better performances of such models increase the unbi-
asedness of the comparisons between NICUs, resulting in turn in better decisions
taken to improve the quality of health care in hospitals.

3.1.3 The VON-RA model

Among VON centers, inter-institutional adjusted mortality rates are estimated us-
ing a multivariate logistic regression classifier known as the VON-Risk Adjusted
model. Such estimations are then communicated in the form of periodic reports
that the VON provides to its member centers, with the intent of highlighting areas
of concern in hospitals, where improvement in health care is possible or needed.
The VON-RA model is retrained every year to adjust for changes in clinical prac-
tices and health care in general, and its validity is subjected to periodical revisions
[60].

To guarantee that predictions are as fair as possible and not biased by differences
in patients illnesses or clinical practices, the predictors used by the VON-RA are
based on factors that occur exclusively before or immediately after birth, and are
not influenced by any treatment received in the NICU. These features record:

• gestational age in weeks (both raw and squared);

• sex of the infant;

• inborn or outborn status of the infant3;

• Apgar score measured one minute after birth;

• vaginal or cesarean delivery;

• if the infant was part of a multiple gestation;

• if the infant was diagnosed with congenital anomalies;

• if the infant was small for gestational age4.

2The Apgar score is a measure of health of the newborn developed by Virginia Apgar in 1952. It is
determined by evaluating the baby’s health status on five simple criteria on a scale from zero to two,
then summing up the five values thus obtained. The resulting Apgar score ranges from zero to 10.
These criteria are: skin color, pulse rate, reflexes, activity and respiratory effort.

3Indicates whether the child was delivered in the center, or delivered in another center and then
brought to the NICU (for example by ambulance transfer).

4Indicates whether the infant’s weight was below the 10th percentile for the gestational age
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3.2 Data

The dataset that we utilized in our study is a subset of the VON’s Extended Dataset,
consisting of low birth-weight infants who were registered in Italian centers from
1997 to 2014. It comprises 35282 records and 179 features, which include demo-
graphics of the newborn and his/her mother, measurements of the health status of
the newborn, medical history of the mother, as well as clinical procedures that the
infant might or might not have underwent after birth (for example in presence of
post-delivery complications).

From this wide spectrum of predictors, our neonatologists support team identi-
fied, on the basis of their medical experience, a restricted subset of features that are
considered influential in the mortality of neonates immediately after birth. The fea-
tures record some aspects of the medical history of the mother before and during
pregnancy, and a series of demographic information and measurements assessed
directly on the newborn, before or after birth. After this screening, a total of 20
features were preserved:

• bwgt: birth-weight of the infant;

• gaweeks: weeks of gestational age;

• gadays: days of gestational age. This sums up to gaweeks to obtain the total
number of days of gestational age;

• bheadcir: head circumference of the infant at birth;

• deldie: whether the patient was born in the center, but was not admitted in
the NICU and died in delivery room within 12 hours after birth;

• locate: inborn or outborn status of the infant;

• pcare: whether the mother received prenatal obstetrical care prior to the
admission during which birth occurred;

• aster: whether antenatal corticosteroids were administered to the mother
during pregnancy at any time prior to delivery;

• amagsulf: whether magnesium sulfate was administered to the mother dur-
ing pregnancy at any time prior to delivery;

• chorio: whether a diagnosis of chorioamnionitis5 was recorded in the ma-
ternal or infant medical record;

• mhypertens: whether maternal hypertension, chronic or pregnancy-induced,
was recorded in the maternal or infant medical record;

• vagdel: mode of delivery (either vaginal or cesarean);
5Chorioamnionitis is an inflammation of the fetal membranes (amnion and chorion) due to a bac-

terial infection.
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• sex: sex of the infant (male or female);

• mult: whether the birth was part of a multiple gestation (two or more live
fetuses were documented at any time during the pregnancy which resulted
in the birth of the infant);

• nbirths: if the birth was part of a multiple gestation, records the number of
infants actually delivered;

• ap1: Apgar score measured one minute after delivery;

• ap5: Apgar score measured five minutes after delivery;

• atempm: whether the infant’s body core temperature was measured within
one hour after admission;

• atemp: if the temperature was measured, records its value;

• sga10: whether the infant was small for gestational age.

Notice that in this selection, all the features used to construct the VON-RA model
are included or easily computable from the available data (such as the gestational
age in weeks squared). The only exception is the feature indicating whether the
newborn was diagnosed with congenital anomalies, which is not present in the
selection. To avoid bias in the results, the data was filtered beforehand to exclude
infants with such major birth defects.

The target of interest for the purposes of this work is mortality prior to discharge
home during the first 28 days after birth. The observed mortality for each patient
is reported in the dataset in a column named died. Finally, column pred reports
the mortality estimation for each patient, as calculated by the VON-RA model. Ta-
ble 3.1 provides a quick summary of the data, reporting for each feature its unit of
measurement/accepted values, type, number of missing values and their percent-
age ratio with respect to the total number of observations.

3.3 Objectives

We can divide this study in two separate lines of work. The first part is purely
supervised, and focuses on:

• understanding if the new set of features selected by the neonatologists sup-
port team has a positive contribution in the assessment of LBWI mortality,
with respect to using a set of predictors that resembles the ones used by the
VON-RA model;

• comparing the VON-RA against a pool of state-of-the-art machine learning
models and see in which cases we could reach an improvement, trying to
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Name Units/Values Value Type Missing Missing %

bwgt grams Float 5 0.01%
gaweeks weeks Integer 7 0.02%
gadays days Integer 70 0.20%
bheadcir cm Float 4060 11.51%
deldie yes/no Boolean 0 0%
locate yes/no Boolean 0 0%
pcare yes/no Boolean 427 1.21%
aster yes/no Boolean 690 1.96%
amagsulf yes/no Boolean 24285 68.83%
chorio yes/no Boolean 9147 25.93%
mhypertens yes/no Boolean 7704 21.84%
vagdel vaginal/cesarean Boolean 17 0.05%
sex male/female Boolean 7 0.02%
mult yes/no Boolean 3 0.01%
nbirths range Integer 24379 69.10%
ap1 range Integer 181 0.51%
ap5 range Integer 751 2.13%
atempm yes/no Boolean 4140 11.73%
atemp degrees Float 11625 32.95%
sga10 yes/no Boolean 15 0.04%

pred probability Float 36 0.10%
died yes/no Boolean 418 1.18%

Table 3.1: Description of the dataset.

understand how the complexity of each model and the particular feature set
of choice affect the final performances.

The first objective lead us to create two different datasets, one based on features
used by the VON-RA model, another by manipulating and transforming the set of
features that were suggested to us by our neonatologists support team to obtain
a new selection of predictors that our understanding of the problem and statisti-
cal analysis considered of relevance. To fulfill the second point, we built a frame-
work that comprises optional feature scaling to optimize predictive power, double
cross-validation to estimate the performance of the class of learning algorithms to
which the candidate belongs, model selection with cross-validation to produce a
final model, model evaluation through out-of-sample testing, and statistical com-
parison of the final results to assess significance of the differences in performance.
Everything was devised in accordance with machine learning theoretical and prac-
tical principles, in a way that is as agnostic as possible with respect to the particular
model and set of features of choice, to allow us to reason about which factors are
likely to be relevant in the prediction of LBWI mortality without the constraints im-
posed by a fixed learning algorithm or dataset. Our belief at this stage of the study
was that joint effort of the new set of predictors and the use of machine learning
models that are able to represent complex hypothesis spaces could result in im-
proved performances on the task. We present the results of the experiments in
Section 4.3.
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The second branch of this study focuses on interpretation and on characterizing
the task of predicting LBWI mortality, improving the knowledge of the problem.
It is composed of a mix of both unsupervised and supervised techniques. Unsu-
pervised learning models were employed to understand if the VON data has an
inherent structure that can be discovered by exploratory analysis: in particular, we
used Self-Organizing Maps and analyzed the results, both statistically and using
the visualization techniques a SOM is capable of. Obviously, no prior information
on the observed mortality was used in the training (as an unsupervised technique
implies). Our intent was to understand if and how the SOM would aggregate units
that represent clusters of higher mortality, and whether unexpected factors had a
contribution in making an infant more or less likely to die. The results are shown
in Section 4.2.

As a companion to the unsupervised analysis, we decided to use Decision Trees,
which cater for an easy interpretation of the decision process, to have an insight on
the choices that a supervised model makes when performing predictions on LBWI
mortality. The advantages of using Decision Trees are two-fold: on one hand, they
allow to see the prediction process as a series of sequential conditional choices that
result in an outcome, resembling the process of how a diagnosis is made. On the
other hand, the order in which these choices are made provides a rank among the
features, which is useful to understand the discriminative power that each feature
provides. The results are shown in Section 4.1.

This second part also marks the starting point for future studies, where the addi-
tional knowledge of the underlying data acquired with unsupervised techniques
and the means of interpretation provided by the Decision Trees learning analysis
might be exploited to construct better models for the problem.

3.4 Data preprocessing

In this section, we report the procedure we utilized to extract the two datasets of
interest from the larger one that was provided to us by our neonatologists support
team.

3.4.1 The LBWI-V dataset

In light of the need to compare the impact of the new set of features against the
VON-RA predictors, as explained in Section 3.3, we created an initial dataset se-
lecting the same set of features as the ones of the VON-RA model. The only data
preprocessing steps that were required in this phase were:

• the creation of the gasq feature by squaring the values of gaweeks;
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• the selection of the features that are present in the VON-RA set of predictors;

• the exclusion of rows that contained missing values or outliers.

The resulting dataset comprised 33808 observations and 8 features (plus the target
columns died and pred, which was kept as reference to perform the comparisons
against the VON-RA). We named this dataset LBWI-V(ON-RA), to make clear its
relationship with the set of features of the VON-RA model. The statistics of the
LBWI-V dataset are summarized in Table 3.2.

Name Mean St. Dev. Min. 1st Perc. Median 3rd Perc. Max.

gaweeks 28.99 2.91 23.00 27.00 29.00 31.00 40.00
gasq 848.73 169.13 529.00 729.00 841.00 961.00 1600.00
locate 0.09 0.29 0.00 0.00 0.00 0.00 1.00
vagdel 0.19 0.39 0.00 0.00 0.00 0.00 1.00
sex 0.49 0.50 0.00 0.00 0.00 1.00 1.00
mult 0.32 0.46 0.00 0.00 0.00 1.00 1.00
ap1 5.83 2.30 0.00 4.00 6.00 8.00 10.00
sga10 0.28 0.44 0.00 0.00 0.00 1.00 1.00

Table 3.2: Statistics of the LBWI-V dataset.

To help understand the distribution associated to each feature, we visualize in
Fig. 3.1 the box plots of the predictors, where the values of gaweeks, gasq and
ap1 have been transformed to have mean 0 and unit standard deviation for read-
ability purposes.

Figure 3.1: Box plots of the LBWI-V dataset. The boxes represent
the interquartile range of the population distribution, with the me-
dian indicated by a black bar; the bars outside the box represent the
remaining quartiles; outliers are represented as circles at the edges
of the bars; the mean of each feature is indicated with a diamond
shape.
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3.4.2 The LBWI-G dataset

The second dataset, which was derived from the features selected by the neona-
tologists, is conceptually no different from the VON-RA. Its features represent in-
formation collected on the newborn immediately after birth, not taking into ac-
count possible treatments occurred later in the hospital stay; the main difference is
the presence of information regarding the clinical history of the neonate’s mother,
which are believed to play a role in the infant’s outcome (as an example, [19] states
that the administration of antenatal corticosteroids is indicated for women at risk
of premature delivery). Unlike the LBWI-V dataset, where the set of features was
predefined, this dataset was derived by dropping or transforming the original 20
features, reducing their number from 20 to 14. In particular:

• gadays and gaweeks were aggregated into the sole gadays feature to ex-
press the whole gestational age in days. Consequently, gaweekswas dropped;

• the information contained in mult and nbirths was aggregated into the
sole nbirths feature. Consequently, mult was dropped;

• sga10 was dropped, because its information was believed to be redundant
with respect to bwgt;

• deldie was dropped, because the fraction of patients who did not died in
the delivery room was too small to provide useful discriminative power;

• atemp and atempm were dropped, because their inclusion was believed to
bias the predictions, since temperature is measured almost always only on
newborns that are already in critical conditions;

Name Mean St. Dev. Min. 1st Perc. Median 3rd Perc. Max.

bwgt 1106.46 297.94 295.00 880.00 1150.00 1365.00 2450.00
gadays 206.14 20.16 161.00 192.00 207.00 221.00 280.00
bheadcir 26.32 2.65 18.00 24.50 27.00 28.00 43.00
locate 0.08 0.27 0.00 0.00 0.00 0.00 1.00
pcare 0.91 0.28 0.00 1.00 1.00 1.00 1.00
aster 0.83 0.37 0.00 1.00 1.00 1.00 1.00
amagsulf 0.08 0.27 0.00 0.00 0.00 0.00 1.00
chorio 0.13 0.33 0.00 0.00 0.00 0.00 1.00
mhypertens 0.25 0.43 0.00 0.00 0.00 1.00 1.00
vagdel 0.18 0.39 0.00 0.00 0.00 0.00 1.00
sex 0.49 0.50 0.00 0.00 0.00 1.00 1.00
nbirths 0.72 1.04 0.00 0.00 0.00 2.00 4.00
ap1 5.90 2.22 0.00 5.00 6.00 8.00 10.00
ap5 7.77 1.60 0.00 7.00 8.00 9.00 10.00

Table 3.3: Statistics of the LBWI-G dataset.

