
UNIVERSITÀ DI PISA
SCUOLA DI INGEGNERIA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Master of Science in Computer Engineering

THESIS

Analysis, design and implementation of alternative solutions for

data persistence on mobile devices

Supervisors:
Prof. Alessio VECCHIO

Prof. Marco AVVENUTI

Ing. Stefano ZINGARINI

Candidate:
Francesco PIRAS

Academic Year 2015/2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79623296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract
Data availability on mobile applications is a key feature required to have a bet-

ter user experience, especially in offline scenarios. Mobile applications should be
available both when the device is online and when it is offline. The assumption
that the device is always connected to the Internet is in general too strict. Relational
databases provide a solid but limited solution to store persistent data locally. In
order to satisfy dynamic needs of mobile applications, alternative storage solutions
should be used to offer a schema-free data layer. JSON can be used as a data in-
terchange format for lightweight and easy manipulation. However, problems like
performance and security must be considered in such mobile scenarios especially
for enterprise applications. This thesis describes the analysis, design and develop-
ment of a mobile storage solution. The proposed approach relies on JSON and it
has been integrated into a proprietary enterprise framework in order to improve
performances of the existing data layer. First of all, state-of-the-art data storages for
mobile devices have been analysed, in terms of data and query model, concurrency,
encryption, cross-platform support. After that, we designed and developed a new
solution, based on SQLite with JSON1 extension. This standalone library has been
integrated into a proprietary framework in order, to provide a performing schema-
free data storage, able to store and query non-relational data in a very efficient way.

ii

Acknowledgements
I would thank my academic supervisor Professor Alessio Vecchio that supported

me carefully during this work.
Thanks to my tutor Stefano Zingarini that guided me during this work at Apparound.
Thanks to the Apparound company that gave me this big opportunity and thanks
to all my colleagues that helped me every time I needed.
Thanks to my family and to my girlfriend Diletta that supported me during univer-
sity years.
Thanks to all my friends who were beside me during this journey.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Goals . 1
1.2 Related work . 2
1.3 Outline . 3

2 Background 4
2.1 Mobile Operating Systems . 4

2.1.1 Android Operating System . 4
2.2 Mobile Applications . 5
2.3 Hybrid Mobile Applications . 6

2.3.1 Android JavaScript Interface 9
2.4 Apparound Mobile Applications . 10

2.4.1 Architecture . 10
2.4.2 Offline feature . 12

3 Storage engines for mobile devices 13
3.1 Database Management Systems . 13

3.1.1 Relational Databases . 13
3.1.2 Non-Relational Databases . 14
3.1.3 Data Models . 15

3.2 Mobile Storages . 16
3.2.1 SQLite . 16
3.2.2 Couchbase Mobile . 20
3.2.3 Realm . 22
3.2.4 Summary . 25

iv

4 LocalDB 26
4.1 Internal Structure . 26

4.1.1 File Structure . 26
4.1.2 Record Structure . 28

4.2 Internal Operations . 29
4.2.1 addItem . 30
4.2.2 getItem . 32
4.2.3 findItems . 32
4.2.4 deleteItem . 33

4.3 Issues . 34

5 Improvements to LocalDB 36
5.1 Requirements . 36

5.1.1 Functional requirements . 36
5.1.2 Non-Functional requirements 37

5.2 Library overview . 38
5.3 Architecture . 39
5.4 Interfaces . 39

5.4.1 LocalDB interfaces . 41
5.4.2 Storage Engine Abstraction interfaces 42
5.4.3 Storage Engine interfaces . 42

5.5 Data Design . 42
5.5.1 Criteria structure . 42
5.5.2 Options structure . 43
5.5.3 Iteration result structure . 43

5.6 Library Design . 44
5.7 Implementation . 45

5.7.1 Storage Engine based on SQLite 46
5.7.2 Architecture Details . 46
5.7.3 Design . 48
5.7.4 SQlite JSON1 extension exploitation 48
5.7.5 JSON criteria handling . 50

6 Performance Evaluation 53
6.1 Setup . 53
6.2 Tools . 55

v

6.3 Tests . 56
6.3.1 Retrieve items with non-indexed field test 56
6.3.2 Retrieve items with indexed field test 56
6.3.3 Advanced retrieve items test 57
6.3.4 Manual journey test . 58

6.4 Summary . 61

7 Conclusions 63
7.1 Future work . 63

A The JSON Data Interchange Standard 65

Bibliography 69

vi

List of Figures

2.1 The Android stack . 5
2.2 Generic Mobile Application Layers . 7
2.3 Apache Cordova Architecture . 8
2.4 Apparound Mobile Application Architecture 11

3.1 SQLite Architecture . 17
3.2 Couchbase Mobile Architecture . 21

4.1 LocalDB files . 27
4.2 RAM and CPU usage during a search operation 35

5.1 LocalDB library integration example 38
5.2 LocalDB architecture . 40
5.3 LocalDB architecture . 44
5.4 LocalDB architecture . 47
5.5 LocalDB library class diagram with SQLiteStorageDelegate 48

6.1 LocalDB logical structure . 54
6.2 Retrieve on non-indexed field test results 56
6.3 Retrieve on indexed field test results 57
6.4 Advance Retrieve test results (for each entity) 58
6.5 Advance Retrieve test results (average) 59
6.6 RAM usage comparison . 59
6.7 Data processing operations . 60
6.8 Push updates flow when an Account is modified 60
6.9 Complete journey test results . 61

A.1 JSON object . 66
A.2 JSON array . 66
A.3 JSON value . 67
A.4 JSON string . 67

vii

A.5 JSON number . 68

viii

List of Tables

3.1 Mobile Databases comparison . 25

6.1 LocalDB scenario . 55
6.2 LocalDB performance summary . 62

ix

List of Abbreviations

JSON JavaScript Object Notation
CMS Content Management System
DBMS DataBase Management System
RDBMS Relational DataBase Management System
SQL Structured Query Language
NoSQL Not Only Structured Query Language

x

Dedico questo lavoro di tesi ai miei genitori per il loro
costante e prezioso supporto durante questi anni di

studio. . .

1

Chapter 1

Introduction

Data availability on mobile applications is a key feature required to have a better
user experience especially in offline scenarios. For enterprise applications, having
data available on the device allows the user to work continuously, even if he does
not have an internet connection available. Data can be synchronized as soon as the
Internet connection is available. Working offline permits to save energy that on mo-
bile devices is a limited resource. In order to store, retrieve and synchronize such
data in an efficient way, a lightweight and flexible format is needed. In the last
years, the JSON data format, an open standard that uses an human-readable text to
transmit data, became the most common data format used to transfer data on the
web. It permits to represent semi-structured data using a schema-free data model,
very suitable for the dynamic needs of the mobile world. However, whereas most
of database systems that can manage JSON data are available for server and desk-
top computers, we have few choices about embedded databases for mobile devices.
New technologies for mobile device data persistence come just in the last years, so
many companies had to implement their own home-made solutions. This work de-
scribes the analysis, design and development of a mobile storage solution that relies
on JSON and is based on SQLite with JSON1 extension. It has been integrated into a
proprietary enterprise framework, in order to improve performances of the existing
custom solution.

1.1 Goals

Summarizing, the goals of this work are:

• Analyse and evaluate alternative data storage solutions considering the state-
of-the-art of storage engine for mobile devices, evaluating their features with

Chapter 1. Introduction 2

particular attention to the support for the JSON data format.

• Design and implement a new standalone library for JSON data persistence in
order to replace a legacy solution, allowing to change the underlying storage
engine easily.

• Integrate the library into a custom framework and evaluate the performances
compared against the old solution.

1.2 Related work

In [1] are presented three architectural principles that facilitate a schema-less de-
velopment style within an RDBMS, so that users can store, query, and index JSON
data. The first principle is Storage Principle for JSON that stores JSON data natively
in VARCHAR, CLOB, RAW, or BLOB columns without any relational decomposi-
tion. A JSON object collection is modelled as a table having one column storing
JSON objects. Each row in the table holds a JSON object instance in the collection.
The second principle is Query Principle for JSON that extends SQL with SQL JSON
operators. These operators embed a simple JSON path language to navigate and
query JSON object instances. The third principle is Index Principle for JSON that uses
indexes on JSON data to efficiently support queries on JSON object collection. It
can use partial-schema-aware indexing to build secondary structures on top of the
primary JSON object collection or schema-agnostic indexing relying on information
retrieval techniques such as inverted index. We used Storage Principle for JSON and
Query Principle for JSON in our work.
In [2] is proposed a novel embedded data storage system, called EJDB, for JSON data
which can be used as a shared executable library. It is a C library based on modi-
fied version of Tokyo Cabinet [3]. However, this project seems to be abandoned and
without a concrete support for mobile devices.
In [4] is presented Argo, an automated mapping layer for storing and querying
JSON data in a relational system. Their results point to directions of how one can
marry the best of both worlds, namely combining the flexibility of JSON to support
the popular document store model with the rich query processing and transactional
properties that are offered by traditional relational DBMSs.

Chapter 1. Introduction 3

1.3 Outline

This work is divided in several Chapters as follows:

• Chapter 2
We present the context on which this work has been developed, introducing
the mobile applications world. We introduce the Android platform architec-
ture [5] and some principles about hybrid mobile applications [7][6] , illus-
trating advantage of writing a single code base and targeting multiple mo-
bile platforms. We show the architecture of a popular framework for hybrid
mobile applications development, Apache Cordova [8], and we introduce the
Apparound framework [9].

• Chapter 3
We start with a brief introduction about DBMS, highlighting RBDBMS and
NoSQL main characteristics [10][11][12][13][14]. Then, we present the state-of-
the-art of most widely used storage engines for mobile applications i.e. SQLite
[15][16], Couchebase Mobile [20], Realm [21].

• Chapter 4
We present Apparound LocalDB, a custom mobile NoSQL database developed
by Apparound.

• Chapter 5
We present LocalDB, the system that we designed and implemented as major
part of this work.

• Chapter 6
We present the performance test setup, the tools used and the result obtained
in terms of exectution time and speedup [24][25].

• Chapter 7
We summarize the work, draw conclusions and discuss possible future work.

• Appendix A
We present the The JSON Data Interchange Standard according to its official
reference [26].

4

Chapter 2

Background

In this chapter we present the context on which this work has been developed, start-
ing from a brief introduction about mobile operating systems (with particular focus
on Android), mobile applications, hybrid mobile applications and Apparound mo-
bile applications. At the end will be presented the specific problem that this work is
willing to solve.

