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Abstract

University of Pisa is performing a research finalized to develop Rotary Unmanned
Aerial Vehicles (RUAV), starting from small commercial Radio Commanded he-
licopters, capable to perform autonomous or automatic flight. The aim of this
thesis is to develop a non-linear control laws system, based on feedback lineariza-
tion method, in order to allow the machine to perform automatic missions. This
work has been carried out starting from an existing non-linear open-loop model of
the helicopter, whose parameters have been identified in a previous thesis. In the
first part of this work the non-linear system was analyzed in terms of trim condi-
tion. After the simplification of the commands chain, the system was linearized and
both the non-linear and linear system have been excited by collective and cyclic
command signals and their responses have been compared. In the second part of
the thesis the control laws for automatic flight mode have been developed. Since
the attempt to use the input-output exact feedback linearization procedure was
ineffective, a cascade linearization method, called dynamic inversion linearization,
was used in order to develop the controller. Finally, the controller was implemented
and tested in order to validate it.
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Introduction

Among the Unmanned Aerial Vehicles (UAVs), there is a growing interest in devel-
oping unmanned autonomous helicopters. The helicopter has unique capabilities,
such as takeoff and land vertically, maintain hovering for an extended period of
time, broad envelope of flight and high maneuverability. These abilities result in a
wide range of application, both in civil and in military field. In particular, the Uni-
versity of Pisa (Department of Ingegneria Civile e Industriale - Aerospace Section)
has available a T-Rex 500 ESP radio commanded helicopter T-Rex 500 ESP.

In a previous work, a non-linear model of the helicopter’s dynamics has been
developed using Matlab-Simulink and its parameters have been identified by using
flight tests data.

The aim of this thesis is to enable T-Rex 500 to the automatic flight mode by
equipping it with appropriate sensors and PC unit and developing flight control
laws.

The term automatic flight mode concerns the fact that the pilot assigns the
three velocity components (longitudinal, lateral and vertical) and the yaw angle,
rather than commanding the swash plate and the tail collective pitch through the
rotation of the servo-actuators.

As first step, a linear model has been obtained, starting from hovering condi-
tion, by applying an automatic tool of Matlab-Simulink on the non-linear model.
The results of this activity has been used to understand the dynamic behavior
of the helicopter following the application of pilot open-loop commands. Conse-
quently a feedback linearization procedure has been chosen in order to synthesize
the controller for the automatic flight mode.

Finally the controller was implemented and tested in order to check its capa-
bility and to evaluate the performance

In Chapter [I} a generic description of the RUAV is provided, with particular
attention to the specific model T-REX 500 ESP. Moreover, the identified non-linear
model developed for this small scale helicopter is described in detail through its
flapping equations, forces and moments equations and equations of motion. Finally
the command chain was strongly simplified.

Chapter [2| shows the analysis of the trim conditions in the operative helicopter
speed range. In particular, the spatial orientation of the swash plate and rotor
plane, as well as the attitude angles of the helicopter, for the different forward
flight coefficient value, are plotted.

In Chapter [3] some simplifications to the helicopter model are introduced in
order to acquire a model for controller design.

In Chapter [4] the procedure of feedback linearization is described. The math-
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ematical concepts of Lie derivative, relative degree of the system, zero dynamics
etc. are introduced and applied for the linearization of the system.

In Chapter p|a cascade linearization method, called dynamic inversion lineariza-
tion is used in order to develop the controller. Starting with the control laws for
the angular velocity and, passing through the control of the attitude angles, the
controller is synthesized for the automatic flight, having as input the longitudinal,
lateral and vertical speed and the yaw angle . After this the controller is tested
in order to validate it.

Furthermore a controller for the hovering is synthesized and tested.

Finally conclusion and future works are presented.

x1
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Non-Linear Model



Chapter 1

Background and model
simplification

Figure 1.1: T-REX 500 ESP.

In this chapter the dynamic model of T-REX 500 ESP (Fig. , developed by
our team in previous works of thesis [1], will be introduced.

Furthermore some simplifications will be made in order to make easier the
development of controller.

1.1 T-REX 500 ESP

The helicopter model available in the department is the T-REX 500 ESP (Fig.
, suitable for aerobatics and high performance flight.

The T-REX 500 is a small rotorcraft popular among hobby pilots for aerobatics:
it is highly manoeuvrable, with inverted flight capabilities, so it is suited for studies
on guidance algorithms and high-frequency dynamics.



CHAPTER 1. BACKGROUND AND MODEL SIMPLIFICATION

The helicopter is made of plastic material and carbon fibres, that ensure the
structural strength and the low weight; the vertical and horizontal stabilizer sur-
faces of this helicopter are small and perforated, they only ensure the protection
of the tail rotor, and therefore will be neglected in subsequent calculations.

The main characteristic is the rigid hingeless rotor head with carbon fibres
blades. The flapping motion is allowed only by the blade elasticity and by the
damper rubber O-ring of the feathering shaft (Fig. [1.2).

16 ‘ 385
Damper [~

rubber
Shaft —‘ / /

NORIED
.

‘

v

485

v

‘ 423 ‘

|

5.7

NACA 0012

Figure 1.2: Blade schematic representation.

The rotorcraft is equipped with a stabilizer bar, also known as flybar. The
stabilizer bar (Fig. is a secondary rotor consisting in two paddles connected to
the main rotor shaft by an unrestrained teetering hinge. It receives only cyclic input
from the swashplate, and its flapping motion influences the main rotor blades pitch
via the Bell-Hiller mixer bar. The flybar is used to generate a control augmentation
to the main rotor cyclic input and realizes a “mechanical feedback” in angular rates
p and q.

The tail rotor (Fig. generates a thrust to counter the main rotor torque.
Its tip speed is nearly equal to that of the main rotor.

In Tab. [L1] the main inertial and aero-mechanical characteristics of the heli-
copter, found through identification in [1], are reported

Inertial data

m = 2.14kg Helicopter mass

I, = 0.02kgm? Helicopter rolling moment of inertia
I, = 0.065 kg m? Helicopter pitching moment of inertia
I.. = 0.066 kg m? Helicopter yawing moment of inertia

3



CHAPTER 1.

I, = —0.0007 kg m?
I,. = —0.0009 kg m?
I, ~ 0kgm?

BACKGROUND AND MODEL SIMPLIFICATION

Helicopter centrifugal moment of inertia - XY
Helicopter centrifugal moment of inertia - XZ
Helicopter centrifugal moment of inertia - YZ

Main rotor data

mp = 0.2 kg

B = 6.7 x 1073 kg m?
Kp = 22kgm?

Q = 240.7rads™!
R =0.485m
c=0.0423m

e= 0.04

rg = 0.194m

s = 0.056

Nes = 12.46

ap = H.12rad™!
Yoo = 2.35

0 = 0.025

Blade mass

Main rotor blade flapping inertia
Blade stiffness index

Main rotor velocity

Main rotor radius

Main rotor chord

Nondimensional main rotor hinge offset
Blade c.g. position

Main rotor solidity

Gear ratio of engine shaft to main rotor
Lift coefficient of the blade

Blade Lock number

Main rotor mean lift drag coefficient

Flybar data

be =7.8x10"* kg m?

be = 0.235m
Cfp = 0.039m
€rp = 0.7

ap = 2rad™!

Yo = 0.2447

Flybar rotor blade flapping inertia
Flybar rotor radius

Flybar rotor chord
Nondimensional flybar rotor offset
Lift coefficient of the flybar
Paddle Lock number

Tail rotor data

Q, = 1126.5rads™!

Tail rotor velocity

R; =0.105m Tail rotor radius

¢ = 0.017m Tail rotor chord

ny = 4.68 Gear ratio of tail rotor to main rotor

hy = 0.0505 Tail rotor distance in z direction from c.g.

ly= 12 Tail rotor distance in x direction from c.g.
General data

Pl =0W Engine idle power

Prgt = 1890 W Engine max power

trer = 0.076 Maximum thrust coefficient

Sfus = 0.0382m?
S = 0.0705m?
Sfus = 0.0625 m?

h= 0.289
f= —0.028
= 0.0036

Frontal fuselage drag area

Side fuselage drag area

Vertical fuselage drag area

Main rotor height above c.g., nondimensional
Main rotor distance in x direction from c.g.
Main rotor distance in y direction from c.g.

Table 1.1: Parameters of T-REX 500 helicopter.
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Flybar flapping axis
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Figure 1.3: Flybar schematic representation.
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Figure 1.4: Tail schematic representation.
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1.2 Non-linear system

suonow Jo suoyenby
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Figure 1.5: Simulink complete model of RUAV.
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In Fig. it is shown the Simulink complete model derived in [1]. This model is
the starting point for the development of the controller. Each block of the model
will be described in the next sections.

