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Introduction

Beginning from the experiments of Rutherford, the modern picture of atoms

began to form. In this picture, the atom is composed of negatively charged light

particles (called electrons) that interact electromagnetically with an heavy, posi-

tively charged nucleus. While the orbiting electrons are actually considered ele-

mentary particles, the heavy nucleus is an aggregate of interacting heavy particles,

called nucleons. Understanding how those baryons interact and what binds those

particles together is the main problem of nuclear physics.

Details of those interactions have always been difficult to grasp. Earlier ex-

periments and theoretical models found two types of nucleons: the proton, that

has the opposite charge of the electron, and the neutron, that has no net charge.

This interaction shows some unfamiliar features: it is strong enough to overcome

the repulsive Coulomb interaction between protons, but it heavily relies on the

presence of neutrons. In fact, all stable nuclei are composed of a comparable

amount of protons and neutrons, and heavier nuclei are found to have more neu-

trons than protons. This equilibrium between neutrons and protons is delicate,

and the addition of one or the other could result in an unstable nucleus.

Further experimental results brought to more questions. Particles with similar

characteristics to the nucleons were discovered (like the ∆ particle), and nucleons

and all those similar particles were called baryons. The advent of quantum field

theory and its description of forces as interaction between particles and mediators

gave the theoretical input for the construction of mesons as mediators of the nuclear

force between baryons, and experiments confirmed that point of view. Still, there

was a rather large park of baryons and mesons showing similarities that could

not be satisfactorily interpreted as coincidences, so those advancements were not

considered the final answer.
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2 Introduction

In his revolutionary work, Murray Gell-Mann used the known similarities be-

tween baryons and between mesons, introducing a symmetry transformation that

grouped the known baryons and mesons in different irreducible representations

of the group SU(3). Each baryon (meson) occupied a particular spot in an irre-

ducible representation, and the various baryons (mesons) were distinguished from

each other by following the standard rules in the representation theory of symme-

try groups. Despite being only an approximate symmetry, this model managed

to group all known baryons (mesons), and also predicted the existence of addi-

tional particles in the places where there were some blank spots, particles that

have been experimentally observed after their theorization. The fundamental rep-

resentation of SU(3) was empty, so it was postulated that three particles of half

integer spin existed, called quarks, that were the building blocks of hadrons (the

collective name for baryons and mesons). The baryons were seen as composed by

three quarks, while the mesons were formed by a quark-antiquark pair. Later,

a new quantum number was introduced to explain some apparent contradictions

(like Fermi-Dirac statistics), called color: each quark was postulated to be in the

fundamental representation of another SU(3) symmetry group, the color group,

and this symmetry was taken as local, giving rise to interaction between objects

presenting a color charge, mediated by a new kind of particle called gluon. It was

postulated that hadrons were always in a color singlet, and that it was not possible

to find isolated quarks, that appeared only in hadrons.

This new quantum field theory, called Quantum Chromodynamics (QCD), is

our actual theory for describing the strong force, the force that mediates the nuclear

interactions. In terms of this force, the interaction of baryons mediated by mesons

can be seen in terms of an interaction between quarks and antiquarks mediated

by gluons. Baryon interaction, in principle, can be exactly calculated from the

QCD Lagrangian, in terms of interaction of the constituent quarks. The standard

tool for extracting observables from interacting field theories, perturbation theory,

can be applied to QCD (and the theory is fully renormalizable, so in principle the

theory makes sense at every perturbative order) but, as the interaction is expected

to be strong, we cannot trust the results of standard perturbation theory to give

results that agree with experiments. Actually, renormalization group approach

shows that the coupling of the quarks to the gluon field is weak at high energies,

but becomes very large at low energies, in the energy regime that is of interest in

nuclear physics.
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QCD is our actual model of the theory of nuclear interactions, that could ex-

plain the mechanisms underlying the formation of nuclei. Several attempts at solv-

ing the theory (in the sense of computing physical observables from it) have been

attempted, ranging from full numerical simulations on a lattice (Lattice QCD),

to effective field theories that consider baryons and mesons as fundamental parti-

cles, keeping the approximate symmetries of the QCD Lagrangian (as the sigma

models). Phenomenological studies that fit enormous banks of data with a small

number of parameter have not been abandoned, and they provide precious insights

on the qualitative (and, at times, quantitative) features of the nuclear interaction.

Of particular interest is an approximation to QCD, the large N limit, where

the number of colors is brought to infinity. The number of degrees of freedom

goes to infinity in this limit, but the theory is actually made simpler: this is

because contributions to correlation functions can be given an N dependence, and

the large N limit consists in just taking the leading terms in the determination

of those correlation functions. Corrections can always be made in terms of the

parameter 1/N , that is 1/3 in real QCD.

This thesis is inserted in this context. Our main goal is to build a model

that can be used to describe baryon dynamics, and in particular we look for an

interaction potential between the basic nucleons (proton and neutron). To do

that, we follow an approach that mixes two ideas: the description of particles as

topological solitons in nonlinear field theory and the Anti de Sitter / Conformal

Field Theory (AdS/CFT) correspondence.

Topological solitons arise in nonlinear field theories: they are static solutions

of the equations of motion that cannot decay in the vacuum. They can be imagined

as stable lumps in a field, and a conserved charge (called topological charge) can

be associated to those field configurations. The dynamics of those lumps can be

approximated as rigid motion of the lumps in space, plus some internal degrees of

freedom (like rigid body orientations). Quantizing the coordinates of the lumps,

we get a quantum system of finite dimension, that can be studied through ordinary

quantum mechanics. This is what is done in the Skyrme model, that we will study

in the first chapter.

The action of the Skyrme model is an effective action, and various studies

have evidenced the fact that the predictions of the theory varies as one changes

the effective action. We want an action that descends uniquely from more general
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principles, and for this we will use AdS/CFT correspondence. The main idea is

that a string theory in a space is dynamically equivalent to a quantum field theory

living on the boundary of that space, in the sense that we can map the observables

of one theory in the observables of another. In a limit that we will see to be

equivalent to large N limit of QCD, the string theory can be taken as classical, so

the correspondence allows us to compute QFT observables from a classical action.

Using those tools, we study large N QCD by studying the action of the low

energy modes of a string theory. We see that this theory adimts topological solitons

called instantons, and quantization of the degrees of freedom of an instantonic

field of charge one creates a quantum system with states whose transformation

properties and quantum numbers are just right to interpret them as states with a

definite rest energy, an impulse, a spin and an isospin degrees of freedom. In this

picture, we build a charge two field configuration by gluing together two single

charge instanton solutions. Due to the non linearity of the theory, this solution is

approximative, and we show that it holds in the limit of large ’t Hooft coupling λ.

In those limits, large N and Λ, we compute the energy of this field configuration,

and interpret the result as a potential of interaction between instantons. This

is proposed as a classical potential for baryon interaction, and its structure as

infinite sum of Yukawa monopole and dipole interactions is interpreted as the

classical analogue of an exchange interaction with a meson mediator. We show

how the masses of baryons and mesons can be computed in this model.

After computing the potential, we quantize the coordinates of the two instan-

ton fields, and impose physical constraints to restrict the spectrum of the system.

We see that the internal degrees of freedom of the system can be rearranged and

interpreted as total spin and isospin of the system, and that they assume only

integer values. Among the states that are compatible with our constraints, we

find a state with the right angular quantum numbers (spin one and isospin zero)

and interpret it as deuteron state. We compute the stability of this state with

respect to the splitting in two separated baryons, and make a similar analysis for

other low energy states in the spectrum. We comment the large N and large Λ

limit, comparing our results with the qualitative predictions of large N QCD, and

extrapolate the binding energy of the deuteron.

This is our original work, and our results are contained in chapter 4, the final

chapter of the thesis. The reader that is just interested in our results is strongly

advised to read section (1.4), where a similar construction is made in the Skyrme
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model, and then just skip to chapter 4, accepting that in our model baryons can

be seen as instantons in the field theory defined by action (4.1.4). The rest of the

thesis is dedicated to introducing and explaining the tools that we use to prove

that our model is a model for large N , low energy QCD.

The thesis is organized as follows. In the first chapter, we introduce the con-

cept of topological solitons. We give some basic background in topology, study its

application to classical field theory and give various examples of theories admitting

topological solitons. We give a more precise notion of collective coordinates and

how they can be related to the symmetries of the system. Of particular interest are

the Skyrme model and the Yang-Mills instanton, while the Baby Skyrme model is

studied as one of the simplest, non trivial examples. We conclude the chapter by

reviewing how the Skyrme model is used in nuclear physics to build a quantum

picture of baryons, in a way that is similar to ours.

The second chapter is an introduction to the two sides of AdS/CFT corre-

spondence. All the topics are covered from a beginner’s point of view, and give

the fundamental notions to understand the theories that the AdS/CFT correspon-

dence relates. The chapter is divided in two parts: the first part (or gauge side) is

dedicated to introduce conformal field theory and supersymmetry, as the approach

taken in AdS/CFT always forces us to deal with supersymmetry (by realizing it in

our models or finding a way to explicitly break it to build models appropriate for

our energy scales). We will examine the simplifications that conformal field theory

imposes on the physical observables, and study N = 4 supersymmetric Yang Mills

theory, that is the theory living at the boundary of the Anti de Sitter space in

AdS/CFT. In particular, we are interested in understanding the differences be-

tween Super Yang Mills and standard Yang Mills, in terms of additional fields and

symmetries. We conclude the first part of the chapter with a brief analysis of the

large N limit in QCD, and collect the main results.

The second part of the second chapter is entirely dedicated to the gravity

side of AdS/CFT. We start by building Anti de Sitter space and examining their

geometry, to find that one boundary of AdS space can be identified with standard

Minkowski space. Then, we introduce string theory. In this introduction, we

concentrate on solving the classical equations of motion for free strings, examine

the degrees of freedom of the first quantized theory and introduce the concept of

supersymmetric string theories, to also have fermionic degrees of freedom. We give

a brief qualitative description of interacting string and how they can be related
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to the large N expansion, and then conclude by introducing D-branes, extended

objects in string theory that are sources of gravity, and whose low energy dynamics

can be described in terms of open strings with their ends attached to it.

In the third chapter, we join those two sides together in the AdS/CFT corre-

spondence. We start with the historical correspondence, that as now is the most

well studied and understood theory in the correspondence, that describes super-

symmetric Yang Mills theory through the dynamics of strings attached to fixed

configurations of branes. By explicitly computing some observables as examples of

the correspondence, we examine how this description diverges from standard QCD

and then introduce the Sakai-Sugimoto model, a string theory in which supersym-

metry is explicitly broken and quark flavors are inserted, showing how the action

of this string theory at low energies is the action of standard QCD. We also see

how the description of mesons and baryons arise in this particular string theory,

and give the limits of application.

The fourth chapter is dedicated to the original work of the thesis. We start by

building the charge two field by gluing together two well distanced charge one fields,

and interpret the energy of this configuration as an interaction potential. After

finding a configuration of the field that minimizes the classical energy, we proceed

to quantize the degrees of freedom that correspond to free motion of the instantons

without changing the energy (zero modes), and use discrete symmetries of the

configuration to impose constraints on the set of states that arise. We also study

the motion of instantons that has an energy cost (massive modes), by first trying

an harmonic approximation and then quantizing the coordinate of the relative

distance separating the two instantons. We then make numerical computations

on this model, to study the spectrum of states, examine their binding energy and

give conclusions on the large N and Λ limit of QCD’s description of baryons and

mesons. We collect our result in the conclusion.



Chapter 1

Topological solitons

In this chapter we briefly review the fundamental notions about the appli-

cations of topological solitons in classical field theory. In the first section we

introduce the basic definitions and concepts, while in the following sections we

give some classical examples of topologically non trivial fields, examining in de-

tail the Baby-Skyrme model, the Skyrme model and the SU(N) (with particular

emphasis on N = 2) instanton. We conclude building the quantum theory of the

Skyrme field using semiclassical quantization and the uses of this theory in mod-

eling atomic nuclei. The main reference for this chapter is [32], an introductory

text on topology and solitons.

1.1 Introduction to topology

1.1.1 Basic definitions: homotopy groups

Homotopy theory studies the relations between continuous maps on manifolds,

giving a rigorous definition of the intuitive concept of continuous deformation of

maps. Intuitively, the scope is to classify maps by building an equivalence relation,

saying that two maps are equivalent if one can be continuously deformed in the

other. This has important applications in physics: as the time evolution of a field

is a continuous deformation of the field, we can say that, if the field at a certain

7



8 CHAPTER 1. TOPOLOGICAL SOLITONS

A

B

γ0

γ1

Figure 1.1: A continuous deformation of curves in the plane. Curves are a par-

ticular case of the maps that we are considering, with X = R or an interval and

Y = R2. The curve γ0 gets deformed in the curve γ1, and we call the deformation

function H, with one argument more than γ0 and γ1: the intermediate curves

(dashed lines) are given by fixing the value of the additional argument of H to

some chosen values between 0 and 1.

time is represented by certain boundary conditions, then the image of the time

evolution is contained in the homotopy class of the initial condition. Let us then

give the basic definitions.

Let X and Y be differentiable manifolds, and let x0 ∈ X and y0 ∈ Y be two

certain points on the manifolds: we define the set of based maps F as the set of

continuous maps between X and Y such as, for every f ∈ F , f(x0) = y0, with

x0 and y0 called base points. The choice of the base points is arbitrary (assuming

connectedness of X), and all our results will not depend on the choice of base

points.

We now define the continuous deformation of maps. Let f, g ∈ F and x be

any point in X: we define the function (if it exists)

H : X × [0, 1]→ Y (1.1.1)

such as H(x, 0) = f(x), H(x, 1) = g(x), H(x0, t) = y0 for all t ∈ [0, 1] and with

the requirement that H be continuous in its arguments. Such a function is a

continuous deformation between f and g, and we say that H deforms f into g.

The existence of such a map is non trivial. As an example, we can take
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(1.2), where the dot internal to the left square is removed from the domain. In

that case, we see that the figures on the left cannot be deformed into each other

without crossing the point, while the figures on the right can.

We now introduce an equivalence relation over F . We say that f ∼ g if a

continuous deformation of f into g exists. This is an equivalence relation, as

• It is trivially reflexive, as for every f ∈ F the function H(x, t) = f(x)

continuously deforms f into itself.

• It is symmetric, as for every f, g ∈ F such as f ∼ g, calling H(x, t) the con-

tinuous deformation of f into g, the function H ′(x, t) = H(x, 1− t) deforms

g into f .

• It is transitive, as taking f, g, h ∈ F such as H(x, t) deforms f into g and

S(x, t) deforms g into h, then the function

L(x, t) =

{
H(x, 2t) 0 ≤ t ≤ 1

2

S(x, 2t− 1) 1
2
≤ t ≤ 1.

(1.1.2)

deforms f into h.