2.1 Mobile Operating Systems

A mobile operating system is an operating system for smartphones, tablets, PDAs,
or other mobile devices. Several operating systems like Android, iOS and Windows
are available for those devices. It combines features of a personal computer operat-
ing system with other features useful for mobile or handheld use, usually including
a touchscreen, cellular radio, Bluetooth, Wi-Fi, GPS, camera, speech recognition,
voice recorder, music player and NFC.

2.1.1 Android Operating System

Android is a widely known mobile operating system developed by Google. An-
droid runs on more then one Billion devices worldwide and its currently last stable
release is Android 6.0. Android runs on a Linux kernel written in C. On top of
the kernel the Android Runtime (ART) is deployed. Furthermore, a wide set of li-
braries is available, which handle for instance media, video processing and network
communications and can be accessed through APIs provided by the Android SDK.
Android applications run in a Sandbox on top of the Android framework. This en-
sures that applications have no access to the rest of the system and can be allocated a
fixed amount of resources. Android application are written using the Java language.

Chapter 2. Background 5

It is a garbage collected language, which means that it allows developer to do not
care about explicitly memory deallocation. This task is carried out by the Android
Runtime through a special process called Garbage Collector, which is in charge of
finding data objects that cannot be accessed, and to reclaim the resources used by
those objects. However, when this process runs it consumes additional resources,
impacting performance and stalling program execution.

FIGURE 2.1: The Android stack1

2.2 Mobile Applications

A Mobile application is a computer program designed to run on mobile devices such
as smartphones and tablets. Several operating systems like Android, iOS and Win-
dows are available for those devices to support such new generation mobile soft-
ware. Some applications come together with the device as pre-installed software to
offer basic functionalities such as web browser, email client, calendar etc. Although
it is ordinary software, developed using common programming languages such as

1https://source.android.com/

https://source.android.com/

Chapter 2. Background 6

Java, Objective-C, C# etc., the main difference between desktop applications and
mobile applications is that the latter are designed to offer a better user experience
on mobile devices, removing everything not needed in order to keep them light and
fast as much as possible against limited hardware resources offered.
Every operating system offers to the developers a rich framework, also known as
SDK, in order to provide high-level API to access device functionalities and every-
thing needed to develop complete mobile applications.

A generic mobile application is generally structured as a multi-layered application
consisting of:

• Presentation Layer
This layer is the topmost layer that provides the application user interface. It
is in charge of displaying data to the user and handling the user’s inputs.

• Business Layer
This layer coordinates the application. It makes logical decisions, processes
and moves data between the other two layers.

• Data Layer
This layer stores and retrieves data from several sources using local cache ser-
vices or remote services. Data are sent back to the Business Layer for process-
ing.

2.3 Hybrid Mobile Applications

Hybrid Mobile applications look and behave like any other mobile application but
they are different in the technologies in which they are developed. Hybrid Mobile
applications are built with a combination of native technologies and standard web
technologies like HTML, CSS and JavaScript (like websites on the Internet). The
web part of these applications runs hosted inside a WebView.

A WebView is a native component that behaves like a web browser, typically con-
figured to run in a fullscreen window. This component has a rendering engine to
show web pages and enables these applications to access device capabilities such
as camera, gps, accelerometers, filesystem, database, and more through a set of API

Chapter 2. Background 7

FIGURE 2.2: Generic Mobile Application Layers

bindings. These capabilities are often restricted for mobile web browsers, limiting
the capabilities of standard web applications respect to hybrid mobile applications.

So, why should we build an hybrid mobile application?

• Simple and fast development
Web languages are generally simpler than native languages, enabling the de-
velopers to rapid prototype and build full-featured mobile applications.

• Cross-Platform deployment
Hybrid applications relays on WebView. Each mobile platform provides this
component as part of its SDK, allowing developers to write a single web appli-
cation that can run on different platforms. This is very convenient especially
for the Presentation Layer and for the Business Layer that represent the most
significant part of an application. There are several frameworks that provide
all necessary tools to develop, build and deploy hybrid applications.

Chapter 2. Background 8

However, each platform comes with a set of caveats when it comes to its web
runtime or WebView. This is especially true with Android, which is inconsistent
between OS versions. Moreover, there might be unique capabilities of platforms to
which a developer may wish to target. In those instances, a combination of plugins
and platform-specific code must be utilized in order to take advantages of those ca-
pabilities.

An example of a widely used framework that allows developers to build hybrid
cross-platform mobile applications is Apache Cordova. It provides a set of JavaScript
API to develop mobile applications using web technologies and a set of plugins to
enable web and native components to communicate.

FIGURE 2.3: Apache Cordova Architecture2

2https://cordova.apache.org/docs/en/latest/guide/overview/

https://cordova.apache.org/docs/en/latest/guide/overview/

Chapter 2. Background 9

2.3.1 Android JavaScript Interface

On Android platform, we can deliver a web application or just a web page as a part
of our application using a WebView. The WebView class is an extension of Android’s
View class that allows to display web pages as a part of an activity layout. All that
WebView does, by default, is to show a web page. If the web page we plan to load in
our WebView uses JavaScript, we must enable JavaScript explicitly for our WebView.
In Listing 2.1 we can see an example.

LISTING 2.1: Enabling JavaScript on Android WebView
1 WebView myWebView = (WebView) findViewById (R . id . webview) ;
2 WebSettings webSett ings = myWebView . g e t S e t t i n g s () ;
3 webSett ings . s e t J a v a S c r i p t E n a b l e d (t rue) ;

We can create interfaces between our JavaScript code and client-side Android
code. To bind a new interface between our JavaScript and Android code, we must
call addJavascriptInterface(), passing it a class instance to bind to our JavaScript and
an interface name that our JavaScript can call to access the class. In Listing 2.2
we can see how to create a new interface and in listing 2.3 how to register it on the
WebView. In listing 2.4 we can see how to call our native method from the JavaScript

LISTING 2.2: Create a JavascriptInterface
1 publ ic c l a s s WebAppInterface {
2 Context mContext ;
3

4 WebAppInterface (Context c) {
5 mContext = c ;
6 }
7

8 /∗∗ Show a t o a s t from t h e web page ∗ /
9 @ J a v a s c r i p t I n t e r f a c e

10 publ ic void showToast (S t r i n g t o a s t) {
11 Toast . makeText (mContext , t oas t , Toast .LENGTH_SHORT) . show () ;
12 }
13 }

LISTING 2.3: Register the JavascriptInterface on WebView
1 WebView webView = (WebView) findViewById (R . id . webview) ;
2 webView . a d d J a v a s c r i p t I n t e r f a c e (new WebAppInterface (t h i s) , " Android ") ;

Chapter 2. Background 10

LISTING 2.4: Call the native method from JavaScript
1 funct ion showAndroidToast (t o a s t) {
2 Android . showToast (t o a s t) ;
3 }

2.4 Apparound Mobile Applications

Apparound is a company focused on developing sales force automation tools based
on mobile technologies.

2.4.1 Architecture

Apparound mobile applications can be classified as hybrid mobile applications be-
cause they are developed using a mix of native and web technologies. Apparound
developed a proprietary framework on top of common mobile SDKs that supports
the embedding of web applications enabled to access device capabilities regardless
the underling platform. The supported mobile platforms are Android, iOS and Win-
dows.

In Figure 2.4 we can see the architecture of an Apparound mobile application.
The main layers of an Apparound mobile application are:

• Native Layer
It implements the core functionalities on each mobile platform. These func-
tionalities are available through a Native API and allow to access device capa-
bilities such as network, sensors, filesystem, databases etc. APIs are exposed
through a Widget Server that manages the requests coming from the above
layer.

• Widget Layer
It provides all needed tools to run a complete web application. This layer is
composed by a native part and a JavaScript part. The native part is a cus-
tom WebView, specific for each mobile platform, which acts as HTML and
JavaScript engine. The JavaScript part is a proprietary library, called JavascriptWrap-
per, that implements the JavaScript API, which allows the web application to
interact with the Native API.

Chapter 2. Background 11

FIGURE 2.4: Apparound Mobile Application Architecture

A web application that runs inside this environment is called Widget. There can
be more than one Widget inside a single mobile application. A Widget behaves
as a standalone application but it can also communicate with other Widgets using
several mechanisms provided by the framework. The JavascriptWrapper, which ab-
stracts all implementation details to the Widget, enables to access to the Native API
calling a function with some parameters. Every JavaScript API has its Native API
counterpart.

A Widget can be shipped inside the application package or it can be downloaded
from the back-end server as soon as it is needed. The Widget is published once to
the Apparound back-end server using a proprietary CMS, making it available for
download by the mobile applications when needed. This allows making changes to
the Widget without the need to publish the whole native application to the different
distribution platforms (Google Play, Apple Store and Windows Store) which can get
into a long approval process.

Chapter 2. Background 12

This architecture permits to develop complex applications regardless the platform
on which they will be deployed, using a single source code for the business and the
presentation layer.

2.4.2 Offline feature

A key feature of Apparound applications is that they support full offline functional-
ity, ensuring users to have the application fully working even if he has not an Inter-
net connection available. At the first login, all necessary resources are downloaded
from the back-end server in order to be available in the future. During offline work,
all collected data are stored in the mobile application storage. As soon as the Inter-
net connection is available, data are immediately synchronized with the back-end
server.

13

Chapter 3

Storage engines for mobile devices

In this chapter we present the state-of-the-art of most widely used storage engines
for mobile applications with a brief introduction about Database Management Sys-
tem, Relational and Non-Relational databases.

3.1 Database Management Systems

Database management systems (DBMS) are software applications that allow users
to access an organized collection of data stored in a database. Databases can be
roughly divided in relational and non-relational databases. Relational databases,
commonly referred as SQL databases, have been dominant for the last three decades
but the fast increase in the amount of data generated pushes relational database
systems beyond their limits. Therefore, researchers looked at other approaches that
can meet the modern day requests, resulting in the rise of what is called Not only
SQL or NoSQL database solutions.

3.1.1 Relational Databases

In Relational Databases data are organized in structures called tables. Every table
can have zero or more rows. Each row is an instance of the entity that the table
represents. It is composed by one or more columns and each column represent an
attribute of the entity. Relational databases are defined by ACID properties:

• Atomicity
All of the operations in the transaction will complete, or none will.

• Consistency
Transactions never observe or result in inconsistent data.

Chapter 3. Storage engines for mobile devices 14

• Isolation
The transaction will behave as if it is the only operation being performed.

• Durability
Upon completion of the transaction, the operation will not be reversed.

3.1.2 Non-Relational Databases

Due to their normalized data model and their full ACID support, relational databases
are not suitable for many scenarios with large amount of data, because joins and
locks influence performance of the system negatively especially in distributed set-
tings. NoSQL is a term often used to describe a class of non-relational databases that
scale horizontally to very large data sets but do not in general make ACID guaran-
tees. The CAP Theorem states that it is impossible for a distributed service to be
consistent, available, and partition-tolerant at the same instant in time:

• Consistency
All nodes see the same data at the same time

• Availability
Every request receives a response about whether it succeeded or failed.