All the other features were left as-is. After having excluded rows that contained
missing values, the dataset consisted in 9631 rows and 14 features, losing some-
thing close to 70% of the original size. This reason to such important loss of data
is the indication, expressed by the neonatologists support team, to retain features
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aster, chorio, mhypertens and amagsulf in the modeling (as per specific
request of the clinicians), which have a conspicuous number of missing values,
mainly because their inclusion in the VON Manual of Operations was established
only lately. This is however a problem that will be mitigated in the years to come,
since they are nowadays steadily collected by VON centers.

For the rest of this work, we will name this dataset the LBWI-G(agliardi) dataset,
after the head of the clinicians team that helped us in our study. Table 3.3 shows
a summary of the statistics of the dataset after the described preprocessing, while
Fig. 3.2 provides a graphical representation of the feature distributions with the use
of box plots.

Figure 3.2: Box plots of the LBWI-G dataset. See Fig. 3.1 for a better
understanding

.

3.5 Exploratory analysis of the two datasets

Comparing the two dataset from a statistical point of view is difficult, because they
share only a small portion of features (although some are strongly related), and be-
cause one outnumbers the other in terms of observations. However, we can derive
some interesting insights by inspecting the distributions of the data. Some notions
of interest are:

• gaweeks in the LBWI-V and gadays in the LBWI-G dataset share a very
similar distribution, although one is scaled by a factor of 7 (the number of
days in a week). Indeed, the quotient of the mean of gaweeks divided by 7
is 29, which is close to the mean of gaweeks (28.99). The same is true for the
standard deviation: dividing by 7 the one of gadays, we obtain 2.88, which
is again close to the standard deviation of gadays (2.90);
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• all the binary features that are shared between the two datasets (locate,
vagdel and sex) have resembling means and standard deviation, as can be
easily verified by inspecting Table 3.2) and Table 3.3;

• although the ap1 feature appears to have a slightly different distribution in
the two datasets, it shares a very similar normal curve approximation6, as
shown in Fig. 3.3.

The datasets also present some dissimilarities. If we count observations whose
birth-weight is below the tenth percentile (which is the condition for being defined
small for gestational age) in the LBWI-G dataset, we observe that the ratio of their
number with the total number of observations is 0.098, which is almost three times
smaller than the mean of the sga10 feature in the LBWI-V dataset (0.28). Another
inconsistency, although less impacting, is present with respect to the mult feature
in the LBWI-V dataset, whose mean in 0.32. If we select observations in the LBWI-
G dataset whose nbirths value is 0, their mean is 0.28, which is a little smaller
than what should have been expected in a perfect-matching setting.

Figure 3.3: Histograms of the ap1 feature (in light gray) on the
LBWI-V dataset (left) and LBWI-G dataset (right). The overlaying
black line represents the normal curve approximation of the feature
distribution.

Table 3.4 shows the comparison between the observed outcomes for the datasets
and the predicted outcomes as produced by the VON-RA model. From this table,
we can make some useful considerations. Firstly, as expected, outcomes are heavily
imbalanced in all the datasets: only 14% of the infants in the original dataset effec-
tively died after birth. The rate drops only slightly (13% for the LBWI-V data and
12% for LBWI-G data) in the two datasets we constructed. Since our main perfor-
mance measure of reference is AUC-ROC, which is not affected by class imbalance,
we did not consider the disproportion of the classes to be a problem. However, we

6We made the implicit assumption that the distribution of Apgar scores is normal, which is plau-
sible at least from a visual point of view, since much of the data is concentrated around the mean and
its tails are thin.
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wish to remind that future studies which use different metrics to evaluate classifiers
on these data need to take appropriate counter-measures to mitigate the imbalance.

Secondly, the predictions of the VON-RA model seem to underestimate the true
mortality rate in the dataset: a statistical deviance between the observed and pre-
dicted mortality was again to be expected since the sample sizes between our dataset
and the larger one used to build the VON-RA model (which comprises infants ad-
mitted in about 1000 NICUs from all around the world) are very different. How-
ever, both the LBWI-V and the LBWI-G datasets have about the same predicted
mortality rate of 9%, despite the latter using only less than a third of the data. This
suggests us that, although any hypothesis test to compare LBWI-V and LBWI-G
would surely reject the null hypothesis because of the large difference between the
two sample sizes, the two datasets might actually have more similar characteristics
than they look like from a statistical point of view.

Dataset No. records No. features Obs. outcome Std. Dev. Pred. outcome Std. Dev.

Original 35282 20 0.14 0.35 0.10 0.17
LBWI-V 33082 8 0.13 0.34 0.09 0.15
LBWI-G 9631 14 0.12 0.32 0.09 0.15

Table 3.4: Comparison between observed and predicted mortalities,
in the original data collection as well as in the two derived datasets.

3.6 Decision Tree learning experiments setup

As a first experiment, we trained a simple decision tree and used it to understand
more about the data. Since decision trees offer great interpretability of the classifi-
cation outcome under the form of sequential rules which can be easily visualized,
we used them in order to:

• understand which features are the most influential in the decision process;

• investigate nodes of the tree where the learner is uncertain;

• analyze the statistical properties of the misclassified patients, to see in which
cases the learner is prone to commit a classification error.

The objective of this analysis was to provide a preliminary insight into the dataset
with respect to the aspects described above. In this sense, we did not expect a
simple Decision Tree to achieve the best predictive performance nor we targeted at
accuracy optimization in this stage. Since the objective of this particular experiment
is problem understanding and characterization, we need not follow a strict machine
learning protocol for learning, hence we did not use any performance estimator like
cross-validation or even training and testing folds. We simply resorted to perform
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some statistical analysis on a moderately complex tree built on the whole LBWI-
G dataset, to verify if any interesting pattern emerged with respect to the matters
listed above.

3.7 Unsupervised experiments setup

Most of the work for the unsupervised part of our experiments involved the selec-
tion of a suitable map size for the SOM. Since the unsupervised nature of the task
does not provide clear guidelines on how to select sensible parameters of the SOM,
most of this part consisted in trial-and-error on different map sizes until results that
were considered useful were observed. We do not describe in detail the trial-and-
error phase; for the purposes of our work, we only report that the final map that
was selected after this phase was 48×48 in size, totaling 2304 neurons. However,
there were other hyper-parameters that had to be selected for the map, such as the
type of neighborhood function. All these additional parameters were selected with
a grid search strategy, trying a number of different combinations and choosing the
configuration with the lowest quantization error. These parameters were:

• init: the algorithm used to initialize the weights of the map. We chose
among random initialization and a procedure where the values of the weights
are selected from the subspace spanned by the first two principal components
derived from the data;

• annealing: the annealing scheme used to shrink the learning rate after each
epoch, either based on a linear or quadratic function;

• kernel: the type of neighborhood function.

Table 3.5 illustrates the type of hyper-parameters and their range of values. In
addition to this configuration, we tested 50 equally-spaced values for the starting
radius of the neighborhood function, ranging from 2/3 of the diameter of the map
down to 2 (meaning adjacent neuron interactions only). With this optimization set-
up in place, we fixed an a-priori squared shape for the map, trained 32 maps with
different side lengths and supplied their respective visualizations to the clinicians,
letting them select the most promising map based on its visual properties.

Hyper-parameter Type Range/Values

init List random, pca
annealing List power, linear
kernel List zeroone, gaussian

Table 3.5: Hyper-parameters of the SOM.
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3.8 Supervised experiments setup

The supervised experiments whose results we expose in ?? were thought as a se-
quence of definite steps, which at a high level consisted in:

• perform an initial selection of promising models to be compared with VON-
RA;

• set-up a reliable process to select the hyper-parameters of the learning algo-
rithms;

• obtain a final model to be tested on new data;

• test the significance of the results.

Many of the algorithms that were used in this work make use of generated random
numbers. To ensure that all of our work is reproducible, we set a unique random
seed for every algorithm tested, meaning that the way random numbers are gener-
ated is always the same, independently of the learning algorithm or the particular
step of the analysis.

The learning algorithms of choice for this study were Logistic Regression, k-Nearest
Neighbors, Support Vector Machines, Random Forests, Gradient Boosting Trees,
which is a particular instance of Gradient Boosting Machines that uses Decision
Trees, and Neural Networks. Other learning algorithms were tried in an initial
screening phase, but were then discarded because they did not provide satisfactory
results. In populating the pool, we particularly cared that the included algorithms
expressed different learning paradigms as well as different capabilities in terms of
the complexity of the hypothesis space they represent, to ensure an exhaustive as
possible comparison with VON-RA. A more in-depth description of the various
steps that compose our framework is illustrated in the next sub-sections.

3.8.1 Feature scaling

Scaling features (i. e. transforming them to have fixed mean and standard devia-
tion, or to lie in a specified interval) before the data is used to train machine learning
models is of primary importance. To think why feature scaling is useful, remember
how the value of the input features play a role in the update of the weights during
gradient descent. By having the input on different scales, we are allowing weights
that correspond to larger input values to receive a greater update than weights that
link smaller input values. As a results, some weights might update faster than
others and the algorithm might be slower or unable to converge. Tree-based al-
gorithms such as Random Forests and Gradient Boosting Machines do not usually
suffer from this issue, since the scale of the features does not affect the way the split
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of the nodes is performed. Such differences need to be taken into account by the
framework.

Therefore, we designed feature scaling as an optional step of the model selection
phase: the scaling is performed only after the data is split by the cross-validation
procedure into training and validation, and we processed the data in the validation
fold with the parameters obtained in the training phase. This ensures that there is
no "leak" of information from the test to the training data, that might lead to bias
the cross-validation estimation. The feature scaling strategies that were taken into
account in the pipeline are:

• transform the features to have 0-mean (known as demean transformation);

• transform the features to have 0-mean and unit variance (known as standard-
ization);

• scaling the features in the range (0, 1) by subtracting their minimum value
and dividing by their range (known as min-max scaling);

• no scaling.

Feature scaling is a step intended only for continuous (or continuous-like) predic-
tors. Since binary features take only values 0 or 1, they already lie in a suitable
interval for training and hence need not to be scaled.

3.8.2 Double cross-validation

As we explained in Section 2.5.1, double cross-validation is a tool to estimate which
out-of-sample performances we should expect from a fixed learning algorithm. For
our experiments, we tested each of the models in the pool using a 3-fold cross-
validation outer loop and a 5-fold validation inner loop. The number of hyper-
paramter configurations that are tested in each repetition of the inner loop were set
to 100. Fine grainer solutions (such as 5-fold outer-loop/10-fold inner loop, which
in theory provide even more precise ranges) were discarded mainly for computa-
tional reasons. However, we believe that 3/5 double cross-validation is suitable to
our purposes: in the end, 1500 different models for each learning algorithm were
evaluated on 15 different realization of the dataset, which we believe is a suffi-
cient amount of computation to estimate of the behavior of the various learning
algorithms at the task. At the same time, we needed to compare the various es-
timates with the VON-RA performances. To this extent, we had at our disposal
the pred column in the dataset. To obtain comparable performances, we hold it
aside, calculating partial results on subsets based on the same data splitting that
was performed on the dataset at each moment of the procedure. As a result, the
final performances of the VON-RA are obtained on samples of equal size, contain-
ing the exact same observations which were used to calculate performances of the
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particular learning algorithm that was tested. The actual procedure is explained
with the help of pseudo-code in Appendix A.

3.8.3 Final model selection

After having obtained reasonable estimations of the behavior of each learning al-
gorithm with double cross-validation, the next phase of our experiments was to
select a final model for each learning algorithms using all the data at our disposal,
to perform out-of-sample tests.

