
Università di Pisa

Scuola di Ingegneria
Corso di Laurea Magistrale in Ingegneria Robotica e dell’Automazione

Tesi di Laurea Magistrale

Development and Testing of a
Software Framework for Controlling

Humanoid Robots in
Disaster-Response Scenarios

Relatore:
Prof. Antonio BICCHI
Controrelatore:
Prof. Carlo Alberto AVIZZANO

Candidato:
Enrico CORVAGLIA

Anno Accademico 2015-2016

"Success is the ability to go from failure to failure
without losing your enthusiasm."

Winston Churchill

Abstract

The aim of this thesis is to design and develop a modular software framework for
controlling humanoid robots in teleoperation, in a context of disaster-response or
civil defense. Over the years, natural (earthquakes, floods, etc.) or man-made
disasters (nuclear reactor meltdowns, terrorist attacks, etc.) have caused several
victims. The state of the art of disaster-robotics allows to deploy efficient and
powerful robots in order to assist and support humans in the delicate phases of
searching and rescuing survivors. In particular, with the use of teleoperation, the
inclusion of a human operator (human-in-the-loop) can dramatically promote the
application of humanoid robots, due to the human superior competence in critical
thinking and context-awareness. This way, robots can be used as an interface
between man and environment. Under these concepts, the thesis work focused on
the design of a robust and efficient control architecture that brings whole-body
locomotion and manipulation capabilities to the robot. Specifically, this thesis dealt
with the development of a software module for teleoperating a robot while it is in
a vehicle, making it able to drive. The module internal architecture is structured
as a Finite State Machine, which allows to model a workflow of behaviors in an
event-driven manner, providing safe and robust control in a teleoperation scenario.
The effectiveness of the developed software has been validated during the DARPA
Robotics Challenge Finals, occured in Pomona, CA (USA), on June 5-6 of 2015.

Contents

1 Introduction 1
1.1 Disaster Robotics . 1

1.1.1 The Need of Teleoperation 2
1.2 DARPA Robotics Challenge . 3
1.3 Problem Statement . 6

2 Robot Platform 7
2.1 Walk-Man . 7

2.1.1 Main Features . 8

3 Software Architecture 10
3.1 Semi-autonomous Approach . 10
3.2 Software Layers . 12

3.2.1 Generic Control Module . 13
3.2.2 Pilot Interface . 14

3.3 Robot Simulation . 15

4 Whole-Body Control 17
4.1 Inverse Kinematics . 17
4.2 Hierarchical Inverse Kinematics: the Stack of Tasks 18

4.2.1 OpenSoT . 19

5 DARPA Robotics Challenge: the Driving Task 22
5.1 Preliminary Robot Configuration 23
5.2 Module Initialization . 23

5.2.1 Steering Task . 24
5.3 Control Loop Thread . 25
5.4 Finite State Machine . 26

5.4.1 State idle . 26

i

5.4.2 States reaching and approaching 28
5.4.3 States grasping and ungrasping 29
5.4.4 State accelerating . 30
5.4.5 State steering . 31
5.4.6 State moving hand away . 32

6 Conclusions 33
6.1 DARPA Robotics Challenge Finals 2015 33
6.2 Beyond DRC: Lessons Learned and Future Works 34

Bibliography 36

ii

List of Figures

1.1 Top: Fukushima nuclear reactor explosion. Bottom: human workers
exposed to radiations during the emergency-response phase. 2

1.2 Illustration of humanoid robots employed in a disaster-response
scenario. 3

1.3 DARPA Robotics Challenge Finals circuit. 4
1.4 DARPA Robotics Challenge Finals participating teams. 5

2.1 The Walk-Man robot. 7
2.2 The Pisa/IIT SoftHand. 8
2.3 The MultiSense SL range sensor module. 9

3.1 Human-robot interaction scheme. 10
3.2 Software architecture layers. 12
3.3 Generic YARP Module structure. 13
3.4 The Pilot Interface GUI during a driving task. 14
3.5 3D Interactive Marker of a steering wheel, used during the driving

task. 15
3.6 Example of Walk-Man robot driving in a simulated environment. . . 16

5.1 The Walk-Man robot in a driving configuration. 22
5.2 3D model of the handle mounted on the steering wheel. 24
5.3 Representation of the kinematic chains involved in the cartesian

tasks of the driving module. 25
5.4 Flow diagram of the control loop thread. 26
5.5 Workflow of the Finite State Machine. 27
5.6 Details of reaching and approaching states in a simulated environment. 29
5.7 Details of the Walk-Man robot after grasping the steering handle. . 30
5.8 Details of Walk-Man’s left foot while accelerating. 31
5.9 Details of the driving task dedicated widget on the Pilot Interface. . 32

iii

6.1 Time-lapse sequence of the DRC driving task performed by Walk-Man. 34

iv

Chapter 1

Introduction

1.1 Disaster Robotics

In recent years, robotics is going through a solid revolution in terms of development
and research. More often, the role of humans in the majority of the manufacturing
processes is being substituted by robots or, in general, automated machines. This
implies not only an improvement of productivity and time management, but it adds
also the possibility for the human beings to avoid risky and dangerous operations.
Extending these concepts outside the industries, in general in unstructered environ-
ments, robots could supply a remarkable support in terms of defence and human
aid. In particular, a whole branch of robotics is heading towards the so-called
disaster robotics [1]. Unfortunately, over the years, natural disasters (earthquakes,
floods, etc.) and man-made disasters (nuclear reactor meltdowns, terrorist attacks,
etc.) have caused victims not only during the accident itself, but also during the
search and rescue phase (Figure 1.1). The aim of disaster robotics is exactly to
employ efficiently designed robots to operate in the delicate and dangerous tasks
of rescuing accident survivors, providing a rapid emergency-response to limit the
fallout. A variety of robot designs exists depending on the situation and the specific
task, such as wheeled, snake-like or humanoid robots. While wheeled robots could
result more agile on rough surfaces, humanoids are more versatile and powerful,
allowing motions and employments similar to human ones, in particular complex
manipulation tasks like moving rubbles away, using advanced tools, opening doors,
driving vehicles and also bringing in-loco medical assistance. This thesis will take
account of the humanoid robots category.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Top: Fukushima nuclear reactor explosion. Bottom: human workers
exposed to radiations during the emergency-response phase.