• Partition tolerance
The system continues to operate despite arbitrary partitioning due to network
failure.

Even if ACID properties can’t be guarantees, Non-Relational storages are defined
by BASE properties:

• Basically Available
Replication and sharding techniques are used in NoSql databases to reduce the
data unavailability, even if subsets of the data become unavailable for short
periods of time.

• Soft State
NoSql systems allow data to be inconsistent and provides options for setting
tunable consistency levels.

Chapter 3. Storage engines for mobile devices 15

• Eventual consistency
The system will eventually become consistent once it stops receiving input.
The data will propagate to everywhere it should sooner or later, but the system
will continue to receive input and is not checking the consistency of every
transaction before it moves onto the next one

3.1.3 Data Models

Although the main differences between SQL and NoSQL can be seen into a dis-
tributed environment, we are more interested about the data models they offer. SQL
and NoSQL data stores can be classified by their data model. The most common are:

• Relational data stores
Data are stored into tables of rows and columns as mentioned before. Each
row has its own unique identifier but rows may be accessed also using a query
language like SQL, which allows to filter data imposing conditions on column
values. SQL permits also to do more complex operations like data projection,
aggregation and join. Rows from different tables can be linked together using
the foreign key constraint.

• Key-Value stores
Data are stored as key-value pairs and can be accessed as an hash table or
dictionary. Values may be simple strings or complex lists or sets. Values can
be accessed only using the key so they are opaque to the system. Data can be
aggregated into collections.

• Document stores
Data are stored as a collection of documents. Each document has a unique
identifier and encapsulates key-value pairs. Keys are unique within a docu-
ment and values can be atomic values or documents as well, enabling the pos-
sibility to embedding nested documents. Key-value pairs are not opaque to the
systems and can be queried as well. The most common formats used are XML,
JSON and BSON. These formats permit to store schema-free semi-structured
data giving the possibility to have documents with different attributes that can
added at runtime. Document may contain references to other documents (also
from a different collection) similarly to the foreign key concept in relational
databases.

Chapter 3. Storage engines for mobile devices 16

• Column stores
Data are stored in a column of closely related data. Each column has an iden-
tifier on which are associated one or more attributes. In this way, data can be
aggregated with less I/O operations.

• Graph Databases
Data are stored as a collection of key-value pairs representing nodes in a graph.
This type of storage offers an efficient way to manage data heavily linked to-
gether. Operations like recursive joins or shortest path calculation can be done
very efficiently.

3.2 Mobile Storages

On mobile devices, data storages are very different with respect to those systems
that can be found on back-end servers. Applications can store persistent data into
files on the device memory or into embedded databases. There are some embedded
databases available for mobile devices, designed explicitly for them.

3.2.1 SQLite

SQLite is a software library that implements a self-contained, serverless, zero con-
figuration, transactional SQL database engine. It is written in C and the code is in
the public domain. Unlike classical SQL databases, SQLite does not have a separate
server process. SQLite reads and writes an ordinary disk file where it stores tables,
indices, triggers and views. The database file format is cross-platform so the same
database file can be moved freely across multiple systems. The library has a very
small footprint (500 KB) and a minimal stack and heap impact on main memory
during execution making SQLite a popular database on mobile devices. In fact, An-
droid includes it as part of its SDK. Also iOS and Windows devices can run SQLite.
Many pre-compiled binaries are available on SQlite web site.

Architecture In Figure 3.1 the architecture of SQLite is presented.

1https://www.sqlite.org/arch.html

https://www.sqlite.org/arch.html

Chapter 3. Storage engines for mobile devices 17

FIGURE 3.1: SQLite Architecture1

JSON1 Extension The JSON1 extension [17] is a SQLite loadable extension that
implements 14 application-defined SQL functions and two table-valued functions
that are useful for managing JSON content stored in an SQLite database. This exten-
sion is not provided in the SQLite released binaries neither in the version included
into the Android SDK. In order to enable the JSON1 extension, we have to com-
pile the SQLite source code adding a compile-time option as specified in the official
documentation. The JSON1 extension currently stores JSON as ordinary text. The
present implementation parses JSON text at over 300 MB/s.

JSON1 Extension functions The main functions of interest are essentially two:

• json(X)
Verifies that its argument X is a valid JSON string and returns a minified ver-
sion of that JSON string (with all unnecessary whitespace removed). If X is not
a well-formed JSON string, then this routine throws an error.

Chapter 3. Storage engines for mobile devices 18

• json_extract(X,P1,P2,...)
Extracts and returns one or more values from the well-formed JSON at X. If
only a single path P1 is provided, then the SQL datatype of the result is NULL
for a JSON null, INTEGER or REAL for a JSON numeric value, an INTEGER
zero for a JSON false value, an INTEGER one for a JSON true value, the de-
quoted text for a JSON string value, and a text representation for JSON object
and array values. If there are multiple path arguments (P1, P2, and so forth)
then this routine returns SQLite text which is a well-formed JSON array hold-
ing the various values. A well-formed PATH is a text value that begins with
exactly one ’$’ character followed by zero or more instances of ".objectlabel" or
"[arrayindex]". In listing 3.1 we show some examples.

LISTING 3.1: Examples of json_extract function
1 j s o n _ e x t r a c t (’ { " a " : 2 , " c " : [4 , 5 , { " f " : 7 }] } ’ , ’ $ ’) ==> ’ { " a " : 2 , " c " : [4 , 5 , { " f " : 7 }] } ’
2 j s o n _ e x t r a c t (’ { " a " : 2 , " c " : [4 , 5 , { " f " : 7 }] } ’ , ’ $. c ’) ==> ’ [4 , 5 , { " f " : 7 }] ’
3 j s o n _ e x t r a c t (’ { " a " : 2 , " c " : [4 , 5 , { " f " : 7 }] } ’ , ’ $. c [2] ’) ==> ’ { " f " : 7 } ’
4 j s o n _ e x t r a c t (’ { " a " : 2 , " c " : [4 , 5 , { " f " : 7 }] } ’ , ’ $. c [2] . f ’) ==> 7
5 j s o n _ e x t r a c t (’ { " a " : 2 , " c " : [4 , 5] , " f " : 7 } ’ , ’ $. c ’ , ’ $. a ’) ==> ’ [[4 , 5] , 2] ’
6 j s o n _ e x t r a c t (’ { " a " : 2 , " c " : [4 , 5 , { " f " : 7 }] } ’ , ’ $. x ’) ==> NULL
7 j s o n _ e x t r a c t (’ { " a " : 2 , " c " : [4 , 5 , { " f " : 7 }] } ’ , ’ $. x ’ , ’ $. a ’) ==> ’ [null , 2] ’

Data Model In SQLite we can model data using the relation model. We have tables
containing rows with several columns. In listing 3.2 we can see an example on how
to create a SQLite table.

LISTING 3.2: SQLite create table
1 CREATE TABLE ExampleTable (
2 _id INTEGER PRIMARY KEY AUTOINCREMENT,
3 column1 INTEGER ,
4 column2 TEXT ,
5 column3 TEXT
6) ;

Because we are interested in storing JSON data, in listing 3.3 we show an example
of how we can store data in JSON format. We can see that we don’t have to define
the JSON schema ahead of time, and we can store it as plain text.

Chapter 3. Storage engines for mobile devices 19

LISTING 3.3: SQlite create table for JSON data
1 CREATE TABLE ExampleTable (
2 _id INTEGER PRIMARY KEY AUTOINCREMENT,
3 j sonData TEXT
4) ;

After the creation of the table, we can start inserting data. In listing 3.4 we show an
example. We use the function json(X) in order to verify and minify the provided text
containing our JSON data.

LISTING 3.4: SQlite insert JSON data
1 INSERT INTO ExampleTable (jsonData)
2 VALUES (j son (’ { " firstName " : " Saul " , " address " : { " c i t y " : " Los Angeles " } } ’)) ;

Query Model We can use SQL language in conjunction with json_extract(X,P) func-
tion in order to query inserted data. In listing 3.5

LISTING 3.5: SQLite query JSON data
1 SELECT j sonData
2 FROM ExampleTable
3 WHERE
4 j s o n _ e x t r a c t (jsonData , ’ $. firstName ’) = ’ Saul ’
5 OR
6 j s o n _ e x t r a c t (jsonData , ’ $. address . c i t y ’) = ’ Los Angeles ’ ;

Concurrency At thread level, SQLite supports three different threading modes:

• Single-thread In this mode, all mutexes are disabled and SQLite is unsafe to
use in more than a single thread at once.

• Multi-thread In this mode, SQLite can be safely used by multiple threads pro-
vided that no single database connection is used simultaneously in two or
more threads.

• Serialized In serialized mode, SQLite can be safely used by multiple threads
with no restriction.

At file level, SQLite allows multiple processes to have the database file open at once,
and for multiple processes to read the database at once. When any process wants to
write, it must lock the entire database file for the duration of its update.

Chapter 3. Storage engines for mobile devices 20

Encryption The encryption for SQLite can be provided by SQLCipher [18], an
open source library that provides transparent, secure 256-bit AES encryption of
SQLite database files. It uses the internal SQLite Codec API to insert a callback into
the pager system that can operate on database pages immediately before they are
written to and read from storage, so it does not operate on the entire database file.
This makes it very efficient. It is an extension of SQLite, but it does not function as
a loadable plugin for many reasons so it is maintained as a separate project. SQLite
has also an extension called SQLite Encryption Extension (SEE)[19]. SEE allows
SQLite to read and write encrypted database files. All database content, including
the metadata, is encrypted so that to an external observer the database appears to
be white noise. In order to be used, this extension needs a software license.

3.2.2 Couchbase Mobile

Couchbase Mobile is a complete systems (shown in Figure 3.2) for mobile applica-
tion data storage composed by:

• Couchbase Lite
It is an embedded database that manages and stores data locally on the device
in a document-oriented JSON format. It has full CRUD, query, and indexing
functionality, all from a native API. Couchbase Lite has a small footprint at
500KB and supports all major device platforms. It is based on SQLite.

• Couchbase Sync Gateway
It is built-in for replicating data between the embedded database and the database
server. It includes multi-master replication, and both automatic and custom
conflict resolution. It also supports peer-to-peer replication.

• Couchbase Server
It is a NoSQL database server that manages and stores data in the cloud in
a document-oriented JSON format. It scales easily to billions of records and
terabytes of data, and it provides sub-millisecond response time for reads and
writes.

It offers a complete solution to manage many mobile scenarios along with a syn-
chronization layer and a back-end server. Currently, Couchbase Lite is supported
on Android, iOS and Windows platforms.