Learning algorithm Hyper-parameter Type Range/Values

All scaler List None, minmax, demean, std
Logistic Regression C Float 0.01− 2000

penalty List l1, l2
warm_start List True, False

k-Nearest Neighbor n_neighbors Integer 3− 300
p Integer 1− 2
weights List uniform, distance

Support Vector Machine C Float 0.001− 1000
gamma Float 0.001− 10

Random Forest bootstrap List True, False
criterion List gini, entropy
max_depth Integer 3− 15
max_features List None, log2, sqrt
min_samples_split Integer 10− 100
n_estimators Integer 10− 100

Gradient Boosting Trees colsample_bytree List 0.1− 0.9
learning_rate Float 0.01− 0.3
max_depth Integer 3− 15
n_estimators Integer 10− 500
gamma Float 0.000001− 0.001
subsample Float 0.1− 0.9

Neural Network activation List relu, tanh
batch_size Integer 64, 128, 256, 512
dropout Float 0.1− 0.8
epochs Integer 20− 150
hidden_units Integer 14− 300
init List uniform, normal, lecun
learning_rate Float 0.0001− 0.1
momentum Float 0.7− 0.95
optimizer List sgd, adam, rmsprop

Table 3.6: Summary of the hyper-parameter distributions that were
randomly sampled to create candidates during model selection.

This desire is motivated by the fact that all the models trained and evaluated during
the double cross-validation phase used only smaller subsamples of the data, which
for the LBWI-G dataset were (with slight variations due to the non-exact splittings):

• 1330 examples for training the models given a fixed hyper-parameters con-
figuration inside the inner loop;

• 6554 examples to train the best model that resulted from the model selection
that was performed by the inner loop;
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• 3277 examples to evaluate the above-mentioned best model.

Therefore, we performed a subsequent model selection using 10-fold cross-validation,
in order to obtain valid estimates of the generalization capabilities of each of the
learning algorithms in the pool. The double cross-validation phase also gave us
suitable ranges for the hyper-parameter configurations to be explored during this
last model selection phase, in order to find their best values. Table 3.6 provides
a summary of the hyper-parameter distributions of each learning algorithm, with
the type of values they accept and their sampling ranges. The explanations of each
hyper-parameter can be found in Appendix B, while the final hyper-parameter val-
ues of the best models found during this phase are reported, for each learning al-
gorithm, in Appendix C.

3.8.4 Out-of-sample testing

The subsequent step in our experiments was to evaluate the final models on a fresh
dataset of infants from the Italian cohort, born in year 2015, which was not part of
the initial data but was obtained separately. The key point to emphasize is that this
test dataset concerns a completely new year with respect to the data used to train
the models: on the basis of this fact, we set our expectations on the performances we
would be able to obtain. Specifically, assuming that the modeling part was carried
out correctly, at least two mutually exclusive scenarios could have happened:

• new clinical practices (or advancements in neonatal care in general) could
have changed the nature of the problem, perhaps adding new relationships
among the predictors and making others no more useful to correctly predict
infant mortality;

• the nature of the problem could have remained somehow "stationary", mean-
ing that infant mortality in 2015 was still well-predictable using past data.

In the former case, we expected our models to perform poorly, simply because they
would fail to capture new relationships that were not present in their training data.
In the latter case, any possible improvement accomplished, even if narrow, would
acquire additional value because it was obtained against a consolidated model such
as the VON-RA, which is adjusted year after year to adapt to advancements in
neonatal care.

The test dataset was preprocessed in the same way as the original dataset: from an
initial size of 3245 examples and 20 features, two test datasets were created, one
using the LBWI-V preprocessing, and the other using the LBWI-G preprocessing.
Statistics for both the datasets can be viewed in Table 3.7 and Table 3.8 respectively.
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Name Mean St. Dev. Min. 1st Perc. Median 3rd Perc. Max.

gaweeks 28.94 2.89 23.00 27.00 29.00 31.00 39.00
gasq 845.90 167.48 529.00 729.00 841.00 961.00 1521.00
locate 0.07 0.25 0.00 0.00 0.00 0.00 1.00
vagdel 0.19 0.39 0.00 0.00 0.00 0.00 1.00
sex 0.49 0.50 0.00 0.00 0.00 1.00 1.00
mult 0.36 0.48 0.00 0.00 0.00 1.00 1.00
ap1 5.83 2.20 0.00 4.00 6.00 7.00 10.00
sga10 0.20 0.40 0.00 0.00 0.00 1.00 1.00

Table 3.7: Statistics of the LBWI-V test dataset.

To complete our description of the test data, we provide in Table 3.9 the comparison
of the observed and predicted outcomes for both the LBWI-V and LBWI-G datasets,
as well as the original one from where they were extracted.

Name Mean St. Dev. Min. 1st Perc. Median 3rd Perc. Max.

bwgt 1112.72 288.88 285.00 900.00 1155.00 1358.00 2409.00
gadays 206.19 19.90 161.00 193.00 207.00 221.00 276.00
bheadcir 26.38 2.58 19.00 25.00 27.00 28.00 39.50
locate 0.06 0.23 0.00 0.00 0.00 0.00 1.00
pcare 0.94 0.22 0.00 1.00 1.00 1.00 1.00
aster 0.88 0.33 0.00 1.00 1.00 1.00 1.00
amagsulf 0.12 0.33 0.00 0.00 0.00 0.00 1.00
chorio 0.14 0.35 0.00 0.00 0.00 0.00 1.00
mhypertens 0.25 0.43 0.00 0.00 0.00 1.00 1.00
vagdel 0.18 0.38 0.00 0.00 0.00 0.00 1.00
sex 0.49 0.50 0.00 0.00 0.00 1.00 1.00
mult 0.36 0.47 0.00 0.00 0.00 1.00 1.00
ap1 5.91 2.16 0.00 5.00 6.00 7.00 10.00
ap5 7.82 1.53 0.00 7.00 8.00 9.00 10.00

Table 3.8: Statistics of the LBWI-G test dataset.

3.8.5 Assessing the significance of the results

Since in this study the performance metric of reference is AUC-ROC, we needed
a statistical hypothesis test to compare the differences in the areas under the ROC
curve that our models produce, to understand if the models we trained have sig-
nificantly different performances with respect to the VON-RA model or among
themselves. One key observation in this sense is that, since the performances are
evaluated on the same samples (the out-of-sample testing dataset we described pre-
viously), we need to take into account the correlation between the out-of-sample

Dataset No. records No. features Obs. outcome Std. Dev. Pred. outcome Std. Dev.

Original 3245 20 0.12 0.33 0.09 0.16
LBWI-V 3178 8 0.12 0.32 0.09 0.15
LBWI-G 2792 14 0.10 0.30 0.08 0.14

Table 3.9: Comparison between observed and predicted mortalities
in the test datasets.
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performances produced by the learning models. Given the premises, we resorted
to employ a common and well-known, especially in the medical field, statistical
hypothesis test for correlated ROC curves, by DeLong et al. ([13]). We refer to
the paper for a full explanation of how the test is performed; to our purposes, it
is sufficient to state that we rejected the null hypothesis (the true difference of the
computed AUCs is 0) at the 5% significance level.

3.9 Software and tools

For the experiments conducted in this study, several frameworks and libraries were
used. Because of the variety of such experiments, we employed different tools
whenever a certain capability was desired, whether it was plotting facilities, better
computational complexity or ease of use. The programming languages of choice
to accomplish the tasks were the Python programming language [48] and the R
programming language [44].

The bulk of the supervised experiments was realized using the scikit-learn li-
brary [41]. It is a well-known Python library for machine learning that comprises
almost every tool a machine learning practitioner is likely to use: it provides imple-
mentations for a wide range of learning algorithms, evaluation metrics, estimators
and data preprocessors. It is based on reliable Python libraries for scientific com-
puting such as numPy and sciPy [39], which in turn provide wrappers for the
underlying C and Fortran implementations of linear algebra routines. These low-
level libraries are devised to allow faster calculations of vector-matrix and matrix-
matrix multiplications, which are at the core of most learning algorithms. In ad-
dition, a wide variety of models is optimized to run on multi-core machines, ex-
ploiting the power of parallel computing: this feature was useful to decrease the
total running time of the algorithms, especially during cross-validation. Moreover,
it supports the famous data-manipulation library pandas [36], which was used to
manage all the transformations applied on the raw data.

We employed two main alternatives to the scikit-learn framework during the
supervised analysis, mainly because they were computationally faster than the cor-
responding scikit-learn implementations.
All the experimented Neural Networks were trained using the reliable Keras li-
brary [10], which is a wrapper for two framework libraries that are built to train
Neural Networks using GPUs: Theano [55] and TensorFlow [1]. In our exper-
iments, the Theano wrappers were used. For Gradient Boosting Trees, we used
XGBoost [9], a library that provides a multi-core optimized implementation of
Gradient Boosting Machines in a whole variety of languages, including Python.
Both libraries, however, provide scikit-learn wrappers, hence they were easily
integrated into the main framework.
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The unsupervised part was mainly done using R. For the training of the SOM, we
used the yasomi package [47], which provided the tools that were needed, in par-
ticular the ability to plot the SOM units as hexagons (which was desired to visualize
the map in a more appealing way), as well as a number of useful visualization ca-
pabilities such as hit maps, U-Matrices and color coding. The Decision Tree was
trained using R’s tree package [45], which is a very well-known and reliable li-
brary that includes functions to visualize the tree and exploring its nodes.

For all the remaining plots we made in this work we used interchangeably Python
(through the matplotlib library [28]) and R (through the ggplot2 package [58])
graphical libraries.

The supervised experiments were almost exclusively performed on a machine made
available by our Computer Science Department, a PowerEdge C4130 Dell server
equipped with 2 Xeon E5-2670v3 CPUs, for a total of 48 virtual cores (24 physical),
128 GB of RAM and 4 NVidia M40 GPUs. The unsupervised part of the study, as
well as all the plots, were all realized in a local machine.
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Chapter 4

Results

In This chapter, we present the results of our experiments. It is divided in three
parts: Section 4.1 describes the results of the use of a Decision Tree model in the
context of data understanding, feature ranking and problem characterization in
general. Section 4.2 illustrates the results of the training of a SOM on the LBWI-G
dataset, with the intent of discovering potential structure that underlies the data
using its powerful visualization capabilities. Finally, Section 4.3 focuses on the su-
pervised learning experiments: we expose and discuss the performances of the
models that were trained and evaluated using the machine learning framework we
described in Section 3.8.

4.1 Results of the Decision-Tree learning analysis

Before constructing the tree, we plotted in Fig. 4.1 a boxplot of the features grouped
by outcome. This served as a source of comparison for the various sub-population
that constitute the leaves of the tree. Some of the features were normalized to
have mean 0 and standard deviation 1 for readability purposes. Looking at the
picture, a clear distinction emerges between infants that died and infants that sur-
vived, especially regarding birth-weight, head circumference, gestational age and
Apgar scores. We also see that mothers of children at risk have higher incidence
of chorioamnionitis, lower administration of antenatal steroids, lower incidence of
maternal hypertension, and higher incidence of delivery by cesarean section.

Fig. 4.2 shows the resulting Decision Tree. The library that we used to build the tree
provides the user with a parameter to tune the complexity of the tree with pruning,
allowing to regularize the model to achieve better generalization. Without pruning,
the tree consisted in 1520 nodes and 527 leaves, which was clearly not suited for
interpretation.

Furthermore, the lower levels of the tree add close to no discriminative power, at
the point that one split has no real reason to be taken before another. In order to
make the tree both readable and meaningful, we set the complexity parameter to
cease to split a node (therefore creating a leaf) whenever its entropy is less than
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Figure 4.1: Box plots of the LBWI-G dataset grouped by outcome.
Boxes represent the interquartile range of the population distribu-
tion, external bars represent the remaining quartiles. The median
is indicated by a black bar. Outliers are represented as circles. The
mean is indicated with a diamond shape.

1% of the one at the root node. This conforms with what anticipated in Chapter 3,
where we specified that the goal of this analysis is not to perform learning with
the objective of optimizing predictive performance. As an aside, we report that the

Figure 4.2: Plot of the tree obtained by the Decision Tree algorithm.
The length of the vertical bars represents the decrease in loss: the
longer the bar, the greater the decrease.
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Decision Tree AUC-ROC was 0.845 in an out-of-sample test with the 2015 dataset,
which is a fair and decent score for a standard learning algorithm using such a
simplified structure. The pruned tree has 5 nodes and 6 leaves, and it is remarkable
that one can obtain such a good AUC-ROC score with so few splits. We also see that
the right sub-tree can be substituted with a single leaf labeled as negative: however,
we decided not to prune the tree further since it seems to be not overly complex and
have good generalization. The features that provide the largest decrease in the loss
function are gadays, ap1 and ap5.

Table 4.1 provides a summary of the leaves composition, starting from left to right:
for each label, it is reported its reference number, the split to which it is associated,
the number of observations contained in the leaf, the class label that was assigned
by majority voting, and the probability associated to the positive class. The table
shows that observations that are assigned to certain leaves are more likely to be
misclassified. In particular, leaf 2 has almost a 48% chance to commit a false pos-
itive (since it is labeled with the positive class with 52% of the patterns) on new
observations, leaf 3 has a 23% chance to commit a false negative, and so on. Leaf 6,
on the other hand, correctly classifies as negative 99% of its 5931 assigned observa-
tions, meaning that a great number of patients (about 60% of the total dataset size)
can be easily recognized by the algorithm as very likely to survive.