1.1.1 The Need of Teleoperation

Despite the current evolution in the robotics field has brought great improvements
and capabilities to humanoid robots, their state of the art technology is still limited
in terms of autonomy. This limitation can be perceived even more in disaster
scenarios, where the readiness of decision making is crucial. It is thus clear that
the human competence in critical thinking and context-awareness must be taken

2

CHAPTER 1. INTRODUCTION

into account. With the use of teleoperation, the inclusion of a human operator
(human-in-the-loop) can dramatically promote the application of humanoid robots.
This perspective motivates teleoperation as a primary need in disaster-response
scenarios, because robots are deficient in many behaviors with respect to humans [2].
There are also other positive motivations for using teleoperation, not directly related
to robots tecnhology, which include some ethical consideration. Since this branch
of robotics is pointing towards direct human-robot interactions, such as rescuing a
wounded person, a human operator could be able to instill moral accountability
and respect for the human life, in robots.

Figure 1.2: Illustration of humanoid robots employed in a disaster-response scenario.

1.2 DARPA Robotics Challenge

The Fukushima Dai-ichi nuclear disaster, occured in March 2011, represented a
turning point for the robotics community. The disaster involved three explosions
in the nuclear reactor, which, according to a following analysis, could have been
prevented if there had been a proper intervention in the very first hours after the
accident. Although the American governative agency DARPA provided the robots
for supporting the rescue operations and site remediation, they were good only for
inspection, while lacking some essential functions such as turning a valve or cutting
openings in the wall. According to DARPA, this situation highlighted the need to
focus on the development of robots that can perform complex tasks in hazardous

3

CHAPTER 1. INTRODUCTION

environment (Figure 1.2). For these reasons, DARPA announced a competition,
the DRC, with the aim of pushing forward the state of the art of disaster robotics
[3]. Quoting the DRC Program Manager, Dr. Gill Pratt:

The DRC is a competition of robot systems and software teams vying
to develop robots capable of assisting humans in responding to natural
and man-made disasters. It was designed to be extremely difficult.
Participating teams, representing some of the most advanced robotics
research and development organizations in the world, are collaborating
and innovating on a very short timeline to develop the hardware, software,
sensors, and human-machine control interfaces that will enable their
robots to complete a series of challenge tasks selected by DARPA for
their relevance to disaster response.

As shown in Figure 1.3, robots had to perform different tasks, teleoperated from
human operators located far from the robots, in an environment that reconstructs
the disaster scenario of Fukushima.

Figure 1.3: DARPA Robotics Challenge Finals circuit.

In particular, the task sequence was:

• drive a vehicle from a safe area to a hazardous area;

• egress from the vehicle;

4

CHAPTER 1. INTRODUCTION

• open a door to enter a building;

• open a valve;

• cut through a wall using a tool;

• traverse a rough terrain;

• cross over rubbles;

• climb stairs to exit the hazardous area.

In addition, in order to better simulate a typical disaster scenario, all the communi-
cations between robots and operators were performed using a degraded network
channel.

The DARPA Robotics Challenge experience involved the best robotics teams from
all over the world, showing off some of the most innovative and cutting-edge robotics
technologies (Figure 1.4). On the other hand, a number of limitations and drawbacks
emerged [4]. A detailed analysis on the DRC event will be discussed on chapter 6.

Figure 1.4: DARPA Robotics Challenge Finals participating teams.

5

CHAPTER 1. INTRODUCTION

1.3 Problem Statement

This thesis treats the development of a software framework for controlling a semi-
autonomous humanoid robot, teleoperated from a human operator who makes
primary decisions and supervises all its actions. The robot, receiving high-level
commands, is capable of elaborating its own decisions through its artificial intelli-
gence, performing the commanded task at its best. This way, the robot acts exactly
as an interface between the operator and the environment, which is very convenient
in disaster scenarios. Specifically, the thesis work focused on the design of a robust
and efficient control algorithm that brings the robot the capability to drive a vehicle.
In a disaster scenario, the robot could reach the disaster area and bring in-loco
assistance, while leaving human beings in safety.

The thesis is organized as follows. In Chapter 2, the robot platform employed for
the development is presented, along with its structure and its main features. In
Chapter 3, a background of the multi-layered software architecture is presented,
including the Pilot Interface, which provides all the tools needed for a teleoperation
system. In Chapter 4, the Whole-body control problem is presented, with details
on Inverse Kinematics-based algorithms and a novel framework for managing task
prioritization with constraints. Chapter 5 focuses on the implementation of a
software module, used to enable the robot to perform a driving task in teleoperation.
In Chapter 6, the main results from this thesis work, and future developments are
presented.

6

Chapter 2

Robot Platform

2.1 Walk-Man

The robot platform used for this thesis work is Walk-Man (Whole-body Adaptive
Locomotion and Manipulation), a prototype of an adult-size humanoid robot [5].
Walk-Man is designed and developed under the collaboration between Università
di Pisa and Istituto Italiano di Tecnologia of Genova, with the primary goal of
providing support to the Italian Civil Defense in emergency-response scenarios, and
in general to provide assistance for dangerous tasks.

Figure 2.1: The Walk-Man robot.

7

CHAPTER 2. ROBOT PLATFORM

2.1.1 Main Features

Compliance

The concept behind the design of Walk-Man is based on the soft robotics. The
ever-growing need for robots in social activities, including the interaction with
humans, is leading to go beyond the classic assumptions of stiff robotics. The role
of soft robotics is thus to increase adaptability and robustness for creating a new
generation of robots, in the support of humans within their natural environments.
The Walk-Man robot has 33 DOFs actuated by high power electric motors, equipped
with intrinsic elasticity (Series Elastic Actuators) [6], that allow the robot to gain
a compliant behavior and to improve physical interaction capabilities.