1.2.1 Servos and kinematics

In the “Servos & kinematics” the electric commands, coming from the radio con-
troller, are converted into 6y, A;, By; they are corrected by the dynamic of the
flybar and converted in Ai.orr, Bicorr-

1.2.2 Closed loop control

In “Closed loop controller” the controller will be located. The tail command con-
troller will be developed in this thesis but the helicopter has its own gyro-control
system that guarantees the heading-lock without any commands from the pilot to
the tail.

1.2.3 Rotor and Flybar Dynamics

In “Rotor & Flybar Dynamics” are calculated the orientation of the rotor and flybar
compared to the shaft, even the thrust, the torque and the drag of the rotor are
calculated on the basis of the input signals and the helicopter flight conditions.
The entity of the swashplate command is:

0 = 0y — Aicorr COSY — Bieopr SinY (1.1)

As shown in Appendix [A] flapping motion is a periodic function. Expressing it
as a Fourier series with no harmonics greater than one, the flapping equation can
be rewritten as a second-order matrix differential equation:

i+QDa+VP Ka=Ff (1.2)

where a is the blade flapping state matrix, D is the damping matrix , K is the
stiffness matrix and f are the forcing terms; the explicit expression is reported in
section [A.3.1]

For the flybar a similar second order differential equation in matrix form can
be obtained with the same approach:

éifb + Q .be dfb + QQ be afb = ffby (13)

where aygy is the flybar flapping state matrix , Dy, is the damping matrix , Ky
is the stiffness matrix and fy, are the forcing terms; the explicit expression is
reported in section [A.4]

1.2.4 Force and Moments

In “Forces and Moments” the rotor’s forces and moments are transformed in the
axes body forces and moments (X, Y, Z, L, M and N). No elastic modes and
vibrations will be considered: the tip-path plane simplified model will be used.

7
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al = B1+als

(View from right side)

» X

VAT

Figure 1.6: Interpretation of flapping and feathering coefficients in the longitudinal
plane.
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HP

-

(View from behind)

» Y

XB

VA

Figure 1.7: Interpretation of flapping and feathering coefficients in the lateral plane.

Referring to Fig. and [L.7] the resultant of forces along x5, yp and zp axes
are, respectively:

X =P, —Tya1s— Hy— Dcos(0 — 7.) (1.4)
Y =P, —Tibhs + T, (1.5)
Z =P, —Ty+ Hqa1s — Dsin(0 — 1.) (1.6)

The weight components can be written as:

P, 0
Py = [ha2hb} . 0 (17)
P, mg
where:
cpch syct —s6
[haghb] = |cshsp — sipcp  ssOsd + cipep  chsep (1.8)

cpstcod + ssp  ssbep — cpsp  cleg
where, for the sake of simplicity, s indicates the sine function and ¢ the cosine
function. We obtain:

P, —mgsin 6
P,| = [ mgcosfsin¢ (1.9)
P, mg cos 0 cos ¢
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Finally, we have:

X = —mgsin€ — Tyays — Hy — D cos(6 — )
Y = mgcosfsing — Tybis + T; (1.10)
Z =mgcosfcosp —Ty+ Hyars — Dsin(0 — 7.)

The moment acting on the fuselage consists of the moment produced by the
tilting of the thrust vector due to the blade flapping and the moment produced by
inertial forces and hinge restraint.

Developing every term (cf. [1]), the obtained expressions are:

L= —mblengQRbls - TDblshR + TthtR + TDZR — Kgbls
M = mblengQRals + TdalshR + Hth + Mf — (Td — Hda13>fR + Kgals
N =-T.,R—(Q
(1.11)
Note that, in trim conditions, 7} is negative, i.e. towards the negative y-axis.
In other words, the tail rotor pitch is normally negative. For the symbols used in
the text one can refer to [1].

1.2.5 Equations of motion

In “Equations of motion” the forces and moments are used in the equations of rigid
body dynamic and, due their integration, the linear velocities, the angular rates
and the attitude angles in body axes are calculated.

For a first analysis of the dynamics, the assumption of rigid structure is rea-
sonable and sufficient for linear dynamics simulation.

The first and second Newton-Euler’s equations have been used for the rigid
body dynamics

dQ
F=— 1.12
T (1.12)
KO:M0+\I’0—UO X Q (113)
where:
KO = Kw +m OG x Vo (114)

In this case, assuming that the pole O is coincident with the helicopter center
of gravity G, Eq. (1.14)) becomes:

Ia:a: _Ixy _]xz p Ixacp - Ixyq - Ixzr
K,=1-Q=|-1, 1, —1.| |q|=|-1loyp+Lyq—I.r (1.15)
_Ixz _Iyz Izz r —dgP — [yzq + Izzr

where I is the helicopter matrix of inertia.
The centrifugal moment [, is approximately zero (the plane z-z is approxi-
mately a plane of symmetry).

10
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Using Eq. (1.15)), and supposing I, ~ 0, the second Euler’s, Eq. (1.13),
becomes:

. Ixxp - Ixyq - Ia:zr + Q(Izzr - Imzp) - T(Iyyq - Izzp)
KG = Iyyq - Imyp + T(Imzp - Izzq - Iacz'r) - p(IzzT - Imzp) = MO (116)
L.r — Lpep +p(Iyyq - Ixyp) — q(Lpap — Ioyq — I.7)

where M is the moment with pole in O of the aerodynamic forces.
The velocity of helicopter centroid G is:

vg=uip+vjp+wks (1.17)
So, the translational momentum @ is:

) U+ quw —or
F=Q=mbdg=m |0+ ur—pw (1.18)
w~+ pv — uq

Writing Eqgs. (1.16]) and (1.18]) in extended version, we obtain the following set
of equations for helicopter dynamics:

X =m(d+ qu — vr) (1.19a)

Y = m(0+ ur — pw) (1.19b)

Z =m(w + pv — uq) (1.19¢)

Loop + Ly(pr — §) — L.(r +pq) —qr(ly, — 1..) = L (1.19d)

Lyd— Ly(p+qr) — (L. — L)pr + L.(p* —1r*) = M (1.19¢)
Lot — (Ing — Ly)pq + Loy(¢® — p*) + Li-(qr —p) = N (1.19f)

where X, Y and Z are the resultants according the z-axis, y-axis and z-axis of
aerodynamic and gravitational forces and L, M and N are the moments of aero-
dynamic forces, with centroid as pole (Fig. [1.9).

hub plane
\

Figure 1.8: Helicopter with its body-fixed reference frame.

11
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Figure 1.9: Forces and moments acting on the helicopter.

1.2.6 Data storage

In the last block “Data storage” all the results from the simulation tests are trans-
formed in inertial axes and saved to plot the simulation results.

1.3 Model simplifications

As synthetically illustrated in section the “Servos & kinematics” Simulink
block includes the command chain from the rotation of the servo-actuators to the
rotation of the swash plate. This link is described by a set of 21 highly coupled
kinematic equations, which considers even the coupling between the blade and the
flybar rotation.

The entire kinematic command chain will be neglected in order to make easier
the development of the controller. To do this, it is necessary to understand how fly-
bar acts on the blade equations and find a simplified way to express mathematically
this relation.

0 =0y — Aicorr cOS) — Bieorrsiny  for the blade (1.20)

To provide a “mechanical” feedback in pitch and roll rate on T-Rex 500 it has
been used a Bell-Hiller stabilizer bar.
As with the rotor:

0 = —A;siny + Bycosty for the flybar (1.21)

An idea about how the flybar acts on the principal dynamic, is given by the
scheme of Fig. [1.10]

The rotor receives commands which are the sum of two contributes: a part
coming from the servo-actuators and another one coming from the flybar feedback
(every contribute is scaled by convenient coefficients).

12
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Theta_0

— + »
Al = A1_com >
Gain_comm ‘ T-Rex 500 Dynamics

> p
B1 B1_corm

Gain_comm
Theta_t

v

v

v

bifb

Gain_fb
. Fly-bar Dynamics

alib

I
Gain_fb

Figure 1.10: Flybar feedback.

In mathematical terms it means:

Al corr = 90N commA1 — gaingpaq s (1.22)

Blcorr = gaincommBl - gainfbblfb (123)
where:

Meomm = 0.44
{gam (1.24)

gaing, = 0.5

The values of gaincomm and gain s, has been found by a fitting procedure, using
data coming from flight tests |1]. The results of this procedure are shown in Fig.

LI1l

13
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1r
= 0f
(]
=,
e-1r
< Ll
simplified scheme
3 . . . . . complete kinematic chain
365 370 375 380 385 390 395 400 405 410 415
Time [s]
4 -
5 of
_2 1 1 1 1 1 1 1 1 1 ]
365 370 375 380 385 390 395 400 405 410 415
Time [s]
Figure 1.11: Fitting procedure results.
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Chapter 2

Trim and Linearization

The aim of this chapter is to evaluate the main parameters of the T-Rex 500
in various conditions of trim. This procedure will be carried on in parallel with
another study made on the model of the same helicopter based on literature [2].
Starting from trim condition, the dynamic model will be linearized and studied
in terms of transfer functions and responses, in the time domain, to the commands.