No. Split No. obs. Class Pos. prob.

1 gadays < 172.5 576 positive 0.65104
2 ap1 < 2.5 291 positive 0.52234
3 ap1 > 2.5 1120 negative 0.23214
4 ap5 < 6.5 770 negative 0.20649
5 gadays < 195.5 945 negative 0.10476
6 gadays > 195.5 5931 negative 0.01551

Table 4.1: Description of the leaves of the tree.

Fig. 4.3 shows the box plot related to observations that ended up in the second leaf
of the tree. If we focus on the infants that survived, we see that they have very
similar characteristics with respect to infants that later died, in particular very low
Apgar scores. This explains the large uncertainty of the decision process which re-
sulted in a very poor classification inside the leaf. The observations in the leaf are
also associated with below average birth-weight, gestational age and head circum-
ference.

The opposite situation happens in leaf 3, whose box plots are displayed in Fig. 4.4.
This leaf was labeled as negative by majority voting. Note that the distributions of
birth-weight, gestational age and head circumference are very much alike the ones
in leaf 2. The largest differences are the Apgar scores: in leaf 3, both groups (dying
and not dying) of infants are very similar, this time almost on average, even if
observations in the dying group score slightly lower. All this analysis suggests that
the Apgar scores are the most influential features in determining the outcome of the
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Figure 4.3: Box plots of leaf 2 of the Decision Tree, grouped by out-
come.

infant, because newborns with similar Apgar scores but different outcomes have a
higher chance to be misclassified. This is a result to be expected given the nature
of the Apgar score, which is based on clinical parameters but is influenced by the
effort of the clinician, which for integrates the evaluation with information coming
from his/her working experience and professional training, as well as antenatal
knowledge about the infant and the mother.

Figure 4.4: Box plots of leaf 3 of the Decision Tree, grouped by out-
come.
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Figure 4.5: Box plots of observations correctly classified by the De-
cision Tree algorithm.

Finally, Fig. 4.5 shows the statistics of all the observations that were correctly clas-
sified by the algorithm, while Fig. 4.6 shows the statistics of misclassified obser-
vations. As clearly visible, most statistics are almost reversed if compared with
patients that were correctly classified, which is again to be expected since the al-
gorithm is wrong on infants that had a safe delivery and then died later due to
complication that were not seen before birth, or by infants who were delivered in
critical conditions but recovered their health later.

Figure 4.6: Box plots of observations misclassified by the Decision
Tree algorithm.
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4.1.1 Feature ranking

Decision Trees are useful also because they allow to compute a ranking among fea-
tures. To calculate this, we used the complete tree that was built in the previous
section, without pruning. The calculation was performed by inspecting every node
of the tree and summing up, for each feature, the decrease in impurity that the
related split caused. Since at each node only one feature is split, the sum over all
nodes gives an overview on what are the most influential nodes in the tree construc-
tion, and also what is their overall contribution in the discrimination of examples.
Table 4.2, shows the importance that was calculated, with the features ordered by
decreasing importance.

Feature Mean Decrease in Impurity

bwgt 761.1006
gadays 737.5351
bheadcir 622.0572
ap1 525.0391
ap5 503.5190
sex 39.9395
vagdel 35.0369
aster 33.6687
nbirths 26.2478
chorio 22.1862
pcare 17.2850
locate 16.5322
mhypertens 14.8870
amagsulf 4.5313

Table 4.2: Feature importances calculated by the Decision Tree algo-
rithm.

The results show that there are at least two groups of features based on the rank-
ing: the first five have a strong impact in the predictive process, and are useful
in discriminating the majority of the observations. While the remaining features
seem to have less influence, they might be crucial to discriminate between exam-
ples in the lower levels of the tree. As we talked earlier, Decision Trees are not a
very powerful machine learning algorithm: later in this chapter, we will see what
is the feature importance as calculated by more sophisticated algorithms such as
Random Forests, which also allow ranking of the features, but averaged on a much
larger set of classifiers.

4.2 Results of the unsupervised analysis

4.2.1 SOM prototypes

The composition of the SOM prototypes is reported in Table 4.3. The data under-
went a postprocessing phase after the training, where binary features were rounded
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to 0 or 1 to be meaningful. The same preprocessing was applied to nbirths, while
the rest of the features were left unrounded, since having decimals values instead
of whole decimal did not cause issues.

If we confront the results with Table 3.3 we can immediately see that the proto-
types reflect the actual distribution of the data with sufficient precision. The only
mentionable exception is nbirths, where the SOM failed to assign extreme values
(number of births > 2) to its prototypes, due to the low frequency with which they
appear on the original data. The final quantization error of the SOM was 0.4178.

Name Mean St. Dev. Min. 1st Perc. Median 3rd Perc. Max.

bwgt 1099.23 293.92 362.00 864.38 1136.66 1366.85 2205.00
gadays 205.97 18.85 163.85 191.74 205.68 219.63 268.43
bheadcir 26.28 2.62 18.90 24.46 26.66 28.16 39.25
locate 0.06 0.24 0.00 0.00 0.00 0.00 1.00
pcare 0.91 0.29 0.00 1.00 1.00 1.00 1.00
aster 0.82 0.38 0.00 1.00 1.00 1.00 1.00
amagsulf 0.06 0.25 0.00 0.00 0.00 0.00 1.00
nbirths 0.35 0.48 0.00 0.00 0.00 1.00 2.00
chorio 0.12 0.32 0.00 0.00 0.00 0.00 1.00
mhypertens 0.24 0.43 0.00 0.00 0.00 0.00 1.00
vagdel 0.17 0.38 0.00 0.00 0.00 0.00 1.00
sex 0.49 0.50 0.00 0.00 0.00 1.00 1.00
ap1 5.84 2.20 0.00 4.50 6.25 7.60 10.00
ap5 7.75 1.61 0.00 7.00 8.00 9.00 10.00

Table 4.3: Statistics of the SOM prototypes.

4.2.2 SOM visualizations

The first useful visualization obtained from the SOM were the component planes of
each feature (see Section 2.7.2), displayed in Fig. 4.7. Looking at the first plane, one
can easily see how the SOM grouped prototypes with low birth-weight into two
clusters, one going from the upper left corner to the middle of the upper side, and
another in the middle of the right side. The same pattern is repeated for gadays,
bheadcir, ap1 and ap5, indicating some sort of correlation. This was somehow
expected, since for example a newborn with a longer gestational age is supposed to
be more developed and thus have a higher birth-weight and larger head circumfer-
ence. However, the fact that the SOM created two separate clusters out of a single
correlation pattern is interesting.

Other facts that can be derived from the analysis of the component planes are:

• cesarean delivery and a diagnosis of chorioamionitis seem to be correlated
with a lower gestational age;

• a diagnosis of maternal hypertension seems to be correlated with a moder-
ately high birth-weight/gestational age;



64 Chapter 4. Results



4.2. Results of the unsupervised analysis 65

Figure 4.7: Component planes of the SOM. Each plot represents a
single feature in the LBWI-G dataset.

• the SOM successfully grouped the number of births and the sex of the new-
born into compact clusters (if the SOM training was poorly done, we would
expect them scattered around the map in a random way);

• there is a small percentage of newborns that have a large head circumfer-
ence but low birth-weight and gestational age (see the lower left corner of the
bheadcir plane and compare with bwgt and gadays planes). This seems
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somehow counter-intuitive and could constitute a cluster of newborns whose
mortality prediction is difficult to be "guessed right" by a learning algorithm,
since their strongest predictors present unconventional values.

The second useful visualization was to plot the label information against the con-
structed map to see if newborns that are likely to die are grouped contiguously on
the map. To do so, we firstly mapped each record in the dataset to its closest proto-
type, and then counted how many records had a positive label among the total of
records mapped for each neuron.

Figure 4.8: Plot of the label information onto the SOM.

In other terms, with this visualization we plotted the probability of a newborn dy-
ing given his/her assignment to a particular neuron. We once again want to stretch
the point that all this information is derived by using the SOM without any su-
pervised help. The map is displayed in Fig. 4.8: the size of each cell in the map
expresses the probability of dying. As is clearly visible, the map clustered new-
borns who are likely to die in two distinct clusters, which appear in the same posi-
tion as the low birth-weight, low gestational age areas that were identified in their
respective component planes.

To understand why the SOM created these two different clusters, we performed
a statistical analysis to characterize each cluster, in hope to obtain two different
patient "profiles" that are likely to develop a higher mortality risk.

The criteria for being included in one of the two clusters was, besides topographic
vicinity, the fact that at least 30% of the newborns assigned to the cell actually died.
The two clusters accounted for 1231 records combined, constituting the 12.78% of
the total records in the dataset. The first cluster (the one starting from the left corner
of the map) contained 832 records, the second (the one in the middle of the right
side) 399. Tables Table 4.4 and Table 4.5 contain the collected statistics for the two
clusters.
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Name Mean St. Dev. Min. 1st Perc. Median 3rd Perc. Max.

bwgt 690.10 232.05 295.00 550.00 650.00 760.00 2450.00
gadays 177.90 12.53 161.00 168.00 175.00 186.00 262.00
bheadcir 22.39 1.98 18.00 21.00 22.00 23.50 32.10
locate 0.06 0.24 0.00 0.00 0.00 0.00 1.00
pcare 0.87 0.34 0.00 1.00 1.00 1.00 1.00
aster 0.74 0.44 0.00 0.00 1.00 1.00 1.00
amagsulf 0.11 0.32 0.00 0.00 0.00 0.00 1.00
nbirths 0.03 0.23 0.00 0.00 0.00 0.00 2.00
chorio 0.32 0.47 0.00 0.00 0.00 1.00 1.00
mhypertens 0.21 0.41 0.00 0.00 0.00 0.00 1.00
vagdel 0.50 0.50 0.00 0.00 1.00 1.00 1.00
sex 0.58 0.49 0.00 0.00 1.00 1.00 1.00
ap1 2.87 1.79 0.00 1.00 3.00 4.00 8.00
ap5 5.45 2.20 0.00 4.00 6.00 7.00 10.00

died 0.61 0.49 0.00 0.00 1.00 1.00 1.00

Table 4.4: Statistics of cluster 1 (on the left in Fig. 4.8).

The analysis of the statistics show that the two clusters have similar values with
respect to birth-weight, gestational age, head circumference and mortality, which
indicates that the distribution of died newborns in the two cluster is homogeneous.

However, the second cluster has a vast majority of babies coming from multiple
gestations, while the first contains prevalently lone babies. We also see that infants
from cluster 1 have lower Apgar average scores, are more subjected to cesarean
delivery (50% against 30%), have double the incidence of maternal hypertension
(20% against 10%) than infants in cluster 2. We also note that females are most
present than males in both clusters.

If we compare the population belonging to both clusters against the whole dataset,
we also see that infants ending up in the clusters have a chorio mean tree times
higher than the dataset mean, and a vagdel mean about two, two and a half times

Name Mean St. Dev. Min. 1st Perc. Median 3rd Perc. Max.

bwgt 686.70 157.20 330.00 580.00 661.00 790.00 1270.00
gadays 178.70 11.40 161.00 170.00 177.00 185.00 214.00
bheadcir 22.68 1.79 18.00 21.50 22.90 24.00 28.00
locate 0.04 0.20 0.00 0.00 0.00 0.00 1.00
pcare 0.92 0.27 0.00 1.00 1.00 1.00 1.00
aster 0.83 0.38 0.00 1.00 1.00 1.00 1.00
amagsulf 0.07 0.25 0.00 0.00 0.00 0.00 1.00
nbirths 2.19 0.42 1.00 2.00 2.00 2.00 4.00
chorio 0.30 0.46 0.00 0.00 0.00 1.00 1.00
mhypertens 0.10 0.30 0.00 0.00 0.00 0.00 1.00
vagdel 0.30 0.46 0.00 0.00 0.00 1.00 1.00
sex 0.57 0.50 0.00 0.00 1.00 1.00 1.00
ap1 3.79 2.05 0.00 2.00 4.00 5.00 9.00
ap5 6.51 1.66 1.00 6.00 7.00 8.00 10.00

died 0.62 0.49 0.00 0.00 1.00 1.00 1.00

Table 4.5: Statistics of cluster 2 (on the right in Fig. 4.8).
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Figure 4.9: Box plots of cluster 1.

higher than its correspondent dataset mean. The distribution of the features was
plotted with the help of box plots in Fig. 4.9 and Fig. 4.10.

Another visualization technique that proved to be useful is the color coding of the
map. We assigned a color (ranging from green to red) to the prototypes in the map,
in a way that similar prototypes (according to the euclidean distance) get similar
colors. The result of such coloring is shown in Fig. 4.11.