Figure 2.2: The Pisa/IIT SoftHand.

Manipulation

Another key component that extends the concept of compliance is the robot hand,
which uses the Pisa/IIT SoftHand prototype [7]. The Pisa/IIT SoftHand is an
extremely under-actuated anthropomorphic hand that has 19 joints, but uses a
single motor to control them. The concept behind this kind of under-actuation is
that of synergies, which is inspired by the coordinated and ordered ensemble of the

8

CHAPTER 2. ROBOT PLATFORM

human hand motion. The major benefit of this design is the great adaptability of
the hand, allowing the grasp to be performed even with position/orientation error
with respect to the object. In addition, the SoftHand is very robust and it can
withstand severe forces exerted on it.

Perception

The perception system has the aim of augmenting the context-awareness capabilities
of a robot, and, indirectly, of the human who operates it. The Walk-Man robot
perception system is equipped with:

• A 3D range sensor module (MultiSense SL), mounted on the robot head
and composed by a stereo camera, a rotating 3D laser scanner, and a RGB
camera. This module is used to reconstruct the surrounding environment
with high-resolution details;

• A set of force/torque sensors, located at the end-effectors, useful to handle
the interaction with the enviroment;

• A set of inertial measurement units (IMU), that provides the necessary body
orientation sensing.

Figure 2.3: The MultiSense SL range sensor module.

9

Chapter 3

Software Architecture

3.1 Semi-autonomous Approach

The state of the art of humanoid robotics is still relatively immature in terms of
robots’ autonomous capabilities. In addition, especially when dealing with disaster
scenarios, issues such as telecommunications degradation could occur, making some
kind of human intervention strictly necessary. Hence, the software architecture
employed in this work follows a teleoperation-oriented approach, where a human
operator (also referred to as the pilot) has an active role in the control system
[8, 9]. This type of approach, also known as semi-autonomous approach, allows
the operator to focus on high-level control and supervisory tasks, while leaving
the robot to address low-level tasks. All of these concepts fall under the field of
Human-Robot Interaction (HRI).

Figure 3.1: Human-robot interaction scheme.

A benefit of the semi-autonomous control approach is that the operator can dynam-
ically set the level of autonomy of the robot, according to the task or the context.
In this way, the operator can exploit low-level robot capabilities at their best,
when needed, without losing focus on the whole operation. Also, in terms of data
exchange between the robot and the operator, this system leads to a remarkable

10

CHAPTER 3. SOFTWARE ARCHITECTURE

improvement of the bandwith used, which could be crucial in disaster-response
scenarios.

The implementation of the multi-level autonomy takes inspiration from the Motion
Description Language (MDL) approach [10]. MDL is a formal language used to
abstract different types of complex behaviors into a set of basic control laws, called
primitives. In humanoid robotics, where high-DOFs robots are employed, the
motion control problem adopts the operational-space formulation, where tasks are
defined in the cartesian space instead of the robot joint space [11]. In this view, a
single cartesian task can be seen as a primitive in the MDL.

Following these principles, it is possibile to characterize different methods for
managing robot autonomy in teleoperation-oriented systems:

Traded Control The top-level provides the higher level of autonomy to the
robot. The action of the operator is thus limited to initiating a task or a behavior
(including the composition of primitives) for a robot to follow, which the robot
performs autonomously. Of course, the operator can stop the robot or issue new
tasks at any time.

Shared Control In Shared Control, the operator continuously provides input
to the robot. These inputs, that could be for example points in the cartesian
space, are interpreted by the robot, which generates the related behavior in order
to accomplish the goals. In addition, the robot has the necessary autonomy to
modify operator’s inputs if it believes that those actions would violate certain safety
objectives, such as colliding with obstacles or losing balance.

Direct Control In Direct Control, no robot autonomy is used, since the operator
manually controls the robot by regulating the joint displacement.

In general, it is important that the operator could be able to switch seamlessly
between the different levels of robot autonomy.

11

CHAPTER 3. SOFTWARE ARCHITECTURE

3.2 Software Layers

The software architecture used for this work, as shown in Figure 3.2, is organized
into four layers:

• A GUI used to remotely control the robot, the Pilot Interface.

• The control and perception modules on the robot-side, connected to the
operator-side through a network bridge.

• A hardware abstraction layer (HAL) that remotizes the robot hardware,
exposing it to its upper layer.

• The firmware of the actuactors running in embedded boards.

Figure 3.2: Software architecture layers.

Two middlewares supports the whole architecture, in particular:

ROS Robot Operating System [12], a community-driven framework, is adopted for
the Pilot Interface GUI, to visualize the state of the robot within a 3D-reconstructed

12

CHAPTER 3. SOFTWARE ARCHITECTURE

environment and to handle the perception hardware, including a 3D camera sensor
and a LIDAR sensor.

YARP Yet Another Robot Platform [13], a robotics framework used for the
development of the control modules and for handling communications between the
robot and the operator (network bridge). Also, it provides a set of libraries and tools
to manage the hardware abstraction layer, useful to interface the above-mentioned
modules with the low-level components of the robot.

This section will focus on the first two layers, namely the control modules and the
Pilot Interface.

Figure 3.3: Generic YARP Module structure.