2.1 Trim

2.1.1 Trim procedure (literature)

In this section, the helicopter trim equations will be solved.

Simplifying hypothesis

The main simplifying hypotheses are:
e rotor blade and stabilizer bar are rigid in bending and torsion, with no twist;
e command chain and blade elasticity are neglected;

e drag coefficient § and lift coefficient a of airfoil independent of local blade
angle of attack (mean values have been considered);

e both the flapping angle and the inflow angle were assumed to be small (i.e.
low ratio T'/A and high blade aspect ratio) and this analysis uses simple
Glauert theory;

e the effects of the helicopter dynamic on the blade flapping were limited to
those due to the angular accelerations p and ¢, the angular rates p and g,
z-axis acceleration w and translation velocities u and v;

e the reversed flow region was ignored, as the compressibility and stall effects;
e the inflow was assumed to vary according the Glauert theory:

v; = v + (1 + Kyx cos) (2.1)

e the tip loss factor was assumed to be 1; root-cutout effect is neglected.

15



CHAPTER 2. TRIM AND LINEARIZATION

Trim equations

Because of the asymmetry of the helicopter, the longitudinal and lateral plane
should be solve simultaneously. In [3|, an analysis demonstrates that flight pa-
rameters are related through no less than fourteen equation: however this is not
necessary in practice. The longitudinal and lateral plane equation will therefore
be solve independently of one another.

Referring to Fig. and [2.2] resolving forces vertically and horizontally ([2],

141):

Tb

Horizon

Figure 2.2: Forces and moments in lateral plane.

16
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Tpcos(ap + 7.) — Hpsin(ap +7.) = W + Dsint (2.2a)
Tpsin(ap + 7.) + Hp cos(ap + 7.) = DcosT (2.2b)

Making small angles assumption and neglecting term Hp sin(ap+7.), Eq.
can be solved iteratively, knowing the correlation between t. and hp and aero-
mechanical parameters. Taking moments about O and making the small angles
assumption, it gives:

—WfR—TphRBy + (Hp + Tpay)hR+ My — My(B; —ay) =0 (2.3)
Solving for Bs:
My + HphR—-WfR
WhR + M,

Referring now to the lateral plane (Fig. and , taking moments about
O:

By =a; +

(2.4)

To

“- B _.—TPP

~

[/\T\\\ '/'/'/. HP

a1 = Bi+ais & \/A}— =

Hp -~
- als =~ ~ nNFP

(View from right side)

N
AN » X

v 7s

Figure 2.3: Interpretation of flapping and feathering coefficients in the longitudinal
plane.

WIR — Whr(A; + b)) + TihiR — Mg(A; +b,) =0 (2.5)
Solving for A;:
WfR+ TR

A1 =-b 2.6
LT TWRR M (2:6)

in non-dimensional form:

wef + (Ti/W)tch
Ay =-b 2.
1 1+ thtCo (2.7)
Solving forces according the y-direction, it gives:

WA +b1+¢)+1,=0 (2.8)

17
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To

(View from behind)

s A » Ysi

>

VA3

Figure 2.4: Interpretation of flapping and feathering coefficients in the lateral plane.

that gives:
b= —(T/W)+ by + Ay = —(T,/W) + by, (2.9)

In the Fig. 2.13] the following helicopter trim parameters for the T-REX 500
will be shown as a function of u:

e longitudinal and lateral control to trim 6y, A; and By;

e blade flapping coefficients ag, a; and by;

e attitude # and ¢.

For the exact meaning of every single term used in the expressions above see
2]
2.1.2 Trim procedure (Simulink)

To find the trim conditions on the non-linear model (see Fig. described in the
previous Chapter, it has been used an automatic Simulink tool of linearization. The
aim of this analysis is to evaluate the differences between the non-linear identified
model and the model coming from literature |2| in term of attitude angles, flapping
coefficients and command coefficients.

18
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abelols eleg
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SJUBWO| PUB $8010-

SoIWeuAp Jeqh|) pue ape|g

Figure 2.5: Simulink trim scheme.
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2.1.3 Results

The two procedures have been tested in an interval of the advance ratio 0 < pu <
0.175. The obtained results are shown in Fig. 2.6}2.13

It can be observed that the two procedures give congruent results in the inter-
ested interval of the advance ratio (u).

The literature model from [2] is valid for big helicopter (generally with flapping
hinge on the hub) in which the longitudinal and lateral dynamics are enough de-
coupled. The Simulink model instead was developed for our small-scale helicopter.

10

60 [deg]

literature
simulink

3 Il Il Il Il Il Il
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

W

Figure 2.6: Comparison of 6.
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I —— literature
simulink
0 0.02 0.04 0.06 0.08 0.1 0.12 014 0.16 0.18
7
Figure 2.7: Comparison of A;.

literature
—simulink

0.02

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
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Figure 2.8: Comparison of Bj.
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Figure 2.9: Comparison of ay.
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Figure 2.10: Comparison of b;.
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Figure 2.11: Comparison of a;.
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Figure 2.12: Comparison of 6.
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018

0.17

literature
—— simulink
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

W

Figure 2.13: Comparison of ¢.

2.2 Linearization

Starting from hovering condition the dynamic model was linearized, using an au-
tomatic Simulink tool, in order to obtain a system with the following structure:

Az (t) + Bu(t)

Cxz(t) + Du(t) (2.10)

——
< &
==
ol

2.2.1 Transfer functions

The main transfer functions, coming from the linearization procedure, are:
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In Egs. [2.11 various dynamics can be observed:
e the real pole (s+33.33) expresses the servo-actuator high frequency dynamic;

e the four imaginary poles (s + 17.13s 4 2.317¢05) and (s* + 55.82s + 2.5¢05)
express the second order flapping dynamics of the blade and the flybar. These
dynamics are completely decoupled from the rest of the model,;

e the controller in 7 acts as a first order with frequencies w = 6.425rad/s,
completely decoupled from the rest of the model. Even the vertical velocity
response is enough decoupled from the rest of the model; in the short period
it acts like a first order with frequency w = 1.076rad/s, in long period it is
affected by the general instability of the helicopter;

e the two imaginary poles (s? + 43.44s + 477.8) express an higher dynamic
coupling between the longitudinal and the lateral dynamic responses;

e the poles (s? + 18.81s + 2780) and (s? + 10.44s + 642.7) express an higher
dynamic coupling between the flapping dynamic and the rigid body pitching
and rolling dynamics;

e the zeros in RHP, that make difficult the stabilization of the closed loop
system in the long period, are due to the position of the c.g. behind the
shaft.

2.2.2 Response in the time domain

In order to test the difference between the responses in the time domain of the
linearized dynamic model and the non-linear model, they were excited by the same
signals.For each simulation test only one input channel at time was excited by a
non-zero step sygnal. The values of the input step signals are shown in Eq. .

0y = 10~*rad
A; =10 2rad

2.15
By =10 2rad ( )
0, = 10~ rad

In Fig. the response to By are shown while the responses to A, §, and
0, are not represented for brevity.

From the responses in the time domain we can deduce the presence of a time-
scale separation between the response in angular velocity (fast), attitude variation
(slow) and velocity variation (slower).

Furthermore we can note a quick separation between the behaviour of the non-
linear model and the linearized model. For this reason, we have decided to synthe-
size a non-linear controller.
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Figure 2.14: Velocity response to Bj.
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Figure 2.15: Angular velocity response to Bj.
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Figure 2.16: Attitude response to Bj.
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Chapter 3

Controller introduction and
simplifications

In this chapter, some simplification to the helicopter model, derived in Chapter [T}
will be introduced in order to acquire a model for controller design.

A particular reference system will be defined in order to develop a controller
for the longitudinal, lateral, vertical velocity and the yaw angle .

3.1 Model simplification

The helicopter model derived in this thesis is a highly complex non-linear model
with 26 states. The main purpose of this thesis is to use a non-linear control
approach, based on feedback linearization theory, to cancel out non-linearities.
The main point of this form of control is to identify the non-linearities of the
system and, using feedback, to cancel them out. As it can be anticipated, this
control design approach relies heavily on the accuracy of the model, in order to
identify the non-linearities, thus effectively restricting the simplifications that can
be applied to the full order model. Therefore the full order model is simplified as
much as possible.

After the control design application, and the model complexity degree evalua-
tion, if the control results prove unsatisfactory, due to the reduced model complex-
ity, the neglected dynamics are added iteratively, until the satisfactory results are
obtained.

A schematic representation of the helicopter dynamic model is shown in Fig.
3.1

The simplifications that can be applied to the full order model are:

e neglecting the servo-actuator’s dynamics;
e decoupling the rotor and flybar dynamics from the rigid body dynamics.