Chapter 3. Storage engines for mobile devices 21

FIGURE 3.2: Couchbase Mobile Architecture

Data Model On Couchbase Lite, data are stored in a Document that is referenced
by an unique ID within the database. Data documents consists of arbitrary JSON
objects not enforced by rigid schemas. This provides the advantage of designing
data models that can be naturally nested like a dictionary throughout the object
model it is representing. In listing 3.6 we can see an example on how to create a
new document and store it within the database.

LISTING 3.6: Couchbase data modelling and storing example
1 / / Get t h e d a t a b a s e (and c r e a t e i t i f i t doe sn ’ t e x i s t) .
2 Manager manager = new Manager (new JavaContext () , Manager . DEFAULT_OPTIONS) ;
3 Database database = manager . getDatabase ("mydb") ;
4

5 / / C r e a t e a new document (i . e . a r e c o r d) in t h e d a t a b a s e .
6 Document document = database . createDocument () ;
7 Map p r o p e r t i e s = new HashMap () ;
8 p r o p e r t i e s . put (" firstName " , " Saul ") ;
9 p r o p e r t i e s . put (" lastName " , "Hudson ") ;

10

11 / / c r e a t e i n n e r p r o p e r t i e s
12 Map innerProps = new HashMap () ;
13 innerProps . put (" s t r e e t " , " F u l l e r Avenue ") ;
14 innerProps . put (" c i t y " , " Los Angeles ") ;
15 innerProps . put (" s t a t e " , " C a l i f o r n i a ") ;
16 p r o p e r t i e s . put (" address " , innerProps) ;
17

18 / / s a v e t h e document
19 document . putProper t i es (p r o p e r t i e s) ;

Query Model On Couchbase Lite, everything is based on indexes created using
a MapReduce function executed on all the documents stored in the database. The
MapReduce function takes two arguments: a document and an emitter. The emitter is
an object used to add entries to an index. The document is a JSON document stored
in the database. This Map function will be executed on all of the JSON documents
available. The resulting index in Couchbase terminology is called a View. In listing

Chapter 3. Storage engines for mobile devices 22

3.7 we show an example on how to create a View, mapping city name and firstName
of a person, and how to perform a query on the created View. Couchbase Lite limits
queries only on previously created Views.

LISTING 3.7: Couchbase view and query
1 / / C r e a t e a view and r e g i s t e r i t s map f u n c t i o n :
2 View c i t i e s V i e w = database . getView (" c i t i e s ") ;
3 c i t i e s V i e w . setMap (new Mapper () {
4 @Override
5 publ ic void map(Map<Str ing , Object > document , Emit ter e m i t t e r) {
6 S t r i n g c i t y = (L i s t) document . get (" address ") . get (" c i t y ") ;
7 e m i t t e r . emit (c i t y , document . get (" firstName ")) ;
8 }
9 } , " 2 ") ;

10

11 / / p e r f o r m a query on t h e c r e a t e d v i ews
12 Query query = database . getView (" c i t i e s ") . createQuery () ;
13 query . setMapOnly (t rue) ;
14 QueryEnumerator r e s u l t = query . run () ;
15 f o r (I t e r a t o r <QueryRow> i t = r e s u l t ; i t . hasNext () ;) {
16 QueryRow row = i t . next () ;
17 S t r i n g firstName = (S t r i n g) row . getValue () ;
18 Log . i ("MYAPP" , " The fistName i s %s " , productName) ;
19 }

Concurrency Because Couchbase Lite relays on SQLite for data persistence, it has
the same concurrency model.

Encryption Couchbase Lite has a built-in enterprise level security that includes
user authentication, user and role based data access control (RBAC), secure trans-
port over TLS, and 256-bit AES full database encryption.

3.2.3 Realm

Realm is a mobile database that runs directly inside phones, tablets or wearables that
can be considered a replacement for SQLite. Instead of wrapping SQLite as many
libraries do, it has its own core engine, written in C++. It uses the zero-copy principle
when possible, allowing to have a direct access to the raw database instead of have
to copy on memory all needed data. This is possible because each Realm object
talks directly to the underlying database with a native pointer to the data in the
database file that is always memory-mapped. Realm stores data at the vertical level

Chapter 3. Storage engines for mobile devices 23

as columns, allowing to avoid read the entire row from the database. It is ACID
compliant and supports transactions. Currently, Realm is supported on Android
and iOS platforms.

Data Model On Realm, data model classes are created by extending the RealmOb-
ject base class, so we have to know the structure of our model ahead. In listing 3.8
we can see an example.

LISTING 3.8: Reaml data modelling
1 / / D e f i n e t h e model c l a s s by e x t e n d i n g Rea lmObjec t
2 publ ic c l a s s Address extends RealmObject {
3 @PrimaryKey
4 pr ivate long id ;
5 pr ivate S t r i n g s t r e e t ;
6 pr ivate S t r i n g c i t y ;
7 pr ivate S t r i n g s t a t e ;
8 / / . . . G e n e r a t e d g e t t e r s and s e t t e r s . . .
9 }

10 / / . . .
11 publ ic c l a s s Person extends RealmObject {
12 @PrimaryKey
13 pr ivate long id ;
14 pr ivate S t r i n g fistName ;
15 pr ivate S t r i n g lastName ;
16 pr ivate Address address ;
17 / / . . . G e n e r a t e d g e t t e r s and s e t t e r s . . .
18 }

On Realm, all write operations (adding, modifying, and removing objects) must
be wrapped in write transactions. A write transaction can either be committed or
cancelled. During the commit, all changes will be written to disk, and the commit
will only succeed if all changes can be persisted. By cancelling a write transaction,
all changes will be discarded. Using write transactions, data will always be in a con-
sistent state. In listing 3.9 we can see how to persist data within a Realm database.
It is possible to add RealmObjects represented as JSON directly to Realm.

Chapter 3. Storage engines for mobile devices 24

LISTING 3.9: Realm data persisting
1 / / I n i t i a l i z e Realm and g e t a Realm i n s t a n c e f o r t h i s t h r e a d
2 Realm . i n i t (contex t) ;
3 Realm realm = Realm . g e t D e f a u l t I n s t a n c e () ;
4

5 / / Use c l a s s model l i k e r e g u l a r j a v a o b j e c t s
6 Person person = new Person () ;
7 person . setFistName (" Saul ") ;
8 person . setLastName ("Hudson") ;
9

10 / / c r e a t e o b j e c t from a JSON s t r i n g
11 Address address = realm . createObjectFromJson (Address . class ,
12 " {\" s t r e e t \ " : \ " F u l l e r Avenue \" ,\" c i t y \ " : \" Los Angeles " , \" s t a t e \ " : \" C a l i f o r n i a \" } ") ;
13

14 person . setAddress (address) ;
15

16 / / P e r s i s t d a t a in a t r a n s a c t i o n
17 realm . beginTransact ion () ;
18 f i n a l Person managedPerson = realm . copyToRealm (person) ;
19 realm . commitTransaction () ;

Query Model Realm’s query engine uses a Fluent interface to construct multi-
clause queries. In listing 3.10 we can see an example.

LISTING 3.10: Ream query
1 / / B u i l d t h e query l o o k i n g a t a l l p e o p l e
2 RealmQuery<Person > query = realm . where (Person . c l a s s) ;
3

4 / / Add query c o n d i t i o n s :
5 query . equalTo (" fistName " , " John ") ;
6 query . or () . equalTo (" lastName " , " Peter ") ;
7

8 / / E x e c u t e t h e query :
9 RealmResults <Person > r e s u l t 1 = query . f i n d A l l () ;

10

11 / / Or a l t e r n a t i v e l y do t h e same a l l a t once (t h e " F l u e n t i n t e r f a c e ") :
12 RealmResults <Person > r e s u l t 2 = realm . where (Person . c l a s s)
13 . equalTo (" fistName " , " John ")
14 . or ()
15 . equalTo (" lastName " , " Peter ")
16 . f i n d A l l () ;

Concurrency Realm allows to work with data on multiple threads without having
to worry about consistency or performance because objects are auto-updating at all
times. We can operate on live objects in different threads, reading and writing to

Chapter 3. Storage engines for mobile devices 25

them, without worrying about what other threads are doing to those same objects.
If we need to change data we can use a transaction. The other objects in the other
threads will be updated in near real time. The only limitation with Realm is that we
cannot pass Realm objects between threads. If we need the same data on another
thread, we just query for that data on the other thread.

Encryption The Realm file can be stored encrypted on disk by passing a 512-bit
encryption key (64 bytes). This ensures that all data persisted to disk is transparently
encrypted and decrypted with standard AES-256 encryption. The same encryption
key must be supplied each time a Realm instance for the file is created.

3.2.4 Summary

The table 3.1 summarizes the characteristics of each analysed database.

TABLE 3.1: Mobile Databases comparison

SQLite Couchbase Realm

Data model Relational + Json
Documents with
JSON1 extension

Json Documents Realm-Objects

Query model SQL Custom native
map-reduce query

Custom pipelined
native query

Concurrency Thread-safe, File
level lock

Thread-safe, File
level lock

Thread-safe,
Database level
lock

Encryption Yes, with SQLCi-
pher or SSE

Yes, built-in Yes, built-in

Cross-Platform Android, iOS and
Windows

Android, iOS and
Windows

Android and iOS

26

Chapter 4

LocalDB

In this chapter we present Apparound LocalDB. It can be classified as a NoSQL
Database Engine that uses a JSON document based data model. The need to have
a flexible data model offered by JSON documents arise primarily from the fact that
data may come from external services that do not provide the schema in advance so
the use of a relational data model may be not feasible. It is used in several applica-
tion processes like contents synchronization, search, and quoting.

4.1 Internal Structure

LocalDB internally stores data using several files which contain text in JSON format
(see Appendix A), eventually encrypted.
For each entity type we want to store, a table is created. Each table stores items
named records. Physically, a table consists in some files that have a maximum di-
mension of 10 KBytes for performance reason. A file belonging to a table is named
according the following rules:

• TableName.json if it is the first file

• TableName_n.part.json if it is the nth file, where n ≥ 2

Files are linked together using some informations contained into the stored JSON
data as we will see in next section. In figure 4.1 we can see an example of the internal
structure based on JSON files.