3.2.1 Generic Control Module

Based on a modular approach, each module can be considered as a node of a
distributed system. In particular, since all control modules share a significant
portion of code and procedures, it could lead to an inconvenient duplication of code.
To avoid this overhead, the software is provided with a generic control module
based on YARP, called Generic YARP Module (GYM) [14]. A GYM is composed
of two threads: a watchdog and a control loop thread (Figure 3.3). The watchdog
is a low-frequency thread running at 1 Hz. Its inputs are the commands used to
manage the execution of the module, such as start,stop,pause,resume,quit (the
Switch Interface). The output is the status of the module (the Status Interface),
which also depends on the internal state of the control loop thread. The control loop

13

CHAPTER 3. SOFTWARE ARCHITECTURE

thread is the main thread of the module, running at higher frequency with respect
to the watchdog, in a range between 100 Hz and 500 Hz. It represents the core
of GYM, and it implements the robot motion control through a set of primitives,
which can be chained to define a complex task, such as driving a car, turning a valve
or opening a door [15, 16]. The control loop thread accepts high-level commands
as input from the operator (the Command Interface) and it uses them to evolve
a Finite State Machine. In fact, each primitive is implemented within a state of
the state machine. After a new state transition, a trajectory is planned for one or
more links, which is then sent to an Inverse Kinematics solver. Finally, the solver
takes care of the computation of the control law that regulates the robot motion.
The detailed description of the components of a GYM module will be explained in
chapter 5, where a module designed for the driving task is presented.

Figure 3.4: The Pilot Interface GUI during a driving task.

3.2.2 Pilot Interface

The Pilot Interface is the top-level layer of the software architecture and, as the
name suggests, has the purpose of providing a visual interface to remote control
a robot (Figure 3.4). It is a user-friendly GUI (Graphical User Interface), where
the operator could monitor the environment and the robot status and could make
correct decisions to perform the tasks. Basically, the Pilot Interface layout is
composed of:

14

CHAPTER 3. SOFTWARE ARCHITECTURE

• Visualization/Perception panel:

– a first-person view of the robot from its main camera;

– an interactive environment, including a third-person view of the robot
state and its surrounding scene in the form of point clouds, reconstructed
by the perception devices.

• Control panel:

– a set of task-specific and generic control widgets, in which there are
different buttons corresponding to high-level tasks, such as reach or grasp
an object, or walk 10 meters straight;

– a widget that allows to manage a set of 3D-interactive-markers. These
markers are useful for referring the pose of some objects of interest
in the enviroment, with respect to a known robot frame (Figure 3.5).
For example, for a manipulating task like turning a valve, the operator
superimposes the corresponding marker over the 3D-reconstructed point
cloud of the valve.

Figure 3.5: 3D Interactive Marker of a steering wheel, used during the driving task.

3.3 Robot Simulation

During the phases of design and development of robotics projects, an invaluable tool
is certainly a good simulator. By accurately simulating robots and environments,
software designed to operate on a real robot can be executed and validated on
the equivalent simulated system. For this thesis work, the open-source Gazebo

15

CHAPTER 3. SOFTWARE ARCHITECTURE

simulator is used [17], along with a set of plugins that allows the simulated robot to
communicate with the YARP framework [18]. Since these plugins share the same
interfaces of the hardware abstraction layer, they enable the interoperability of the
YARP modules between a real robot and its simulated counterpart. For instance,
in Figure 3.6 are shown some of the tests performed during the development of the
driving task module.

Figure 3.6: Example of Walk-Man robot driving in a simulated environment.

16

Chapter 4

Whole-Body Control

Nowadays robots are becoming increasingly efficient in performing many different
and complex tasks, such as manipulating objects, running or jumping. But in
real world applications, a critical limitation of robots is that, in most cases, they
are used to perform these tasks individually. To address these constraints, a
promising reasearch field pointing towards the right direction is Whole-Body Control.
Whole-Body Control takes inspiration from the human behaviour of exploiting
full capabilities of the entire body when addressing different tasks simultaneously.
This control framework finds great applications in highly redundant robots, such as
humanoid robots, for executing multiple tasks at different levels of priority, even
including the interaction with the environment.

4.1 Inverse Kinematics

A fundamental problem in robotics, which goes under the name of Inverse Kine-
matics problem, is that of mapping tasks or objectives defined in the operational
space, into the corresponding joint-space commands. Thus, given a desired task-
space end-effector pose, the Inverse Kinematics problem consists in determining
the corresponding joint configuration. Since the problem is in general non-linear,
it is not possible to compute a solution in closed-form. This can lead to different
scenarios, i.e. no admissible solutions (due to robot’s kinematic structure, such as
joint limits), multiple solutions or infinite solutions. The latter case occurs when
the robot is redundant, which means that the robot’s degrees of freedom n are
greater than the desired task dimension m.

Deriving with respect to the time the following relationship

x = f(q) (4.1)

17

CHAPTER 4. WHOLE-BODY CONTROL

where x ∈ Rm represents the operational-space pose, function of joint variables
q ∈ Rn, leads to:

ẋ = J(q)q̇ (4.2)

where the Jacobian matrix J ∈ Rm×n is the linear operator that maps q̇, the
joint velocities, into ẋ, the operational-space velocities of a distal link, usually an
end-effector. For a redundant robot, a general solution for the Differential Inverse
Kinematics problem, which is the inverse of the problem (4.2), is:

q̇d = J†ẋd + (I− J†J)q̇0 (4.3)

where J† is the Jacobian pseudo-inverse and q̇0 is an arbitrary joint-space vector of
velocities. Considering q̇0 as a solution of a lower priority task, as in:

q̇0 = J†0ẋ0 (4.4)

it is possibile to introduce a task prioritization by projecting q̇0 onto the null space
of the first task’s Jacobian J through the projection operator (I− J†J). The lower
priority task q̇0 is executed at its best without interfering with the higher priority
task q̇d. A fundamental framework that extends the task prioritization problem
ideally to n-tasks is referred as Stack of Tasks (SoT) [19].