The equivalence relation ∼ splits F into disjoint equivalence classes, the quotient

space F/ ∼. In the trivial case of figure (1.1) we have that the quotient space

is isomorphic to Z1, the group with only one element, as every curve can be

continuously deformed into one another. We state without proof that, in the less

trivial case of R2 with one point removed (figure (1.2)), the quotient space of the

based curves modulo the equivalence relation is isomorphic to Z, and two curves

are equivalent if they wind around the removed point an equal number of times

(counting orientation).

We introduce a procedure that is standard when dealing with classical field

theory, the compactification of Rn. Let us suppose that we have a field theory of a

field U defined on Rn with a target space Y , with the field such as lim|x|→∞ U(x) =

y0, independent of the direction of the limit (this is necessary for fields with energy

density terms of the form ∂iU∂iU : to have it tend to zero as |x| → ∞ we have that

the field must tend to a constant field at infinity). Then we can consider the space

Rn ∪ {∞} as the domain of U , adding the point at infinity. This set is compact
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Figure 1.2: Examples of nontrivial homotopy: the dot in the middle of the square

is removed from the plane. We see that the left circle winds around the removed

dot once, clockwise, while the inner square winds around counterclockwise. The

right figures do not wind around the circle. The result is that the right figures

are homotopic, while the left are not (and no left figure is homotopic to any right

figure).

(as divergent successions can be interpreted as successions converging to the point

at infinity), and isomorphic to the n sphere Sn (one possible isomorphism is the

stereographic projection exemplified for S1 in figure (1.3), with the pole identified

with the point at infinity).

Motivated by this procedure, we specialize to the case where X is an n-sphere,

Sn. The set of equivalence classes of the continuous maps is called πn(Y ), also

called the n-th homotopy group. This set can be endowed with a group structure

for n ≥ 1, defining a composition between equivalence classes. We see that in

detail for n = 1 and give an intuitive construction of the operation for n ≥ 1. In

the case n = 1, the maps f : S1 → Y are based loops in Y at the point f(0).

Taking two maps f(θ) and g(θ) with f(0) = g(0) as base point condition, we can

compose them through the function

h(θ) =

{
f(2θ) 0 < θ < π

f(2π)− f(0) + g(2θ − 2π) π < θ < 2π.
(1.1.3)

We can see that this operation can be written as an operation between homotopy

classes: we say that the composition of the class of f and the class of g gives the

class of h. For it to be a good definition, we must prove that the class that is

obtained by composing one representative of the class of f with a representative

of the class of g does not depend on the particular representative. Let f̃ be a

deformation of f through F (θ, t) and g̃ be a deformation of g through G(θ, t). We
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P

A

A′

B B′

Figure 1.3: Stereographic projection of the line on a circle. The points B and B′

get mapped to A and A′. Getting nearer to P on the circumference results in a

point in a line with arbitrarily high increasing distance from the origin, so P can

be interpreted as the point at infinity on the line.

define h̃ as the map obtained by composing f̃ with g̃ We can see that the map

H(θ, t) =

{
F (2θ, t) 0 < θ < π

F (2π, t)− F (0, t) +G(2θ − 2π, t) π < θ < 2π
(1.1.4)

deforms h into h̃, so if we compose different representatives we obtain a different

function, but all functions obtained by composing all possible couples of represen-

tatives are homotopic to each other. We can then define this composition operation

as an operation on π1(Y ), and this operation effectively makes π1(Y ) a group, as

• The operation is obviously closed (composition of loops is always a loop,

and any loop is contained in an element of π1(Y )) and associative, as the

composition of f, g, h is independent of whether we compose f, g and then

compose the result with h or we compose g, h and then compose the result

with f .

• The null element of the group is the class of the constant function.

• The inverse element of a class [f ] is given by the class of f(2π− θ), the same

loop reversed.

• This operation is in general non commutative.



12 CHAPTER 1. TOPOLOGICAL SOLITONS

To build the operation for πn(Y ), a common way of defining it is to modify Sn

back into Rn and then into a cube, where the boundary of the cube represents the

point at infinity. The cube is the tensor product of n intervals [0, 1]: we compose

a function on its n coordinates xi with another through

h(x1, ..., xn) =

{
f(2x1, ..., xn) 0 < x1 <

1
2

f(1, x2, ..., xn)− f(0, x2, ..., xn) + g(2x1 − 1, ..., xn) 1
2
< x1 < 1.

(1.1.5)

As before, it can be shown that this defines an operation over πn(Y ). The only

difference from the π1(Y ) case is that the operation is abelian. We quote those

results without proof, referring to [33] (chapter 4) for a complete discussion. We

conclude analyzing π0(Y ): as S0 is the boundary of a segment, it has only two

points. One point is used to provide the base condition, so maps are characterized

by their values on the other point. If two different based maps map the second

point in two different points, those maps are homotopic if and only if the points

can be joined with a path, so π0(Y ) counts the number of disconnected pieces

composing Y .

Considering a field theory of a field U from Rn to a target space Y with

the boundary condition lim|x|→∞ U(x) = const., independent of the direction, the

relevant homotopy group is πn(Y ). The computation of the homotopy sets πn(Y ) is

highly non trivial, and we usually refer to literature for those results. We conclude

this introduction on homotopy groups with a monodimensional example.

We study the homotopy group π1(S1), analyzing all continuous functions of

the circle into itself. A function on a circle is written as f(θ), where θ is a coordinate

on a circle. We take as base points 0 both on domain and target space, imposing

f(0) = 0. By continuity, f(2π) = f(0)+2πm = 2πm for some integer m, called the

winding number of the map. Every based continuous map has then an associate

integer, its winding number. It is easy to see that two maps with the same m can

be deformed into one another: taking f and g with winding number m, then the

function

h(θ, t) = (1− t)f(θ) + tg(θ) (1.1.6)

always preserves the base point mapping (as h(0, t) = 0 for all t) and is continuous

in θ = 2π for all values of t, as with fixed t

h(2π, t) = (1− t)f(2π) + tg(2π) = 2πm. (1.1.7)
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h respects the continuity condition on S1, so it is an acceptable deformation of f

into g. Conversely, if f and g have two different winding numbers, the same func-

tion cannot work (as h would not be continuous in 2π), and there is no deformation

of f into g, as any deformation of f deforms it into a function with the same wind-

ing number (as always, this is needed for continuity). We conclude that we can

associate an integer to any map by looking at its value on 2π, and if (and only if)

two maps have that same integer they can be deformed into one another. As there

is no limit on the winding number (that can be negative, too), we conclude that

π1(S1) = Z. We also study the composition between maps: the composed map

s(t), obtained through applying composition (1.1.3) to the maps f and g has wind-

ing number obtained through s(2π)− s(0) = f(2π) + g(2π)− f(0) = 2π(m + n):

the composition of two maps with given winding numbers gives a map with wind-

ing number given by the sum of the original winding numbers. The group π1(S1)

is then abelian and the sum is identical to the sum in Z, so π1(S1) and Z are

basically the same group.

1.1.2 Topological degree

It is a difficult task to compute homotopy groups, and it is a (less) difficult

task to assign functions to elements in the homotopy group, once calculated. There

is a tool that greatly helps solving the last problem, converting it in the calculation

of an integral of the field. Let us examine this tool.

Let X and Y be two oriented manifolds with the same dimension (that we

call n), and let U be a representative of continuous based maps from X to Y .

Topological degree is defined only for maps between manifolds with the same

dimension (while homotopy groups are non trivial even if the target space has not

the same dimension of the starting sphere), so we are restricting our analysis. Let

Ω be a volume form on Y such as ∫
Y

Ω = 1. (1.1.8)

We define the topological degree of U as the integral on X of the pull back of Ω

through U :

degU =

∫
X

U∗(Ω). (1.1.9)
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In components, introducing coordinates x over X and y over Y , expressing the

action of U as a law that transforms the coordinates in X into coordinates in Y

and denoting this map as y(x), decomposing Ω as a n-form over Y

Ω = Ω(y)dy1 ∧ dy2 ∧ ... ∧ dyn, (1.1.10)

the pullback of Ω is given by

U∗(Ω) = Ω(y(x)) det

(
∂yi(x)

∂xj

)
dx1 ∧ dx2 ∧ ... ∧ dxn. (1.1.11)

We see that the result of the pullback is to insert the determinant of the Jacobian

of the map, that we henceforth call J (x). This is an n-form over X, so it can be

integrated over the manifold (this is the reason why we choose X and Y with the

same dimension).

We can show that degU does not depend on the choice of Ω, as long as

the volume form is normalized. Choosing another volume form Ω̃, we get that

the difference of the forms Ω − Ω̃ is another form with null integral. We state

without proof (it is a consequence of de Rham’s theorem, as explained in chapter

6 of [33]) that this difference is an exact form: as pull back commutes with exterior

derivative, then U∗(Ω− Ω̃) is an exact form, integrating over X to zero. Thus, the

degree of the map does not depend on the normalized volume form that is chosen,

and this fact can be used to prove that the degree of the map is an integer.

We introduce another method of defining the topological degree, and we show

that this definition equals to (1.1.9). Let y be a point in the target space such

as its counterimage (the set of points in X mapped to y) is a discrete, finite

set, denoting this set as {x1, ...,xM} (the set can be empty). We assume that

such a point exists, and that at any counterimage of such a point the Jacobian

determinant is non null as, if it was, then we would not have a discrete set of

counterimages, but a continuous one. We define the modified degree

d̃egU =
M∑
i=1

sign(J (xi)). (1.1.12)

This procedure is called counting preimages with sign. Apparently, the degree

depends on y but, when we show that any degree is equal to (1.1.9), then we will

have shown y independence. This equality is consequence of the Ω independence

in the definition of (1.1.9). We can choose a volume form that has compact sup-

port only in a small neighborhood of y: then the pullback of the form will give a
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distribution that has compact support, only in the neighborhoods of the points xi,

and the integration can be expressed as a sum of integrations on those neighbor-

hoods. Restricting our attention to a neighborhood of one xi, we know that if the

neighborhood is small enough (and it can always be made smaller by modifying Ω)

then the map y(x) is locally invertible, and then we can transform back to the y

coordinates. This means that we gain a factor |J |−1(x), exactly compensating the

factor J(x) in (1.1.11) up to a sign. Every contribution from the neighborhoods

with this particular volume form gives ±1, so it is equal to counting preimages

with signs.

The fact that deg is integer also has a nice consequence: as the integral

should continuously change for deformations of the field U , then the degree should

be continuous in U . As it is an integer, the only possibility is that the degree of

U is equal to the degree of any map that is obtained by continuously deforming

U . This means that deg can be thought as a function from the equivalence classes

of deformable functions to the integers, and allows us to understand to which

equivalence class a field belongs. 1

As before, we finish this part by computing the topological degree of the maps

between S1 and S1. We start by giving a volume form on S1:

Ω =
1

2π
dθ. (1.1.13)

The 2π factor normalizes the form. The pullback through a function f is given by

f ∗(Ω) =
1

2π

df

dθ
dθ. (1.1.14)

The topological charge is given by

deg f =
1

2π

∫ 2π

0

df

dθ
dθ =

1

2π
(f(2π)− f(0)) = m. (1.1.15)

We see that, in this simple case, the degree of the map is equal to its winding

number. The topological degree is then additive under composition: a composition

of two fields of charge m and n gives a field of charge m+n. We will see that this

is the case in every theory we study, when we find a suitable composition.

1We showed that homotopic fields have the same topological degree, but we did not show that

fields that are not homotopic cannot have the same degree. This is non trivial, and is necessary

to totally substitute homotopy groups with topological rank, a simpler tool to use, preferable

whenever possible. It turns out that this fact is true in the particular theories we will study. For

a proof, see chapter 23 of [51]
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1.2 Classical field theory and topology

1.2.1 General overview: solitons and Derrick’s theorem

We start exploring the applications of topology to classical field theories. We

restrict our attention to class of theories of the form

φ : Rd|1 → Y, (1.2.1)

where φ is the field, Rd|1 is the standard Minkowski space with a time dimension

and d space dimensions and Y is called the target space. For definiteness, let us

restrict to fields with no spin: our argumentations will not depend on spin and

can be easily generalized.

We write a general action

S[φ] =

∫
−1

2
∂µφ∂

µφ− U(φ, ∂0φ, ∂iφ)dd+1x, (1.2.2)

with a given potential U that can also depends from time and space derivatives.

We turn to the static theory, neglecting time derivatives. We can write the energy

as minus the static action:

E[φ] =

∫
1

2
∂iφ∂iφ+ U(φ, 0, ∂iφ)ddx. (1.2.3)

The field φ is a static field, sending Rd into the target space Y . We must make

some assumptions on the potential U before continuing. Those assumptions are

related to the request that the physical fields have finite energy: this means that

the integrand in (1.2.3) must tend to zero as |x| → ∞ fast enough for convergence.

This means that the field should tend to a constant value, independent of the

direction, as with a direction dependent boundary condition the effective potential

energy density would not vanish, making the integral diverge. Thus we impose the

boundary condition

lim
|x|→∞

φ(x) = φ0, (1.2.4)

with φ0 such as U(φ0, 0, 0) = 0, with 0 the minimum of U . With condition (1.2.4),

we can reformulate the theory: as in the previous section, we compactify Rd to Sd
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Figure 1.4: Stereographic projection in two dimensions, mapping the plane onto

the sphere.

through stereographic projection, and identify the north pole of Sd as the point at

infinity and the south pole as the origin of the axes.

With this compactification, the field theory becomes the theory of a field

φ : Sd → Y, φ(North pole) = φ0, (1.2.5)

and the set of based maps F (with obvious bases the north pole and the boundary

condition) is divided in equivalence classes: this information is contained in the

homotopy group πd(Y ). Let us consider the situation where πd(Y ) = Z (or a finite

subset), that is the situation that we will meet in this thesis: then we label with 0

the equivalence class of the constant field φ(x) = φ0. We call any field that is not

in the equivalence class of the constant field and is a minimum point for the static

energy (1.2.3) a topological soliton or soliton. We can also do more when we take

Y such as dimY = d: in this case we have a natural label for each equivalence

class, the topological charge of a map. We interpret the degree of the map φ as

a conserved charge, called topological charge, and adopt the standard notation to

call it B[φ] or, simply, B. B is a conserved charge in the time evolution of the

system as it is homotopy invariant, and time evolution is a continuous deformation

of the field.

The presence of solitons divides the configuration space (the infinite dimen-

sional space of possible maps) in different disconnected topological sectors. It is

always possible to associate a topological sector to an initial condition: then the

motion of the field will always be contained in the topological sector from which

it started. To find a stable configuration, the energy has to be minimized in the

topological sector, finding a local minimum to the energy functional. A topolog-
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ical charge B always gives a constraint on the energy of the fields, of the form

E ≥ a|B|, where a is just a multiplicative constant that depends on the model

and |B| accounts for the fact that the topological charge can be negative. Such

an inequality is called a Bogomolny bound. If a field of charge B with E = a|B|
exists, that field is said to saturate the Bogomolny bound: the existence of such a

field is not guaranteed, and it does not hold in models such as the Skyrme model.