4.1.1 File Structure

File content has a fixed structure. The information contained inside the root JSON
object are the following:

Chapter 4. LocalDB 27

FIGURE 4.1: LocalDB files

• "system": <Object>
Informations about how current file is linked with other files:

– "prevFile": <String>
the previous file name

– "thisFile": <String>
the current file name

– "nextFile": <String>
the next file name

– "counter": <Number>
the order inside the file list

The value of "prevFile" and "nextFile" may be empty, indicating that there is
no previous file (i.e. the current file is the first file) or there is no next file (i.e.
the current file is the last file) respectively

• "remoteIds": <Object>
Informations about mapping between remoteId and localId

• "records": <Object>
List of stored records, accessible by their localId

In the following an example of the internal structure of a LocalDB file is pre-
sented:

Chapter 4. LocalDB 28

LISTING 4.1: File structure
{

" system " : {
" p r e v F i l e " : "ExampleTable_2.part.json" ,
" t h i s F i l e " : "ExampleTable_3.part.json" ,
" n e x t F i l e " : "ExampleTable_4.part.json" ,
" counter " : 3

} ,
" remoteIds " : {

" e123456 " : "20160414-1554-0732-1234" ,
" e789102 " : "20160414-1554-0732-5678"

} ,
" records " : {

" 20160414−1554−0732−1234 " : {
" l o c a l I d " : "20160414-1554-0732-1234" ,
" remoteId " : "e123456" ,
" e n t i t y " : {

"name" : "The name 1" ,
" isReadOnly " : false ,
" t o t a l " : 115.231

}
} ,
" 20160414−1554−0732−5678 " : {

" l o c a l I d " : "20160414-1554-0732-5678" ,
" remoteId " : "e789102" ,
" e n t i t y " : {

"name" : "The name2" ,
" isReadOnly " : false ,
" t o t a l " : 102.456

}
}

}
}

4.1.2 Record Structure

Records have a fixed external structure, with several information used for synchro-
nization purpose.

• "localId": <String>
The local identifier

• "remoteId": <String>
The remote identifier. It may be null if record has been created locally and
never synchronized

Chapter 4. LocalDB 29

• "entity": <Object>
The actual record content

• "localLinks": <Object>
Information about linking with other records of other tables

• "flags": <Object>
Information useful during the synchronization process

• "originalEntity": <Object>
The record content before last synchronization

Following, we can see an example of the internal structure of a record:

LISTING 4.2: Record structure
{

" l o c a l I d " : "20160127-1643-1936-0497-359593065860" ,
" remoteId " : "29243343-3d1c-460c-97e5-e2f7cd65c4ad" ,
" e n t i t y " : {

/∗ e n t i t y d a t a ∗ /
} ,
" l o c a l L i n k s " : {
} ,
" f l a g s " : {

" locked " : false ,
" toBeSynchronised " : false ,
" readOnly " : false ,
" de le ted " : false

} ,
" o r i g i n a l E n t i t y " : {

/∗ e n t i t y d a t a b e f o r e l a s t s y n c h r o n i z a t i o n ∗ /
}

}

4.2 Internal Operations

LocalDB exposes some API allowing to create, retrieve, update and delete stored
items.

• String addItem (String table, Object item, Boolean allowReplace)

• Object getItem (String table, String id)

• Array<Object> findItems (String table, Array<Object> criteria)

Chapter 4. LocalDB 30

• Boolean deleteItem (String table, String id)

4.2.1 addItem

Add a new item to the table. If an item with same localId or remoteId already
exists and allowReplace flag is true, the item is updated, else the operation fails. It
returns the localId of the added/updated item if the operation ends successfully or
an empty string otherwise. If localId is null or empty, it is needed to generate a new
one. In addition, this function has to keep the table files in a consistent state. See
Listing 4.3 for more details.

Chapter 4. LocalDB 31

LISTING 4.3: Add item
1 input : S t r i n g TABLE, Object ITEM , Boolean REPLACE
2 output : S t r i n g
3

4

5 begin
6 l o c a l I d ← ITEM . l o c a l I d
7 i f l o c a l I d i s n u l l or " "
8 l o c a l I d ← newGUID ()
9 end

10 remoteId ← ITEM . remoteId
11

12 f i l e s ← g e t T a b l e F i l e s (TABLE)
13 foreach f i l e in f i l e s
14 i f l o c a l I d not in f i l e . records . keys
15 continue
16 end
17 i f REPLACE i s f a l s e
18 r e turn " "
19 end
20

21 f i l e . updateRemoteIds (remoteId , l o c a l I d)
22 f i l e . updateRecord (l o c a l I d , ITEM)
23 f i l e . wri te ()
24 r e turn l o c a l I d
25 end
26

27 i f f i l e s . count > 0
28 l a s t F i l e ← f i l e s . l a s t F i l e
29 i f l a s t F i l e . hasSpace ()
30 l a s t F i l e . addRecord (l o c a l I d , ITEM)
31 l a s t F i l e . wri te ()
32 e l s e
33 newFile ← createNewFile ()
34 newFile . addRecord (l o c a l I d , ITEM)
35 newFile . updateSystemInfo (l a s t F i l e . f i lename)
36 newFile . wri te ()
37 l a s t F i l e . updateSystemInfo (newFile . f i lename)
38 l a s t F i l e . wri te ()
39 end
40 e l s e
41 newFile ← createNewFile ()
42 newFile . addRecord (l o c a l I d , ITEM)
43 newFile . wri te ()
44 end
45 r e turn l o c a l I d
46 end

Chapter 4. LocalDB 32

4.2.2 getItem

It returns an item from the table whose localId or remoteId is equal to the given id.
It returns the item if it was found, null otherwise. See Listing 4.4 for more details.

LISTING 4.4: Get item
1 input : S t r i n g TABLE, S t r i n g ID
2 output : Object
3

4

5 begin
6 item ← n u l l
7 l o c a l I d ← ID
8

9 f i l e s ← g e t T a b l e F i l e s (TABLE)
10 foreach f i l e in f i l e s
11 item ← f i l e . records [l o c a l I d]
12 i f item i s n u l l
13 l o c a l I d ← f i l e . remoteIds [ID]
14 i f l o c a l I d not n u l l
15 item ← f i l e . records [l o c a l I d]
16 end
17 end
18 i f item not n u l l
19 r e turn item
20 end
21 end
22 r e turn n u l l
23 end

4.2.3 findItems

It returns an array containing the items that match the given criteria. Criteria has
the structure shown in Listing 4.5. It is a JSON array where each element is a JSON
object that represents a prototype for the items that we want to get. In order to be
included into results, an item has to match at least one of the given criteria.

Chapter 4. LocalDB 33

LISTING 4.5: JSON criteria
[

{
" e n t i t y " : {

" company " : {
" c i t y " : "Pisa" ,
" type " : "srl"

}
}

} ,
{

" e n t i t y " : {
" company " : {

" c i t y " : "Firenze" ,
" type " : "srl"

}
}

}
]

LISTING 4.6: Find items
1 input : S t r i n g TABLE, Array<Object > CRITERIA
2 output : Array<Object >
3

4

5 begin
6 r es ← []
7 f i l e s ← g e t T a b l e F i l e s (TABLE)
8 foreach f i l e in f i l e s
9 foreach record in f i l e . records

10 i f record match CRITERIA
11 re s . push (record)
12 end
13 end
14 end
15 r e turn re s
16 end

4.2.4 deleteItem

Delete an item from the table whose localId or remoteId is equal to the given id.
It returns true if the operation ends successfully, false otherwise. In addition, this
function has to keep the table files in a consistent state. See Listing 4.7 for more
details.

Chapter 4. LocalDB 34

LISTING 4.7: Delete item
1 input : S t r i n g TABLE, S t r i n g ID
2 output : Object
3

4

5 begin
6 f i l e s ← g e t T a b l e F i l e s (TABLE)
7 foreach f i l e in f i l e s
8 l o c a l I d ← ID
9 i f f i l e . records [l o c a l I d] i s n u l l

10 l o c a l I d ← f i l e . remoteIds [ID]
11 end
12 i f l o c a l I d not n u l l
13 d e l e t e f i l e . records [l o c a l I d]
14 i f f i l e . records . length == 0
15 p r e v F i l e ← openFi le (f i l e . system . p r e v F i l e)
16 i f p r e v F i l e not n u l l
17 p r e v F i l e . system . n e x t F i l e ← f i l e . system . n e x t F i l e
18 p r e v F i l e . wri te ()
19 end
20 n e x t F i l e ← openFi le (f i l e . system . n e x t F i l e)
21 i f n e x t F i l e not n u l l
22 n e x t F i l e . system . p r e v F i l e ← f i l e . system . p r e v F i l e
23 n e x t F i l e . wri te ()
24 end
25 f i l e . d e l e t e ()
26 end
27 r e turn t rue
28 end
29 end
30 r e turn f a l s e
31 end

4.3 Issues

As we seen in previous sections, LocalDB stores data on several files, which contain
data stored using JSON as serialization format. This solution provides a flexible data
model and allows to interchange data between native side and JavaScript side easily.
However, these data have no index support so, whenever there is the need to find
data items matching some criteria, a full-scan search has to be performed in order to
retrieve these data. This process may potentially involve all files so, a large amount
of reads from the persistent storage may be required making the process very long.
In particular, on Android, this process allocates memory for a large amount of ob-
jects. These object are accessed for a small time so the Garbage Collector has to enter

Chapter 4. LocalDB 35

in action many times to reclaim the unused resources. Its action consumes CPU time
and slows down the application responsiveness. In Figure 4.2 we can see the RAM
and CPU usage during a a full-scan search operation. We can see how the Garbage
Collector action is related to the RAM usage, observing a memory a peek followed
by a drain appearing. When the Garbage Collector enters in action, we can observe
also a peek on CPU usage.

FIGURE 4.2: RAM and CPU usage during a search operation

36

Chapter 5

Improvements to LocalDB

In this chapter we present the improvements for LocalDB that we designed and
implemented as major part of this work. The goal is to develop a new standalone
library to provide a data persistence layer that must meet some requirements in or-
der to improve performance, maintainability and robustness respect to the existing
solution.

5.1 Requirements

In this section we analyse the requirements that our library must meet.

5.1.1 Functional requirements

• Use JSON as data format
The library must store and retrieve items in JSON format

• Use localId and remoteId as identifiers
Each stored item must be identified by a localId locally unique and eventually
by a remoteId. If not present, the localId must be generated on the fly as GUID

• Interfaces backward compatible
The library publicly available interface must be compatible with the old Lo-
calDB in order to be easily integrated into the Apparound framework. For
this, it has to expose a minimal set of API in order to create, retrieve, update
and delete data items.