4.2 Hierarchical Inverse Kinematics: the Stack of
Tasks

Considering a redundant robot that has to execute n tasks simultaneously, each
task Ti can be described by its corresponding task error ei. The time derivative of
the error ei is expressed as:

ėi =
∂ei
∂q

q̇ +
∂ei
∂t

= Jiq̇ +
∂ei
∂t

(4.5)

where Ji is the Jacobian associated with the ith task. To ensure error convergence,
the error dynamics is constrained to follow exponential dynamics:

ėi = −λei (4.6)

18

CHAPTER 4. WHOLE-BODY CONTROL

Combining (4.5) with (4.6), leads to

Jiq̇ = −λei −
∂ei
∂t

= ė∗i (4.7)

Hence, a set of tasks can be fully described by Ti = (Ji, ė
∗
i). A typical limitation of

the simple Inverse Kinematics control scheme is that it doesn’t take into account
constraints in the form of inequalities. Thus, the Inverse Kinematics problem can
be integrated into a Quadratic Programming (QP) problem with linear constraints.
A solution for a generic task can be computed solving the following QP problem

q̇i = argmin
q̇
‖Jiq̇− ė∗i ‖

s.t. Ac,iq̇ ≤ bc,i

(4.8)

The formulation used in (4.8) allows also to express lower and upper bounds for
the constrained variables, as well as to use equality constraints. In general, for the
nth task, the problem can be written as a cascade of QP problems:

q̇d = argmin
q̇

‖Jnq̇− ė∗n‖

s.t. A1q̇ = A1q̇1

...
An−1q̇ = An−1q̇n−1

Ac,1q̇ ≤ bc,1

...
Ac,nq̇ ≤ bc,n

(4.9)

where q̇d is the desired joint velocities vector, while the equality constraints guar-
antee the correct hierarchy between tasks. The solution vector q̇d is then usually
integrated and used as control input for the robot:

qd = q + q̇d∆t (4.10)

where ∆t is the control loop sample time.

4.2.1 OpenSoT

A novel Whole-Body Inverse Kinematics oriented tool, OpenSoT [20], is used as
high level robotics library to easily describe the control problem, including the

19

CHAPTER 4. WHOLE-BODY CONTROL

definition of tasks, constraints and bounds. The main structures of interest of this
library are:

Cartesian Task

A Cartesian Task can be defined as a composition of a Cartesian position task and
a Cartesian orientation task. At each step, OpenSoT computes the Jacobian bJd,
according to given distal link and base link. In addition, it computes the Cartesian
errors, in position and orientation:

ep = pd − p

eo = −(ηdε− ηεd + [εd×]ε)
(4.11)

where pd =
[
xd yd zd

]T
and αd =

[
ηd ε1,d ε2,d ε3,d

]T
are, respectively, the

desired task-space position and orientation, expressed as a quaternion. Therefore,
the Cartesian task TC can be defined as:

TC,p = (bJd,p, ṗd + Kpep)

TC,o = (bJd,o,ωd + Koeo)
(4.12)

where Kp and Ko are positive definite weight matrices and ξd =
[
ṗd ωd

]T
is the

desired twist for the considered distal link.

Active Joint Mask

When executing a Cartesian task, usually all the joints of the involved kinematic
chain are actively used. For certain tasks, it could be convenient to use just a
sub-set of joints, leaving some of them in a locked state. For this purpose, given a
set of joints to lock, the Active Joint Mask sets those joints’ columns of the task
Jacobian to zero, so that the related task becomes:

Tmask = (Jmask, ė
∗) (4.13)

where the ith column of Jmask is defined as:

Jmask,ci =

{
Jci if joint i is active

0 if joint i is locked
(4.14)

20

CHAPTER 4. WHOLE-BODY CONTROL

Constraints and Bounds

OpenSoT is able to manage several types of constraints and bounds :

Constraint Equation

Unilateral constraint Acq̇ ≤ bu

Bilateral constraint bl ≤ Acq̇ ≤ bu

Unilateral bounds q̇ ≤ bu

Bilateral bounds bl ≤ q̇ ≤ bu

Table 4.1: Constraints and Bounds.

Since bilateral constraints and unilateral and bilateral bounds can be easily trans-
formed in the form of unilateral constraints, it is possible to enforce them in the
standard QP problem (4.8). For robotics applications, some fundamental constraints
and bounds are imposed on:

• Joint limits : to avoid reaching physical joint limits;

• Joint velocity limits : to generate joint trajectories with bounded velocities;

• CoM velocity limits: to keep the cartesian velocity of the center of mass
within imposed bounds.

21

Chapter 5

DARPA Robotics Challenge: the
Driving Task

In this chapter, the implementation of the software module for the DRC driving task
is presented1. The aim of this module is to control a humanoid robot, positioned
inside a vehicle, that has to drive from a point A to a point B, while a remote
operator sends high-level commands to it. The module is implemented as a GYM
module, with a control loop thread frequency of 250 Hz.

Figure 5.1: The Walk-Man robot in a driving configuration.

1The software module is open-source and available at
https://gitlab.robotology.eu/walkman-drc/drc_drive/tree/master

22

https://gitlab.robotology.eu/walkman-drc/drc_drive/tree/master

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

5.1 Preliminary Robot Configuration

Before starting the driving module, as soon as the robot has been manually hauled
inside the vehicle, the pilot issues a pre-configured pose to the robot, which acts at
joint level through a direct position control. At this point, the robot is ready and
the pilot can start the driving module.

5.2 Module Initialization

Through the switch interface, the operator starts the driving module on the robot,
which is now ready for the initialization and to exchange data with the pilot interface.
At this point, the Stack Of Tasks framework is initialized. In this module, the stack
is composed of two cartesian tasks, as follows:

Task Distal Link Base Link

Accelerating walkman::LFoot walkman::Waist

Steering walkman::LSoftHand walkman::Waist

Table 5.1: Cartesian tasks composing the Stack of Tasks.

In addition, to complete the IK problem, the following constraints have to be
satisfied:

Type Value

Joint Limits qi ∈ [qmin
i , qmax

i]

Velocity Limits 0.7 m/s

CoM Velocity Constraint 0.3 m/s

Table 5.2: Constraints to be satisfied by the Inverse Kinematics solver.