To have solitons in a theory, it is necessary that the relevant homotopy group

be not trivial, and for the field to be static, being a minimizer of (1.2.3): the

existence of such a minimum is non trivial. In the study of a theory with solitons,

we first check the relevant homotopy group to see if it is non trivial, and then we

use Derrick’s theorem [14]. The theorem is very simple, as it is a scaling argument:

scaling coordinates and fields is a variation of the fields, and the energy must be

invariant under the infinitesimal version of the variation. We provide an example

with the scalar field φ that we introduced: under rescaling x→ λx (with λ > 0), we

scale the field as φ(x)→ φ(λx). We can note that every energy that is polynomial

in the field and its derivatives is a sum of pieces of the form

En =

∫
(∂φ)nφmddx. (1.2.6)

The notation is highly symbolic, and we do not care to specify how the derivative

indexes are contracted. The only important thing is the number of derivatives,

n. As an example, an effective potential term with two derivatives is E2, while a

potential with no derivatives is E0. Under scaling, an En piece scales as

En → λn−dEn. (1.2.7)

We can then write a scale dependent energy, E[λ], that is composed of the sum

of various pieces En, multiplied by λn−d. If there is no minimum to this function,

then a static soliton does not exist. If there is such a minimum, then a static

soliton can exist, but its existence is not guaranteed.

Derrick’s theorem is a no-go theorem: it can suggest us the form of a potential

to have stable solitons, and applying it is just a very simple algebraic matter. It

must be evaded for static solitons to exist. We now study an example of applica-

tion, and then propose a way to evade Derrick’s theorem that is frequently used

in soliton theory. When the energy functional is minimized for a certain λ, that λ

becomes a soliton scale.
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Let us study a simple example in d = 1, 2, 3 dimensions for a theory of a scalar

field with a potential that does not depend on field derivatives. The energy can be

written as E = E2 +E0, and the scale-dependent energy is E[λ] = λ2−dE2 +λ−dE0.

In the dimensions that we considered

E[λ] =


λE2 + λ−1E0 d = 1,

E2 + λ−2E0 d = 2,

λ−1E2 + λ−3E0 d = 3.

(1.2.8)

We see that, in d = 1, the energy functional is stationary at λ =
√
E0/E2, so

static solitons can exist. In d = 2, the derivative of the energy is −2λ−3E0, so

there is no way to set this derivative to zero (unless E0 = 0, but this is the case

of the vacuum). So there is no static soliton in a scalar field theory in two spatial

dimensions. The same result (for different reasons) holds for d = 3, as in this

case the energy is minimized by λ =
√
−3E0/E2. As the energy terms cannot be

negative to have an energy bounded from below, such a λ cannot exist. Repeating

the analysis for d = 2, 3 adding a term E4 to the energy gives us that a minimum

can be achieved, so one of the possible ways to evade Derrick’s theorem is to add

derivative terms to the potential.

Another subtler way to evade the theorem is to modify the theory, by gauging

it. A gauge potential will scale as a derivative under rescaling, A(x) → λA(λx):

this way, the covariant derivative term scales as D → λD. The field strength

contains derivatives of the gauge field, so it scales as F → λ2F . The field strength

piece then scales as E4. This is a very natural way to stabilize solitons with an

electromagnetic charge, and it can be seen in use in vortex theory (chapter 7

of [32]). We will see an example of solitons in gauge theories with instantons.

1.2.2 Moduli space and soliton dynamics

Solitons are studied as static objects, neglecting all time dependence. The

exact problem of the soliton dynamics is difficult to solve, and an approximation

to obtain a dynamical model from static solutions is widely used in literature: the

moduli space approximation (an example of application is in [19], while a more

general introduction is given in [31] and in our main reference, chapter 4).

We review it briefly and then give an elementary example. The moduli space
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approximation consists in truncating the infinite dimensional configuration space

of the theory to a finite dimensional space, by assuming a rigid motion for the

solitons. This is obtained using the symmetries of the theory: as their action on

the fields give different fields with the same energy, the symmetries can be used to

describe all equivalent configurations of fields. Those symmetries are manifest in

the field configuration through the appearance of parameters that can be varied

freely, without changing the energy. Those parameters are called moduli of the

configuration, and the space where they can vary is called a moduli space. One

easy way to understand the moduli space (at least, its continuous part) is to see

it as the orbit of a static soliton under the continuous part of the symmetry group

of the theory G . This is not enough, as we can almost always find a subgroup

of G that leaves the field invariant, called the stabilizer H of the group: H must

be quotiented out (ore else we would be overcounting degrees of freedom), so the

moduli space is given by M = G/H. An example of such a calculation is given

in [28].

M is often a differentiable manifold, and there is a way to define a metric

on it, starting from the original action. To be concrete, let us introduce a concise

notation. Suppose a field configuration has N continuous moduli of any kind:

we denote the field with moduli specified by the N -vector X of components ai
as φ(x, t;X). Moduli space approximation consists in making the field depend

on time only through the moduli, that are taken as time dependent: φ(x, t;X) =

φ(x,X(t)). Let us suppose the kinetic energy density for the field is of the standard

form T =
∫

(1/2)∂0φ∂0φd
dx: in the moduli space approximation, this is rewritten

making use of chain derivatives:

T =
1

2

∫
∂0φ∂0φd

dx =
1

2

(∫
∂φ

∂X i

∂φ

∂Xj
ddx

)
Ẋ iẊj =

1

2
gij(X)Ẋ iẊj, (1.2.9)

with an obvious definition for gij(X), that is a rank two, symmetric tensor. We

will always check the rank of the metric, that will turn out to be maximal in most

problems: this way, the tensor gij can be used as a metric on moduli space, and the

problem of solving the dynamics of a field is approximated to the problem of finding

the geodesic motion of the moduli in the moduli spaceM. This approximation can

be used in the case of adiabatic motion, when the kinetic energy is little compared

to the energy of the soliton. A formal approach to moduli space approximation

and its range of applicability has still to be proven in general field theory, although

some studies of particular cases exist, and are cited in [32]. We will ignore those
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questions and follow most works in this sector [11, 12, 24, 28] by making use of

moduli space approximation.

We will see examples of calculation of moduli space in the next sections, where

we examine three particular field theories with topological solitons.

1.3 Examples of topology in field theory

1.3.1 The Baby Skyrme model

The Baby Skyrme model (studied first with general potential in [36], while a

presentation in more modern form can be found in [37]) is a (2+1) dimensional

theory of a scalar field

φ :M3 → S2 (1.3.1)

from Minkowski space to an ordinary 2-sphere. The field is represented as a vector

of three fields, φ = (φ1, φ2, φ3), under the constraint φ · φ = 1. Setting c = 1, the

Lagrangian is

L = F

(
−1

2
∂µφ∂

µφ− κ

4
(∂αφ× ∂βφ)2 − µ2(1− nφ)

)
, (1.3.2)

where n is a constant versor, and we choose coordinates on the target manifold

such as n = (0, 0, 1). F has the dimension of energy, while κ and µ have dimension

of length: we will choose units such as F = 1 and κ = 1. The static theory energy

is given by

E =

∫
1

2
∂iφ∂iφ+

κ

4
(∂iφ× ∂jφ)2 + µ2(1− n · φ)d2x. (1.3.3)

Motion equations are obtained by varying the field as φ→ φ+ε×φ, automatically

satisfying the constraint φ · φ = 1 after variation. The motion equations are

∂i(φ× ∂iφ+ ∂jφ · (∂jφ · (φ× ∂iφ))) = µ2n× φ, (1.3.4)

supported by the boundary condition

lim
|x|→∞

φ = n. (1.3.5)
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With this boundary condition, we can compactify R2 to S2, and view the static

Baby Skyrme field (that we will still call φ) as a map

φ : S2 → S2. (1.3.6)

We now quote a standard result from topology, that can be found in any topology

textbook: π2(S2) = Z. This is an hint on existence of solitonic solutions, supported

also by the fact that, with four derivatives in the potential, Derrick’s theorem does

not exclude stable solitons. We can perform a pullback of the standard volume

element on S2 to obtain the topological charge2. In order to obtain a topological

density expressed as a functional of the constrained coordinates on S2 (φ1, φ2, φ3),

we need to express the standard normalized metric on S2 in terms of the three

coordinates. The standard volume element inherited from the standard metric is

given by

dΩ =
1

4π
sin θdθ ∧ dϕ. (1.3.7)

The S2 angles are related to the constrained coordinates as

θ = arctan

√
φ2

1 + φ2
2

φ3

, φ = arctan
φ2

φ1

, (1.3.8)

(in particular, note that sin θ =
√

1− φ2
3) so the forms relative to the coordinates

are

dθ =
φ3√

1− φ2
3

(φ1dφ1 + φ2dφ2)−
√

1− φ2
3dφ3, (1.3.9a)

dϕ = − φ2

1− φ2
3

dφ1 +
φ1

1− φ2
3

dφ2. (1.3.9b)

Plugging these expressions in the volume form, we get

dΩ =
1

4π
(φ1dφ2 ∧ dφ3 + φ2dφ3 ∧ dφ1 + φ3dφ1 ∧ dφ2). (1.3.10)

We see that the volume element is expressed as a sum of three volume elements:

in each one, we can choose the coordinates in the wedge product as independent

coordinates, and the latter coordinate as dependent from the other two. We can

do the pullback term by term. We still use (x1, x2) coordinates on the domain

2As this is the first appearance of a topological degree, we do the computation explicitly. The

computation ends at (1.3.13), so one can skip directly to the result and avoid calculations
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(with derivatives (∂1, ∂2)), so we explicitly write the Jacobian for the pullback of

the third term in the sum:

∂φ1,2

∂x1,2

=

(
∂1φ1 ∂1φ2

∂2φ1 ∂2φ2

)
, J = ∂1φ1∂2φ2 − ∂1φ2∂2φ1, (1.3.11)

so the contribution is

1

4π
φ3(∂1φ× ∂2φ)3dx1 ∧ dx2. (1.3.12)

Summing every contribution, we obtain the topological charge expression, usually

written as

B[φ] =
1

8π

∫
εijφ · (∂iφ× ∂jφ)dx1dx2. (1.3.13)

We can now find our first example of Bogomolny bound. We start by noting that

the energy is a sum of positive terms, so we can concentrate on finding a bound

for a single term. Consider the inequality

(∂iφ± εijφ× ∂jφ)2 ≥ 0. (1.3.14)

We can write it as

∂iφ∂iφ+ (φ× ∂iφ)2 ∓ εijφ · (∂iφ× ∂jφ) ≥ 0. (1.3.15)

The second term can be written as ∂iφ∂iφ due to the constraint φ ·φ = 1 and its

consequence φ · ∂iφ = 0. Integrating the equation, we obtain

E2 ≥ ±2πB. (1.3.16)

We can now choose the sign to give the most stringent bound. If the field configu-

ration has positive B we choose +, and if it has negative B we will choose −. We

obtain our Bogomolny bound as

E ≥ 2π|B|. (1.3.17)

In every topological sector, the energy is bounded from below by a value that is

greater than zero. Equality is attained for those field configurations that solve

(1.3.14), without the square and with an = instead of a ≥. The existence of fields

that satisfy E = 2π|B| is not guaranteed.
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We can look for solutions of the form

φ = (sin f(r) cos θ, sin f(r) sin θ, cos f(r)), (1.3.18)

where r and θ are polar coordinates on the plane, and write the topological charge

in terms of the function f . It turns out that the boundary conditions that f must

obey to have a charge 1 field are f(∞) = 0 (for φ(∞) = n) and f(0) = π (for

B = 1). The energy for such a field is a functional of f :

E = π

∫ ∞
0

(
1

2
f ′ +

(sin f)2

2r2
(1 + f ′2) +m2(1− cos f)

)
rdr. (1.3.19)

To have a minimum of the energy, we must have(
1 +

(sin f)2

r2

)
f ′′ +

(
1− (sin f)2

r2

)
f ′

r
+

sin 2f

2r2
(f ′2 − 1)−m2 sin f = 0.

(1.3.20)

This equation has been solved numerically in [38], obtaining a value of E = 1.564 ·
4π for the value m = 1, so the Bogomolny bound is exceeded.

The moduli space of this solution becomes evident when we note that all fields

of the form

φ = (sin f(|~r − ~R|) cos(θ + χ), sin f(|~r − ~R|) sin(θ + χ), cos f(|~r − ~R|)), (1.3.21)

where ~r are the coordinates, ~R is an R2 vector representing the position of the Baby

Skyrmion, θ is the polar angle from the center ~R and χ is an angle, representing

the phase of the object, have the same energy as the original configuration. There

is no stabilizer, so the moduli space isM = R2× S1. We do not enter in detail in

the calculation of the metric on te moduli space.

1.3.2 The Skyrme model

The Skyrme model, proposed by Skyrme in [43, 44], is a variation of the

standard sigma model that admits stable, solitonic solutions. It has been proposed

by Skyrme to model baryon and meson dynamics, and it has been used in different

ways to give examples of quantum effective theories of nuclear interactions [2, 12,

20,28].
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The model is a theory of a field

U :M4 → SU(N), (1.3.22)

with Lagrangian

L = −F
2
π

16
tr
(
∂µU∂

µU †
)

+
1

32e2
tr
(
[∂µUU

†, ∂νUU
†][∂µUU †, ∂νUU †]

)
. (1.3.23)

Fπ and e are phenomenological constants, and we can scale them away using Fπ/4e

as unit of energy and 2/eFπ as unit of length. The four derivative term provides

stability for the soliton, but it is not the unique choice and other stabilizing terms

have been studied ( [1]). A mass term can be added, of the form m2 tr(1− U),

but we will neglect it. Motion equations are obtained by performing a left or right

variation on U , δU = LU (with L = −L†) in the case of left variation, obtaining

the motion equation

∂µ

(
Rµ +

1

4
[Rν , [Rν , R

µ]]

)
= 0, (1.3.24)

where R is the right invariant current, Rµ = ∂µUU
†. The static energy is

E = − 1

12π2

∫
1

2
tr(RiRi) +

1

16
tr
(
[Ri, Rj]

2
)
d3x. (1.3.25)

This theory has the usual symmetry SU(N)L × SU(N)R, but we need to choose

a boundary condition to have finite energy: choosing U(∞) = 1, we explicitly

break the symmetry group to an SU(N) group, acting as SU(N) : U → V UV †.

Having chosen a boundary condition, we can compactify R3 to S3 and use the

topological result π3(SU(N)) = Z. Derrick’s theorem is evaded by the presence

of the four derivatives term, so the theory can admit topological solitons, that we

call Skyrmions.