Using these approximations it’s possible to divide the model into two effectively
decoupled parts, an input dynamics part containing the actuator dynamics and
rotor and flybar dynamics, and a rigid body part containing the force and moment
generation and rigid body dynamics.
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Input dynamics part Rigid body part
X "
Sm‘ 60 T, acceleration
Y
speed
S A, a, ,
ACTUATOR ROTOR AND FLYBAR FORCES AND MOMENTS RIGID BODY angular acceleration
DINAMICS DYNAMICS DYNAMICS L DYNAMICS
lon E;1 b
1s
angular speed
M 9 P
S . 6 T
al L L N attitude angles

Figure 3.1: Non-linear Model.

The model for the first attempt of non-linear control design is thus chosen to
contain only rigid body dynamics and force and moment dynamics.

Neglecting the input dynamics part the new input of our model become Ty, a4,
bis and Ty, as shown in Fig. 3.2

Rigid body part

X acceleration
Td »
Y
speed .
a1s
z
FORCES AND MOMENTS RIGID BODY angular acceleration N
b DYNAMICS L DYNAMICS
1s
angular speed
M g P N
Tt
N attitude angles .

Figure 3.2: Simplified Non-linear Model.

3.2 Reference System for the Controller

It’s necessary to define a particular reference system (for ease of reference called
horizontal-body ) which differs from the vertical for a positive eastward rotation
of the yaw angle . This particular reference system is used to set the tracking
signals as Vion, Veross, Ve and .

The transformation matrix from body axes to horizontal-body axes it’s explic-
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itly described by Eq. (3.1)

Vion U
V::ross = RBQHB V (31)
V., W

where:
cosf singsinf cos¢sinf

RBQHB = 0 COS¢ —Singb (32)
—sinf sin¢cosf cos¢cosl
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Chapter 4

Feedback Linearization Control

The aim of this chapter is to study the stability of the helicopter and develop
control laws.

Classic linear system control method is very difficult to ensure system stability,
and non-linear control methods are general approaches.

Non-linear control methods are generally based on feedback linearization theory
[5], that has successful applications in aircraft and rotorcraft control.

4.1 Feedback linearization

Considering a non-linear multiple input multiple output (MIMO) system with m
inputs and outputs, of the following form:

&= f(x) + 3 ai@
y = h(z)

where € R", f(x), gi(x), gn(z) and h(z) are smooth vector fields, and are
defined as:

(4.1)

g=lo - gn (4.2)
]

h=|: (4.3)
_hm_

u=|: (4.4)

If there exists a change of variables:

=) (4.5)
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such that the system is transformed in to:

£=Ak+ B (16)
y=0Cck
that results linear introducing the state feedback control [5]:
u=o+ Pv (4.7)

In order to apply this procedure, certain definitions and their application on
the system are introduced.

4.1.1 Lie Derivative and relative degree

First we introduce the concept of relative degree, r;, with respect to output y;, as
an integer such that:

k
forall 1 < j <m,forall k <r;—1, forall 1 <7 <m, and for all z in a proximity
of equilibrium point x°, and:

Lg, L7 hi(w) # 0 (4.9)
for at least one 1 < j < m.
b
Lihi(a) = T0 () (4.10)

is called the Lie Derivative of h; with respect to f along f.

In other words, r; is exactly the number of times one has to differentiate the
i-th output, y;, in order to have at least one component of the input vector u,
explicitly appear.

Consider a non-linear system, of the form ([4.1), evaluating all output functions
and collecting the calculations, we can put the system in the form:

' L hy Lo L' 'hy ... Ly, L7 'hy
= : + : :
vl L] Lo L o Ly, LR, (4.11)
— b(a) + A()u
Furthermore if the feedback is introduced in form of:
u=A"[-b(z)+ v]
= —-A'(2)bz) + A v (4.12)

= a(z) + B(x)v

we acquire a linear closed loop system, that is decoupled from the input v to the
output y. This decoupled and input-output linearized system is given by:

yr' vy
=1 (4.13)
(I Um
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If the matrix A(x) is singular, we cannot use a static state feedback to linearized
the non-linear system, and we have to look for a dynamic state feedback to achieve
linearization by state feedback [5].

Having a particular tracking signal y,(t), it is possible to obtain an exponentially
stable dynamic introducing the control law:

v =Yy — Kipei — Kipég — -+ — Ki7(ri_1)e§”_1) (4.14)
with opportune value of Kj;; and with:
€ =Y~ Ya (4.15)

the error to minimize.

4.1.2 Coordinate change function

Considering the Eq. (4.11)), first input-output channel can be written as:

N = hl(l')
" = Lyhi(x)
(ri—1) Lriflh
N - 1($)
W = L ha(2) + Lo, L~ ha(a)us () + -+ + Ly, L hy (2)t ()

(4.16)

If we define transformation function as:
€= ®(z) =col(P1(x),..., D) = col(h(z), Lihi(z), ... ,L?—lhl(x)) (4.17)
and apply it to the above system we get:

(?/1 =&
&1 =&
: (4.18)
éfn-—l = gri

(& = LY ha(x) + Lo, L} ha(z)ug (2), . . ., Lg, L7 ha ()t ()

We extend the coordinate transformation equation to contain all input-output sets,
therefore, the coordinate change function, that transforms the full system in to

f(&) = f(®(x)) (4.19)

has the following form:

® = col(P}(z),..., D (2),..., 07 (2),..., P () (4.20)

m denotes the number of outputs and
D} (x) = hi(x)

Py (x) = Lyhy(x) (4.21)

¢ = L7 hy(x)

The transformation of this form does not always transform all the states of the
system. We can have some unobservable states.
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_|Unobservable
B system
S n
Y
vl _ yl
o Linear and decoupled V2

Figure 4.1: Sketch of the input-output feedback linearizing principle

4.1.3 Input-output Exact Feedback Linearization

If a system has relative degree r = r; + 19 + -+ - + 1, < n, feedback linearization
of a given system can still be achieved from the input-output point of view using
the same algorithm of the Eq. . The consequences of this approach are that
some states of the linearized system, zero dynamics states 1, become unobservable,

see Fig. [1.1]
These states can be identified by applying the coordinate change of the system

states of the following form:

f(&n) = f(@(x)) (4.22)

where £ are the states of the observable system and 7 are the states of the unob-
servable system. The coordinate transformation function is defined as:

D = col(P1(z),..., D) (x),..., B0 (x), ..., B (2),Pri1(2),..., Pulz))  (4.23)

where, m denotes the number of outputs, n denotes the order of the system, r
denotes the sum of relative degree elements and:

@y (x) = hi()
Py(x) = Lyhi(x)

(4.24)
Furthermore, the extra functions, @,,1(x),...,®,(x), defining the zero dynamic
states, can be chosen arbitrary as long as distribution,
G = spanf{g1, ..., gn} (4.25)
is involutive, and the chosen function satisfy:
Ly®i(x) =0 for: r4+1<i<n,1<j<m (4.26)
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Zero dynamics of a input-output feedback linearized system might exhibit un-
stable behaviour, therefore, in order to guarantee the stability of the overall system,
it is not sufficient to look at input-output stability, we have to make sure that the
unobservable part of the system is stable as well [5].

4.2 Definition of the Model

Applying the approximation deduced in Chapter [3| the inputs of the dynamic
model become Ty, a4, bis, 1.
Using the results obtained in Chapter|l|it’s possible to write the dynamic model
as:
z = f(x)+ g(u) (4.27)

where:

(4.28)

c oo xemn =TI

and
Ty
u= | (4.29)
bls

T;

It can be shown that the helicopter dynamic model, used in this thesis, is not of the
structure , due to the fact that several states are exited with multiple inputs,
or functions of inputs, that are multiplied with each other. Dynamic extension is
used to transform the system equations, to the form described by . Dynamic
extension “delays” a given input trough an integrator, thus extending the system
state equation with one state, therefore, the dynamic extended system is:

U

= @)+ gilw)u (4.30)

=1

He oo s g <

A1s
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with: '
Ty
ais

Zgz(ﬂf)ul =gu = [91 g2 93 94} bll (4.31)
=1 T;f

4.3 Procedure of Linearization

To perform the input-output exact feedback linearization the chosen output func-
tions are:

h = W (4.32)

(8

where the corresponding relative degree is {r1,79,73,74} = {2,2,2,2}. Using this
set of output functions to linearize the system, there are 4 unobservarble states, p,
q, ¢ and 6, that have to be tested for stability.

First it’s necessary to calculate the matrix A used to define the control laws

that linearize the model

L L hy Lg, L} "'hy Ly, LY 'hy Ly, L} 'y
Ly L'? hy Ly, L'? hy Lg, L' hy Ly, L'* 'hy
Lo L'? " hy Lg, L'? 'hy Ly, L' 'hy Ly, L'? by

g3—f ga - f

Ly L' hy Ly, L' hy Lg,L7P 'hy Ly, L' thy

(4.33)

The matrix has full rank, therefore the system is input-output linearizable using
the control laws defined in Eq. (4.12)).