23

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

Figure 5.2: 3D model of the handle mounted on the steering wheel.

5.2.1 Steering Task

Regarding the steering task, it’s clearly inconvenient for a humanoid robot to steer
in a human way, with both hands on the steering wheel, because the task would
become too much demanding in terms of complexity and degrees of freedom used.
In addition, it would lead not only to the development and handling of a more
complex control algorithm, but also a remarkable increase of power consumption.
Taking inspiration from a technique used by truck drivers, a simpler and more
convenient way of steering is that of using a handle attached to the steering wheel,
allowing the steering task to be performed with a single hand. So, according to
the robot’s hand and steering wheel size, a handle has been designed, 3D printed,
and provided with an independent rotation around its vertical axis (referred in
Figure 5.2 as the x -axis). Furthermore, this solution allows also a simplification of
the robot motion during the steering task, which can be performed only by using
the left arm joints. To achieve this result, a mask of active joints (from the shoulder
to the hand) is set on the task’s Jacobian, which means setting to zero the matrix
columns corresponding to the locked joints of the Waist-Hand kinematic chain
(from the waist to the torso) (Figure 5.3). This operation allows smoother motions
and reduces the possibility of collisions with vehicle parts due to the movement of
the torso, leaving the robot still in its seat.

24

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

(a) Steering task. (b) Accelerating task.

Figure 5.3: Representation of the kinematic chains involved in the cartesian tasks
of the driving module.

5.3 Control Loop Thread

The run() function of the control loop thread is the actual core of the module
(Figure 5.4). At each step, the evolution of a Finite State Machine is handled and
consequently the control law is applied on the robot. At the beginning, the state
machine lays in an idle state, while the thread listens for external commands from
the operator through the command interface. Those commands are composed of a
header string and a payload of data, representing the command parameters that will
be processed by a specific internal function. As soon as a valid command is received,
the state machine commutes into the new state, which includes the computation of
the trajectory planning for the requested behavior. Then, during the sensing phase,
all the motor encoders are sensed on the robot and used as input of the control law.
Finally, the new joint references are applied on the robot through a PID position
control.

25

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

Figure 5.4: Flow diagram of the control loop thread.

5.4 Finite State Machine

The use of a discrete Finite State Machine allows to model a workflow in an event-
driven manner (in this case, the event could be the receiving of a remote command
or the completion of a planned motion). This architecture allows the robot to follow
a precise flow of actions, avoiding incoherent robot behaviors and thus providing a
safer control in teleoperation scenarios (Figure 5.5). In the following, all the states
of the state machine are presented and explained in details.

5.4.1 State idle

This is the default state in which the state machine starts. On the pilot interface, the
operator superimposes the steering wheel interactive marker over the corresponding

26

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

Figure 5.5: Workflow of the Finite State Machine.

27

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

object in the point cloud. Once done, the operator can issue the set steering wheel
command, which also stores information about the steering wheel pose (position
and orientation) with respect to a known robot frame, and it has the form of:
’set_steeringwheel baselink x y z φ θ ψ’, where baselink is a string that specifies
a robot frame used as reference frame, and the following parameters describe
the steering wheel pose with respect to the base frame. Through some proper
transformations, the steering wheel pose is processed in order to be referred to
the same base-link frame of the cartesian tasks of the stack, for a coherent data
handling. Then, since the position of the handle with respect to the steering wheel
is known, it is possible to obtain its pose with respect to the walkman::Waist frame,
using the post-multiplication rule:

{waist}handle = {waist}steeringwheel {steeringwheel}handle

In addition, it is important to save the orientation of the steering wheel in its initial
state, when the wheels are straight (referred as {waist}steeringwheel_init in the
following). By knowing this information, it is possible to fix the grasp position of the
hand with respect to the steering handle, independently of the steering wheel angle.
This generalization may turn out useful in the event of grasp loss of the steering
wheel, followed by a new attempt of grasping it. In fact, in this case, the pilot
would need to reposition the interactive marker according to the last steering wheel
state and to re-issue the set steering wheel command, thus resulting in incoherent
information passed to the successive states (i.e. reaching and approaching).

At this stage, all the information and the relative pose between the robot and the
steering wheel are known.

5.4.2 States reaching and approaching

The robot’s hand motion prior to the steering wheel grasp is separated into two
phases: reaching and approaching. This solution provides a more robust handling of
the motion and allows a backup plan in the event of trajectory issues or unwanted
collisions. During the reaching phase, a linear trajectory is used to control the
left hand of the robot and move it to the proximity of the handle mounted on the
steering wheel, with the following target pose:

{waist}LHand_reach_target = {waist}handle {handle}LHand_reach_target

28

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

Then, switching to the approaching phase, another linear motion brings the hand
in contact with the handle, which is now ready to be grasped

{waist}LHand_approach_target = {waist}handle {handle}LHand_approach_target

Regarding the axis orientation of both targets, as stated above, it is important to
note that it is set equal to the one of {waist}steeringwheel_init, to get the hand
well-aligned with respect to the handle.

(a) Robot state after reaching command.

(b) Robot state after approaching command.

Figure 5.6: Details of reaching and approaching states in a simulated environment.

5.4.3 States grasping and ungrasping

In this state, the robot grasps the handle, controlling the single motor of the
SoftHand (Figure 5.7). Since the hand is compliant by construction, it can adapt
easily around the handle even in case of a small position/orientation error. Of
course, an ungrasping procedure is also present. If the pilot believes that the grasp
is not solid enough, he could decide to issue an ungrasp command and retry a
new attempt of grasp. Otherwise, it is also possible to manually correct the hand
position with the aim of the pilot interface. Once the handle is successfully grasped,

29

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

the get_rotation_radius() routine computes the center of rotation of the circular
trajectory used for the steering task, and consequently the radius of the rotation.

Figure 5.7: Details of the Walk-Man robot after grasping the steering handle.

Driving mode

At this point, the pilot can enter the driving mode, enabling the actual states that
allow the robot to drive.