Figure 4.10: Box plots of cluster 2.
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Figure 4.11: Color code of the SOM.

We see that, without any a-priori information about the labels, the coloring success-
fully identifies the two zones where the mortality is concentrated as similar. This
map provides other useful keys of interpretation: for example, if we cross the re-
sults of this map with the one with the label information, we can say that newborns
with low mortality chance correspond to the green-ish zones, while newborns with
high mortality chance correspond to red-ish zones. The orange zones might be in-
teresting for further investigation, because they mark the border between the two
extremes, and are likely to represent newborns that are difficult to predict by a
learning algorithm.

4.3 Results of the supervised analysis

In this section, we present the results of the training and testing of the pool of su-
pervised models. For each dataset of reference, we will show the results of the 3×5
double cross-validation results, the results of the 10-fold cross-validation of the fi-
nal model selection, the out-of-sample performance obtained on the test datasets,
the estimation of mortality that the models provided, the statistical hypothesis test-
ing of the differences in AUC-ROC we obtain. We will accompany this exposition
with a discussion, suitable to highlight what was found in each of the dataset and
in comparison between the two.
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4.3.1 LBWI-V dataset

Double cross-validation results

The results of the double cross-validation procedure obtained on the LBWI-V dataset
are reported in Table 4.6. For each learning algorithm, the mean AUC-ROC of the
three best models obtained through double cross-validation is shown.

VON-RA LR KNN SVM RF GB NN

0.8755 ±0.004 0.8795 ±0.004 0.8789 ±0.002 0.8808 ±0.003 0.8814 ±0.002 0.8830 ±0.002 0.8822 ±0.008

Table 4.6: Double cross-validation AUC-ROC scores (LBWI-V
dataset). The highest performance is displayed in bold.

As the results show clearly, we expect all the models of the pool to perform better
than the VON-RA model in subsequent phases. We also expect the performance
on the final model selection for each learning algorithm to lie approximately in the
range of model performances yielded by the double cross-validation procedure,
safe for some statistical variability induced by the largest samples employed in sub-
sequent experiments. This is better understandable by looking at Fig. 4.12. With
respect to the VON-RA performance, the smallest increase in AUC-ROC comes
from k-Nearest Neighbor (KNN in the table) with 0.0034, followed by Logistic Re-
gression (LR) with 0.0040, Support Vector Machines (SVM) with 0.0052, Random

VON-RA LR KNN SVM RF GB NN
0.86

0.87

0.88

0.89

0.90

0.91

0.92

Figure 4.12: Plot of the double cross-validation AUC-ROC scores
(LBWI-V dataset). The bar indicates the range of performances ob-
tained by the three best models selected in the inner loop.
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Forests (RF) with 0.0059, Neural Networks (NN) with 0.0067. Gradient Boosting
(GB) models achieved the best score with 0.0074.

Cross-validation results

The next experiment consisted in selecting a final model with 10-fold cross-validation,
choosing among 100 configurations of hyper-parameters. The means and standard
deviations of the AUC-ROC obtained by the selected models across the folds are
reported in Table 4.7 and shown graphically in Fig. 4.13.

VON-RA LR KNN SVM RF GB NN

0.8754 ±0.015 0.8793 ±0.014 0.8800 ±0.015 0.8825 ±0.014 0.8820 ±0.014 0.8837 ±0.015 0.8835 ±0.012

Table 4.7: Cross-validation AUC-ROC scores (LBWI-V dataset).

We can see that the cross-validation AUC-ROC scores confirm the trend expressed
by the double-cross-validation phase. Again, all the models performed better than
VON-RA. The best increase was registered by Neural Networks, which outper-
formed VON-RA by 0.0083, followed by Gradient Boosting (0.0076), Random Forests
(0.0066), Support Vector Machines (0.0062), k-Nearest Neighbors (0.0039) and Lo-
gistic Regression (0.0038).

VON-RA LR KNN SVM RF GB NN
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Figure 4.13: Plot of the cross-validation AUC-ROC scores (LBWI-V
dataset). The bar indicates the standard deviation of the mean score.
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Out-of-sample results

The last experiment on the LBWI-V dataset was to train the final model with the
best hyper-parameters found in the previous cross-validation phase, using all the
training data at our disposal, and test it with the 2015 dataset to see the behavior of
the obtained models out-of-sample.

VON-RA LR KNN SVM RF GB NN

0.8821 0.8869 0.8871 0.8895 0.8896 0.8906 0.8906

Table 4.8: Out-of-sample AUC-ROC results (LBWI-V test dataset).

The results are reported numerically in Table 4.8 and graphically in Fig. 4.14. From
the analysis of the out-of-sample performances, it is noticeable that the same in-
creasing trend appears (with approximately the same magnitude) if we compare
the AUC-ROC of our pool of models to the one obtained by the VON-RA. Logis-
tic Regression accounts for an increase of 0.0048, k-Nearest Neighbors for 0.0049,
Support Vector Machines for 0.0074, Random Forests for 0.0075; Neural Networks
and Gradient Boosting Machines scored the best results, with an increase in perfor-
mance of 0.0085.

VON-RA LR KNN SVM RF GB NN
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Figure 4.14: Plot of the out-of-sample AUC-ROC results (LBWI-V
test dataset).
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Mortality estimation

We report in Table 4.9 the mortality as estimated by each learning algorithms, in
comparison with the true value that can be obtained from the data. We observe
that all the models, including VON-RA, overestimate the true mortality. We reg-
ister a better adherence to the true mortality rate of every model in the pool with
respect to the VON-RA (whose difference in the estimation accounts for 0.0029):
the model that shows better adherence to the true mortality is Logistic Regression
(0.0065 difference), followed by Random Forests (0.0066), Neural Network (0.0067),
Gradient Boosting Machines and Support Vector Machines (0.0072), and finally k-
Nearest Neighbor (0.0101).

Observed VON-RA LR KNN SVM RF GB NN

0.1167 0.0877 0.1103 0.1066 0.1095 0.1101 0.1096 0.1101

Table 4.9: Out-of-sample observed and estimated mortality (LBWI-
V test dataset).

4.3.2 Discussion

The results clearly show an improvement in AUC-ROC of all the models in our
pool with respect to the VON-RA performance, in all experiments. In Fig. 4.15, we
can see how the double cross-validation correctly estimated the subsequent cross-
validation score obtained by the models, even if in the latter phase the models used
more data for training (which could cause a deviation in the results). We consider
this datum evidence of the fact that the model selection phase was correctly setup
and we did not overfit during the model selection phase.

Furthermore, Fig. 4.16 shows the excellent adherence of the final cross-validation
phase with respect to the out-of-sample performance: we see that in every case,
the out-of-sample performance falls inside of the interval of variability estimated
by the cross-validation procedure. With this particular test set, we report that the
out-of-sample performance was above the mean cross-validation score; this is true
even for the VON-RA model. This might indicate a particularly "favorable" test set,
meaning that it is probably constituted of patients that are more easily classifiable
by the learning algorithms with respect to the training dataset. Such optimistic
performance was however correctly foresaw by the cross-validation phase, and has
to be considered in the context of a normal statistical variability that might occur in
the data.

To understand which of the differences in AUC-ROC between the models are sig-
nificant, we run the DeLong’s test for correlated ROC curves at the 0.05 level of
significance for each pair of models, and reported its results in Table 4.10.
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VON-RA LR KNN SVM RF GB NN
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Figure 4.15: Plot of the double cross-validation AUC-ROC range
against the cross-validation score (LBWI-V dataset). The grey bar
indicates the standard deviation of the cross-validation score, while
the black bar expresses the mean performance obtained by the three
best models picked during the double cross-validation phase.
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Figure 4.16: Plot of the cross-validation AUC-ROC estimation
against the out-of-sample performance (LBWI-V dataset).
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The table shows that we reached significance comparing the differences of our
models and the VON-RA, with the only exception of k-Nearest Neighbors. Fur-
thermore, the Support Vector Machines learning algorithm reached significance of
the results even in comparison with the Logistic Regression model. The statistical
hypothesis testing provides further statistical evidence that we indeed produced
models that can perform significantly better than the VON-RA using its same set
of features.

LR KNN SVM RF GB NN

VON-RA 0.0205 0.1640 0.0114 0.0261 0.0193 0.0073
LR 0.9634 0.1217 0.2610 0.0798 0.0996
KNN 0.3405 0.1825 0.1225 0.1275
SVM 0.9371 0.4621 0.5318
RF 0.4333 0.5532
GB 0.9560

Table 4.10: p-Values of DeLong’s AUC-ROC test of significance be-
tween correlated ROC curves (LBWI-V test dataset). Cells high-
lighted in gray represent comparisons where the difference in AUC-
ROC was significant.

Table 4.11 reports the improvement in out-of-sample AUC-ROC obtained by each
of our trained models. We can see that models that are able to represent more com-
plex hypothesis spaces (such as SVMs, ensemble methods and Neural Networks)
achieve an AUC-ROC score that is on average approximately 65% better than the
one obtained by models which use more simple hypothesis spaces (such as Logistic
Regression). k-Nearest Neighbors is a model that somehow stays in between linear
and complex models, and this fact is reflected by its improvement in performance
with respect to VON-RA, which is slightly higher than Logistic Regression but not
up to the rest of the machine learning algorithms considered.

LR KNN SVM RF GB NN

0.54% 0.56% 0.83% 0.85% 0.96% 0.96%

Table 4.11: Improvement (in percentage) in out-of-sample AUC-
ROC with respect to the VON-RA (LBWI-V test dataset).

As far as mortality predictions are concerned, we note that every one of the models
in the pool produced a more closer estimation of the true mortality in the out-of-
sample data with respect to VON-RA. Such improvement is shown in percentage
in Table 4.12.

LR KNN SVM RF GB NN

25.68% 21.53% 24.84% 25.50% 24.88% 25.49%

Table 4.12: Improvement (in percentage) of the out-of-sample mor-
tality estimation with respect to the VON-RA (LBWI-V test dataset).
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As an aside, we provide in Table 4.13 the calculated F1 scores that the final models
obtained on the out-of-sample data. Note that, since the model selection was in-
tended to maximize the AUC-ROC criteria and not the F1, these scores are not the
best possible and can be improved with a dedicated model selection. The increases
of performance obtained were 0.0070 by k-Nearest Neighbor, 0.0107 by Support
Vector Machines, 0.0113 by Logistic Regression, 0.0120 by Gradient Boosting Ma-
chines, 0.0123 by Neural Networks (0.0123) and finally 0.0133 by Random Forests.
While these results are to be considered partial because no proper optimization was
performed, we can once again see approximately the same increasing trend, with
all the models that tend to perform better than the VON-RA.

VON-RA LR KNN SVM RF GB NN

0.8839 0.8953 0.8910 0.8946 0.8972 0.8959 0.8962

Table 4.13: Out-of-sample F1 scores (LBWI-V test dataset).

4.3.3 LBWI-G dataset

Double cross-validation results

The results of the double cross-validation procedure on the LBWI-G dataset are
reported in Table 4.14, and represented graphically in Fig. 4.17, which shows a
clear increasing trend. Logistic Regression outperformed the VON-RA model by
0.0072, followed by k-Nearest Neighbors (0.0117 increase), Gradient Boosting Ma-
chines (0.0148 increase), Support Vector Machines (0.0151 increase), Neural Net-
works (0.0160 increase), and finally Random Forests (0.0162 increase). The first no-
ticeable difference with these results and the ones obtained with the double cross-
validation in the LBWI-V dataset is that both the VON-RA and the models in the
pool obtained lower AUC-ROC scores. However, the difference between the VON-
RA and all the other models persists and appears amplified.

VON-RA LR KNN SVM RF GB NN

0.8885 ±0.007 0.8957 ±0.002 0.9002 ±0.006 0.9036 ±0.002 0.9047 ±0.008 0.9033 ±0.001 0.9045 ±0.007

Table 4.14: Double cross-validation AUC-ROC scores (LBWI-G
dataset).

Cross-validation results

We report in Table 4.15 the results of the model selection with 10-fold cross-validation.
Fig. 4.18 shows that the final models obtained AUC-ROC scores that strongly re-
semble what was foresaw by the double cross-validation phase.
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Figure 4.17: Plot of the double cross-validation AUC-ROC scores
(LBWI-G dataset).

We observe a similar increasing trend as the one observed in the double cross-
validation phase, with Logistic Regression improving the AUC-ROC by 0.0079 with

VON-RA LR KNN SVM RF GB NN
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Figure 4.18: Plot of the cross-validation AUC-ROC scores (LBWI-G
dataset).
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respect to VON-RA, followed by Neural Networks (0.0133 increase), k-Nearest
Neighbors (0.0145 increase), Random Forests (0.157 increase), Gradient Boosting
Machines (0.0162) and finally Support Vector Machines (0.0166).