According to Eq. (4.14)):

V1 = Ya, — K1,0€1 - Kl,lél
Vg = ijdz - K2,0€2 - Kz,léz (4 34)
v3 = g, — K3pe3 — K363

vy = Ya, — Kyper — Ky164

The feedback gains are determined using pole-placement method and the result
is:

Kip]  [14]

K 5

KQ’O 14

K271 o 5

Kool = |11 (4.35)
Ks., 5

Kugo 14

_K4,1_ | 5 ]

In order to test the stability of the feedback linearized system, a simulation
test has been performed; the tracking signals y,4, used for the test are the hovering
condition. In Fig. it is shown the scheme of the control.
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v .| Unobservable
system
v y y
. IR
: Helicopter _
dinamic model _ i
v y y
SO G

Figure 4.2: Sketch of the closed loop feedback linearized system

4.4 Simulation results

As shown in 6] [7] it is not possible to stabilize the system due the instability of
the zero dynamics states p, ¢, ¢ and 6.
Initializing the system output states with the following values:

U 0.5
V -0.5

y= 1wl =1 o (4.36)
W 0.1

where U, V and W are in m/s and 1 is in rad, the result of the simulation it is
shown in Fig.

At first glance of Fig. [4.6] the simulated outputs seem to have stabilized at
the correct level, thus suggesting that the control task was successful. However
taking a look at the zero dynamics states on Fig. , it can be seen that the
unobservable part of the system is far from stable. The reason for this behavior is
the structure of the feedback linearizing procedure, where the linearizing feedback
will use the observable states and the first inputs it encounters to control the given
output.

In our case, due to the fact that pitch and roll angles and their respective
rates are unobservable, the linearizing feedback attempts to stabilize the helicopter
translatory velocity directly trough the decomposition of the thrust vector in lon-
gitudinal and lateral direction, instead of using pitch and roll Euler angles to turn
the helicopter in the opposite direction of the flight path, and thus stabilize the
system. Therefore we conclude that exact feedback linearization of a helicopter is
not possible.
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Figure 4.3: Effect of the control on the command angles.

Time [sec]

Figure 4.4: Effect of the control on the flapping angles.
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Figure 4.5: Effect of the control on Rotor and Tail Trust.
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Figure 4.6: Comparison between effective and desire velocities.
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Figure 4.7: Effect of the control on angular velocity.
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Figure 4.8: Effect of the control on attitude angles.
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Chapter 5

Dynamic Inversion Controls

In this chapter dynamic inversion control method will be applied to the non-linear
model in order to control the helicopter attitude angle v and thus the three velocity
Component ‘/lona ‘/;ross and ‘/z

5.1 Dynamic Inversion

Dynamic Inversion is a method based on feedback linearization with time scale
separation approximation. According to “Partial Inversion” method, we can divide
the system into several sub-circuits, which have different time scales [8], and control
them in cascade.

Firstly, model state variables are divided into different groups, according to its
response velocity. The principle for state variable grouping is: dynamic charac-
teristics of inner circuit can be ignored in outer circuit design, when the response
velocity of internal circuit is almost three times faster than the outer circuit. This
division has the advantages that the inverse system can be very simple after the
division and it is possible to avoid the generation of unobservable states.

According to the movement of the helicopter, giving a variation of the input Ty,
ais, b1s and T; the helicopter changes its angular velocities p, ¢, r and its vertical
velocity V.. Due to the generation of these angular velocities there is a changing
on the attitude angles ¢, 6 and 1. Finally the variation of the Euler angles ¢ and
0 is used to generate the desire velocities Vi, and V_.oss.

According to this, helicopter state variables can be divided into three different
groups:

u SLOWER ° 3
CIRCUIT

v CONTROLLER| 6, sLow q FAST

— f———0——{ CRCUT 26— CRCUIT

v A CONTROLLER p CONTROLLER

HELICOPTER
MODEL

r
w, HEAVE Ta w
) CONTROLLER " ‘

Figure 5.1: Sketch of the dynamic inversion controller.
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e [p,q,r, W] have fast response in system, called fast variables;
e [6,0,1] have slow response in system, called slow variables;

e [U, V] have slowest response in system, called slower variables;

The Fig. show a schematic representation of the controller chain.

According to the approximation of time scale separation, when solving the
inverse controller in fast circuit, the slow circuit variables can be considered as
approximately constant, and vice versa, so every single circuit controller can be
studied separately.

5.2 Linearization of the single circuit

Using the approximations introduced in Chapter [3] and the formulation of the
dynamic equations as:

e Ly Lo L' Yhy ... Ly, L7y
S B I z : (5.1)
Y L b, Lo L} oo Ly, LY 'hyy, '

= b(x) + A(x)'u,

as shown in Chapter [4]it is possible to linearize the model using the fictitious input:

Kygei — K¢ K (i)
vy — K106 — €1 — 0 — 1,(r1—1) €1
= : (5.2)
V; . (Ti—l)
—Kipe; — K165 — - — KL(”il) e;
and applying the transformation:
u=A"[-b(z) + v] (5.3)

as schematically shown in Fig. [5.2

d ;1 E \% A1(X) u

y

b(x) b(x)

controller dynamic model

Figure 5.2: Sketch of a single circuit controller

We can now linearize the model.
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5.3 Angular velocity and heave controller

The state equations of the fast circuit can be expressed as follows:

|:]5] [bp] [An Al A13] [als:|
Gl = |bg| + |An Azx Ags| |bis (5.4)
r br Azr Az Asz| | Th
and .
W=by—— Ty (5.5)
m
where:

bp=—(Iyy Loy (= Low (0" =7%) =07 (Jow = Lyy) + Loy q -7+
+Hy-hr=Ty-R-f)+ 1Ly Iy (Ty-R-1+ L. -p-q+
v (Ly = Iy) = Loy po7) + Ly Loe - (Ly - (P — %)+
+p-q- (Im_lyy) _[xZ'q'r_Q))/(Iyy'I§z+
+]yy']§y_1m'[yy']yy)

by=— (Lyy Loy (= Lo (P*—72) = p-r - (Lo — Ipy) + Loy - q- 7+
+Hy-hr=Tg-R-f)+ 1Ly Iy (Ty-R-1+ L. -p-q+
v (Ly = Iyy) = Loy p7)+
F Ly Lo (Ly (0P = @) 40 (Lox — Iy)+
- xz'Q'T’—Q))/(Iyy'Ix2z+lyy'12y_]m'Iyy'lyy)

b= (Lo Loy (= Lo (0 =7%) =7+ (L — L)+
+Ly-q-r+Hg-h-R=Ty f-R) =12, (Ly - (0" — )+
9 q (Lew —Ipy) =Lz q- 7= Q) + Iy Lo - (Ty- 1+ R+
tLoepqtqor- (Ly—Iy) = Ly-p-r)+
Lo Ly (Ley- (0* = %) +1 0 (Low — Lyy) — Loz -q -7+
_Q))/(Iyy'Ix22+[yy'Ia%y_jxm'lyy']yy)
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—Ixy'(Kﬁ—l—QZ'R~€'mbl'iL'g+Hd'f'R+Td'h'R)

Ay =
[yy'[fz"‘jyy'[a%y_[xz'jyy'lyy
Am:Iyy'Iyy'(Td'h'R+€'mbl'$g'92'R+Kﬁ)
]yy ’ ]gz + Iyy ’ ]334 — Iy - Iyy ’ Iyy
p Iy Iy -R-hy—1,-I. -R-lt
13 = —
[yy'Igz"‘[yy'[zy_[m'[yy'[yy
A (Kﬁ—FQQRemeZL‘g—}—deR—{—Tth)(Iiz—lxx]yy)
21 =
]yy ' Ia%z + ]yy ’ ]:%y — Iy - Iyy ) ]yy
A22:Iyy'lmy'(Td'h'R+e'mbl'xg‘Q2‘R+KB) (57>
Iyy ’ Ia%z + ]yy : I:gy = Iy - Iyy ’ Iyy
) Iyl -R-h— L. L, R-l,
23 = —
[yy'I%z‘{'[yy'py_jm'[yy'[yy
A Lo Ly (Kg+ Q0 R-e-my-2g+Hy- f-R+Ty h-R)
31 = —
]yy'[g%z"‘fyy']a%y_lx:c'fyy'lyy
A _[yy-IxZ-(Td-h-R—i—e-mbl-xg-QQ-R—I—K5)
32 =
[yy ’ I:%z + [yy ’ [x2y — Iy - Iyy ’ [yy
A R-lt-]311—Im-Iyy-R-lt—klyy-Im-R-ht
33 = —
[yy'[:%z"‘jyy'[a%y_[m'jyy'lyy
and:
Szpus o (W+Q- RN /(U2 +V2+W?2)
bw == T + (5.8)
+U-q—V -p+g-cosp-cost
Taking h as output to control:
p
_ | a
h= |1 (5.9)
%74

the corresponding relative degree is {rp, r¢, 7, 7w} = {1,1,1,1}.
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The two fictitious input signal used to linearize the model are v, and v,,:

Up Kpep K, - (pd - p)
v, = |vg| = | Keeq| = | Ky (g2 —q) (5.10)
Uy K,e, K, (rq—r)
and:
Vw = KWeW = KW . (Wd — W) (511)

The feedback gains, determined using pole-placement method, are:

K, 25
K, | |2
K| =1 (5.12)
Kw 15

; |

Py Y s p.q,r
Qe ="
p
q v ANGULAR b, 0.0,y
‘ "k ="  SPEED -
a CONTROLLER HELICOPTER
. . . MODEL |
3 t )
: K=
r
W, e @ HEAVE Ty w
¥ b CONTROLLER
W
!