Specializing for N = 2, as dimSU(2) = dimS3 = 3, we can find a topological

charge and a Bogomolny bound. Using the standard, left and right invariant,

volume form on SU(2)

Ω =
1

24π2
tr
[
dUU−1 ∧ dUU−1 ∧ dUU−1

]
, (1.3.26)

we can pull back through dU = ∂iUU
†dxi = Ridx

i and substitute: the integral of

the form is the topological charge, that reads (the right normalization factor is the

same as in [32])

B[U ] = − 1

24π2

∫
tr[RiRjRk]εijkd

3x. (1.3.27)
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Through the topological charge, a Bogomolny bound is found. To find it, we use

a geometrical description of the Skyrmion, formulated in [30]. Let us define the

stress tensor

Dij = −1

2
Tr[RiRj]. (1.3.28)

This is symmetric and positive definite, so it can be diagonalized and it has three

positive eigenvalues, λ2
1(x), λ2

2(x), λ2
3(x), depending on the position x on which the

field is evaluated when computing D. In terms of those objects, the energy and

the topological charge are written as

E =
1

12π2

∫
(λ2

1 + λ2
2 + λ2

3 + λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3)d3x B =

1

2π2

∫
λ1λ2λ3d

3x.

(1.3.29)

From the inequality

(λ1 ± λ2λ3)2 + (λ2 ± λ3λ1)2 + (λ3 ± λ1λ2)2 ≥ 0, (1.3.30)

we can check that

E ≥ |B| (1.3.31)

holds.

We now try to find a B = 1 field and study its properties. We need an ansatz,

and we’ll use the hedgehog ansatz. To explain it, we note that any U can be

written as

U = exp (iπa(x)σa) , (1.3.32)

where σa are the standard Pauli matrices, normalized as tr[σaσB] = 2δab, a runs

from 1 to 3 and the πa are scalar fields, the pion fields from familiar effective QCD.

The hedgehog ansatz consists in using a radial form for the pion field, of the form3

πa(x) = f(r)
xa
r
. (1.3.33)

The radial profile function f(r) has the boundary condition f(∞) = 0 (to have

U(∞) = 1). In terms of the profile function, the energy and topological charge

become

E =
1

3π

∫ ∞
0

(
r2f ′2 + 2(sin f)2(1 + f ′2) +

(sin f)4

r2

)
, (1.3.34a)

3We are mixing space indexes i and target indexes a, allowing x to have target indexes. Such

mixing of indexes often appears when writing explicit solutions of field theories
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B = − 2

π

∫ ∞
0

f ′(sin f)2dr =
1

π
f(0). (1.3.34b)

We see that the profile function must obey f(0) = π to have B = 1. f solves the

equation

(r2 + 2(sin f)2)f ′′ + 2rf ′ + sin 2f

(
f ′2 − 1− (sin f)2

r2

)
= 0. (1.3.35)

The energy of this Skyrmion is E = 1.232, so the Bogomolny bound is exceeded.

It has been shown in [16] that this field configuration has the minimum energy in

this sector.

We now study the moduli space of the Skyrmion hedgehog. We can act on the

hedgehog in three ways: we can translate it by a constant 3-vector ~R, obtaining

U(x)→ U(x−R) = exp

(
i
f(|~x− ~R|)
|~x− ~R|

(~x− ~R)aσa

)
. (1.3.36)

We can use a global rotation Mij, transforming the field as

U(x)→ U(M−1x) = exp

(
i
f(r)

r
xbMbaσa

)
. (1.3.37)

Or, we can use an isospin rotation from the residual symmetry group after sym-

metry breaking to transform the field as

U(x)→ A†U(x)A = exp

(
i
f(r)

r
xaA

†σaA

)
. (1.3.38)

The moduli space seems to be obtained through the action of R3×SO(3)J×SU(2)I ,

where SU(2)I represents the isospin transformations and SO(3)J represents the

space rotations. We can now notice that we are overcounting the degrees of free-

dom. In fact, consider the function M : SU(2)→ SO(3), defined by

M(E)abσb = E†σaE =⇒ M(E)ab =
1

2
tr
[
σaEσbE

†]. (1.3.39)

This function is a two-to-one map (mapping E and −E in the same object) and

can be used to relate the action of an SU(2) matrix to the action of an SO(3)

matrix (mathematically, it explicitly shows that SU(2) doubly covers SO(3), or

SO(3) ' SU(2)/Z2). We can obtain any space rotation from an isospin rotation,

so one of those transformations is redundant. We can also note that an isorotation
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by the matrix A is identical to the isorotation by the matrix −A. There is also an

important property of composition:

M(UE)abσb = (UE)†σaUE = M(U)abE
†σbE = (M(U)M(E))abσb. (1.3.40)

This implies M(UE) = M(U)M(E), so M preserves the group structure. In the

end, we can say that the moduli space is given by the orbit of the hedgehog solution

under the group

G = R3 × SU(2)/Z2, (1.3.41)

acting on the hedgehog as

U(x)→ exp

(
i
f(|~x− ~X|)
|~x− ~X|

(~x− ~X)aA
†σaA

)
. (1.3.42)

The coordinates on the moduli space are then a set of 3 positions and an SU(2)

matrix, (~R,A), with the identification ( ~X,A) ' ( ~X,−A). This identification will

play a fundamental role in the quantization of the moduli space, that we will

introduce at the end of the section. The calculation of the metric consists in

promoting the moduli to time dependent coordinates and evaluating the kinetical

energy. We will refer to [2, 42] for details on the calculation, citing their result:

choosing velocities vi = Ṙi and ωa = −i tr
[
ȦA†σa

]
, we get that the kinetic energy

becomes

T =
1

2
MẊ iẊ i +

1

2
Λωaωa, (1.3.43)

where M is the single Skyrmion mass, its energy (1.3.34a), and Λ is the integral

Λ =
16

3
π

∫ ∞
0

r2(sin f)2

(
1 + 4

(
f ′2 +

(sin f)2

r2

))
dr. (1.3.44)

The kinetical energy is akin to the kinetical energy of a rigid body. The hedgehog

dynamic is then the same dynamic of a rigid body, specified by a position in space

and a frame centered on the position.

1.3.3 The Yang-Mills Instanton

Yang Mills (YM) theory is the theory of interaction of the mediators of an

SU(N) action (when N = 3, the mediators are called gluons). It is often studied
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numerically, performing a Wick rotation on the time coordinate and ending with

a theory in euclideian 4-space. The fields are4

Aµ : R4 → su(N), (1.3.45)

where su(N) is the Lie algebra of SU(N), the space of antihermitian N × N

traceless matrices, and the euclideian action is

S = − 1

2g2
Y

∫
tr[FµνFµν ]d

4x, (1.3.46)

where gY is the Yang-Mills coupling. The equations of motion for this theory are

given by

DµFµν = 0. (1.3.47)

Defining

∗Fµν =
1

2
εµνρσFρσ (1.3.48)

and also noting that tr[FµνFµν ] = tr[∗Fµν ∗ Fµν ] we can write the action as

S = − 1

4g2
Y

∫ (
tr[(Fµν ∓ ∗Fµν)(Fµν ∓ ∗Fµν)]± 2 Tr[Fµν ∗ Fµν ]d4x

)
. (1.3.49)

As the first term in the sum is always non negative, we can see that the action has

a lower bound

S ≥ 8π2|B|, (1.3.50)

where

B = − 1

16π2g2
Y

∫
tr[Fµν ∗ Fµν ]d4x. (1.3.51)

Restricting to the case N = 2, we can recognize this quantity as the second Chern

number associated to the non abelian gauge field, that is an integer (chapter 3

of [32]). We can find a more familiar topological structure by considering the

boundary conditions for Aµ. To have a finite action, Aµ must tend to a field that

is gauge equivalent to the vacuum: as the distance from origin r goes to infinity,

we must have

Aµ → −∂µg∞(g∞)−1 (1.3.52)

4Check the notation section for our conventions on gauge theories.
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for some g∞ ∈ SU(2), defined on the 3-sphere S3 at infinity. As g∞ : S3 → SU(2),

we are in the same situation as with the Skyrmions: it turns out that the Chern

number N is actually equal to the topological degree of g∞, exactly calculated as

in (1.3.27). In this particular field theory, there exist fields such as S = 8π2|N |,
that automatically become local minimums for the action in the N sector: they

are the self-dual and anti-self dual instanton, respecting the equation

Fµν = ± ∗ Fµν (1.3.53)

(as can be seen from the decomposition (1.3.49)). Fields with + have positive

charge, fields with − have negative charge.

There is no need to check if Derrick’s theorem prohibits the existence of soli-

tons, as the theory is conformal: this means that the action is scale invariant, and

thus the static energy will be scale independent. In particular, we expect not to

have a fixed soliton size. We check it anyway: under rescaling, A→ µA (where µ

is the scaling parameter) and F → µ2F : the only term in the action is then scale

independent, as the kinetic term scales as µ4, exactly compensating the scaling of

d4x.

We look for a self dual instanton of topological charge B = 1. Such a solution

was found first in [8], and goes under the name of JNR ansatz. Let us define the

antisymmetric tensor

σi4 = σi, σij = εijkσk (1.3.54)

(εijk is normalized as ε123 = 1). This symbol is anti self dual, while the symbol

with the definition of σ4i = σi (and the same definition for σij) is instead a self-

dual symbol. As in the case of the Baby Skyrmion and the hedgehog Skyrmion,

this symbol is a mixed tensor between the su(2) indexes (explicit in the fact that

σ matrices are present) and the spacetime indexes. We state that a self dual YM

field can be written as

Aµ =
1

2
σµν∂ν log ρ, (1.3.55)

where ρ(x) is a scalar function determined by the self duality condition. We

compute the field strength:

Fµν =
1

2
(σνα∂µ∂α ln ρ− σµα∂ν∂α ln ρ) +

1

4
[σµα, σνβ]∂α ln ρ∂β ln ρ. (1.3.56)
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As can be verified by direct computation, this tensor is self dual up to a term

proportional to ∂µ∂µρ: the self dual tensor equation can then be written as

∂µ∂µρ = 0. (1.3.57)

This is the standard Laplace equation in four dimensions. The B = 1 instanton is

then obtained by

ρ(x) = 1 +
λ2

|x− a|2
, (1.3.58)

where a is an arbitrary four vector indicating the position of the instanton, while

λ is an arbitrary, strictly positive real number, interpreted as the instanton size.

Those interpretations are supported by the fact that the action density for such a

field is peaked on a, and the action inside the ball |x− a| ≤ λ is equal to half the

total action, 4π2. The field is non singular everywhere, as the apparent singularity

in x = a can be removed by a gauge transformation, and the action density turns

out to be finite there.

For the moduli space computations, we follow [48]. a and λ are 5 moduli for

the instanton, but there are also more. Another symmetry on which we can act is a

global gauge transformation (a local transformation falling to zero at infinity would

not change the physics, so we use a global transformation), which adds 3 other

moduli to the space: the total moduli space is thenM = R4×R∗,+× (SU(2)/Z2),

where R∗,+ is the positive half of R with 0 removed and the quotient of SU(2) with

Z2 indicates the fact that an SU(2) matrix and its opposite give the same action.

As SU(2) ' S3, we can interpret R∗ × SU(2) as R4 with the origin removed, just

by interpreting λ as a radial coordinate and SU(2) coordinates as angles on a

sphere S3. The moduli space is thenM = R4×R∗,4/Z2, where ∗ indicates removal

of the origin. The metric on moduli space must be computed carefully. Let δαAµ
be the first order change of Aµ when one of the moduli (labeled by the index α,

going from 1 to 8: Xα will indicate a generic moduli) is varied. Usually, this would

be the derivative of Aµ with respect to the coordinate Xα, but in the particular

case of a gauge theory one could vary Aµ without changing the physical situation,

through a gauge transformation. We will be more general and write

δαAµ =
∂Aµ
∂Xα

+DµΩα (1.3.59)

where Ωα is arbitrary, chosen to enforce∫
d4x tr[δαAµ]Dµη = 0 ∀η ∈ SU(2) (1.3.60)
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This enforces the fact that δαAµ must be orthogonal to any gauge transformation,

generated by the SU(2) function η. This is equivalent to say

DµδαAν = 0 (1.3.61)

where the covariant derivative is calculated using the unvaried background field

Aµ. The metric on moduli space is given by

gM,αβ = −
∫

tr[δαAµδβAµ]d4x (1.3.62)

The strategy is clear: first, we derive Aµ with respect to a modulus, then we fix

Ωµ to have (1.3.61), so we can compute δαAµ avoiding gauge complication. Lastly,

we perform the integral. Denoting as g1 the standard metric on the first R4 in the

moduli space and as g2 the standard metric on the second R4, we have that the

metric on moduli space is given by

gM = Sinst(g1 + 2g2) (1.3.63)

Sinst is the single instanton action, Sinst = 8π2.

We conclude this section by expanding an apparent similarity between instan-

tons and Skyrmions, suggested by the fact that the topological content for a gauge

field Aµ is contained in its asymptotic form, through the field g∞, that is an SU(2)

matrix. This similitude was investigated in [6]. Let us define

U = P exp

(
i

∫ +∞

−∞
A4

(
xi, x4

)
dx4

)
(1.3.64)

that can be explicitly computed by defining the field Ũ(xi, x4) through the bound-

ary condition Ũ(xi,−∞) = 1 and the differential equation

∂Ũ

∂x4
= iA4Ũ (1.3.65)

We conclude by writing U(xi) = Ũ(xi,+∞). This procedure is called holonomy.

Due to the boundary condition, integrating along the line (−∞,∞) is equivalent to

performing an integration on a closed loop on S3 (as −∞ and +∞ are identified).

It can be shown that, if A has a topological charge, U has the same topological

charge. In particular, the charge one instanton field defined through (1.3.55) and

(1.3.58) generates an hedgehog Skyrmion, with radial profile function

f(r) = π

(
1−

(
1 +

λ2

r2

)− 1
2

)
(1.3.66)
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The moduli of the instanton are inherited by the Skyrmion, as the three moduli

describing the instanton position become the three spatial moduli for the Skyrmion

(the position along x4 of the instanton does not matter, as that coordinate is

integrated). Further, under a global gauge transformation A→ GAG† the Skyrme

field is rotated the same way, U → GUG†, so the two fields also share the same

orientation in SU(2). The modulus λ has no analogous counterpart in the Skyrme

hedgehog, but it can enter as a parameter in the field (as in (1.3.66)).

1.4 Skyrmions and nuclear physics

We conclude this chapter by describing an application of the Skyrme model in

nuclear physics. Moduli space approximation defines a set of collective coordinates

X (the moduli) that can describe, to a certain level of approximation, the field

dynamics. This approximate field dynamic is described by the curve X(t), where

t is some parametrization, and in moduli space approximation X(t) is a geodesic

on the moduli space manifold M (equipped with the metric (1.2.9)).

This system can be quantized, and an Hilbert space of quantum states can be

defined. In [2] the moduli space of the hedgehog Skyrmion is quantized, and the

quantum states of the system are interpreted as proton and neutron states. This

Hilbert space can then be used to predict observables. Agreement with experimen-

tal data varies greatly if we change the specific model. We review the construction

in a slightly different way, that is the standard way to quantize a classical system

with finite degrees of freedom.