• Same Business logic of old LocalDB
The library internal functions must implement the same logic of the old Lo-
calDB

Chapter 5. Improvements to LocalDB 37

• Interchangeable storage engine
The library must allow to change the underlying storage engine without chang-
ing its own functionality

• Manage multiple database instances
The library must allow to instantiate and retrieve multiple database instances

• Thread safe
The library must be thread safe, handling concurrence on data access

5.1.2 Non-Functional requirements

• Performance
The library shall guarantee good performance even if it has to large amounts
of data

• Reusability
The library shall be standalone in order to be reusable in different contexts

• Portability
The library shall be design to be implemented in different mobile platforms

• Security
The library shall encrypt persistent stored data

• Maintainability
The library shall be as modular as possible in order to be maintainable even if
it becomes complex

• Reliability
The library shall guarantee atomicity and data durability

• Robustness
The library shall handle unusual data and internal errors

• Testability
The library shall allow to test each module independently

Chapter 5. Improvements to LocalDB 38

5.2 Library overview

The library shall be integrated into a generic application as well as into a generic
framework. The core of the library is implemented using native technologies. The
architecture includes a cross-platform storage engine written in C/C++ and uses a
platform specific compiled binary with its own bindings for data persistence. The
library can be accessed from JavaScript by implementing an interface on the native
side to access its functionalities. In Figure 5.1 we can see how these components can
be placed together showing a full stack integration, highlighting the fact that some
platform specific implementations are needed.

FIGURE 5.1: LocalDB library integration example

Chapter 5. Improvements to LocalDB 39

5.3 Architecture

The LocalDB library is composed of several hierarchical components in order to
provide a wide modularity and separation of concerns. The goals of this architecture
is to provide a good abstraction on how data are persistently stored by the underling
storage engine.
The main modules are:

• LocalDB Manager
This module exposes the API to create or retrieve LocalDB instances. It is in
charge of instantiate, cache and return a new instance of LocalDB if it does not
exist or return a cached instance if it has been create before.

• LocalDB API
This module exposes the API to add or update, get, find, remove and iterate
stored items. The API is compliant with old LocalDB version.

• Storage Engine Abstraction
This module abstracts storage engine implementation details. It knows which
of the underling storage engine methods to call in order to perform the desired
operation.

• Storage Engine
This module implements core functionalities to create, retrieve, update and re-
move data items physically. It can use different technologies to persist data but
the interface is the same across all different storage engine implementations.

In Figure 5.2 we can see the LocalDB Library architecture and how this can support
different types of storage engines.

5.4 Interfaces

In this section we describe the interfaces that our modules must expose to make
internal functionalities available to other modules. According to JSON format (see
Appendix A) we use Object and Array type indicating JSON object and JSON array
respectively.

Chapter 5. Improvements to LocalDB 40

FIGURE 5.2: LocalDB library architecture

Chapter 5. Improvements to LocalDB 41

5.4.1 LocalDB interfaces

Here, we describe the LocalDB interfaces, derived from the old LocalDB interfaces.
The expected behaviour of the new API is the same shown in Chapter 4 with some
improvements in order to extend LocalDB functionalities and to support future im-
provements. The needed APIs are:

• String addItem (String table, Object item, boolean allowReplace)
It does the same as in old LocalDB

• Object getItem (String table, String id)
It does the same as in old LocalDB

• Array<Object> findItems (String table, Array<Object> criteria, Object options)
It does the same as in old LocalDB. In addition, it accepts options in order to
sort results according some criteria, limit the results or start from a particular
offset. In Section 5.5 we can see the findItems options structure.

• boolean removeItem (String table, String id)
It does the same as in old LocalDB.

• void iterate (String table, Object options, IterationListener listener)
Start a new iteration on the given table using options to establish the blocks
size and the sorting criteria of the items. The progress of the operation is noti-
fied through the IterationListener interface. Each iteration has its own identifier
that will be passed to the listener for each notification

• void continueIterate (String iterationId)
Continue the execution of the iteration with the given id

• void stopIterate (String iterationId)
Stop the execution of the iteration with the given id

Furthermore, the IterationListener must expose the following API:

• void onContinueIterate(Object result)
Notify that there are more items and passes the result of the iteration(Listing 5.2)

• void onStopIterate()
Notify that there are no more items or that the operation has been stopped

Chapter 5. Improvements to LocalDB 42

5.4.2 Storage Engine Abstraction interfaces

The interface of the storage engine abstraction is the same as LocalDB in order to
allow LocalDB to call them easily, so it is not described again.

5.4.3 Storage Engine interfaces

Now, we describe the storage engine interfaces, valid for every storage engine we
want to implement. We need to expose the API for basic CRUD operations that will
be invoked by the Storage Engine Abstraction module in order to implement the
LocalDB operations. The API has the following methods:

• String createItem (String table, Object item)
Create an item

• Object retrieveItem (String table, String id)
Retrieve a single item

• Array retrieveItems (String table, Array<Object> criteria, Object options)
Retrieve items that match given criteria with options (Section 5.1) about limit,
offset and sorting criteria.

• String updateItem (String table, Object item)
Update an item

• Boolean deleteItem (String table, String id)
Delete an item

5.5 Data Design

In this section we show the data structures needed by our library.

5.5.1 Criteria structure

The criteria structure is the same seen in Listing 4.5

Chapter 5. Improvements to LocalDB 43

5.5.2 Options structure

LISTING 5.1: Find options structure
{

" l i m i t " : 50 ,
" o f f s e t " : 100 ,
" s o r t " : [{

" orderBy " : "<some json field>" ,
" orderByAsc " : true

} , {
" orderBy " : "<some json field>" ,
" orderByAsc " : false

}]
}

• limit: the maximum number of items to return

• offset: the offset inside the result set from which start

• sort: an array of JSON objects with a field orderBy that indicates the JSON field
on which results have to be sorted and a field orderByAsc that indicates the sort
direction (ascendant or descendant)

5.5.3 Iteration result structure

LISTING 5.2: Iteration result structure
{

" i t e r a t i o n I d " : "<guid>" ,
" i tems " : [

{
< item >

}
. . .
{

< item >
}

]
}

• iterationId: the id of the iteration, useful to continue it

• items: the result items for the current iteration

Chapter 5. Improvements to LocalDB 44

5.6 Library Design

In this section we show the library design with the class diagram (Section 5.3) needed
to implement the architecture shown previously.

FIGURE 5.3: LocalDB library class diagram

The main classes and their tasks are:

• LocalDBConfiguration
Contains all configuration data like the storage type, the storage path, the en-
cryption flag and the password.

• LocalDBManager
Creates new instances of LocalDB based on a path in which data will be stored.
The path is specified into LocalDBConfiguration. Created instances are cached

Chapter 5. Improvements to LocalDB 45

so if an instance that has been already created is requested, it is returned in-
stead of recreating it.

• LocalDB and LocalDBEngine
Implement LocalDBApi interface, which provides the public APIs of LocalDB
Library. Every LocalDB instance has a reference to a LocalDBEngine instance.
These classes implement a Proxy Pattern[22] in order to delay the instanti-
ation of the LocalDBEngine (and related heavy objects) until the first time it
is needed and control the access to it. Furthermore, LocalDBEngine uses the
Bridge Pattern[23] in order to decouple and hide implementation details and
the interaction with the StorageDelegate and the IterateManager.

• StorageDelegate
It is an abstract class that implements CRUDOperations interface. Every con-
crete StorageDelegate must extend this base class in order to implement the
effective Storage Engine. Concrete StorageEngine classes transform upcoming
JSON data into the right storage format and persist it. They are also in charge
of interpret criteria in order to perform filtering over the stored data. The con-
crete type of the StorageDelegate can be decided at the time of LocalDB instance
creation. In particular, this can be done by providing an instance of LocalDB-
Configuration, and using the StorageType enumerator.

• IterateManager
Helps LocalDBEngine to perform iterations on blocks of stored items using its
StorageDelegate. It stores a map of IterationState instances identified by an iden-
tifier and takes a reference to the underlying StorageEngine.

• IterationState
Contains informations about the state of an iteration such as the id, the table
on which the iteration is done, the options with inside the iteration size and
offset.

5.7 Implementation

In this section we discuss the implementation details of the library.

Chapter 5. Improvements to LocalDB 46

5.7.1 Storage Engine based on SQLite

From the analysis of the state-of-the-art of storage engines for mobile devices con-
ducted in Chapter 3 and from requirements stated on Section 5.1, SQLite with
JSON1 extension appears as the best candidate to be used as underling storage en-
gine for our library. It allows to have a schema-free data model in conjunction with
a powerful query model using the JSON1 extension. To be more precise, we actually
use SQLCipher which is an extension of SQLite that encrypts SQLite database files,
in order to achieve the security requirement. Since SQLCipher provides the same
interface provided by SQLite, we will refer to it as SQLite for simplicity. The only
difference stays in the method used to open the database file. SQLCipher requires
the encryption password as extra parameter respect to SQLite. It is also possible to
avoid database encryption passing an empty password as parameter.

5.7.2 Architecture Details

Starting from the architecture seen in Section 5.3, we show a detailed view of our
library architecture. In particular, we show what components the storage engine
needs and what is the data flow through these components. In figure 5.4 we can
see LocalDB architecture with SQLite as storage engine. We can see that LocalDB
API and the Storage Engine Abstraction do not change even when using a specific
underling storage engine.

The SQlite based storage engine needs these two components:

• Query builder
This component is in charge of translating criteria into a SQL query

• Data converter
This component has two main tasks:

– Wrap JSON data into an insert or update SQL query

– Convert records coming from the underling SQLite engine into JSON for-
matted data

Further more, whenever a retrieve item operation is requested, the storage engine
must:

1. Take up-coming JSON criteria

Chapter 5. Improvements to LocalDB 47

FIGURE 5.4: LocalDB library architecture

2. Translate criteria in order to build a valid SQL query

3. Perform the query

4. Take the result records

5. Convert records data into JSON data

6. Pass JSON data to the up-level module

And as counterpart, whenever an add or update item operation is requested, the
storage engine must:

1. Take up-coming JSON data

2. Wrap data in order to build a valid insert or update SQL query

Chapter 5. Improvements to LocalDB 48

3. Perform the query

4. Handle the success or fail result

5.7.3 Design

In the following we present the class diagram with a new class called SQLiteStor-
ageDelegate that implements the low level functionalities needed to store and re-
trieve persistent data items. SQLiteStorageDelegate must extend the StorageDele-
gate base class and implement all abstract methods need to perform required oper-
ations.

FIGURE 5.5: LocalDB library class diagram with SQLiteStorageDele-
gate

5.7.4 SQlite JSON1 extension exploitation

In the following we show how SQLiteStorageDelegate leverages the SQlite JSON1
extension in order to store and query JSON data.

Create table In order to store data into the SQLite database, it is needed first to
create a table for each entity type. The table can be very simple, just two columns:

• The row identifier. An auto-incremented integer can be used

Chapter 5. Improvements to LocalDB 49

• The JSON data content. It has to be stored as plain text

Listing 5.3 shows an example of the SQL command to create the table.