Figure 5.3: Sketch of fast controller.

5.3.1 Fast circuit simulation results

In order to test the stability of the controller, some simulation tests have been
performed. The system was initialized in hovering condition and was exited by
different tracking signals py, ¢4 and ry.

For each simulation test only one input channel at a time was exited by a
non-zero signal. The input signal was a square wave with amplitude 10deg/s,
mean-value 0 deg/s and frequency 0.25 Hz.

Time responses to a tracking signal p; are shown in Fig.
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20

p [deg/s]

_20 Il Il Il Il 1
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Figure 5.4: Angular velocity response to a tracking signal py.
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Figure 5.5: Thrust commands response to a tracking signal pg.
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als [deg]

-0.2 1
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Figure 5.6: Flapping coefficients response to a tracking signal pg.

The other simulation results are shown in Appendix [B.1}
As can be seen, the system acts as a high frequency first order system and there
are not saturations of the commands.

5.4 Attitude angles controller

The state equations of slow circuit can be expressed as follows:

¢ 1 singtanf cos¢tand

0 p
| 0 cos @ —sin ¢
Z 8 + 0 sin ¢ cos ¢ g (5.13)
cos cos
Taking h as output to control:
¢
h=16 (5.14)
(G
the corresponding relative degree is {rg, 79, rpsi } = {1,1,1}.
The fictitious input signal used to linearize the model is vg,,:
Vg Kgeg Ky - (¢4 — ¢)
Vang = |vo | = | Koeg | = | Ky - (0q—0) (5.15)
Uy Kyey Ky (Ya— 1)
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The feedback gains, determined using pole-placement method, are :

K, 15
Ko| = |15 (5.16)
K, 15

A schematic representation of the controller is shown in Fig. [5.7]

X
N
(0

ed % ATTITUDE q,

4@% ANGLES >
) CONTROLLER
] v r
d . J Ko Y 4d>
7]
¢,6,y

Figure 5.7: Sketch of slow controller.

5.4.1 Slow circuit simulation results

As has been done for the fast controller, some simulation tests have been performed
even for the attitude angles controller.

The system was initialized in hovering condition and was exited by different
tracking signals ¢4, 64 and 1),.

For each simulation only one input channel at a time was excited by a non-zero
signal. The input signal was a square wave with amplitude 40 deg, mean-value
0deg and frequency 0.1 Hz. For each input channel, rate-limiters, with rising and
falling rate of 0.35rad/s, have been used to avoid instability problems.

Time responses to a tracking signal ¢, are shown in Fig. [5.8}5.10]
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B
=, 0
° system response
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Figure 5.8: Angular response to a tracking signal ¢g.
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Figure 5.9: Thrust commands response to a tracking signal ¢g.
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Figure 5.10: Flapping coefficients response to a tracking signal ¢g.

The other simulation results are shown in Appendix [B.2]

5.5 Speed controller

The state equations of slower circuit can be expressed as follows:

Hd Td‘als

’ Ver—w.q——— . sinf
{g} | T Td'bl«S_i_‘T/ ;}l + [g-iossglsingb} (5-17)
—_— -p— -’r‘
m

As can be seen, the Eq. is not in the form of the Eq. . As shown
above, in order to enable the dynamic inversion linearization, it is necessary to
dynamically extend the model through the introduction of two integrator.

The state equation of the controller become:

Hy Ty
V-T—W-q——d— - ns
m

+ g -sinf

= T, Ty-b
W-p—U-r+—t— d 18+g-cos€sinqb T
m

7 e

SRS el
o oo
— o oo
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Figure 5.11: Sketch of slower controller.
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Taking h as output to control:

h= {g] (5.19)

the corresponding relative degree is {r,,r} = {2,2}.
The fictitious input signal used to linearize the model is Vgpeeq:

. {UU} B {KUeU—i—KU(%U} K- wi-0) s i Ud—U) 520,
o] Kver Kyl gy (V- V) Ky (Va = V)
The feedback gains, determined using pole-placement method, are:
Ky 0.3
gﬁ = 0:.))3 (5.21)
Ky 3

As anticipated in Chapter [3| the controller must be developed in order to have
as inputs the velocities in the horizontal-body reference system: V.., Vioss and
V..

Having said that, the corresponding schematic representation of the controller

is shown in Fig. [5.11]

5.5.1 Slower circuit simulation results

Even for the slower controller, some simulation test have been created.

The system was initialized in hovering condition and was excited by different
tracking signals Vi, Vir0ss and V..

For each simulation only one input channel at a time was excited by a non-
zero signal. For Vj,, and V..ss the input signal was a square wave with amplitude
20m/s, mean-value 0m/s and frequency 0.03Hz. For V, the input signal was a
square wave with amplitude 13m/s, mean-value -3.5m/s and frequency 0.03 Hz.

For each input channel, rate-limiters, with rising and falling rate of 3m/s* were
used to avoid instability problems.

Time responses to a tracking signal Vj,, are shown in Fig.
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Figure 5.12: Speed response to a tracking signal Vj,,.
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Figure 5.13: Thrust commands response to a tracking signal V,,.
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Figure 5.14: Flapping coefficients response to a tracking signal Vj,,.

The other simulation results are shown in Appendix [B.3]

The system act as an high damped second order system with maximum value
of overshot of 10 per cent and asymptotic error almost zero; the coupling effects
are very small so the zero signals are followed pretty well.

5.6 Flapping and actuator’s dynamics reintroduc-
tion

Now that the structure of the controller has been defined it is necessary to rein-
troduce the part of the dynamic model that was neglected at first step.

In order to get a link between the required values of Ty, aq,, bis, Ty and the
corresponding values of 0y, Ay, By, 0; the command’s effects have been considered
instantaneous. According this approximation, the rotor and flybar dynamic model
was inverted taking into consideration only the zero-order dynamic equations and
neglecting every transient response.
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ROTOR & TAIL
DYNAMICS
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S : s 2
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servo_rotor|

ZERO ORDER
FLAPPING EQUATIONS
INVERSION

Figure 5.15: Sketch of reintroduced dynamics.

Mathematically, it is necessary to invert the Eqs. |5.22{{5.24}
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Pw
Qis| Alcorr Qu A
K |:bls:| - .fcomm |:Blcorr:| + .fang pw + f)\ |:)\2:| (523)
Gw
E = f(etv Vv M, D, q) (524‘)

Finally the actuator’s dynamics has also been introduced, as shown in Fig.
5. 151
As can be seen the actuators have a dynamic of the first order with:

{servomm =33 (5.25)
Servo,; = 50
Furthermore the gains of the controller have been reformulated:
[ K, ] [30]
K, 30
K, 20
Kw 10
Ky 25
Ky | =115 (5.26)
Ky 10
Ky 1
Ky 1.5
Ky 0.3
| K| |15]

5.6.1 Complete model simulation results

The complete model has been tested with the same simulation tests used in section

b.odl
Time responses to a tracking signal V., are shown in Fig.
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Figure 5.16: Speed response to a tracking signal in Vj,,.
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Figure 5.17: Flapping coefficients response to a tracking signal Vj,,.
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Figure 5.18: Pitching coefficients response to a tracking signal V,,.

The other simulation results are shown in Appendix [B.4]

The system acts as an high damped second order system with maximum value of
overshot of 15 per cent and asymptotic error almost zero; in this case the coupling
effects, between lateral and longitudinal dynamics, and between flapping and rigid
body dynamics, are stronger so the zero-signals tracking is less accurate.

5.7 Validation simulation

In order to test the effective capability of the controller the dynamic model was
excited by a realistic command sequence.

As can be seen, although we have asked values of velocity at the limit of the
allowable operating range of the machine, collective and cyclic pitch angles do not
have any saturation.

In Fig. [5.1945.21] are shown the response to this command sequence.
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Figure 5.19: Speed response to the tracking signal.
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Figure 5.20: Flapping coefficients response to the tracking signal.
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Figure 5.21: Pitching coefficients response to the tracking signal.