VON-RA LR KNN SVM RF GB NN

0.8888 ±0.021 0.8964 ±0.017 0.9032 ±0.016 0.9054 ±0.014 0.9044 ±0.015 0.9050 ±0.015 0.9021 ±0.016

Table 4.15: Cross-validation AUC-ROC scores (LBWI-G dataset).

Out-of-sample results

As with the LBWI-V dataset, we trained the models selected in the previous phase
using all the training data to construct the final models to be tested with the out-of-
sample dataset.

VON-RA LR KNN SVM RF GB NN

0.8735 0.8822 0.8901 0.8927 0.8926 0.8931 0.8939

Table 4.16: Out-of-sample AUC-ROC results (LBWI-G test dataset).

Fig. 4.19 shows the results graphically. Logistic Regression outperformed the VON-
RA model by 0.0077, k-Nearest Neighbor (0.0166 increase), Random Forests (0.191
increase), Support Vector Machines (0.193 increase), Gradient Boosting (0.196 in-
crease) and Neural Networks (0.0204 increase).

VON-RA LR KNN SVM RF GB NN
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Figure 4.19: Plot of the out-of-sample AUC-ROC results (LBWI-G
test dataset).
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Confronting the out-of-sample results shown in Table 4.16 with the ones obtained
on the LBWI-V (Table 4.8, we notice that the out-of-sample AUC-ROC of the VON-
RA (-0.0086) and the Logistic Regression (-0.0044) is less than what was achieved
previously, suggesting that this set of features might not be suited for linear mod-
els. On the contrary, all the remaining models achieved consistently better scores
than what was registered with the LBWI-V dataset: Gradient Boosting Machines
increases its performance by 0.0025 with respect to the LBWI-V, k-Nearest Neigh-
bors and Random Forests by 0.0030, Support Vector Machines by 0.0032, Neural
Network by 0.0033.

Mortality estimation

Table 4.17 reports the estimated mortality of each tested model. Very similarly to
what observed on the LBWI-V dataset, both the VON-RA and our models seem
to underestimate the true mortality. However, like in the LBWI-G setting, the esti-
mates of models coming from the pool of models remain more precise.

Observed VON-RA LR KNN SVM RF GB NN

0.1014 0.0805 0.0967 0.0915 0.0972 0.0971 0.0964 0.0962

Table 4.17: Out-of-sample observed and estimated mortality (LBWI-
G test dataset).

Once again, our models provide in general better estimates than the VON-RA
(which registers a 0.209 difference from the true value): the model that best approx-
imated the mortality was the Support Vector Machine (0.0042 difference), followed
by Random Forests (0.0043 difference), Logistic Regression (0.0047 difference), Gra-
dient Boosting Machines (0.0054 difference), Neural Networks (0.0056 difference)
and Nearest Neighbor (0.0099 difference). The gap between the VON-RA and the
observed mortality is 0.0209.

4.3.4 Discussion

Fig. 4.20 shows again that the double cross-validation step provided once again a
correct estimation of the behavior of the models in the subsequent model selection
phase. As was the case with the LBWI-V dataset, the cross-validation scores are
estimated very tightly by the three models outputted by the double cross-validation
phase, despite the use of a smaller amount of data.

Fig. 4.21 shows how the out-of-sample performance relates to the cross validation
scores obtained in the final model selection phase. Once again, we report the suc-
cessfulness of the cross-validation procedure in estimating the right range of val-
ues where the out-of-sample performance would fall. With respect to the LBWI-V
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Figure 4.20: Plot of the double cross-validation AUC-ROC range
against the cross-validation score (LBWI-G dataset).

dataset, we report that the estimates are this time a bit over-optimistic, but the
out-of-sample performance is again inside the estimated variability obtained by

VON-RA LR KNN SVM RF GB NN
0.86

0.87

0.88

0.89

0.90

0.91

0.92

CV Performance

OOS Performance

Figure 4.21: Plot of the cross-validation AUC-ROC estimation
against the out-of-sample performance (LBWI-G dataset).
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averaging the various cross-validation folds, so the results remain valid.

The results of the statistical hypothesis testing are shown in Table 4.18. All the
models achieved significant differences in AUC-ROC with respect to the VON-RA
model, with the exception of Logistic Regression. Furthermore, all the "complex"
models (Support Vector Machines, Random Forests, Gradient Boosting Machines
and Neural Networks) have reached significance in comparison with the Logistic
Regression models, and even k-Nearest Neighbors fell slightly above the signif-
icance level. This result emphasizes the fact that this dataset seem to be better
suited for models that are able to represent complex hypothesis spaces, and not
very favorable for linear models.

LR KNN SVM RF GB NN

VON-RA 0.1066 0.0013 < 0.0001 < 0.0001 < 0.0001 < 0.0001
LR 0.0573 0.0113 0.0294 0.0132 0.0020
KNN 0.2830 0.3608 0.2874 0.1195
SVM 0.9358 0.8291 0.5382
RF 0.7362 0.6324
GB 0.7633

Table 4.18: p-Values of DeLong’s AUC-ROC test of significance be-
tween correlated ROC curves (LBWI-G test dataset).

Table 4.19 shows the improvement in AUC-ROC that was achieved out-of-sample
by our models with respect to VON-RA. By looking at the table, it is evident that
models that utilize complex hypothesis spaces provide a higher improvement with
respect to linear models, same as what was observed in Table 4.11. This time the
gap seems to be even wider, with Random Forests, Support Machines, Gradient
Boosting and Neural Networks that more than double the performance of the Lo-
gistic Regression. k- Nearest Neighbors also performs well, scoring an improve-
ment that is almost twice the one obtained by the Logistic Regression.

LR KNN SVM RF GB NN

1.00% 1.90% 2.21% 2.18% 2.25% 2.33%

Table 4.19: Improvement (in percentage) in out-of-sample AUC-
ROC with respect to the VON-RA (LBWI-G test dataset).

With respect to mortality predictions, we report that every one of the models in
the pool produced a better estimations of the true mortality in the out-of-sample
data with respect to VON-RA. Such improvement is shown in percentage in Ta-
ble 4.20. With respect to Table 4.12, the improvements are smaller; this however
was somehow expected, since the gap between the VON-RA and the true mortal-
ity is narrower (0.0290 vs. 0.0209). We also remark that while the difference in
estimation of k-Nearest Neighbors was substantially unchanged (0.0101 with the
LBWI-V dataset, 0.0099 with the LBWI-G dataset), all the other models obtained
closer estimations with this dataset in comparison with the LBWI-V.



82 Chapter 4. Results

LR KNN SVM RF GB NN

20.08% 13.66% 20.75% 20.64% 19.68% 19.42%

Table 4.20: Improvement (in percentage) of the out-of-sample mor-
tality estimation with respect to the VON-RA (LBWI-G test dataset).

Table 4.21 provides, the calculated F1 scores that the final models obtained on the
out-of-sample data. Again, we remind that no proper optimization was performed
to calculate the F1 metric, hence the results are not to be considerate definitive.
We nonetheless note an increase in performance even in this case, with k-Nearest
Neighbors scoring an increase of 0.0066, Logistic Regression of 0.0084, Random
Forests of 0.109, Neural Networks of 0.0112, Support Vector Machines of 0.0146,
and finally Gradient Boosting Machines with 0.0153.

VON-RA LR KNN SVM RF GB NN

0.8918 0.9002 0.8984 0.9064 0.9027 0.9071 0.9030

Table 4.21: Out-of-sample F1 scores (LBWI-G test dataset).

4.3.5 The big picture

So far, we have reported and discussed the performances of our pool of models
with respect to the VON-RA on the two datasets that were produced for the study.
In this section, we will focus on the comparison of results in both datasets. Fig. 4.22
shows the out-of-sample results we obtained on the two datasets together. While
performing a statistically sound comparison between the two results is difficult,
mainly because of the very wide difference in size between the two datasets, this
picture offers some useful cues:

• we successfully managed to obtain models that perform significantly better
than the VON-RA using both the datasets. We consider this result a strong
one, since the VON-RA is a well-established model that has being perfected
year after year, while our work is relatively young. Furthermore, it confirms
that the rigorous application of model selection and validation techniques
leads to state-of-the-art performances, even in a difficult task like this one has
proven to be;

• the gap between the lowest and the highest scoring model constructed on the
LBWI-V dataset is very narrow. Much higher increases in performances ap-
pear in the LBWI-G dataset, with the VON-RA and the Logistic Regression
models scoring lower than what they did on the LBWI-V dataset. This sug-
gests that the second set of features might is better exploited by models that
are able to represent more complex hypothesis spaces, while not very benefi-
cial for linear models;
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Figure 4.22: Comparison of out-of-sample AUC-ROC in the two test
datasets (LBWI-V and LBWI-G).

• on the LBWI-G dataset, we used only about 30% of the available data, be-
cause of the huge number of missing values. Nonetheless, we managed to
obtain both a better absolute AUC-ROC with respect to the LBWI-V dataset
and higher increases in performance in general. All the learning algorithms,
especially the ones that are able to represent complex hypothesis spaces, per-
form better with large quantities of data. This means that ultimately, if these
models prove to be valid, the use of more data with the new set of features
could be beneficial and perhaps lead to further improvements;

• every model we constructed and examined provides a better estimate of the
mortality than the VON-RA. Even though we could not prove this result lo-
cally on actual NICUs (since the dataset we were provided was opportunely
anonymized for privacy purposes), this result constitutes evidence that our
models can lead to better risk-adjusted scores with respect to infant mortal-
ity, eventually resulting in better decisions concerning quality of health care
across hospitals.

One last consideration regards the state of the task, and provides further justifi-
cation to results that a short-sighted analysis could consider minimal. It seems
evident that we are reaching the upper bound on the performances that one could
obtain in this particular task. We cannot explain infant mortality completely just
by looking at a very partial and short term history of the mother and some mea-
surements on the newborn right after birth. Several factors that might happen in
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the days following birth, which influence infant mortality at 28 days, are not rep-
resented by these features; others might still be unknown to the clinicians. The
results indicate that we are moving towards closing the gap between the perfor-
mance that more traditional predictive models can achieve and the limit imposed
by both the nature of the problem and factors that remain unaccounted for. In light
of this claim, even small improvements have to be considered meaningful.

Feature ranking

Stepping aside for one moment from the pure supervised objective, as anticipated
in Section 4.1, we wanted to obtain a more precise ranking of the features as calcu-
lated by more complex learning algorithms such as Random Forest. In particular,
we focus on the ranking produced by the training after the final model selection
phase, such that the comparison with the one produced by the Decision Tree (which
was itself trained with all the available data) is as fair as possible. We will not focus
on the numbers obtained, since the calculations come from two different libraries
and are performed very differently: what is important is the order that is assigned
to the features. The results are shown in Table 4.22.

Feature Mean Decrease in Impurity

bwgt 0.2661
gadays 0.2411
bheadcir 0.1594
ap1 0.1291
ap5 0.1213
chorio 0.0143
nbirths 0.0134
vagdel 0.0131
sex 0.0091
aster 0.0086
mhypertens 0.0085
locate 0.0069
pcare 0.0050
amagsulf 0.0039

Table 4.22: Feature importances calculated by the Random Forest
algorithm.

The ranking seems to confirm some of the insights that emerged from previous
analysis (with Decision Tree and SOM). We see that the first five features are the
strongest predictors in the set, since they retain once again the majority of the dis-
criminative power. Immediately after, though their contribution is smaller, we see
three features that were indicated by the unsupervised analysis as potentially help-
ful: chorio, nbirths and vagdel, which are not included in the LBWI-V dataset
and could thus be among the features responsible of the improvement we reached
using the LBWI-G dataset. Another consistent result with respect to the Decision
Tree analysis is that feature amagsulf is ranked last in both cases. This is somehow
in contrast with what the medical intuition is on the role of magnesium sulfate in
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LBWI mortality, and might constitute a reason to investigate in depth the relevance
of this feature by clinicians.

4.3.6 Considerations prior to deployment

The models built and examined in this study were mainly thought for survey pur-
poses, but there is nothing to prevent their deployment for producing risk-adjusted
scores for NICUs. With this perspective in mind, however, we advice that two mea-
sures should necessarily be taken before going into production. These are:

• perform a more intensive model selection phase. During our work, our model
selection algorithms generally employed 100 random samples from each learn-
ing algorithm hyper-parameter distributions. While this number is more than
enough from an academic point of view, in a production setting there is the
need to obtain the higher score possible before deployment. This implies that
the space of hyper-parameters must be explored more thoroughly, perhaps
even using grid-search, to find better and better configurations. Furthermore,
for reproducibility reasons, we fixed a random number generator seed. In a
production setting, however, reproducibility is not a concern, therefore the
random seed value becomes itself a hyper-parameter;

• take care of the missing values. Before, we illustrated how our LBWI-G
dataset was smaller in size than the LBWI-V, and that this was mainly due
to missing values. In our study, we did not worry too much about this issue,
since in the future those features will appear more frequently. When used in
production, however, the models need to be used on as much of the data as
possible to ensure that no valuable information is lost in the preprocessing.