LISTING 5.3: Create table command
1 CREATE TABLE ExampleTable (
2 _id INTEGER PRIMARY KEY AUTOINCREMENT,
3 j sonData TEXT
4) ;

Insert JSON data After the creation of the table, JSON data storing can start. It can
be used the json(X) SQL function to verify that its argument X is a valid JSON string
and to obtain a minified version of that JSON string. Listing 5.4 shows an example
of the SQL command to create insert a new data row into the database.

LISTING 5.4: Insert JSON data command
1 INSERT INTO ExampleTable (jsonData)
2 VALUES (
3 j son (’ { " l o c a l I d " : " 1 2 3 4 " , " f i e l d " : " example t e x t " } ’)
4) ;

Retrieve JSON data Now the inserted data can be retrieved. It can be used the
json_extract(X,P) SQL function which extracts and returns one or more values from
the well-formed JSON at column X, using P as path for the JSON value is wanted to
extract. Listing 5.5 shows an example of the SQL command to retrieve inserted data
from the database.

LISTING 5.5: Retrieve JSON data command
1 SELECT j sonData
2 FROM ExampleTable
3 WHERE j s o n _ e x t r a c t (jsonData , ’ $. l o c a l I d ’) = ’ 1234 ’ ;

Update and Delete JSON data For completeness, we show how to update and
delete data in Listing 5.6 and Listing 5.7.

LISTING 5.6: Update JSON data command
1 UPDATE ExampleTable
2 SET j sonData= j son (’ { " l o c a l I d " : " 1 2 3 4 " , " f i e l d " : " updated t e x t " } ’)
3 WHERE j s o n _ e x t r a c t (jsonData , ’ $. l o c a l I d ’) = ’ 1234 ’ ;

Chapter 5. Improvements to LocalDB 50

LISTING 5.7: Delete JSON data command
1 DELETE
2 FROM ExampleTable
3 WHERE j s o n _ e x t r a c t (jsonData , ’ $. l o c a l I d ’) = ’ 1234 ’ ;

5.7.5 JSON criteria handling

The main effort to be done at this level is to convert JSON criteria seen in 4.5 into a
valid SQL query, exploiting the JSON1 extension in order to have a flexible and per-
formant data layer. We need to write an utility class called SQLiteCustomQuery-
Builder to help us to build SQL valid queries. The idea is to take the JSON criteria,
which can be a JSON Array of complex nested JSON Object, and obtain a flatten
structure for each criterion of the Array. The flatten structure obtained for each crite-
rion must be a Dictionary where each entry is a <key,value> couple. The key represent
the JSON path from the root node to a leaf node of the JSON tree and the value is the
value of the JSON node for that path. Once obtained this Dictionary, we can iterate
it in order to build the WHERE expression for the SQL query. For each entry in the
Dictionary we want to obtain an expression like json_extract(X,P) = value that must
be putted in AND with others. The expression obtained for each Dictionary must be
putted in OR with other expressions in order to impose that the wanted JSON data
must match at least one criterion.
In Listing 5.8 we present the buildDictionary algorithm used to build a Dictionary
from a criterion. Any type is used to indicate that the value of a variable of type
Any can be either a JSON Object or a base value like string, number or boolean. The
algorithm is called initially passing to it an empty string as initial path, the JSON
Object criterion as value and a reference to an empty Dictionary. Then, recursively,
whenever it finds a nested JSON Object as the current value do the following:

• iterate over the its keys

• building a new path by concatenating the current path and the current key

• extract the value for the current key from the JSON Object

• call the buildDictionary passing to it the new path, the extracted value and
the reference to the Dictionary to be built

Chapter 5. Improvements to LocalDB 51

Otherwise, it adds to the Dictionary a new entry using the couple <path, value>

LISTING 5.8: buildDictionary algorithm
1 input : S t r i n g PATH, Any VALUE, Dic t ionary DICT
2 output : Object
3

4 begin
5 i f VALUE i n s t a n c e o f Object
6 foreach key in VALUE. keys
7 path ← PATH + " . " + key
8 val ← VALUE[key]
9 bui ldDic t ionary (path , val , DICT)

10 end
11 e l s e
12 DICT . add (PATH, VALUE)
13 end
14 end

In the following an example of the desired SQL query output (Listing 5.10) start-
ing from a JSON criteria (Listing 5.9) is shown. In this example it is wanted to re-
trieve items whose entity.company.city field is equal to "Pisa" and entity.company.type
field is equal to "srl" or items whose entity.company.city field is equal to "Firenze" and
entity.company.type field is equal to "spa".

LISTING 5.9: JSON criteria
[

{
" e n t i t y " : {

" company " : {
" c i t y " : "Pisa" ,
" type " : "srl"

}
}

} ,
{

" e n t i t y " : {
" company " : {

" c i t y " : "Firenze" ,
" type " : "spa"

}
}

}
]

Chapter 5. Improvements to LocalDB 52

LISTING 5.10: Select with criteria
1 SELECT j sonData
2 FROM ExampleTable
3 WHERE (
4 (
5 (j s o n _ e x t r a c t (jsonData , ’ $. e n t i t y . company . c i t y ’) = ’ Pisa ’)
6 AND
7 (j s o n _ e x t r a c t (jsonData , ’ $. e n t i t y . company . type ’) = ’ s r l ’)
8)
9 OR

10 (
11 (j s o n _ e x t r a c t (jsonData , ’ $. e n t i t y . company . c i t y ’) = ’ F irenze ’)
12 AND
13 (j s o n _ e x t r a c t (jsonData , ’ $. e n t i t y . company . type ’) = ’ spa ’)
14)
15) ;

JSON data indexing It is also possible to index some data inside the JSON stored
into the database using the SQLite Indexes On Expressions. This functionality allows
to reduce the execution time of a query involving an indexed JSON field. In the
following some examples about Indexes On Expressions using json_extract function
are shown.

LISTING 5.11: Unique index using json_extract
1 CREATE UNIQUE INDEX Example_localId_index
2 ON ExampleTable (j s o n _ e x t r a c t (jsonData , ’ $. l o c a l I d ’)) ;

LISTING 5.12: Index using json_extract
1 CREATE INDEX Example_field_index
2 ON ExampleTable (j s o n _ e x t r a c t (jsonData , ’ $. f i e l d ’)) ;

53

Chapter 6

Performance Evaluation

After the implementation of the library, we integrated it into the Apparound Frame-
work in order to test performance against the old solution. For this work, we imple-
mented and integrated the library only for the Android platform.

6.1 Setup

For the performance tests, we use an application developed using the Apparound
Framework and a pseudo-real dataset whose logical structure is shown in Figure 6.1.

We need to introduce some details about the data involved on the performance
tests. There are several entities involved, that are:

• Account

• Contact

• Customer

• Lead

• Opportunity

• Quote

• Task

Even if the logical structure appears a little bit complicated, it is only needed to
know that the entity Account is the main entity to which other entities are linked.

11SF entities belong to SalesForce provider https://www.salesforce.com

https://www.salesforce.com

Chapter 6. Performance Evaluation 54

FIGURE 6.1: LocalDB logical structure sample1

So, starting from an instance of an Account we can retrieve all related instances of
other entities using the Account identifier.
We need also to introduce some statistics about this scenario, relatively to the num-
ber of items for each entity, the average size of an item, the approximate size of the
table into the disk, the average size of a table file and the number of files needed
by old LocalDB to store them. In Table 6.1 we summarize these statistics. We have
one file for each Quote item due to some implementation requirements that impose
this. Files of other entities have a different average size because the add item algo-
rithm inserts a new item at the end of a file if the current file size does not exceed
the maximum size (10 KBytes) else it creates a new file, so some files are a little bit
larger. There is also to take into account that each file has some extra informations
as shown in Section 4.1.1.

Chapter 6. Performance Evaluation 55

TABLE 6.1: LocalDB scenario

Entity Number of
items

Average
Item size
(bytes)

Total size
(bytes)

Average
File size
(bytes)

Number of
files

Account 186 1.850 344.100 11.400 30

Contact 179 1.850 331.150 11.000 30

Customer 600 630 378.000 10.500 36

Lead 250 2.900 725.000 11.600 63

Opportunity 148 2.300 340.400 10.500 32

Quote 584 3.600 2.102.400 3.600 584

Task 139 1.500 208.500 10.500 20

6.2 Tools

In order to perform the tests, we wrote some scripts in JavaScript that call the native
APIs through the interface provided by the framework. We use the tool Chrome Dev-
Tools provided by Google Chrome browser to inspect and debug the WebViews present
in our application. This tool allows also to run JavaScript snippet using the WebView
environment. We chose to proceed in this way in order to test common cases, sim-
ulating the user interaction with a part of the application running in a WebView.
In such way, we have almost the same overhead needed to transfer data between
native and JavaScript side. Due to some limitation of the scripts, we also perform
a manual test doing a real journey inside the application, in order to test a more
complex data flow and processing. We prepare a log system to collect informations
about the execution time of the involved operations. Results are averaged to obtain
statistically sound conclusions.
As device for the tests, we use a Samsung Tab S2 running Android 6.0.1 with an
Octa-Core CPU at 1.9 GHz, 3 GB of RAM. We also use an older device during the
journey test, a Samsung Galaxy Tab 4 running Android 5.0.2 with a Quad-Core CPU
at 1.2 GHz and 1.5 GB of RAM.

Chapter 6. Performance Evaluation 56

6.3 Tests

6.3.1 Retrieve items with non-indexed field test

The test consists on calling the findItems API from JavaScript code. We use the localId
as identifier for the item we want to retrieve. The localId this time is not an indexed
field. We repeat the test 100 times for each entity, collecting the execution time and
then the average execution time is calculated. The results are summarized in Fig-
ure 6.2. We highlight in green the execution time on native side and in orange the
overhead to transfer data between the native side and JavaScript side. We can see
that new LocalDB on native side is faster than old solution. The small difference in
the overhead time is due to some optimizations in the data serialization.

FIGURE 6.2: Retrieve on non-indexed field test results

6.3.2 Retrieve items with indexed field test

The test consists on calling the getItem API from the JavaScript. We use the localId
as identifier for the item we want to retrieve. The localId is an indexed field with
UNIQUE clause. We repeat the test 100 times for each entity, collecting the execution

Chapter 6. Performance Evaluation 57

time and then the average execution time is calculated. The results are summarized
in Figure 6.3. We highlight in green the execution time on native side and in orange
the overhead to transfer data between the native side and JavaScript side. We can
see that new LocalDB on native side is faster than old solution. The small difference
in the overhead time is due to some optimizations on data serialization.