5.8 Hovering Controller

The state equations of Hovering controller can be expressed as follows:

|:COS fcosty sin¢gsinfcosy — cospsiny cos@sinf cosy + sin psiny
Rpy =

U
V
w

(5.27)

0
0| + Ry
0

N LR

where:

cosfsiny sin¢sinfsiny + cos@cosyy cos@sinfsiny — sin ¢ cos ¥
sin 0 —sin ¢ cos 0 —cos ¢ cos
(5.28)
The minus sign in the last row of the rotation matrix is due to the fact that the z
axis points upwards.
Taking h as output to control:

h= (5.29)

N e R

the corresponding relative degree is {r,,r,,r.} = {1,1,1}.
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The fictitious input signal used to linearize the model is vp,s:

Uy K,e, K, (xq—x)
Upos = |Uy | = | Kyey | = | Ky- (Ya —y) (5.30)
U, K.e, K, (zq—2)

The feedback gains, determined using pole-placement method, are :

K, 0.5
K,| =05 (5.31)
K. 3

A schematic representation of the controller is shown in Fig. [5.22]
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Figure 5.22: Sketch of hovering controller.

If there are not velocity inputs the controller switches automatically in hovering

mode and it retains the helicopter position countering any external input.

5.8.1 Hovering controller simulation results

In order to test the controller capabilities, the helicopter has to keep the zero
position while it is perturbed by an external gust in Vj,, and V..

The results of this simulation are shown in Fig. .25|
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Figure 5.24: Velocities.
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Figure 5.25: Command coefficients.

As can be seen the setting time, considering a threshold of 4+0.1m around
reference position, is less then 10s.

In section is shown the response to a vertical gust.

Furthermore in Appendix [C] it is shown an analysis on the robustness of the
controller.

As can be seen from the simulation results the controller is very robust in the
following of speed references and the hovering maintenance. Only the estimation
of the asymptotic value of 1 is affected by an observable error that can be removed
introducing an integral effect on the 1) controller.
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Conclusions and future works

The key point of this work has been the development of a controller for the auto-
matic flight, based on a feedback linearization procedure.

The work on the search for trim and the following phase of linearization it was
very useful for the understanding of the helicopter dynamics and for the realization
of the cascade controller.Its main results were:

e thereis a good agreement, concerning the trim, between the non-linear model,
developed by our team, and the model coming from literature [2];

e following the application of a command, there is a fast divergence between
the response of the linearized system and the non linear one;

e the helicopter dynamic behavior can be divided in different frequency ranges;

e there is an high level of coupling between the longitudinal dynamics and the
lateral dynamics;

e there is an high level of coupling between the rigid body dynamics and the
lateral dynamics;

e back position of the centre of gravity, relative to the shaft, compromises the
controllability of the helicopter using control laws based on the linearized
system.

According to these results a control method based on the feedback linearization
is a good choice for a number of reasons. Compared to a conventional linearization
procedure the feedback linearization is more versatile because it is not necessary to
study the control laws around trim conditions but controller suits all flight condi-
tions. The lateral and the longitudinal dynamics can be controlled simultaneously.
Furthermore it is not necessary the rebalancing of the helicopter weight.

The application of the input-output exact feedback linearization procedure has
not led to satisfactory results due to the generation of a set of unobservable states
that prevented the stabilization of the system. Therefore it was necessary to use a
procedure of feedback linearization based on a time scale separation approximation.

This procedure, called dynamic inversion linearization, has allowed us to build
a controller in cascade, acting separately on the fast, middle and low frequencies.

The implementation of this controller has provided good resuts: the responses
to a tracking signal in velocities and yaw angle 1) show a short settling time, a little
value of maximum overshoot (max. 20 per cent), an high level of damping and an
asymptotic error almost zero, both for high and little values of the tracking signal.
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CONCLUSIONS AND FUTURE WORKS

The good results given from this work can be increased in the environment of
this research, so the future developments will be:

e implementation of the controller in the FCC and validation of its capabilities
trough flight tests;

e development of the control laws for the takeoff and landing phases to allow
to the T-Rex to perform autonomous missions entirely and not only for the
cruise phase.

The last step will be the substitution of the pilot whit a FMS that carries out
the mission in autonomous mode.
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Appendix A

Blade and Flybar flapping equation

A.1 Introduction

The following analysis (made with the aid a previous thesis [1]), has been made to
obtain a differential equation for blade flapping simulation. The analysis includes
a study of the steady-state flapping response with respect to control inputs.
The flapping equation of motion was derived explicitly for a two-blade rotor, with
hinge offset e, blade Lock number « and stiffness of the flapping hinge K3.

To develop analytic expressions, the following simplification and assumptions
have been used:

Rotor blade is rigid in bending and torsion, with no twist (see Fig. [A.1)); it
can be considered a symmetric body (the shape of the airfoils give a negligible
contribute to centrifugal moments of inertia), so its inertia tensor is a diagonal
matrix;

Drag coefficient 0 and lift coefficient a of airfoil are independent of local blade
angle of attack (mean values have been considered);

Both the flapping angle and the inflow angle were assumed to be small (i.e.
low ratio T'/A and high blade aspect ratio) and this analysis uses simple
Glauert theory;

Lead-lag motion negligible: lead-lag dynamics, which is the result of Coriolis
forces induced by flapping motion, produce smaller forces on the hub than
flapping motion, and they will be ignored.

The effects of the helicopter dynamic on the blade flapping were limited to
those due to the angular accelerations p and ¢, the angular rates p and g,
z-axis acceleration w and translation velocities u and v;

The reversed flow region was ignored, as the compressibility and stall effects;

The inflow was assumed to vary according the Glauert theory:

V; = Vo - (1 -+ KZ‘ULU COS lp> (Al)
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e Inflow dynamic was used according to Pitt-Peters model [9]: effects on flap-
ping dynamics are negligible and computational effort is high, so it will not
be considered any more;

e The tip loss factor was assumed to be 1; root-cutout effect is neglected;

md)x
——" dF,

cent

dF inertia hub plane

Figure A.1: Blade simplified representation.

Because of these assumptions, the results of this analysis are valid only in a
limited range of conditions; however it can be demonstrated that these results are
usually valid for rotorcraft simulation up to an advance ratio p of 0.2.

A.2 Derivation of flapping equation

Referring to local blade reference system, the angular velocity of the blade during
motion can be expressed as:

p —6y
Q=Ruoioe | q |+ |8 (A-2)
r 4§ 0

where:

Ry Rip Rus
Rypotoc = | Ro1 Rao R (A.3)
Rs1 Ry Ras

where:
Ry = — cosvycosfB
Ry = —sincos 3
Ri3=—sinp
Ro1 = — sin B sin Oy cos ¢ — cos Oy sin Y
Roy = — sin B sin Oy sin ¢ + cos B cos ¢
Ro3 = cos B sin Oy,
R31 =sin 3 cos Oy cos 1) — sin Oy, sin v
R35 =sin 3 cos Oy sin ) + sin Oy cos ¢

R33 = — cos B cos by,
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The absolute angular momentum is:

A

0
KO = B [—Q] — mblOG X Vo (A4)
0

Qoo

0
0
The Euler’s equations for blade dynamics are, generally:

KO:M0+\I’0+Q><'UO (A5)

Extracting the component according the j-axis, supposing that angles are small
and neglecting second order terms, we obtain the differential equation for blade

flapping:

. [K
B+ [gﬁ —i—Qz(l + %@)}ﬁ = —psiny + ¢ cos P+

—2Q(gsiny + pcos) - (1 + %ﬂeR) + (A.6)

My . .
29 (i — ug + pv — g) + Ma/B - j

Before being able to calculate the forces and moments on the blade, it is nec-
essary to know the velocity components of the air relative to the blade. The blade
will be assumed to be a rigid beam with an elastic flapping hinge, and only simpli-
fied theories about induced velocity and airfoil characteristic will be used. For the
calculation of the aerodynamic moment, it is sufficient to assume that the flapping
hinge offset e is zero. The only velocity component affected by the flapping hinge
offset is that due to blade flapping, but, since e is only 4% of the blade radius,
the error is negligible. Henceforth, refer to an auxiliary hub-plane reference system
Thp(@yp, Y p, 2 p), Wherein axis 2}, p is coincide with zyp and plane 2’y p — Yy p
contains the helicopter velocity vector V' . Neglecting the spanwise component of
air velocity, it is usual to denote as Ur the velocity component that is tangential
to axis xy p, positive when blows from front to back, and Up the component along
axis z}; p, positive when blows from wing underside to the upper surface (Fig. [A.2):

Ur =Qr+Vcosaypsiny (A.7)

Up=Vsinagp — VcosaypBcosth —rf — v; — py - rsint + gy - 1 cos (A.8)

where:
V = Vu? + v? + w? (A.9)
Pw = pcos By, + gsin B, (A.10)
Gw = —psin By, + g cos By (A.11)
Defining:
N = (Vsinagp —v;)/QR (A.12)
p=(Vcosagp)/QR (A.13)
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Figure A.2: Velocity components at a blade section.