First, we explain the quantization procedure. The connected part of the

Skyrmion moduli space containing identity can be parametrized by the coordinates

(R, A) where R is a three vector and A an SU(2) matrix. The ket state in coordi-

nate representation is then defined as |X, F 〉5 and we can define the multiplicative

operators R̂ and Â such as R̂ |X, F 〉 = X |X, F 〉 and Â |X, F 〉 = F |X, F 〉. Every

component of R̂ and every matrix element of Â commute between each other.

We must find canonical pulses, conjugate to the coordinates, and impose

appropriate commutation relations with the coordinates. As the manifold is a

5We change coordinate names in the kets to avoid confusion with operators: X is a 3-vector

and F an SU(2) matrix
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tensor product of two submanifolds, we can write |X, F 〉 = |X〉× |F 〉 and work

separately on the two parts. The quantization of the R3 part is the standard linear

momentum quantization, so we will concentrate on quantizing the SU(2) part.

SU(2) is a group with respect to the standard matrix composition, and any

curve F (t) on SU(2) can be written as a left translation F (t) = L(t)F (0) or a

right translation F (t) = F (0)R(t) (with L(t) and R(t) SU(2) matrices such as

L(0) = R(0) = 1). Left and right translation commute, so we will concentrate on

left translations for the moment. We can write L(t) as

L(t) = exp

(
i
σa

2
la(t)

)
= U(L). (1.4.1)

The operator U(L) acts on the coordinate, and it must be represented on the kets.

We denote D(U(L)) as the representation, and define the left angular momenta

through D(U(L)) = exp
(
iĴaLl

a(t)
)

. Those momenta have the same commuta-

tion rules as σa/2, [ĴaL, Ĵ
b
L] = iεabcĴ cL, so they are standard angular momentums.

We define the action of ĴL through (we insert dots to indicate standard matrix

multiplication to help readability)

ÂD(U(L)) |F 〉 = L · F ·D(U(L)) |F 〉 , (1.4.2)

that is to say, D translates a state centered in F to a state centered in LF . We

then set D(U(L)) |F 〉 = |LF 〉6. We calculate the commutator

[Â,D(U(L))] |F 〉 = (L− 1) · F |FL〉 = (L− 1) · F ·D(U(L)) |F 〉 . (1.4.3)

Expanding L and D in powers of l and keeping only the first order, we get

i[Â, JaL]la |F 〉 = i
σa

2
la · Â |F 〉 (1.4.4)

on every state, so we can conclude

[Â, JaL] = −iiσ
a

2
Â =

σa

2
Â. (1.4.5)

This is analogous to the fundamental parenthesis, [x, p] = i. We can repeat the

exact same steps for right translations, defining a right momentum ĴaR such as

[Â, ĴaR] = −Âσ
a

2
[ĴaL, Ĵ

b
R] = 0. (1.4.6)

6In general, we could set D(U(L)) |F 〉 = exp(iα(L,F )) |LF 〉, with a non constant phase. Here

we set α = 0. A case where α is not zero is studied in chapter 2.7 of [50]
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The last commutator derives from the fact that the left and right actions commute,

so the vectors in the Lie algebra generating the transformations commute. This is

reflected by quantum operators. Lastly, we can note that the operator M(Â)baĴ
b
L

(M is defined in (1.3.39)) has the same commutation rules with Â as −Ĵ bR, so we

can say that ĴaR = −Mba(Â)J bL. As M is orthogonal, this means ĴaRĴ
a
R = ĴaLĴ

a
L.

Our quantization has produced a set of six commuting operators7: three mo-

menta P i, the 3 projections of the left and right angular momenta J3
L and J3

R and

the common Casimir J2 = JaLJ
a
L = JaRJ

a
R. We rewrite the ket with the eigenvalues

of those operators: a generic state |ψ〉 is written as

|ψ〉 = |P 〉 × |j,ml,mr〉 , (1.4.7)

where we adopted the standard nomenclature for angular momenta: j(j + 1) is

the eigenvalue of the Casimir, while ml and mr are the eigenvalues of the left and

right third component of the angular momentum. In Schrödinger’s picture, the

wavefunction is expressed as

ψ(X, F ) = 〈X, F |ψ〉 = exp(iP ·X)Dj
ml,mr

(F ), (1.4.8)

whereDj
ml,mr

is Wigner D-matrix. With a Lagrangian we can identify the operators

with physical quantities. Working explicitly with (1.3.43) as Lagrangian (as there

is no potential for motion on moduli space) and setting ~ = 1, we can verify that

Pi =
∂L

∂X i
= MẊi JL,i =

∂L

∂ωi
= Λωi (1.4.9)

(we could also have identified JR). Then, the Hamiltonian is given by Legendre

transforming, and is of the form8

H =
PiPi
2M

+
JL,iJL,i

2Λ
+M. (1.4.10)

Our quantum system is ready, and we have to do some identifications. Ne-

glecting the eigenvalues of the linear momentum (as they just give a momentum

to the states, that can be removed with a Galileian boost), we identify each state

7We drop the hats on quantum operators, from now on
8We add M to represent the fact that a field with no impulse and no momentum still has a

non vanishing energy, given by the Skyrmion mass
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with a baryon, of equal total isospin and spin (indicated by j) but different projec-

tions (indicated respectively by ml and mr). Restricting to j = 1
2

and eliminating

it from the ket, we identify

|p, ↑〉 =

∣∣∣∣12 , 1

2

〉
|p, ↓〉 =

∣∣∣∣12 ,−1

2

〉
|n, ↑〉 =

∣∣∣∣−1

2
,
1

2

〉
|n, ↓〉 =

∣∣∣∣−1

2
,−1

2

〉
,

(1.4.11)

where p and n are proton and neutron, with up or down spin. Changing the

angular momentum, we can also represent higher spin baryons, and we can use

standard ladder operators built from JL and JR to change one state into another.

Those identifications bring to an apparent disaster. From the form of the

Hamiltonian (setting the pulse to 0), it is evident that the state j = 0 is en-

ergetically favorable with respect to any state j = 1/2. This would mean that

proton and neutron are likely to decay in a spinless baryon, and that is obviously

unphysical. We are forgetting that, in no part during the process, we have done

something to check if the states represent bosonic or fermionic particles. The

statistics is implemented by the stabilizer’s discrete part (in this case Z2, symbol-

izing the equivalence between A and −A). We can solve this problem by intro-

ducing Finkelstein-Rubenstein constraints [17]: in this case, the statistic can be

implemented with a superselection rule by considering the fact that, if A and −A
indicate the same state, then any wavefunction must respect ψ(−A) = eiαψ(A),

and by iterating twice

ψ(−A) = ±ψ(A). (1.4.12)

In this case, the plus sign corresponds to bosonic statistics, while the minus sign

corresponds to fermionic statistics. If we want to quantize baryons as fermions, we

have to choose the minus sign. Due to the inversion property of the Wigner matrix,

Dj
mp(−A) = (−1)2jDj

mp(A), we have to choose j half integer, and the states with

integer j are removed from the spectrum of the theory. Thus, proton and neutron

are the true ground states, with masses

Mp,n = M +
3

8Λ
. (1.4.13)

We can now express physical quantities by taking their expressions in terms

of the Skyrme field with explicit moduli, quantize them and average them on the
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state of interest. Various examples of those long but simple calculations are given

in [2].

Before going on, we introduce an useful notation, that allows us to skip Wigner

matrices and write explicit wavefunctions for the angular parts. As A = a01+iaiσi,

we can promote a0 and ai as constrained coordinate operators (as they always

respect a0a0 + aiai = 1. From ωi = − i
2

tr
[
A†Ȧσi

]
, we can express the ωi in

function of those coordinates and use the fact that ωiωi = ȧ0ȧ0+ȧiȧi to make them

explicit in the Lagrangian, and calculate canonical impulses π0 and πi that obey

the standard commutation relations, and are represented as standard derivative

operators. The left and right invariant angular momenta become

J iL =
i

2

(
a0

∂

∂ai
− ai

∂

∂a0

− εijkaj
∂

∂ak

)
, (1.4.14a)

J iR =
i

2

(
−a0

∂

∂ai
+ ai

∂

∂a0

− εijkaj
∂

∂ak

)
. (1.4.14b)

We can verify that those assignments give the right quantum numbers.

|p, ↑〉 =
1

π
(a1 + ia2), |p, ↓〉 = − i

π
(a0 − ia3),

|n, ↑〉 =
i

π
(a0 + ia3), |n, ↓〉 = − 1

π
(a1 − ia2). (1.4.15)
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Chapter 2

The two sides of AdS/CFT

In this chapter, we’re going to introduce the physical basis for the AdS/CFT

duality. AdS/CFT is a duality between two distinct physical theories. On the AdS

side, also called the gravity side, we have a theory of superstrings in an Anti de

Sitter background, complemented by enough compact dimensions that are needed

to have a coherent string theory. On the CFT side, also called the gauge side,

we have a Yang Mills supersymmetric QFT, that exhibits no scale, even after

quantization. We will also study the large N limit [53], that will allow us to do

computations in the next chapter.

For the sake of brevity, we’re going to collect only the results that are needed

to understand AdS/CFT, and we’ll skip many interesting parts. We refer to [56]

for details about string theory, while we refer to [5] and its references for the

necessary basis about quantum field theory and supersymmetry.

39
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2.1 The gauge side

2.1.1 Conformal symmetry

Conformal algebra

Conformal symmetry is an extension of the Poincarè group, studying the

behavior of fields under rescaling of the coordinates. Roughly speaking, in a con-

formally invariant theory we can scale our coordinates freely, and the physics does

not change: there is no measurable quantity that provides a scale.

One way to understand if a field theory is not conformal is to look at its

coupling constants. It is evident that, if the theory has a dimensionful coupling

constant (or if the field is massive) then we have a preferred scale. As an example,

scalar massless φ4 in 4 spacetime dimensions has no dimensionful couplings, so it

is a candidate for a conformal theory.

Let us consider d dimensional Minkowski spacetime. Conformal transforma-

tions are transformations that preserve the causal structure of spacetime, meaning

that spacelike points remain spacelike et cetera. This happens if, under the trans-

formation x → y(x), the metric changes as Ω−2(y)η = e2σ(y)η, with Ω nowhere

vanishing (so with a definite sign). From this definition, the fact that the confor-

mal transformations form a group is obviously true. We restrict to infinitesimal

transformations, xµ → xµ + εµ: the induced transformation on the metric is

ηµν → ηµν + ∂µεν + ∂νεµ. (2.1.1)

Expanding in terms of σ, this means

∂µεν + ∂νεµ = 2σ(x)ηµν (2.1.2)

(notice that, for σ = 0, the transformation is a standard Minkowski transformation:

Minkowski transformations are part of the conformal transformations, with Ω = 1).

The most general solution to this equation is given by

(ηµν∂ρ∂
ρ + (d− 2)∂µ∂ν)∂ · ε = 0. (2.1.3)

We make the assumption d > 2 (for d = 2 the discussion would be very different,

but we won’t need that case) and write the most general solution as

εµ(x) = aµ + ωµνx
ν + λxµ + bµx2 − 2(b · x)xµ. (2.1.4)
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Every term in the sum contains a particular transformation parameter: a and ω are

the standard translation and boost/rotation parameters, λ represents a dilation

parameter while b represents a special conformal transformation. Now we must

classify the operators that implement conformal transformations on the states.

Each parameter must be associated to a vector in the Lie algebra of the con-

formal group, so we define standard momentum P µ associated to aµ and angular

momentum Jµν associated to ωµν . The operator associated to the dilatation pa-

rameter λ is denoted as D, while the operator associated to the special conformal

transformation parametrized by bµ is indicated with Kµ. The commutators be-

tween them are given by

[Jµν , Jρσ] = i(ηµρJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ) [P µ, P ν ] = 0,

[Jµν , Pρ] = i(ηµρPν − ηνρPµ) [Jµν , Kρ] = i(ηµρKν − ηνρKµ),

[D,Pµ] = iPµ [D,Kν ] = −iKµ [D, Jµν ] = 0,

[Kµ, Kρ] = 0 [Kµ, Pν ] = −2i(ηµνD − Jµν). (2.1.5)

This set of relations forms the conformal algebra.

This algebra has a particular property. The generators J , commuting between

themselves, form the subalgebra of the standard Lorentz group, so(d − 1, 1). We

can define the group SO(d, 2) as the group of transformations on Rd+3 leaving

invariant the Minkowski metric with two time directions, given by the diagonal

matrix Λ with elements (−1, 1, ..., 1,−1): X0 and Xd+1 are the time coordinates:

this group is generated by the Lie vectors JAB, with A running from 0 to d + 1,

and the commutation relations are given by the same commutation rules of Jµν ,

substituting every η for a Λ and putting the appropriate indexes. We can rearrange

the generators of the conformal algebra in this way: introducing µ from 0 to d−1,

we see that, defining

J̄µν = Jµν , J̄d(d+1) = −D, J̄µd =
1

2
(Kµ − Pµ), J̄µ(d+1) =

1

2
(Pµ +Kµ).

(2.1.6)

By direct calculation, it can be verified that J̄ have the same commutation rules

that are found in the algebra of so(d, 2), so the algebra of the conformal group and

the algebra of so(d, 2) can be identified.
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Field representations

After introducing the symmetry in spacetime, the next step is to classify

fields according to the irreducible representations of the conformal group, to build

quantum states. We will use the method of induced representations, as in [5]

and [50]: we look for the transformation properties of the operator φ(0) (where

φ denotes any kind of second quantized field) and then use a boost to find the

transformation properties of φ(x).

We start from the commutation relations with the angular momentum. Those

are given by

[φ(0), Jµν ] = Jµνφ(0), (2.1.7)

where J is any irreducible representation of the standard Lorentz group. This

commutation rule provides us with the necessary quantum numbers to identify

the SO(3, 1) representation. For the dilation generator, we have

[φ(0), D] = i∆φ(0). (2.1.8)

∆ is called the scaling dimension, and is another quantum number used to classify

states. Scaling dimension of a field can differ from its physical dimension: as an

example, in four dimensions a scalar field (of dimension 1) can have any scaling

dimension, independently from its dimensionality. An important result in liter-

ature is that the scaling dimension of a field cannot be lower than its physical

dimension [21], so the scaling dimension is bounded from below in an unitary rep-

resentation. From (2.1.5), we have that Pµ and Kµ are ladder operators: Pµ raises

the scaling dimension by one, while Kµ lowers it by one. There must then be some

fields that have commutation rules

[φ(0), Kµ] = 0. (2.1.9)

Those fields are called primary fields, and the fields obtained by acting with Pµ
on the primary fields are called conformal descendants of φ. Now we can deduce

commutation relations in every generic point xµ: calling τ(x) = exp(−iPµxµ), we

have that τ(x)φ(0)τ−1(x) = φ(x), so we can obtain the full commutation rules,

that read

[Pµ, φ(x)] = −i∂µφ(x), [D,φ(x)] = −i(∆ + xµ∂µ)φ(x),



2.1. THE GAUGE SIDE 43

[Jµν , φ(x)] = (−Jµν + i(xµ∂ν − xν∂µ))φ(x),

[Kµ, φ(x)] = (i(−x2∂µ + 2xµxρ∂
ρ + 2xµ∆)− 2xνJµν)φ(x). (2.1.10)

Those rules furnish explicit operator representations of the generators.