5.4.4 State accelerating

Every time the accelerate command is triggered, the robot pushes the throttle pedal
by simply controlling the pitch of its left foot through a constant angular velocity
trajectory. The pilot acts on two parameters that regulate the duration and the
intensity of the throttle:

• throttle time (s)

• throttle pitch (deg)

30

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

The parameter throttle time specifies for how long the throttle pedal is pressed,
while the parameter throttle pitch specifies the relative pitch angle of the foot.
When throttle time has passed, the foot comes back to its home position. It is clear
that for this particular task, the intermittent style of acceleration is more reliable
and safe than a continuous acceleration (the human way).

Figure 5.8: Details of Walk-Man’s left foot while accelerating.

5.4.5 State steering

When the vehicle encounters an obstacle, the pilot can command the robot to bypass
it by steering the vehicle. To accomplish this, a circular arc trajectory is issued on
the robot’s left hand, knowing the rotation radius and the axis of rotation from the
get_rotation_radius() routine. The pilot acts on the following two parameters:

• steering angle (deg)

• full circle time (s)

The parameter steering angle regulates the circular arc trajectory on the steering
wheel, while the parameter full circle time defines the time within which the
trajectory must be executed, hence its velocity. It is important to note that, during
the whole trajectory, the orientation of the hand is kept fixed, following the axis
of the {waist}steeringwheel_init frame. This solution, even though adds a sort of
stiffness on the wrist, it is feasible due to the free rotation of the steering handle.

31

CHAPTER 5. DARPA ROBOTICS CHALLENGE: THE DRIVING TASK

Exiting driving mode

The only way to exit the driving mode is to issue the ungrasp command, followed
by the move hand away command.

5.4.6 State moving hand away

To enforce robustness, the whole state machine is designed as a closed loop. For
instance, hitting a bump in the road could cause an unwanted loss of grasp of the
handle, making the robot current state incoherent within the module, which remains
in driving mode. The pilot can easily recover from the afore-mentioned situation,
by triggering the command move hand away, which sends back the robot’s hand
in a rest position, far from the steering wheel. So, without restarting the module,
it is possible to repeat the commands in order to re-grasp the handle and resume
driving.

Figure 5.9: Details of the driving task dedicated widget on the Pilot Interface.

32

Chapter 6

Conclusions

The present work of thesis had the aim of extending the capabilities of the humanoid
robot Walk-Man, in particular making it able to drive a vehicle. The presented
implementation consisted in the development of a software module inserted in a
teleoperation-oriented framework, where a pilot can remotely control the robot
through a GUI.

6.1 DARPA Robotics Challenge Finals 2015

The goodness of the software module implemented on the robot platform was tested
during the DARPA Robotics Challenge Finals 2015 (Pomona, CA, 5-6 June 2015),
a competition where participating teams and their robots confronted each others on
a difficult course of eight tasks relevant to disaster response. The driving task was
organized on a track that consisted of a 20m long and 6.5m wide course, with two
side barriers as obstacles. The vehicle employed for the competition was a Polaris
Ranger XP900, a compact off-road car with automatic transmission provided with
a self-brake function. Each team had the possibility to add a custom equipment on
the vehicle, but strictly without using any tool. Another rule regarded the robot
center of mass, which had to fall inside the vehicle. The approach employed by the
Walk-Man team for the driving task involved the use of two custom components:

• a camouflage-tinged plate mounted on the steering wheel through plastic
strips, used as support for the steering handle (see Figure 5.7);

• a wedge, positioned under the gas pedal, to provide a physical speed limiter.

In addition, the driving module is designed in a way that the driving style would
basically be a sequence of steering-accelerating tasks. In fact, the intermittent
acceleration allows the operator to drive the vehicle with small steps, adjusting the
direction of motion from time to time, according to the presence of obstacles or

33

CHAPTER 6. CONCLUSIONS

barriers.

During the DRC, the Walk-Man team managed to complete the driving task
successfully in 8 minutes, without hitting any barrier.

Figure 6.1: Time-lapse sequence of the DRC driving task performed by Walk-Man.

6.2 Beyond DRC: Lessons Learned and Future

Works

The DRC event certainly showcased some examples of the state of the art in
humanoid robotics, with also a significant experience gained on the field. Although
several teams managed to successfully achieve all the eight tasks, it clearly resulted
that the modern technology is not yet ready to allow an actual employment of
these robots in a real disaster scenario. In fact, it is necessary to underline that the
DRC environment was probably much more benign than Fukushima. For instance,
radiation dose or simply water were not taken into account. Aside from this, another
aspect that came out from the challenge is the fragilty of robot behaviors. Small

34

variations in tools used for the manipulation tasks, or other unexpected changes in
the enviroment, caused a lot of issues among almost all the teams. Not to mention
several hardware or software failures, for which none of the teams were actually
prepared.

However, it is important to state that, the robotics community is certainly going
towards the right direction. The technology readiness level of the state of the art in
robotics is actually not so far from a real operative state, but some critical aspects
have to be improved. Regarding humanoid robots, the main aspect to enhance is
the robot self-balance, taking into account different back up plans in case of falls.
In addition, in order to improve the interaction with the environment and humans,
better force control methods have to be reviewed. Also, a human-like skin sensing
could provide robots superior compliance and interaction capabilities.

35

Bibliography

[1] Robin R Murphy, Satoshi Tadokoro, Daniele Nardi, Adam Jacoff, Paolo
Fiorini, Howie Choset, and Aydan M Erkmen. “Search and rescue robotics”.
In: Springer Handbook of Robotics. Springer, 2008, pp. 1151–1173.

[2] Michael A Goodrich, Jacob W Crandall, and Emilia Barakova. “Teleoperation
and beyond for assistive humanoid robots”. In: Reviews of Human factors and
ergonomics 9.1 (2013), pp. 175–226.

[3] DARPA Robotics Challenge website. http : / / archive . darpa . mil /

roboticschallenge/.