With respect to the second point, we tested the performance of our models on an
imputed version of the test dataset, where missing values were substituted respec-
tively with the mean (for bwgt, bheadcir, gadays, ap1, ap5, nbirths) and the
most frequent value (for the remaining features). With this imputation scheme, we
saved an additional 277 observations, changing the size of the test data from 2792
to 3069 records, which dropped the percentage of missing data from almost 14% to
an acceptable rate of 5%.

VON-RA LR KNN SVM RF GB NN

0.8755 0.8822 0.8897 0.8930 0.8929 0.8937 0.8939

Table 4.23: Out-of-sample AUC-ROC scores (LBWI-G test dataset
with imputation).
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Despite the imputation scheme was pretty simple, the results, shown in Table 4.23,
are encouraging. Indeed, we observe that the models appear to be robust to im-
putation, as they behave consistently with what observed in the out-of-sample test
with the smaller dataset, and in some cases even account for a tiny improvement.
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Chapter 5

Conclusions and further works

The objective of this study was the investigation of the problem of predicting mor-
tality of low birth-weight infants from a machine learning perspective. We con-
ducted thorough experiments using state-of-the-art machine learning models, which
involved handling the data to make it usable by such models in order to express
their full potential, as well as training and evaluating the models rigorously fol-
lowing consolidated model selection and validation practices. Furthermore, we
tried to characterize the above-mentioned problem by exploring the data with a
combination of supervised and unsupervised models, to provide field experts with
possible additional knowledge that could result, in the future, in an even better
understanding of the problem.

When we looked at the data that we were given for the first time, together with our
clinicians support team we formulated a series of simple questions, specifically:

• Can we train one or more predictive learning models that have better predic-
tive performance and that generalize their results better than the VON-RA
model?

• Can learning algorithms that are able to represent more complex hypothesis
spaces provide the sought-after performance increase?

• Is the new set of features capable of improving anticipated prediction of LBWI
mortality risk?

• Can we exploit machine learning based exploratory analysis of the data to
identify clinically-relevant patterns?

We let data answer to these questions, finding responses we believe to be impacting
and that provide new insight into the characterization and assessment of LBWI
mortality. In the following, we will sum up our work by discussing the answers
that emerged from the data.
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Better predictive models

The answer to the first question is yes: by using state-of-the-art machine learning
models, dedicated data manipulation and specific model selection and evaluation
techniques, we successfully managed to create better performing models than the
VON-RA, in both the datasets that were examined in this study. In the LBWI-V
dataset, the resulting improvement was of 0.94% for the best performing model;
in the LBWI-G dataset, which is constituted by a set of features selected by our
neonatologists support team, the improvement more than doubled, summing up
to 2.36% for the best performing model. We consider these results positive in light
of:

• the fact that the VON-RA model is a reliable and consolidated model that has
been perfected by neonatologists for over 25 years;

• the fact that these results refer to out-of-sample data consisting of patients
whose features were recorded in a completely unseen year with respect to
the training data;

• the fact that the problem is probably approaching saturation, meaning that
further significant improvements are less likely to be possible. With respect to
this point, both improvements, which appear relatively narrow at first sight,
characterize as a huge step ahead in performance;

• the fact that all the comparisons we performed between the VON-RA and
our models through hypothesis testing have shown that the differences in
our performance of choice (AUC-ROC) were significant, meaning that the
improvements are justifiable not only on a numerical basis, but also from a
statistical point of view.

Furthermore, all our models provide more accurate mortality estimations than the
VON-RA, which means that these models are likely to be more accurate to compare
NICUs. Therefore, their adoption in comparison studies could lead to improve-
ments in the quality of health care of hospitals.

At last, one word of caution: we remind that these results are strictly dependent
on the data at our disposal, which regards a restricted cohort composed only by
Italian infants. Nonetheless, since we obtained strong results and proved to have
constructed a valid approach to tackle this problem, we believe that our models
and methodologies are sound independently of the size and variety of the data and
demand to be tested on a worldwide scale.
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The impact of complex models

When we started our work, we decided to select a pool of promising state-of-the-art
learning algorithm to train on the task, setting up the model selection and evalua-
tion framework in order to be independent on the particular model choice. Given
this agnostic set-up, what we observed in both datasets is that models that can
represent complex hypothesis spaces obtained systematically better performances
than linear models such as Logistic Regression. This was less evident in the LBWI-
V dataset, where it seems that the relationship among the features is only slightly
non-linear and traditional models like Logistic Regression still achieve good per-
formances. Another reason of the small improvement might be the fact that we are
possibly reaching the upper bound of performances for this learning problem given
that choice of features: in this context, even a narrow improvement is likely to be
significant. On the other hand, in the LBWI-G dataset, models like Random Forests,
Support Vector Machines, Neural Networks or Gradient Boosting Machines seem
to better capture the actual relationships underlying the data. Our belief in this
sense is that the new features add a degree of non-linearity, which can be fully
captured and exploited with the use of complex and powerful machine learning
models.

The impact of the new set of features

Our results show that models trained with the new set of features, that were sug-
gested to us by field experts and constitute one of the key original contributions
of this work, performed systematically better than the LBWI-V features, using less
than a third of the data. We believe that this result represents a strong argument
in favor of this new set of predictors. The main hindrance we had to cope with
during our work was the high percentage of missing data. We are firmly convinced
that with more data, we could have obtained even stronger results, since machine
learning algorithms give their best when they are trained with large data collec-
tions. The results we have produced suggest that the contribution of these new
predictors ultimately lead us to a reach an improvement at the task. Therefore, we
invite the medical community to consider these highly missing features as much
important as the other more traditional predictors, and strongly encourage their
steady collection in neonatal protocols. We also think that the medical community
should investigate further the clinical relationship between these features and the
mortality of LBWI, since there might be hidden but more impacting information
that need to be discovered, which could help reach further improvements.
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A better characterization of the problem

In the unsupervised part of our research, we provided clues that the dataset has in-
herent structure that could be exploited. The SOM analysis showed us that infants
coming from multiple gestations are "seen" differently by unsupervised learning
algorithms, producing two clearly separated mortality clusters, which we believe
need to be explored more thoroughly by clinicians to see if these two populations
are characterized by differences in factors that lead to mortality. The various SOM
visualization techniques and a feature ranking allow us to discover that a diagnosis
of chorioamnionitis and a cesarean delivery seem to be, immediately after the more
clinically obvious, the strongest mortality predictors, and might have some form of
clinically relevant dependence with a higher mortality risk that could be worth to
investigate in-depth. The analysis of the Decision Tree learning process suggests
that Apgar scores might be features that "trick" the learning algorithm to produce
misclassification errors. Our work is not to draw conclusions from these facts: we
simply expose them to the medical community, hoping to drive the research in the
field towards the study of factors that were previously perhaps unanalyzed or not
taken into proper consideration.

5.1 Future work

This study opens up to a series of areas that need further investigation. A logi-
cal next step to our analysis is to incorporate the additional knowledge that was
obtained in the unsupervised part of this work into the model building process,
for example by converting the information that clinicians could derive from the
unsupervised analysis into new and more predictive features. Another interesting
follow-up is to include the unsupervised models themselves inside the modeling
process: for example, one could use the SOM to preprocess the training data before
feeding it to a predictive learning model, leveraging the clustering that this model
produces to obtain better predictive performances.

The more intriguing possibility, however, comes with the availability of more data.
Being able to test non-linear models with a huge amount of data from all over the
world is what will ultimately prove that our approach is sound or maybe drive us
towards an alternative and more prolific direction.
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Appendix A

Pseudo-code for double
cross-validation

This exemplifying code in pseudo-Python explains how double cross-validation
was implemented for the purposes of the experiments presented in Chapter 4.

Listing A.1: Double cross-validation

N_OUTER_FOLDS = 3

N_INNER_FOLDS = 5

N_HYPERPARS_TRIALS = 100

def model_selection(algorithm, data, labels, hyperpars):

pred = select_column_from(data, "pred")

data = remove_column_from(data, "pred")

died = select_column_from(data, "died")

data = remove_column_from(data, "died")

inner_folds = split(data, labels, N_INNER_FOLDS)

test_scores = []

for hpar in hyperpars:

model = create_model(algorithm, hpar)

cv_scores = []

for [train_idx, test_idx] in inner_folds:

data_train = subset(data, train_idx)

data_test = subset(data, test_idx)

labels_train = subset(labels, train_idx)

labels_test = subset(labels, test_idx)

model = train(model, data_train, labels_train)

score = test(model, data_test, labels_test)

append(cv_scores, score)

append(test_scores, average(cv_scores))

best_model_index = argmin(test_scores)



92 Appendix A. Pseudo-code for double cross-validation

best_model_hyperpars = hyperpars[best_model_index]

best_model = create_model(algorithm, best_model_hyperpars)

best_model = train(best_model, data, labels)

return best_model

def double_cv(trainfile, algorithm):

data = load_data(trainfile)

pred = select_column_from(data, "pred")

data = remove_column_from(data, "pred")

died = select_column_from(data, "died")

data = remove_column_from(data, "died")

outer_folds = split(data, died, N_OUTER_FOLDS)

for [train_idx, test_idx] in outer_folds:

data_train = subset(data, train_idx)

data_test = subset(data, test_idx)

died_train = subset(data, train_idx)

died_test = subset(data, test_idx)

pred_train = subset(pred, train_idx)

pred_test = subset(pred, test_idx)

hyperpars = sample_configurations(algorithm, N_HYPERPARS_TRIALS)

best_model = model_selection(algorithm, data_train, died_train,

hyperpars)

auc_test = auc_score(best_model, data_test, died_test)

auc_vonra = auc_score(pred_test)

compare(auc_test, auc_vonra)
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Explanation of hyper-parameters
values

As we mentioned in Section 3.8.3, we describe hereby the values of the hyper-
parameters that were tuned during the final model selection phase. The type of
feature scaling is a global hyper-parameter that affects all the learning algorithms.
All the other parameters are intend to be specific to each algorithm. We also report
that the random seed for each of our experiments was 123.

Feature scaling

• scaler: specifies the feature scaling method among min-max scaling, de-
mean transformation, standardization or no scaling at all.

Logistic Regression

• C: inverse value of the regularization coefficient. Smaller values mean a more
regularized model.

• penalty: type of regularization penalty. Besides the usual L2 penalty, there
is also an L1 version, based on Manhattan distance;

• warm_start: enables or disables the warm-start optimization technique, which
is basically a trick that allows the classifier to reuse previous results in order
to speed the search for the regularization coefficient [11].

k-Nearest Neighbor

• n_neighbors: the number of examples constituting the neighborhood.

• p: power parameter for the Minkowski metric. When p = 1, this is equivalent
to using Manhattan distance, and Euclidean distance for p = 2.
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• weights: weight function used in prediction. If equal to uniform, all ex-
amples in the neighborhood are weighted equally; if equal to distance, the
examples are weighted with the inverse of their distance to the example.

Support Vector Machines (RBF Kernel)

• C: inverse value of the regularization coefficient. Smaller values mean a more
regularized model.

• gamma: a value that is used to scale the kernel matrix.

Random Forest

• bootstrap: whether to use bootstrap samples to construct the dataset each
tree is given;

• criterion: the criterion function to determine the best split. Choices are
Entropy or the Gini index;

• max_depth: maximum depth of each tree in the forest. This parameter acts
as a regularizer: a deeper tree means less regularization;

• max_features: maximum number of features to consider when looking for
the best split. Can be either None (all the features), log2 (base 2 logarithm of
the number of features), sqrt (square root of the number of features);

• min_samples_split: minimum number of examples required to split a
node. This parameter acts as a regularizer: smaller values mean less regular-
ization;

• n_estimators: number of trees composing the forest.

Gradient Boosting Trees

• colsample_bytree: subsample ratio of features when constructing each
tree;

• learning_rate: value to weigh the contribution of each tree;

• max_depth: maximum depth of each tree in the forest;

• min_samples_split: minimum number of examples required to split a
node. This parameter acts as a regularizer: smaller values mean less regular-
ization;

• n_estimators: number of boosting stages to be performed;

• gamma: regularization parameter;
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• subsample: subsample ratio of training examples when constructing each
tree.

Neural Networks

• activation: activation function of the hidden layer;

• batch_size: mini-batch dimension (the choices are powers of 2 to facilitate
the work of the GPU);

• dropout: dropout regularization parameter;

• epochs: maximum number of epochs to train the net. If this number is
reached, the training is interrupted;

• hidden_units: number of units in the hidden layer;

• init: type of weights initialization routine. Can be sampled uniformly be-
tween 0.1 and -0.1, or normally with mean 0 and standard deviation 0.1. The
Lecun initialization method is best described in [32];

• learning_rate: learning rate of the gradient descent optimizer;

• momentum: momentum is a fraction of the previous values of the weights that
is applied to the update of the weights to allow faster learning. Such fraction
of update is regulated by this parameter;

• optimizer: the optimized gradient descent routine to update the weights.
Choices are stochastic gradient descent, RMSprop and Adam, which are descrived
for example in [49].