Let Tµν be the symmetric energy-momentum tensor for a conformally sym-

metric field theory. The conserved classical currents associated to the operators

D and Kµ are given by

J(D)µ = xνTµν , J(K)µν = x2Tµν − 2xνx
ρTµρ. (2.1.11)

Conservation of J(D)µ gives ∂µJ
µ
(D) = 0 = (∂νxρ)Tνρ = T µµ (where we used the

symmetry of T and the fact that ∂µT
µ
ν = 0): in a conformal field theory, the en-

ergy momentum tensor is always traceless. This fact rarely survives quantization:

perturbative quantization introduces an energy scale in the theory, and the β func-

tions quantify the theory’s scale dependence. If those functions are non zero, then

the quantized, renormalized theory has a scale dependence and the trace of Tµν is

corrected by anomalies. Conformal symmetry is then almost always lost in QFT,

and few theories keep their conformal invariance when quantized. Supersymmetric

YM for 4 supersymmetries is an example of such a theory.

Correlation functions for CFT

When it survives quantization, conformal symmetry gives stringent bounds

on the correlation functions of the theory. In particular, the propagator and the

three point functions can be written exactly, up to normalization constants.

The starting point is the non anomalous Ward identity relative to dilations:

N∑
i=1

(
xµi

∂

∂xµi
+ ∆i

)
< φ1(x1)...φi(xi)...φn(xn) >= 0, (2.1.12)

where ∆i is the scaling dimension of φi. Let us consider the two point function

< φ(x)φ(y) > for a scalar field of scaling dimension ∆: this function of x and y

must be a function of (x − y)2 by Lorentz and Poincarè invariance. By explicit

derivation, we can verify that

< φ(x)φ(y) >=
Cφ

(x− y)2∆
, (2.1.13)
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where Cφ is a normalization constant, that can be set to one after renormalizing φ.

We can try any power (x−y)a, but the only value of a that solves the Ward identity

is a = 2∆. In an analogous way, we can show that, considering two different fields,

it is sufficient to substitute 2∆ with ∆i + ∆j, the sum of the scaling dimensions

of the fields. In general, the result for a CFT of scalar fields φi with scaling

dimensions ∆i is given by

< φi(x)φj(y) >=
Cij

(x− y)∆i+∆j
. (2.1.14)

The matrix Cij is symmetric, so transformations of the fields can make this matrix

the identity. For three fields φi with scaling dimensions ∆i, an analogous result

holds:

< φi(x1)φj(x2)φk(x3) >=

=
Cijk

(x1 − x2)∆1+∆2−∆3(x1 − x3)∆1+∆3−∆2(x2 − x3)∆2+∆3−∆1
. (2.1.15)

We then just need the quantities {∆i, Cijk} to completely fix the two and three

point functions. Four point functions are not so constrained, as one could build

the adimensional and Lorentz invariant ratio

|x1 − x2|
|x3 − x4|

(2.1.16)

or other different similar ratios. Conformal symmetry then imposes stringent

bounds on some correlation functions.

2.1.2 Supersymmetry

Supersymmetry algebra

Supersymmetry is an extension of the Poincarè algebra, introducing the con-

cept of spinor supercharges. Those charges are generators of transformations that

change a bosonic field for a fermionic field, and vice versa. Supersymmetry en-

riches the spectrum of fundamental particles, by introducing a supersymmetric

particle for each standard model particle, of opposite statistic.

First, we introduce the statistic of a field as 0 if the field is bosonic, 1 if the

field is fermionic. The product of two fields gets a statistic that is the sum of the
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statistics of the single fields, modulo 2: this means that a product of two bosonic

fields or two fermionic fields is always bosonic, while the product of a fermionic

field and a bosonic field is always fermionic. Fermionic fields are represented by

Grassmann variables. We introduce a notation for Weyl spinors: the spinor Qa
α

represents a left handed spinor, with α assuming values 1 and 2 and a assuming

values from 1 to N , where N is the number of supersymmetries and is a parameter

of the theory, while Q̄aα̇ = (Qa
α)∗ is a right handed spinor, with α̇ having the same

range of α. We can raise and lower spinor indexes by means of the tensors εαβ and

εα̇β̇ with upper or lower indexes, normalized as ε12 = ε1̇2̇ = 1 = −ε12 = −ε1̇2̇ and

we denote σµ = (−1, σi) and σ̄µ = (−1,−σi). Lastly, we introduce the matrices

σµν = i/4(σµσ̄ν − σν σ̄µ) and σ̄µν = i/4(σ̄µσν − σ̄νσµ).

With those notations, we can define the supersymmetry algebra. Introducing

the supercharges Qaα and Q̄aα̇ and recalling the standard commutation relations of

Jµν and Pµ from (2.1.5) (without the conformal group extension), we can impose

the following commutation relations:

[Qaα, Jµν ] = (σµν)βαQaβ, [Q̄aα̇, Jµν ] = εα̇β̇(σ̄µν)β̇γ̇Q̄
γ̇, (2.1.17)

[Qaα, P µ] = 0, [Q̄aα̇, P µ] = 0,

{Qaα,Qbβ̇} = 2σµ
αβ̇
Pµδ

a
b , {Qaα,Qbβ} = εαβZ

ab, {Q̄aα̇, Q̄bβ̇} = εα̇β̇Z̄ab.

In the first and second line, we have written the commutation rules of Q and

its conjugate with the rest of the Poincarè algebra, stating that spinor charges

transform as spinors and are scalars under translations. In the last line (where

{·, ·} is the anticommutator) we have written the commutation rules of the spinor

charges between themselves, introducing the antisymmetric central charges Zab

and Z̄ab = (Z†)ab, that commute with all other generators due to the Jacobi

identity. The commutation relations are invariant under the transformation (called

R-symmetry)

Qaα → Ra
bQbα, Q̄aα̇ → Q̄bα̇(R†)ba. (2.1.18)

where the matrix R can be taken as an U(N ) matrix in four dimensions. Denoting

as T j matrices in the Lie algebra of U(N ), we complete the algebra by writing the

commutation relations

[Qa
α, T

j] = Bja
b Q

b
α, [Q̄aα̇, T j] = −Bj

abQ̄
b
α̇, [Ti, Tj] = ifijkT

k. (2.1.19)

In the Lie algebra, we raise and lower indices freely. We now study field represen-

tations of the extended algebra.
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Field representations

In the standard Lorentz algebra, we define the Pauli-Lubranski vector as

Wµ =
1

2
εµνρσJ

νρP σ. (2.1.20)

A set of commuting operators is then given by the 3-impulse, P i, the squared mass,

−P µPµ, the modulus of the Pauli-Lubranski vector W µWµ (that is proportional to

the spin of the field) and the component W3 (that is proportional to the helicity).

We can also write W 2 = CµνC
µν , where Cµν = WµPν −WνPµ. When we extend

the algebra through supersymmetry, −P µPµ is still a Casimir, while W 2 is not.

We can find a new Casimir through

W̃µ = Wµ −
1

4
Q̄aα̇σ̄α̇αµ Qa

α C̃µν = W̃µPν − W̃νPµ, (2.1.21)

summing over the supersymmetry indices. With those modifications, we find that

P i, −P µPµ, W̃ 2 = C̃µνC̃
µν and W̃3 (with the same interpretations as before)

commute.

The discussion of the supersymmetric spectrum is not of particular interest

to us, so we cite the results. Particles are divided in massless and massive, and all

particles in the same multiplet share the same mass (as −PµP µ is a Casimir). The

remarkable feature of supersymmetry is that there is the same number of bosonic

and fermionic particles in each multiplet. Supercharges are represented on the

multiplets either trivially or as ladder operators: in particular, they take a state

of helicity λ to a state of helicity λ± 1/2, changing the statistic of the particle (in

accord with the fact that they are represented by Grassmann-valued operators).

As an example, for N = 1 supersymmetry and massless particles, we have that

one component of the supercharge spinor has to be realized trivially, while the

other raises the helicity by 1/2. Starting with a definite helicity and momentum

p, we have the states

|p,±λ〉
∣∣∣∣p,±(λ+

1

2

)〉
, (2.1.22)

where we added opposite helicities to have a multiplet of CPT : if λ = 1, the

first state can be used to represent a classical gauge boson while the second state

represents its supersymmetric partner, the gaugino.
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In the case of massless representations, we can build 2N states starting from

a definite helicity. In the case of massive representations with vanishing central

charges, we represent all spinorial components of the supercharges as ladder oper-

ators, so we get a total of 22N states from a given helicity. If central charges are

nonvanishing, we get a shortened representation, with less states available.

N = 1 Superspace

To incorporate supersymmetry in a natural way, we can extend the range of

physical coordinates, admitting the existence of Grassmann-valued coordinates θ

and θ̄. The coordinates are compactly written as

zA = (xµ, θα, θ̄α̇). (2.1.23)

Fields taking values on zA are denoted as superfields. The θ and θ̄ dependence can

be easily solved, from the fact that with Grassmann variables Taylor series have

to be fininte. Denoting, from now on, θ · χ = εαβθαχβ, θ̄ · χ̄ = εα̇β̇ θ̄α̇χ̄β̇, θ2 = θ · θ
and θ̄2 = θ̄ · θ̄ and θσµχ̄ = θασµαα̇θ̄

α̇ we can write any superfield F(z) (that can

carry any type of superspace index, but we’ll take it as scalar for now) as

F(z) =f (1)(x) + θ · f (2)(x) + θ̄ · f (3)(x) + θ2f (4)(x) + θ̄(2)f (5)(x)+ (2.1.24)

+ θσµθ̄f (6)
µ (x) + θ2θ̄ · f̄ (7)(x) + θ̄2θ · f (8)(x) + θ̄2θ2f (9)(x),

where the spin and vector indices of f agree with the fact that we’re taking F as

a scalar. The idea is that, writing an action for F in superspace, truncations of

this action can give supersymmetric actions. Supersymmetry transformations are

implemented as

δεF = (ε · Q+ ε̄ · Q̄)F, (2.1.25)

where Q and Q̄ are promoted as operators, represented as

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ, Q̄α̇ =

∂

∂θ̄α̇
− iθασµαα̇∂µ. (2.1.26)

In their non infinitesimal version, we represent supersymmetry transformations

as G(x, θ, θ̄) = exp
(
−ixµPµ + iθ · Q+ iθ̄ · Q̄

)
, and define G(x, θ + ξ, θ̄ + ξ̄) =

G(0, ξ, ξ̄)G(x, θ, θ̄) when χ is infinitesimal. Equivalently, we can introduce another

representation by reversing the order of G(0, ξ, ξ̄) and G(x, θ, θ̄) when defining



48 CHAPTER 2. THE TWO SIDES OF ADS/CFT

infinitesimal composition. It is customary to call those generators D, and the

transformation is generated by (ε · D + ε · D̄). Their operator version are

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ, D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αβ̇
εβ̇α̇∂µ. (2.1.27)

The field (2.1.25) has too many degrees of freedom to have them all in the same

supersymmetic multiplet, so we have to impose constraints on the superfield to

describe a single multiplet.

The fields that we will need are the chiral superfield Φ and the vector superfield

V . Both of them are scalar in superspace. The chiral superfield is constrained by

the equation

D̄α̇Φ = 0. (2.1.28)

The most general superfield form respecting this constraint is

Φ = φ(x) + iθσµθ̄∂µφ(x)+
1

4
θ2θ̄2∂ρ∂

ρφ(x)+ (2.1.29)

+
√

2θ · ψ(x)− i√
2
θ2∂µψ(x)σµθ̄ + θ2F (x).

The degrees of freedom are a scalar complex field φ(x) and a Weyl spinor ψ(x)

without its complex conjugate (this justifies the name of the field). In addition,

a complex scalar F (x) is added, and in our applications it plays the role of an

auxiliary field and not a dynamical one. A vector field V (still scalar in superspace)

is defined by the reality condition

V = V ∗. (2.1.30)

The most general superfield is then written as

V =C(x) + iθ · χ(x)− iθ̄ · χ̄(x) +
i

2
θ2(M(x) + iN(x))− θσµθ̄Aµ(x)− (2.1.31)

− i

2
θ̄2(M(x)− iN(x)) + iθ2θ̄ ·

(
λ̄(x) +

i

2
σµ∂µχ(x)

)
−

− iθ̄2θ ·
(
λ(x) +

i

2
σµ∂µχ̄(x)

)
+

1

2
θ2θ̄2

(
D(x) +

1

2
∂ρ∂

ρC(x)

)
.

There is a large field content: four scalars (C(x), D(x),M(x), N(x)), four compo-

nents of a vector (Aµ(x)) and eight fermions (χ(x), χ̄(x), λ(x), λ̄(x)). There is a
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particularity: if V is a vector field, then V +Φ+Φ∗ obviously also is, for any choice

of Φ. Then, we can use a particular Φ to set a gauge for the vector superfield. In

the Wess-Zumino gauge, the vector superfield is

V = −θσµθ̄Aµ(x) + iθ2θ̄ · λ̄(x)− iθ̄2θ · λ(x) +
1

2
θ2θ̄2D(x). (2.1.32)

The components Aµ represent gauge bosons, the components λ and λ̄ represent

the gaugino fields and D can be considered as an auxiliary field. We can also

define two field strength from the vector field:

Wα = −1

4
D̄2DαV Wα̇ = −1

4
D2D̄α̇V. (2.1.33)

Those fields are invariant under the translation by Φ + Φ∗ and can be used in the

definition of an action.

Superfield Lagrangians can be made by writing any combinations of fields

that are invariant under supersymmetry transformations and using Grassmann in-

tegration to project out field degrees of freedom. In our notation, dθ2 = 1/2dθ1dθ2

and similar for dθ̄. The most general Lagrangian that can be written using only

chiral superfields is

L =

∫
K(Φ,Φ∗)dθ2dθ̄2 +

∫
W (Φ)dθ2 +

∫
W ∗(Φ∗)dθ̄2, (2.1.34)

with K a real function of Φ and Φ† and W (Φ) holomorphic. When we consider a

set of fields Φa, we can introduce a non abelian symmetry: by defining Φ = ΦaTa
where Ta generate an irreducible representation of some gauge group and choosing

K(Φ,Φ†) = Φ†aΦa W = 0, (2.1.35)

we can convert the Lagrangian in a gauge invariant Lagrangian with respect to

the transformation

Φ→ exp(iΩ(x))Φ, (2.1.36)

by postulating the existence of a vector superfield V transforming as

eV → eiΩ
†(x)eV e−iΩ(x), (2.1.37)

by modifying K as K(Φ,Φ†) = tr
(
Φ†eV Φe−V

)
and adding a field strength piece,

that reads

1

4g2
Y

(∫
tr(WαWα)dθ2 +

∫
tr
(
W̄ α̇W̄α̇

)
dθ2

)
(2.1.38)
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or, by introducing a constant

τ =
Θ

2π
+ i

4π

g2
Y

, (2.1.39)

we can also use the term

1

8π2
Im

∫
tr (τWαW

α) dθ2 (2.1.40)

to provide a CP violating Θ term.