FIGURE 6.3: Retrieve on indexed field test results

6.3.3 Advanced retrieve items test

The test consists on iterating over the items of the entity Account and retrieve all
related linked items of entities Contact, Lead, Opportunity, Task , Customer and Quote
using the findItems API. On the new LocalDB library, an index on fields used to link
items is added in order to improve performance. The results are summarized in
Figure 6.4 on which is shown the average execution time of findItems operation for
each entity type. In Figure 6.5 we summarize the average global execution time
and can see that new LocalDB is, on average, about 4.5 times faster than the old
solution. In Figure 6.6 we show the RAM usage comparison between the test done
with the new LocalDB Library and the old solutions on Android platform. Due to
the accuracy of the memory management guarantee by the underling SQLite library,

Chapter 6. Performance Evaluation 58

we can see that there is a better memory usage on our solution, making the Android
garbage collection less intensive. This is important because, even if there is a little
bit more RAM usage, the major impact on performance is the Garbage Collector
action so making it less intensive guarantee a better device resources utilization.

FIGURE 6.4: Advance Retrieve test results (for each entity)

6.3.4 Manual journey test

The test consists in a manual journey inside the application that aims to produce
some local data to be sent to the server. After the data are sent to the server, the
response is processed and the local data are updated with the processed data. The
Figure 6.7 outlines these operations.

We need to add information about internal logics. The data update, due to re-
lation between entities, implies that every time the entity Account is modified, it is
needed to push update to every related entity item. The Figure 6.8 clarify this pro-
cedure, highlighting that many operations are required in order to push the update
to every item involved.

Now we can see the results of this test in Figure 6.9. It is clear that again our
solution is better in terms of execution time respect to the old solution. We test

Chapter 6. Performance Evaluation 59

FIGURE 6.5: Advance Retrieve test results (average)

(A) Old LocalDB

(B) New LocalDB

FIGURE 6.6: RAM usage comparison

this journey also using an old Android device. The use of the new library increase
significantly the data layer performance.

Chapter 6. Performance Evaluation 60

FIGURE 6.7: Data processing operations

FIGURE 6.8: Push updates flow when an Account is modified

Chapter 6. Performance Evaluation 61

FIGURE 6.9: Complete journey test results

6.4 Summary

The table 6.2 summarize the result obtained from the performance tests. We use the
Speedup Formula applied to the execution time in order to compare the performance
increase between the two solutions:

SE =
Eold

Enew

(6.1)

Chapter 6. Performance Evaluation 62

TABLE 6.2: LocalDB performance summary

TEST Old
Lo-
calDB

New
Lo-
calDB

Speedup
abs

Speedup
%

Time
Gain

Retrieve on non-indexed field 123 ms 74 ms 1,66 66% 40%

Retrieve on indexed field 54 ms 32 ms 1,69 69% 41%

Advanced Retrieve 154 ms 34 ms 4,53 353% 78%

Manual Journey 51,20 s 12,4 s 4,13 313% 76%

63

Chapter 7

Conclusions

In this thesis work, we presented a solution to store and retrieve efficiently semi-
structured data in JSON format. We presented the context on which this work has
been done and the reasons to use JSON as data interchange format. We analysed ex-
isting solution and state-of-the-art for data persistence on mobile devices, evaluat-
ing pros and cons. We designed and implemented a solution to solve the problem of
storing and retrieving efficiently JSON data using the well-know library SQLite to-
gether with an extension useful for managing JSON content stored into the database.
We presented details about the architecture and implementation of our solution that
has been deployed on the Android platform. The same solution can be easily de-
ployed on other platforms like iOS and Windows. We integrated the library into the
proprietary framework belonging to Appaorund, where this work has been carried
out. At the end, we evaluated performance of the new solutions compared against
the old one. We found that our solution has better performance respect to the old
one and that can be safely used on enterprise applications to guarantee a better user
experience. The main difficult was to design and develop a new standalone library
sufficiently general, flexible, adaptable to many contexts and easily integrable into
the custom framework.
The solution has been integrated as part of enterprise products, starting the porting
of this solution on iOS and Windows platforms.

7.1 Future work

As future work we identify some relevant improvements to extend out library.

• Extend the high level query language in order to build more complex queries,
exploiting the power of the underling storage engine

Chapter 7. Conclusions 64

• Provide an integrated and configurable synchronization manager

• Provide a way to monitoring changes on the underling stored data

65

Appendix A

The JSON Data Interchange Standard

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate.
It is based on a subset of the JavaScript Programming Language. JSON is a text
format that is completely language independent but uses conventions that are fa-
miliar to programmers of the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and many others. These properties make JSON an ideal
data-interchange language.

JSON is built on two structures:

• A collection of name/value pairs. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector,
list, or sequence.

These are universal data structures. Virtually all modern programming lan-
guages support them in one form or another. It makes sense that a data format that
is interchangeable with programming languages also be based on these structures:

object An object (A.1) is an unordered set of name/value pairs. An object begins
with (left brace) and ends with (right brace). Each name is followed by : (colon)
and the name/value pairs are separated by , (comma).

array An array (A.2) is an ordered collection of values. An array begins with [(left
bracket) and ends with] (right bracket). Values are separated by , (comma).

Appendix A. The JSON Data Interchange Standard 66

value A value (A.3) can be a string in double quotes, or a number, or true or false
or null, or an object or an array. These structures can be nested.

string A string (A.4) is a sequence of zero or more Unicode characters, wrapped
in double quotes, using backslash escapes. A character is represented as a single
character string. A string is very much like a C or Java string.

number A number (A.5) is very much like a C or Java number, except that the octal
and hexadecimal formats are not used.

FIGURE A.1: JSON object

FIGURE A.2: JSON array

Appendix A. The JSON Data Interchange Standard 67

FIGURE A.3: JSON value

FIGURE A.4: JSON string

Appendix A. The JSON Data Interchange Standard 68

FIGURE A.5: JSON number

69

Bibliography

[1] Zhen Hua Liu, Beda Hammerschmidt, Doug McMahon. JSON Data Manage-
ment – Supporting Schema-less development in RDBMS. Oracle Corporation, 2014.

[2] Anton Adamanskiy, Andrey Denisov. EJDB - Embedded JSON database engine.
Fourth World Congress on Software Engineering, 2013.

[3] Tokyo Cabinet: a modern implementation of DBM
http://fallabs.com/tokyocabinet/

[4] Chasseur, Craig, Yinan Li, and Jignesh M. Patel. Enabling JSON Document Stores
in Relational Systems. WebDB, 2013

[5] Android platform architecture
https://developer.android.com/guide/platform/index.html

[6] Building Web Apps in WebView
https://developer.android.com/guide/webapps/webview.html

[7] What is a Hybrid Mobile App
http://developer.telerik.com/featured/

what-is-a-hybrid-mobile-app/

[8] Apache Cordova
https://cordova.apache.org/

[9] Apparound
http://www.apparound.com/

[10] Abraham Silberschatz, Henry F. Korth, S. Sudarshan Database System Concepts,
Sixth Edition. McGraw-Hill, International Edition, 2–35, 2011.

[11] Rabi Prasad Padhy, Manas Ranjan Patra, Suresh Chandra Satapathy.
RDBMS to NoSQL: Reviewing Some Next-Generation Non-Relational Database’s

BIBLIOGRAPHY 70

(IJAEST)INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCI-
ENCES AND TECHNOLOGIES, Vol No. 11, Issue No. 1, 015 - 030

[12] Mason, R. T. NoSQL databases and data modeling techniques for a document-oriented
NoSQL database. Proceedings of Informing Science & IT Education Conference
(InSITE), 259-268, 2015.

[13] Manoj V. COMPARATIVE STUDY OF NOSQL DOCUMENT, COLUMN STORE
DATABASES AND EVALUATION OF CASSANDRA International Journal of
Database Management Systems (IJDMS) Vol.6, No.4, August 2014

[14] A B M Moniruzzaman and Syed Akhter Hossain. NoSQL Database: New Era
of Databases for Big data Analytics - Classification, Characteristics and Comparison
International Journal of Database Theory and Application, Vol. 6, No. 4. 2013

[15] SQLite
https://sqlite.org/

[16] Sibsankar Haldar. SQLite Database System Design and Implementation [Second Edi-
tion] Self-Publishing

[17] SQLite JSON1 extension
https://sqlite.org/json1.html

[18] SQLCipher
https://www.zetetic.net/sqlcipher/

[19] SQlite SSE
https://www.sqlite.org/see

[20] Couchbase Mobile
http://www.couchbase.com/nosql-databases/couchbase-mobile

[21] Realm.io
https://realm.io/

[22] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch De-
sign Patterns: Elements of Reusable Object-Oriented Software Addison-Wesley Pro-
fessional Computing Series, 207, 1995.

BIBLIOGRAPHY 71

[23] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch De-
sign Patterns: Elements of Reusable Object-Oriented Software Addison-Wesley Pro-
fessional Computing Series, 151, 1995.

[24] Abraham Silberschatz, Henry F. Korth, S. Sudarshan Database System Concepts,
Sixth Edition. McGraw-Hill, International Edition, 1045–1046, 2011.

[25] Milo Martin, Amir Roth Performance & Benchmarking
http://www.cis.upenn.edu/ milom/cis501-Fall12/

lectures/04_performance.pdf Slides of Computer Architecture Lec-
tures, University of Pennsylvania

[26] The JSON Data Interchange Standard
http://www.json.org/

	Abstract
	Acknowledgements
	Introduction
	Goals
	Related work
	Outline

	Background
	Mobile Operating Systems
	Android Operating System

	Mobile Applications
	Hybrid Mobile Applications
	Android JavaScript Interface

	Apparound Mobile Applications
	Architecture
	Offline feature

	Storage engines for mobile devices
	Database Management Systems
	Relational Databases
	Non-Relational Databases
	Data Models

	Mobile Storages
	SQLite
	Couchbase Mobile
	Realm
	Summary

	LocalDB
	Internal Structure
	File Structure
	Record Structure

	Internal Operations
	addItem
	getItem
	findItems
	deleteItem

	Issues

	Improvements to LocalDB
	Requirements
	Functional requirements
	Non-Functional requirements

	Library overview
	Architecture
	Interfaces
	LocalDB interfaces
	Storage Engine Abstraction interfaces
	Storage Engine interfaces

	Data Design
	Criteria structure
	Options structure
	Iteration result structure

	Library Design
	Implementation
	Storage Engine based on SQLite
	Architecture Details
	Design
	SQlite JSON1 extension exploitation
	JSON criteria handling

	Performance Evaluation
	Setup
	Tools
	Tests
	Retrieve items with non-indexed field test
	Retrieve items with indexed field test
	Advanced retrieve items test
	Manual journey test

	Summary

	Conclusions
	Future work

	The JSON Data Interchange Standard
	Bibliography