Some of the neural network parameters were fixed beforehand to speed up the
training process: the back propagation algorithm used mini-batches and the num-
ber of hidden layers was fixed to be 1. Note that in principle the latter assumption
does not pose a particular issue, since as long as they have at least one hidden layer,
neural networks are universal approximators [26]. In general, hyper-parameters that
were set beforehand do not influence learning directly (meaning that the algorithm
"learns" regardless of which hyper-parameter is set), but they do have an impact in
the amount of time needed to complete the learning.
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Appendix C

Final hyper-parameter values

LBWI-V dataset

Learning algorithm Hyper-parameter Value

Logistic Regression C 0.077700
penalty l2
warm_start True
scaler demean

k-Nearest Neighbor n_neighbors 194
p 1
weights uniform
scaler std

Support Vector Machine C 0.198076
gamma 4.684829
scaler std

Random Forest bootstrap True
criterion entropy
max_depth 7
max_features log2
min_samples_split 100
n_estimators 55
scaler None

Gradient Boosting Trees colsample_bytree 0.547000
learning_rate 0.050567
max_depth 3
n_estimators 391
reg_gamma 0.000010
subsample 0.208225
scaler None

Neural Network activation relu
batch_size 64
dropout 0.298524
epochs 25
hidden_units 196
init lecun
learning_rate 0.044112
optimizer sgd
scaler std
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LBWI-G dataset

Learning algorithm Hyper-parameter Value

Logistic Regression C 1485.514868
penalty l1
warm_start False
scaler std

k-Nearest Neighbor n_neighbors 201
p 1
weights distance
scaler std

Support Vector Machine C 942.959026
gamma 0.000600
scaler std

Random Forest bootstrap True
criterion entropy
max_depth 9
max_features log2
min_samples_split 36
n_estimators 191
scaler None

Gradient Boosting Trees colsample_bytree 0.456373
learning_rate 0.087289
max_depth 3
n_estimators 90
reg_gamma 0.000876
subsample 0.320172
scaler None

Neural Network activation relu
batch_size 64
dropout 0.501592
epochs 25
hidden_units 43
init lecun
learning_rate 0.061641
optimizer sgd
scaler std



99

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, et al. “TensorFlow: A System
for Large-Scale Machine Learning”. In: 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16). USENIX Association, 2016,
pp. 265–283.

[2] Sylvain Arlot and Alain Celisse. “A Survey of Cross-Validation Procedures
for Model Selection”. In: Statistics Survey 4 (2010), pp. 40–79.

[3] James S. Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter
Optimization”. In: Journal of Machine Learning Research 13.1 (2012), pp. 281–
305.

[4] James S. Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In:
Advances in Neural Information Processing Systems 24. NIPS, 2011, pp. 2546–
2554.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, 2006.

[6] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.
[7] Leo Breiman, Jerome H. Friedman, and Charles J. Stone. Classification and re-

gression trees. Chapman & Hall, 1993.
[8] Gavin C. Cawley and Nicola L. C. Talbot. “On Over-Fitting in Model Selec-

tion and Subsequent Selection Bias in Performance Estimation”. In: Journal of
Machine Learning Research 11 (2010), pp. 2079–2107.

[9] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting Sys-
tem”. In: CoRR abs/1603.02754 (2016).

[10] François Chollet. Keras. 2015. URL: http://bit.ly/2atJMxE.
[11] Bo-Yu Chu et al. “Warm Start for Parameter Selection of Linear Classifiers”.

In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2015, pp. 149–158.

[12] Thomas M. Cover and Peter E. Hart. “Nearest Neighbor Pattern Classifica-
tion”. In: IEEE Transactions on Information Theory 13.1 (Sept. 1967), pp. 21–27.

[13] Elizabeth R. DeLong, David M. DeLong, and Daniel L. Clarke-Pearson. “Com-
paring the Areas under Two or More Correlated Receiver Operating Char-
acteristic Curves: A Nonparametric Approach”. In: Biometrics 44.3 (1988),
pp. 837–845.

[14] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. 2nd
Edition. Wiley, 2000.

http://bit.ly/2atJMxE


100 BIBLIOGRAPHY

[15] Tom Fawcett. “An Introduction to ROC Analysis”. In: Pattern Recognition Let-
ters 26 (2006), pp. 861–874.

[16] Peter Flach. Machine Learning: the Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press, 2012.

[17] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting
Machine”. In: Annals of Statistics 29.5 (2001), pp. 1189–1232.

[18] Luigi Gagliardi et al. “Assessing mortality risk in very low birthweight in-
fants: a comparison of CRIB, CRIB-II, and SNAPPE-II.” In: Arch Dis Child
Fetal Neonatal 89.5 (2004), pp. 419–422.

[19] Larry C. Gilstrap, Robert Christensen, William H. Clewell, et al. “Effect of cor-
ticosteroids for fetal maturation on perinatal outcomes: Nih consensus devel-
opment panel on the effect of corticosteroids for fetal maturation on perinatal
outcomes”. In: JAMA 273.5 (1995), pp. 413–418.

[20] Trevor Hastie and Robert Tibshirani. The Elements of Statistical Learning. 2nd
Edition. Springer, 2009.

[21] Trevor Hastie et al. An Introduction to Statistical Learning with Applications in
R. 4th Edition. Springer, 2014.

[22] Simon Haykin. Neural Networks and Learning Machines. 3rd Edition. Pearson,
2009.

[23] Donald O. Hebb. The Organization of Behavior. Wiley, 1949.
[24] Jeffrey D. Horbar. “The Vermont Oxford Network: Evidence-Based Qual-

ity Improvement for Neonatology”. In: Pediatrics 103.Supplement E1 (1999),
pp. 350–359.

[25] Jeffrey D. Horbar et al. “Hospital and Patient Characteristics Associated With
Variation in 28-Day Mortality Rates for Very Low Birth Weight Infants”. In:
Pediatrics 99.2 (1997), pp. 149–156.

[26] Kurt Hornik, Maxwell Stinchcombe, and Halber White. “Multilayer Feed-
forward Networks Are Universal Approximators”. In: Neural Networks 2.5
(1989), pp. 359–366.

[27] David W. Hosmer Jr., Stanley Lemeshow, and Rodney X. Sturdivant. Applied
Logistic Regression. 3rd Edition. Wiley, 2013.

[28] John D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing In
Science & Engineering 9.3 (2007), pp. 90–95.

[29] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: a Clas-
sification Perspective. Cambridge University Press, 2011.

[30] Teuvo Kohonen. Self-Organizing Maps. 3rd Edition. Springer, 2001.
[31] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer, 2013.
[32] Yann LeCun, Leon Bottou, et al. “Efficient BackProp”. In: Neural Networks:

Tricks of the trade. Springer, 1998.
[33] Erich L. Lehmann and Joseph P. Romano. Testing statistical hypotheses. 3rd Edi-

tion. Springer, 2005.



BIBLIOGRAPHY 101

[34] Stuart P. Lloyd. “Least Squares Quantization in PCM”. In: IEEE Transactions
on Information Theory 28.2 (1982), pp. 129–137.

[35] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

[36] Wes McKinney. “Data Structures for Statistical Computing in Python”. In:
Proceedings of the 9th Python in Science Conference. 2010, pp. 51–56.

[37] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.
[38] The Vermont Oxford Network. Manual of Operations: Part 2. Data Definitions

& Infant Data Forms. Release 18.0. 2014. URL: http://bit.ly/2lg5J79.
[39] Travis E. Oliphant. “Python for Scientific Computing”. In: omputing in Science

& Engineering 9 (2007), pp. 10–20.
[40] Stephen W. Patrick, Robert E. Schumacher, and Matthew M. Davis. “Methods

of Mortality Risk Adjustment in the NICU: A 20-Year Review”. In: Pediatrics
131.1 (2013), pp. 68–74.

[41] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[42] John C. Platt. “Probabilistic Outputs for Support Vector Machines and Com-
parisons to Regularized Likelihood Methods”. In: Advances in Large Margin
Classifiers. MIT Press, 1999, pp. 61–74.

[43] Murray M. Pollack et al. “A Comparison of Neonatal Mortality Risk Predic-
tion Models in Very Low Birth Weight Infants”. In: Pediatrics 105.5 (2000),
pp. 1051–1057.

[44] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. 2016. URL: http://bit.ly/1gm1uk2.

[45] Brian Ripley. tree: Classification and Regression Trees. R package version 1.0-37.
2016. URL: http://bit.ly/2ktDttN.

[46] Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Information
Storage and Organization in The Brain”. In: Psychological Review 65.6 (1958),
pp. 65–386.

[47] Fabrice Rossi. Yasomi is Yet Another Self-Organising Map Implementation (in R).
2013. URL: http://bit.ly/2lghtGM.

[48] Guido van Rossum. Python Reference Manual. Tech. rep. 1995. URL: http:
//bit.ly/1oDM6iq.

[49] Sebastian Ruder. An overview of Gradient Descent Optimization Algorithms. Tech.
rep. 2016. URL: http://bit.ly/2ktPgbj.

[50] David E. Rumelhart, James L. McClelland, and Geoffrey E. Hinton. “Learn-
ing Internal Representations by Error Propagation”. In: Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1. MIT Press,
1986, pp. 77–109.

[51] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

http://bit.ly/2lg5J79
http://bit.ly/1gm1uk2
http://bit.ly/2ktDttN
http://bit.ly/2lghtGM
http://bit.ly/1oDM6iq
http://bit.ly/1oDM6iq
http://bit.ly/2ktPgbj


102 BIBLIOGRAPHY

[52] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

[53] Marina Sokolova and Guy Lapalme. “A Systematic Analysis of Performance
Measures for Classification Tasks”. In: Information Processing & Management
45.4 (2009), pp. 427–437.

[54] Nitish Srivastava et al. “Dropout: a Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[55] Theano Development Team. “Theano: A Python framework for fast compu-
tation of mathematical expressions”. In: arXiv e-prints abs/1605.02688 (2016).

[56] Vladimir N. Vapnik. The Nature of Statistical Learning. Springer, 2000.
[57] Juha Vesanto. “SOM-Based Data Visualization Methods”. In: Intelligent Data

Analysis 3.2 (1999), pp. 111–126.
[58] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag,

2009.
[59] Linda L. Wright, Jeffrey D. Horbar, Harry Gunkel, et al. “Evidence from Mul-

ticenter Networks on the current use of antenatal corticosteroids in very low
birthweight infants”. In: American Journal of Obstetrics and Gynecology 173.1
(1995), pp. 263–269.

[60] John A. F. Zupancic, Douglas K. Richardson, Jeffrey D. Horbar, et al. “Reval-
idation of the Score for Neonatal Acute Physiology in the Vermont Oxford
Network”. In: Pediatrics 119.1 (2007), pp. 156–163.


	Acknowledgements
	Introduction
	Motivation
	Thesis outline

	Machine Learning
	Binary classification
	Problem definition
	Learning algorithms and generalization
	Overfitting and regularization

	Models for binary classification
	Logistic Regression
	k-Nearest Neighbor
	Decision Trees
	Ensemble methods
	Support Vector Machines
	Artificial Neural Networks

	Performance metrics for binary classification
	Accuracy and the class imbalance problem
	Imbalance-aware metrics
	Metrics for probabilistic classifiers

	Model evaluation
	The hold-out validation estimator
	The cross-validation estimator

	Model Selection
	Double cross-validation

	Model comparison
	Unsupervised Learning
	Clustering
	Self-Organizing Maps


	Background and Methodology
	Background
	The Vermont Oxford Network
	Risk-adjustment for severity of illness
	The VON-RA model

	Data
	Objectives
	Data preprocessing
	The LBWI-V dataset
	The LBWI-G dataset

	Exploratory analysis of the two datasets
	Decision Tree learning experiments setup
	Unsupervised experiments setup
	Supervised experiments setup
	Feature scaling
	Double cross-validation
	Final model selection
	Out-of-sample testing
	Assessing the significance of the results

	Software and tools

	Results
	Results of the Decision-Tree learning analysis
	Feature ranking

	Results of the unsupervised analysis
	SOM prototypes
	SOM visualizations

	Results of the supervised analysis
	LBWI-V dataset
	Discussion
	LBWI-G dataset
	Discussion
	The big picture
	Considerations prior to deployment


	Conclusions and further works
	Future work

	Pseudo-code for double cross-validation
	Explanation of hyper-parameters values
	Final hyper-parameter values
	Bibliography