ur = Ur/QR (A.14)
and
up =Up/QR | (A.15)
equation(A.7) and equation(A.8) can be rewritten as:
up = x + psiny (A.16)
d
up = \ — ,uﬁcosqb—xﬁ — g;};{ qﬁwxcoszﬁ—%xsmgb (A.17)
The induced velocity v; is assumed to vary accordingly Glauert’s formula,
V; = Vo - (]_ + KZ'UZE COS 1/)) (A18)

where vy is the induced velocity at the rotor center (disk actuator theory), z = r/R
and K, is the induced velocity coefficient, according to Payne (1959, [10] and [11]):

4 /A
31.24 pu/A

In this, we assume that the expression (A.18]) holds equally for the auxiliary hub
plane as for the plane it actually applies to, which most nearly corresponds to the
tip path plane. The blade pitch changes according the equation (A.20)):

0 =0y— Aicosyy — Bysiny (A.20)

The aerodynamic flapping moment dM 4 about the hinge due to elementary lift
(the moment due to airfoil drag is assumed to be negligible) is:

(A.19)

w —

1
dMy = ~paUZ( 0 + Yp crdr (A.21)
2 Ur

Substituting expressions for velocities, integrating and neglecting the terms
containing €, e* and higher order, we obtain:

1
dM 4 :§pa092R4{ [Qy sin? ¢ + pusin 1 (

+ [2usin@b9+usinw <—% — pwsgiznw + qw(;(;sw) + A+ (A.22)
, B pusing _ qucosv]
- OR uﬁcosw]x —l—{@—@— 0 + R ]fc}
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Integrating and neglecting the terms of third and higher order the result is:

1 1 2
My :§pac§22R4{ﬂsmw[9usm¢+)\ )\Zo—uﬁcosdz} (——e+ 2) +

B pusing gy cosy
+ [,u sin ¢ (29 a0 Q + q i cos Yk, |+

+)\—)\i0_,u6(30874<%+62—6> {e—dﬁ prin¢+

dy Q
Qu COS Y 1 3 5
+ 0 Aip COS wkw} (4 e+ 26

The aerodynamic moment M, depends on the aero-mechanical parameters of
the helicopter blade, as expected. Rearranging Eq. and one can
obtain the differential equation of blade flapping and write it in a non dimensional
form using the following expressions:

(A.23)

5 dQﬁ o d2ﬁ 2 A

f=—g =073 a7 =023 (A.24)
,_dB _ dB
b=— = dw -Q-5 (A.25)

The result becomes:

_ 1 3¢ (1 _
5+%[Z—e+i+(——e+62),usinw]ﬁ+

2 3
+{P2~I—%E+62—e+(%—e%—?)usin@b}}ﬁz
g;smw—i- cosw—2<§smw+ﬁcosw)( %fd%>+
+Tgbé229( —qu+pwv—g)+%{E—e+3§2+
—i—,usmzb( + 2¢? —2e—|—;/vcsmw(1—2e+e)>}0+ (A.26)

+A +2—+s'¢1—+€2 —A s¢1+62—+
36 e+ psin 26 5 30 | psin 5 e

1 1
+ = + €2 — e+ psin cos Yk, (§+62—6) +

3
1 3e?
kiv | ——e+ —
+ cosv <4 e+ 2)}—%
— P SINY + ¢y cOS Y , 1, 1 3e?
+( Q ){,usmgb(zg%—e e +4 e+ 5

Equation is a linear equation with periodic coefficients and there is not a
solution in closed form. Moreover, it is valid only for the advancing region, since in
the reverse flow area the lift and flapping moment are incorrectly evaluated: this
is a negligible error, however.
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A.3 Tip-path plane dynamics

A.3.1 Derivation of matrix-form equations

To obtain a simplified and more practical form of the equation for numerical simu-
lation, the flapping is approximated by the first-harmonic terms with time varying

coefficients, as in Eq.
B(t) = ap(t) — ais(t) cosh — bys(t) sinep (A.27)

where ag(t), a1s(t) e bis(t) are the blade flapping coefficients [12].

Remembering and substituting in can be obtained an equation
in siny and cos: developing these terms and considering only the first order
harmonics the tip-path plane dynamic equation results:

ia+QDa+V Ka=Ff (A.28)

where a is the blade flapping state matrix, D is the damping matrix (A.30]), K is
the stiffness matrix (A.31) and f are the forcing terms (A.32)), (A.33), (A.34) and
(IA.35]).
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A.4 Flybar flapping equation

For the flybar a similar second order differential equation in matrix form can be
obtained with the same approach.

dfb + Qbedfb + QQbeafb = ffb (A36)
where ay, is the flybar ﬂappmg state matrix , Dy, is the damping matrix (A.38]),

Ky, is the stiffness matrix and fy, are the forcing terms ( - (A.41 )
and (A22)).
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Appendix B

Simulation results

In this Appendix are collected all the simulation results coming from chapter [5

B.1 Inner circuit simulation results

In Fig. are shown the responses to a tracking signal gg.
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Figure B.1: Angular velocity response to a tracking signal q.
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Figure B.2: Thrust commands response to a tracking signal q,.
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Figure B.3: Flapping coefficients response to a tracking signal ¢.

In Fig. are shown the responses to a tracking signal r,.
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Figure B.4: Angular velocity response to a tracking signal 7.
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Figure B.5: Thrust commands response to a tracking signal r.
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Figure B.6: Flapping coefficients response to a tracking signal r.

B.2 Slow circuit simulation results

In Fig. B.7HB.9| are shown the responses to a tracking signal 6.
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Figure B.7: Angular response to a tracking signal 6,.
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Figure B.8: Thrust commands response to a tracking signal 6.
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Figure B.9: Flapping coefficients response to a tracking signal 6.
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In Fig. are shown the responses to a tracking signal .
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Figure B.10: Angular response to a tracking signal 1.
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Figure B.11: Thrust commands response to a tracking signal 4.
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Figure B.12: Flapping coefficients response to a tracking signal 1.

B.3 Slower circuit simulation results

In Fig. are shown the responses to a tracking signal V.
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Figure B.13: Speed response to a tracking signal V..
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Figure B.15: Flapping coefficients response to a tracking signal V.-
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In Fig. are shown the responses to a tracking signal V..
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: Thrust commands response to a tracking signal V.
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Figure B.18: Flapping coefficients response to a tracking signal V.

B.4 Complete model simulation results

In Fig. are shown the responses to a tracking signal in V.
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Figure B.19: Speed response to a tracking signal in V...
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Figure B.20: Flapping coefficients response to a tracking signal V..
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Figure B.21: Pitching coefficients response to a tracking signal V...

In Fig. B.22]B.24] are shown the responses to a tracking signal in V.
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Figure B.22: Speed response to a tracking signal in V.
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Figure B.23: Flapping coefficients response to a tracking signal V.
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Figure B.24: Pitching coefficients response to a tracking signal V.

In Fig. are shown the responses to a tracking signal in 1.
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Figure B.25: Speed response to a tracking signal in ).
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Figure B.26: Flapping coefficients response to a tracking signal 1.
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Figure B.27: Pitching coefficients response to tracking signal ).

B.5 Hovering simulation

The results to a vertical gust perturbation are shown in Fig.

96



APPENDIX B. SIMULATION RESULTS

0057
b%?
_005 Il Il Il Il Il Il Il Il Il I
0 10 20 30 40 50 60 70 80 90 100
_05¢
A 0
E Vv V4 V
_0-5 Il Il Il Il Il Il Il Il Il I
0 10 20 30 40 50 60 70 80 90 100
_02r
T | ) A A
N v V
_0-2 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
_ 02
g irs o~ f\~ o~ N\ —
= 0 system response I I
= tracking signal
'0.2 1 1 1 1 1 1 |
0 10 20 30 40 50 60 70 80 90 100
Time [sec]
Figure B.28: Position and .
0.05r
£ \ \ \
.g. 0 /\_ A N\ AN\
: VY VY VY
=
_005 Il Il Il Il Il Il Il Il Il I
0 10 20 30 40 50 60 70 80 90 100
0.2r
z \ \ \
E ) )
vV vV
N
_0‘2 Il Il Il Il Il Il Il Il Il I
0 10 20 30 40 50 60 70 80 90 100
5
system response
" gust
~
£ 0
_5 Il Il Il Il Il Il Il I
0 10 20 30 40 50 60 70 80 90 100

Time [sec]

Figure B.29: Velocities.
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Appendix C

Study of the robustness

In order to evaluate the robustness of the controller some modelling errors have
been introduced during the simulation tests.

C.1 simulation test

Assuming a 20% error on the estimation of the c.g. and of the fuselage drag, some
simulation tests have been used in order to evaluate the differences on the time

response.
In Fig. [C.I{C.4] are shown the response to a particular simulation.
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Figure C.1: Speed response.
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Figure C.3: Flapping coefficients response.
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Figure C.4: Command coefficients response.

As can be seen from the simulation results the controller is very robust in the
following of speed references and the hovering maintenance. Only the estimation
of the asymptotic value of 1 is affected by an observable error that can be removed
introducing an integral effect on the 1/ controller.
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