N = 4 super Yang Mills

In 4 spacetime dimensions, we want to create a theory of massless particles by

including the maximum number possible of supersymmetries. Every independent

supercharge can be applied on a field: to avoid having in our representations fields

with spin greater than 1, we can have a maximum of N = 4 supersymmetries (as

four steps of one half divide −1 from 1). In superspace formalism, this is done by

introducing three chiral superfields Φi, with i = 1, ..., 3 in the N ×N matrix field

Φ = Φiσi, and a vector field. We write the action as

S =

∫
d4x tr

(∫
dθ2dθ̄2 tr

(
Φ†eV Φe−V

)
+

1

8π
Im

(
τ

∫
dθ2WαW

α

)
+ (2.1.41)

+

(
igY

√
2

3!

∫
dθ2εijkΦ

i[Φj,Φk] + c.c.

))
.

By writing explicit field components and performing Grassmann integrations, we

have the supersymmetric Lagrangian

L = tr

(
− 1

2g2
Y

FµνF
µν +

Θ

32π2
εµνρσF

µνF ρσ − iλ̄aσ̄µDµλa −DµφiD
µφi+ (2.1.42)

+gYCabiλa[φi, λb] + gY C̄iabλ̄a[φi, λ̄b] +
g2
Y

2
[φi, φj]

2

)
,

where the fields λa are four spinor fields (called the gaugino) and φi are six real

scalars, and both of those fields are in representation of the R-symmetry group

SU(4): to be more precise, the four fermionic fields λ and λ̄ transform under

the fundamental representation of SU(4) (that has dimension 4), while the six

scalar fields φi transform under the antisymmetric representation of SU(4) (that
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has dimension 6). C and C̄ are Clebsch-Gordan coefficients related to the group

SU(4) and the covariant derivative is with respect to the dynamical field Aµ.

This is the action of super Yang Mills, for gauge group SU(N). This theory

has important properties, as the classical theory is conformally invariant, and

conformal symmetry survives even after quantization. This happens because it can

be shown by writing Feynmann rules and computing loop diagrams the divergences

cancel without renormalization, so there is no need to introduce a dynamical scale

and scale invariance is preserved.

2.1.3 The large N limit of QCD

We conclude the discussion of the gauge side by introducing an approximation

to QCD, introduced by ’t Hooft in [47] and reviewed and expanded by Witten

in [53], that is a perturbative expansion of QCD taking as expansion parameter

the number of colors in the theory. Graphs for an arbitrary gauge theory SU(N)

contain the parameterN explicitly, so a development in powers of 1
N

can be defined.

Although the expansion parameter can be objected to be not so small in real

QCD, the simplifications that happen in the limit N →∞ make the theory much

simpler to study, and this expansion is closely related to the genus expansion in

perturbative string theory, that we’ll introduce in the next section.

Figure 2.1: Propagators in double line notation. From top to bottom: quark,

antiquark and gluon.

The N dependence of the Feynmann diagrams is studied by introducing the

double line notation, as in figure (2.1). The quark and antiquark are represented

by an arrow to the left or to the right, while the gluon is represented as a double

arrow, one to the left and one to the right. In this notation, the vertices of the

theory are as in figure (2.2). We also redefine the coupling constant gY =
√
λ/N

with λ called the ’t Hooft coupling, independent of N . In the large N limit, the

coupling constant goes to zero, but the number of fields (parametrized by the
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Figure 2.2: Double line vertices. From left to right: gluon-quark-antiquark, three

gluons and four gluons. Each vertex gets a factor N , while each propagator gets

a factor N−1.

index a, running from 1 to N) goes to infinity so a nontrivial limit can exist. To

understand the limit, we write a set of rules:

• The gluon matrix Aµ has N2 − 1 independent components (one less for the

condition trAµ = 0). For N →∞, we can neglect the 1.

• A quark vector in the fundamental representation has N independent com-

ponents.

• As the coupling constant appears just in front of the Lagrangian when using

matrix fields, a propagator will give a contribution of g2 = λ/N , while a ver-

tex will give a contribution of g−2 = N/λ. We can remove the λ dependence

and say that, in a graph, every distinct propagator gets a factor of N−1,

while every vertex gets a factor of N .

• Any closed line (counting the gluon lines as separate) is a sum over all colors,

so it brings a combinatorial factor of N .

We now study the N dependence of a graph with V vertices, E propagators and F

loops. Using our simple rules, a diagram (V,E, F ) gets an N overall dependence

equal to

NV+F−E = Nχ (2.1.43)

where χ is called the Euler characteristic of the graph. There is also another

interpretation of the Euler characteristic: it is related to the genus g, that in this

case represents the number of lines that cross each other without forming a vertex.

Diagrams with g = 0 are called planar diagrams, and they are the only surviving

diagrams in the large N limit. Thus, in the large N limit planar diagrams give

the leading order, while adding intersections will give subleading contributions.
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Figure 2.3: To the left, a planar graph, with 4 color loops, 4 three gluon vertices

and 1 four gluon vertex. To the right, a non planar graph similar to the planar

one: there is no four gluon vertex, but there is the same amount of three gluons

vertices and just one closed color loop. The left graph has an overall dependence

N2 and genus g = 0, while the right graph has an overall dependence N0 and

genus g = 1.

In this framework, ’t Hooft and Witten studied the phenomenology of mesons

and hadrons and their interactions. We cite their relevant results:

• States like glueballs are suppressed, and they decouple from baryons and

mesons.

• Mesons are composed by a quark-antiquark couple and have finite masses

in the large N limit, and their mutual interactions are suppressed. Meson

states are stable when N →∞.

• Baryons are composed by N quarks or N antiquarks to have a color singlet,

so their mass go to infinity when N →∞. Principal interactions are baryon-

baryon and baryon-antibaryion interaction, as the mesons are too light to

sensibly modify the state of a baryon, but the main interactions can be

described through exchange of virtual mesons.

2.2 The gravity side

2.2.1 Anti de Sitter space

Anti de Sitter spacetime is a maximally symmetric space with a metric obeying

Einstein’s equations, provided with a negative cosmological constant. It is the

background for the string theory that we will define, so we have to study its

properties. We follow [7] for the presentation.
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We first introduce the concept of maximally symmetric spacetime. In General

Relativity, a symmetry of a spacetime S is expressed through a diffeomorphism

from S to itself, depending on a continuous parameter. Formally, the parameter

dependent diffeomorphism φt goes from S× R to S, and at a fixed time it can be

used to make a pullback of the metric on S (that we denote as gS). If

(φt)
∗gS = gS, (2.2.1)

then φt is called an isometry and its tangent vector field ξa is called a Killing

vector. It can be shown that φt is an isometry if and only if the tangent vector ξa

obeys

∇bξa +∇aξb = 0 (2.2.2)

(with ∇ the derivative operator associated to gS). Thus, the search of isometries

is substituted by the task of searching solutions to (2.2.2). There is a maximum of

d(d+ 1)/2 independent Killing vector fields on a spacetime of dimension d. As an

example, R3 with the standard Euclideian metric adimts six independent Killing

vector fields, namely

ξ1 = ∂x, ξ2 = ∂y, ξ3 = ∂z, ξ4 = x∂y − y∂x, ξ5 = x∂z − z∂x, ξ6 = y∂z − z∂y.
(2.2.3)

The first three vectors generate translations, while the last three generate rotations.

For a maximally symmetric, d dimensional spacetime, it can be proven that the

Riemann tensor can be simply expressed in terms of the metric as (taking R as a

constant, the spacetime curvature)

Rabcd =
1

d(d− 1)
R(gacgbd − gadgbc). (2.2.4)

The converse is also true: if the Riemann tensor of a spacetime can be related to

the metric through (2.2.4), then the spacetime is maximally symmetric. It can

be proven directly by an easy contraction that the Ricci scalar associated to this

Riemann tensor is given by the constant R (hence the naming), and it is constant

all over the space. As through a rescaling of the coordinate one can always modify

the magnitude of the scalar curvature (but never the sign), we divide maximally

symmetric spaces in three classes: those with positive curvature, those with zero

curvature and those with negative curvature. We’re interested in Anti de Sitter

spaces, which are maximally symmetric spacetimes with negative curvature.
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The spaceAdSd+1 can be explicitly built through an embedding in a Minkowski

space with two times: taking Rd|2 as the manifold Rd+2 with the coordinate system

(X0, X1, ..., Xd, Xd+1) (coordinates spanning from −∞ to ∞) and the metric

η̄ = −(dX0)2 +
d∑
i=1

dX idX i − (dXd+1)2. (2.2.5)

The Anti de Sitter space AdSd+1 is defined as the set of points with coordinates

respecting

−(X0)2 +
d∑
i=1

X iX i − (Xd+1)2 = −L2, (2.2.6)

with L a fixed real constant. This definition suggests the coordinate change

X0 = R cos τ sec ρ,

X i = R tan ρ Ωi (i = 1, ..., d),

Xd+1 = R sin τ sec ρ. (2.2.7)

Ωi are angular coordinates on Sd, respecting
∑d

i=1 Ω2
i = 1, while the ranges of the

other coordinates are given by R ∈ (0,∞), τ ∈ (−∞,∞), ρ ∈ [0, π
2
). In those

coordinates, (2.2.6) becomes R = L. Thus a coordinate system for AdSd+1 is

provided by (2.2.7) with R = L. The induced metric g is given by

g =
L2

(cosρ)2
(−dτ 2 + dρ2 + (sinρ)2dSd), (2.2.8)

where dSd is the metric on Sd. This is a standard choice of the coordinate patch,

but there is another, more useful patch. Letting x̄2 =
∑d−1

i=1 (xi)2, we can define

coordinates (z, xi, t) such as

X0 =
z

2

(
1 + z−2(L2 + x̄2 − t2)

)
,

Xd+1 =
Lt

z
,

X i =
Lxi

z
(i = 1, ..., d− 1),

Xd =
z

2

(
1 + z−2(−L2 + x̄2 − t2)

)
. (2.2.9)
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We can explicitly check that, by square summing those definitions, we obtain that

the constraint (2.2.6) are defined for all coordinates. In those coordinates (all

ranging from −∞ to ∞, excluding z = 0), the metric becomes

g =
L2

z2
(dz2 + (dx̄)2 − dt2). (2.2.10)

From this metric, we can explicitly calculate the Ricci curvature, R = −20/L.

The coordinate patch is singular in z = 0, dividing the space in two disconnected

pieces: one with z > 0 and one with z < 0. From now on, when we refer to AdS

space, we intend the part that is parametrized by z > 0. z = 0 is a boundary, but

the prefactor of the metric can be scaled away, giving a definite metric in z = 0.

The metric on the boundary is conformally equivalent to

gbound = dx̄2 − dt2. (2.2.11)

We can see that the boundary z = 0 is conformally equivalent to d dimensional

Minkowski space Rd−1|1. This is the main fact that motivates the holographic

principle, stating that for a theory of quantum gravity the information stored in

the whole space on which the theory is defined is entirely contained in its boundary

conditions, that define a field theory living on the boundary. We have seen that

the (conformal) boundary of AdS5 is R3|1, so we can relate a field theory on R3|1 to

a string theory (that is a theory of quantum gravity) in AdS5 (with the addition of

compact dimensions to make the theory well defined, as we’ll see when discussing

strings).

We conclude our review of AdS spaces by talking about its symmetries. Stan-

dard Lorentz symmetry on Rd|2 (the set of transformations leaving metric (2.2.5)

invariant) leaves the definition of AdS space (2.2.6) invariant. AdS space inherits

then the whole symmetry group SO(d, 2) of the original space. This can be related

to the conformal group in d dimensions with just one time direction, as we have

seen through identification (2.1.11), so we can say that the symmetry group of

AdSd+1 space is the conformal group in d spatial dimensions. Counting the gen-

erators of the conformal algebra, we have that AdSd+1 space has (d+ 1)(d+ 2)/2

independent symmetries, so we can find (d+ 1)(d+ 2)/2 independent Killing vec-

tors: as AdSd+1 is d+ 1 dimensional, we have a confirmation of the fact that AdS

is a maximally symmetric space.
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2.2.2 String theory

Classical bosonic string

String theory studies the dynamics of extended objects. The path of a particle

in spacetime defines a world line, a one parameter curve in spacetime, and is

formally represented by a function from R to the target manifold in which the

object moves, called M. This function is said to provide an embedding of the

curve in spacetime. We follow [5] and [56] for the presentation.

In the case of strings, we want to describe extended objects, that must be

specified by two parameters instead of one. A string is a function

X(τ, σ) : R× [0, σ0]→M. (2.2.12)

The range of the second parameter is taken to be limited, with σ0 a positive real:

this choice reflects the fact that we want to describe finite length strings. The sets

of all points that are in the image of X are called the world sheet of the string.

The first parameter, τ , can be interpreted as a time parameter, while the second

one is a string parameter. It has no sense to distinguish points on the strings, with

the exception of the points parametrized by the functions X(τ, 0) and X(τ, π),

called the endpoints of the string. The string equations of motion are provided by

a variational principle: an action can be defined by pulling the metric of M back

to the parameter space. This way we obtain the Nambu-Goto action, that reads

S[X] = −T0

∫ √
|γ|dτdσ, (2.2.13)

where T0 is called the string tension and is the only dimensionful parameter in the

theory, γ is the pullback of the metric on M, that we call g:

γαβ =
∂Xµ

∂ξα
∂Xν

∂ξβ
gµν . (2.2.14)

µ and ν are indices on M, while α and β are indices on the parameter space,

assuming values 0 and 1: the parameters are ξ0 = τ and ξ1 = σ. We specialize in

the case M = Rd|1, replacing g by the standard Minkowski metric η: in this case,

denoting Ẋ = ∂X/∂τ and X ′ = ∂X/∂σ, we can explicitly write the pullback as

S[X] = −T0

∫ √
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2dτdσ. (2.2.15)
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This action is really difficult to use, as it involves a square root and is not poly-

nomial in X and its derivatives. A classically equivalent action is given by the

Polyakov action:

S[X] = −T0

2

∫ √
|h|hαβ∂αXµ∂βX

νηµνdτdσ. (2.2.16)

Here hαβ is an auxiliary symmetric non degenerate matrix field, living on the

parameter space, that is not dynamic (as the action does not contain derivatives

of h), while hαβ is its inverse: h plays the role of a non dynamical metric in

the parameter space. From now on we will use a different constant instead of

T0: we introduce the parameter α′, frequent in literature, related to T0 through

T0 = 1/2πα′. The quantity
√
α′, due to its dimensions, is called string length. The

equation of motion for h imposes constraints:

Tαβ = − 4πα′√
|h|

δS

δhαβ
= ∂αX

µ∂βX
νηµν −

1

2
hαβh

γδ∂γX
µ∂δX

νηµν = 0. (2.2.17)

Those constraints are called Virasoro constraints, and they are necessary to have

an unitary quantum theory of strings. Polyakov action has many symmetries, that

we can use to make the string description pretty convenient:

• In Minkowski space there is the standard Poincarè symmetry, acting on the

embedding function as Xµ = Λµ
νX

ν + aµ, with Λ a Lorentz matrix and aµ a

constant vector. h is unchanged under this transformation.