[4] DRC-Teams. What Happened at the DARPA Robotics Challenge? www.cs.

cmu.edu/~cga/drc/events. 2015.

[5] Università di Pisa and Istituto Italiano di Tecnologia (Genova). WALK-MAN
project website. https://www.walk-man.eu/.

[6] Francesca Negrello, Manolo Garabini, Manuel G Catalano, Jörn Malzahn,
Darwin G Caldwell, Antonio Bicchi, and Nikolaos G Tsagarakis. “A mod-
ular compliant actuator for emerging high performance and fall-resilient
humanoids”. In: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th Inter-
national Conference on. IEEE. 2015, pp. 414–420.

[7] Manuel G Catalano, Giorgio Grioli, Edoardo Farnioli, Alessandro Serio,
Cristina Piazza, and Antonio Bicchi. “Adaptive synergies for the design
and control of the Pisa/IIT SoftHand”. In: The International Journal of
Robotics Research 33.5 (2014), pp. 768–782.

[8] Alessandro Settimi, Corrado Pavan, Valerio Varricchio, Mirko Ferrati, Enrico
Mingo Hoffman, Alessio Rocchi, Kamilo Melo, Nikos G Tsagarakis, and
Antonio Bicchi. “A modular approach for remote operation of humanoid robots
in search and rescue scenarios”. In: International Workshop on Modelling and
Simulation for Autonomous Systems. Springer. 2014, pp. 192–205.

36

http://archive.darpa.mil/roboticschallenge/
http://archive.darpa.mil/roboticschallenge/
www.cs.cmu.edu/~cga/drc/events
www.cs.cmu.edu/~cga/drc/events
https://www.walk-man.eu/

[9] Mirko Ferrati, Alessandro Settimi, Luca Muratore, Nikos G. Tsagarakis,
Lorenzo Natale, and Lucia Pallottino. “The Walk-Man Robot Software Archi-
tecture”. In: Frontiers in Robotics and AI (2016).

[10] RW Brockett. “Formal languages for motion description and map making”.
In: Robotics 41 (1990), pp. 181–191.

[11] Oussama Khatib. “A unified approach for motion and force control of robot
manipulators: The operational space formulation”. In: IEEE Journal on
Robotics and Automation 3.1 (1987), pp. 43–53.

[12] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. “ROS: an open-source Robot Oper-
ating System”. In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe.
2009, p. 5.

[13] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. “Yarp: Yet another
robot platform”. In: International Journal of Advanced Robotic Systems 3.1
(2006), p. 8.

[14] Luca Muratore, Mirko Ferrati, Enrico Mingo Hoffman, Alessio Rocchi, and
Alessandro Settimi. GYM repository. https://github.com/robotology-
playground/GYM.

[15] Arash Ajoudani, Jinoh Lee, Alessio Rocchi, Mirko Ferrati, Enrico Mingo
Hoffman, Alessandro Settimi, Darwin G Caldwell, Antonio Bicchi, and Nikos
G Tsagarakis. “A manipulation framework for compliant humanoid coman:
Application to a valve turning task”. In: Humanoid Robots (Humanoids), 2014
14th IEEE-RAS International Conference on. IEEE. 2014, pp. 664–670.

[16] Jinoh Lee, Arash Ajoudani, Enrico Mingo Hoffman, Alessio Rocchi, Alessandro
Settimi, Mirko Ferrati, Antonio Bicchi, Nikolaos G Tsagarakis, and Darwin G
Caldwell. “Upper-body impedance control with variable stiffness for a door
opening task”. In: Humanoid Robots (Humanoids), 2014 14th IEEE-RAS
International Conference on. IEEE. 2014, pp. 713–719.

[17] Nathan Koenig and Andrew Howard. “Design and use paradigms for gazebo,
an open-source multi-robot simulator”. In: Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference
on. Vol. 3. IEEE. 2004, pp. 2149–2154.

37

https://github.com/robotology-playground/GYM
https://github.com/robotology-playground/GYM

[18] Enrico Mingo Hoffman, Silvio Traversaro, Alessio Rocchi, Mirko Ferrati,
Alessandro Settimi, Francesco Romano, Lorenzo Natale, Antonio Bicchi,
Francesco Nori, and Nikos G Tsagarakis. “Yarp based plugins for gazebo
simulator”. In: International Workshop on Modelling and Simulation for
Autonomous Systems. Springer. 2014, pp. 333–346.

[19] Nicolas Mansard, Olivier Stasse, Paul Evrard, and Abderrahmane Kheddar.
“A versatile generalized inverted kinematics implementation for collaborative
working humanoid robots: The stack of tasks”. In: Advanced Robotics, 2009.
ICAR 2009. International Conference on. IEEE. 2009, pp. 1–6.

[20] Alessio Rocchi, Enrico Mingo Hoffman, Darwin G Caldwell, and Nikos G
Tsagarakis. “Opensot: a whole-body control library for the compliant hu-
manoid robot coman”. In: Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE. 2015, pp. 6248–6253.

38

	Introduction
	Disaster Robotics
	The Need of Teleoperation

	DARPA Robotics Challenge
	Problem Statement

	Robot Platform
	Walk-Man
	Main Features

	Software Architecture
	Semi-autonomous Approach
	Software Layers
	Generic Control Module
	Pilot Interface

	Robot Simulation

	Whole-Body Control
	Inverse Kinematics
	Hierarchical Inverse Kinematics: the Stack of Tasks
	OpenSoT

	DARPA Robotics Challenge: the Driving Task
	Preliminary Robot Configuration
	Module Initialization
	Steering Task

	Control Loop Thread
	Finite State Machine
	State idle
	States reaching and approaching
	States grasping and ungrasping
	State accelerating
	State steering
	State moving hand away

	Conclusions
	DARPA Robotics Challenge Finals 2015
	Beyond DRC: Lessons Learned and Future Works

	Bibliography