• We can reparametrize the string, introducing functions τ ′(τ, σ) and σ′(τ, σ):

in that case, the embedding function just changes arguments, X(τ, σ) →
X(τ ′, σ′), while h changes as a proper tensor,

hαβ(τ, σ) =
∂ξ′γ

∂ξα
∂ξ′δ

∂ξβ
hγδ(τ

′, σ′). (2.2.18)

• Lastly, we can do a Weyl transformation, an internal symmetry on the

parameter space that does not change the coordinates: this is given by

hαβ(τ, σ)→ e2ω(τ,σ)hαβ and the embedding function is totally unchanged.

Using reparametrization invariance and Weyl transformations, we can choose a

comfortable gauge to do calculations. We will use Weyl gauge:

hαβ(τ, σ) = e2ω(τ,σ)ηαβ, η =

(
−1 0

0 1

)
. (2.2.19)



2.2. THE GRAVITY SIDE 59

In this gauge, the function ω gets canceled in the motion equations, and the action

reads

S[X] =
1

4πα′

∫
((Ẋ)2 − (X ′)2)dτdσ, (2.2.20)

so the motion equations are
(∂2
τ − ∂2

σ)X(τ, σ) = 0,

X ′(τ, σ0) · δX(τ, σ0)−X ′(τ, 0) · δX(τ, 0) = 0 ∀τ,
(Ẋ ±X ′)2 = 0.

(2.2.21)

The first vector equation is the motion equation, that is equal to the wave equation

in 1 + 1 dimensions. The second equation is imposed to have variation of S at the

string boundaries vanish, while the two equations in the third row are the Virasoro

constraint, expressed in Weyl gauge.

Before imposing boundary conditions, we review the way string solutions are

found. We introduce light cone coordinates on the parameter space: σ± = τ ± σ,

and introduce the respective derivatives through ∂τ = ∂+ + ∂− and ∂σ = ∂+ − ∂−.

This way, the first equation of (2.2.21) becomes

∂+∂−X(τ, σ) = 0. (2.2.22)

A solution to this equation is obtained by decomposing X in the sum of a left

moving part, depending only on σ+, and a right moving part, depending only on

σ−:

X(τ, σ) = XL(σ+) +XR(σ−). (2.2.23)

In light cone coordinates, Virasoro constraints read

∂+X · ∂+X = 0, ∂−X · ∂−X = 0. (2.2.24)

We can decompose in Fourier sum both pieces, obtaining

Xµ
L(σ+) =

x̃µ0
2

+
α′

2
p̃µσ+ + i

√
α′

2

∑
n6=0

α̃µn
n
e−inσ+ , (2.2.25a)

Xµ
R(σ−) =

xµ0
2

+
α′

2
pµσ− + i

√
α′

2

∑
n6=0

αµn
n
e−inσ− . (2.2.25b)
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Here, x0, p, αn, x̃0, p̃, α̃n are constants, and reality of the solutions imposes α̃µn =

(α̃µ−n)∗ and αµn = (αµ−n)∗ (the sum runs over both positive and negative integers).

The constants x0 and x̃0 can be related to string position, p and p̃ describe the

pulse of the string while αn and α̃n are coefficients that allow the string to vi-

brate transversally. We still have to impose Virasoro constraints: to do that, it is

convenient to define αµ0 =
√
α′/2pµ and α̃µ0 =

√
α′/2p̃µ. Explicit differentiation

gives

∂+X · ∂+X = α′
∑
m

L̃me
−imσ+ = 0 ∂−X · ∂−X = α′

∑
m

Lme
−imσ− = 0,

(2.2.26)

(now 0 is included in the sum) where we defined

L̃m =
1

2

∑
n

α̃n · α̃m−n Lm =
1

2

∑
n

αn · αm−n. (2.2.27)

To have (2.2.26), we must impose Lm = 0 and L̃m = 0 for each value of m.

To complete the discussion of the classical solution, we have to impose bound-

ary conditions. There are various choices that we can make to impose them. We

can impose a periodicity condition, namely X(τ, σ0) = X(τ, 0) and X ′(τ, σ0) =

X ′(τ, 0) for all τ . A kind of string with this boundary condition is called a closed

string, due to the fact that its world sheet will have the topology of a cylinder.

For closed strings, we set σ0 = 2π: then we can see that we just have to impose

pµ = p̃µ, and we can freely set xµ0 = x̃µ0 . This way, the boundary conditions are

automatically satisfied, and the string solution reads

Xµ(τ, σ) = xµ0 + 2α′pµτ + i

√
α′

2

∑
n6=0

e−inτ

n
(α̃µne

−inσ + αµne
inσ). (2.2.28)

Periodicity is manifest, as the only σ dependence is in the complex exponentials,

and σ is multiplied by an integer. This justifies choosing σ0 = 2π.

If we do not impose a periodicity condition, then we have an open string, and

the topology of the world sheet will be that of a strip. The string has two distinct,

unidentified endpoints, and the most general choice that we can make is to have

both terms in the second line of (2.2.21) vanish. Let us choose σ0 = π and call σ∗

a generic endpoint, 0 or π: then we can impose a Neumann boundary condition,

letting X ′µ(τ, σ∗) = 0, or we can impose a Dirichlet boundary condition, letting the
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Figure 2.4: Example in 2+1 dimensions: to the left, a worldsheet with the topology

of a strip, on which an open string propagates. To the right, a worldsheet with

the topology of a cylinder, on which a closed string propagates.

endpoint be fixed, δXµ(τ, σ∗) = 0. We can impose those conditions independently

on each endpoint and on each component of Xµ, so we’ll have DD boundaries

if we impose Dirichlet conditions on each endpoint, NN boundaries, ND or DN

boundaries depending on the particular condition imposed at 0 and π. The only

physical constraint that we have is that we must have NN conditions in time

direction, or else we would have a string that is fixed in time. Dirichlet boundary

conditions are best discussed in the context of D-branes, that we’ll introduce later.

For now, we impose NN conditions on every coordinate. To do that, we must have

pµ = p̃µ, we can choose xµ0 = x̃µ0 and, lastly, we have to impose αµn = α̃µn for each

n. The solution then reads

Xµ(τ, σ) = xµ0 + 2α′pµτ + i
√

2α′
∑
n6=0

e−inτ

n
αµn cos(nσ). (2.2.29)

The derivative with respect to σ is a sum of terms proportional to sines of nσ, so

it vanishes when σ equals to 0 or π. In the case of closed strings, we have two sets

of independent oscillations, α and α̃, while in the case of open strings we just have

one set.

Quantization of the bosonic string

We can try a naive open string quantization by imposing canonical commu-

tation relations. We can identify the canonical impulse by varying the Polyakov

action with respect to Ẋ: we can then identify the canonical pulse as

Πµ(τ, σ) =
Ẋµ(τ, σ)

2πα′
. (2.2.30)
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Then, we impose standard equal time commutation relations:

[Xµ(τ, σ),Πν(τ, σ′)] = iηµνδ(σ − σ′). (2.2.31)

From those relations, the following relations must hold:

[xµ0 , p
ν ] = iηµν [αµm, α

ν
n] = mηµνδm,−n. (2.2.32)

We can define creation and annihilation operators through (here we take m > 0)

aµm =
1√
m
αµm a†µm =

1√
m
αµ−m, (2.2.33)

respecting the commutation relation [aµm, a
†ν
n ] = ηµνδmn of a canonical oscillator.

All other commutation relations are 0. A ket is then described by a d+ 1 vector,

representing the overall string momentum, and an infinite set of natural numbers,

indicating the eigenvalues of the infinite series of oscillations that the string can

have.

All seems to go straightforwardly, but there is a problem: [a0
m, a

†0
m ] = −1

means that states with oscillations in the 0 direction give rise to negative norm

states, spoiling the unitariety of the theory and the probabilistic interpretation of

wavefunctions. Such a quantum theory is not acceptable. This happens because we

did not impose Virasoro constraints: we can hope that, promoting the constants

Lm to Virasoro operators, the physical condition for a state |ψ〉, expressed as

Lm |ψ〉 = 0, suffices to totally decouple negative norm states from positive norm

states and to recover unitariety.

To do that, we first use light cone gauge for quantization: defining X± =

X0±X1 and using latin indices i = 2, ..., d to indicate the rest of the coordinates,

we can reparametrize the string imposing X+(τ, σ) = x+
0 + 2α′p+τ with p+ a

constant, and dropping X− as a degree of freedom, that is completely determined

by X+ and the other coordinates X i through the Virasoro constraints, up to

a constant x−0 . Proceeding this way, we’re spoiling explicit Lorentz invariance,

but there are ways to quantize the string keeping explicit Lorentz invariance, as

BRST quantization (see [39] for a reference). The degrees of freedom are then

x−0 , p
+, aim, a

†i
n , with nontrivial commutation relations

[x−0 , p
+] = i [xi0, p

j] = iδij [aim, a
†j
n ] = δij. (2.2.34)
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We can now form physical states: they are specified by an overall pulse k and by

the oscillation numbers of the independent oscillators, collectively denoted as Nin:

a generic state is written as

|N, k〉 =

[
d∏
i=2

∞∏
n=1

(a†in )Nin√
Nin!

]
|0, k〉 . (2.2.35)

We have to impose quantum Virasoro constraints, as we have imposed only the

classical version. This is done easily for Lm and m > 0: it is sufficient to recall

the definition of αµ0 in terms of pµ and substitute the appropriate operators in Lm,

then we say that physical states |ψ〉 are the ones in the kernel of Lm, Lm |ψ〉 = 0.

As Lm is an infinite sum of products of commuting operators, no normal ordering

ambiguities arise. In the case of L0, we have products of non commuting operators,

so we have to follow a prescription for normal ordering. This is done by redefining

L0 in terms of quantum operators, as

L0 = α′p · p+
d∑
i=2

∞∑
n=1

na†in a
i
n. (2.2.36)

We then have to impose (L0 − a) |ψ〉 = 0, with a a constant that arises from

normal ordering. The constant a has a well defined value to have a coherent

theory, expressed in terms of the number of spacetime dimensions, d+ 1: we just

cite the result, referring to [49] for details. We have to set

a = −d− 1

24
. (2.2.37)

We can now find the masses of open string states. To do that, we can identify the

squared mass of a state as the result of the operator −p · p on a state: from the

Virasoro constraint and the explicit value of a, we get that the squared mass of a

state is given by the application of the operator

M2 =
1

α′

(
d∑
i=2

∞∑
n=1

na†in a
i
n −

d− 1

24

)
. (2.2.38)

We see that the mass contribution of oscillators created by a†in grows with n, so a†i1
create the lightest states. Let us now consider the lightest excited state, a†i1 |0, k〉.
This state transforms as an object in the fundamental representation of SO(d−1),

as the index runs from 2 to d+1. As we’re considering Minkowski space with d+1

dimensions, we know from the representation of symmetry groups through the
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method of the little group (chapter 2 of [50]) that a state transforming as an

object in a representation of SO(d) must be massive, while a state transforming

as an object in a representation of SO(d − 1) must be massless1. To have a

coherent theory we’re forced to impose that a†i1 |0, k〉 be massless: this constraints

the number of space dimensions to d = 25, called the critical dimension. This is

a feature of quantum string theory, that is coherent only with a fixed number of

dimensions: different theories give different dimension, as we’ll see in the case of

the fermionic string.

States of the form a†i1 |0, k〉 are interpreted as one particle states of standard

quantum field theory. By their index type, they represent massless vectors. String

states are then identified with particle states of standard quantum field theory,

so the lightest states are candidates for gauge bosons. The vacuum state has

M2 = − 1
α′

, negative mass square, and this is what is called a tachyon state. Its

presence in a quantum theory does not spoil unitariety, but causality is lost. The

tachyon state is obviously not decoupled from the rest of the theory, as it is the

ground state from which all states are built, so the presence of tachyons is a defect

of bosonic string theory, that we cannot remedy. We’ll still continue our analysis

of this theory, as it is perfect to understand what happens when quantizing string

theories.

We now turn to closed strings. There are two sets of oscillators, αn and

α̃n. As in the case of open strings, we quantize in light cone gauge, as the string

parametrization X+(τ, σ) = x+
0 + 2α′p+τ is compatible with the periodicity con-

dition for closed strings. We can define creation and distruction operators ain, a†in ,

ãin and ã†in as before, and use the Virasoro constraints to determine X−. In the

end, we’ve got the following operators and nontrivial commutation relations

[x−0 , p
+] = i [xi0, p

j] = iδij [aim, a
†j
n ] = δij [ãim, ã

†j
n ] = δij. (2.2.39)

We have two sets of Virasoro operators, Lm and L̃m, with obvious definitions. Only

L0 and L̃0 have normal ordering ambiguities. To solve them, they are redefined

as in (2.2.36) and the constants a and ã are introduced to account for normal

ordering. The quantum constraints on physical states |ψ〉 are (m > 0)

Lm |ψ〉 = L̃m |ψ〉 = 0 (L0 − a) |ψ〉 = (L̃0 − ã) |ψ〉 = 0, (2.2.40)

1As an example in standard four dimensional field theory, a massive vector field is described

by a three vector, vi, while v0 is constrained: the three vector transforms as a vector in SO(3).

The electromagnetic field has two degrees of freedom, transforming under a representation of

SO(2)
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and a and ã are expressed in terms of spacetime dimensions as

a = ã = −d− 1

12
. (2.2.41)

Ket states are specified by an overall pulse and the occupation numbers Nin and

Ñin, and a generic state can be expressed as

∣∣∣N, Ñ, k〉 =

[
d∏
i=2

∞∏
n=1

(a†in )Nin√
Nin!

(ã†in )Ñin√
Ñin!

]
|0, 0, k〉 . (2.2.42)

There is an important level matching condition: from Virasoro constraints

(L0 − a− L̃0 + ã)
∣∣∣N, Ñ, k〉 , (2.2.43)

the explicit forms (2.2.36) and the fact that a = ã, we must have on physical states

d∑
i=2

∞∑
n=1

na†in a
i
n =

d∑
i=2

∞∑
n=1

nã†in ã
i
n. (2.2.44)

As an example, states of the form a†i1 |0, 0, k〉 are not in the physical spectrum of

closed strings. The mass is obtained as before, and reads

M2 =
2

α′

(
d∑
i=2

∞∑
n=1

na†in a
i
n +

d∑
i=2

∞∑
n=1

nã†in ã
i
n +

1− d
12

)
. (2.2.45)

The lightest excited physical state is

a†i1 a
†j
1 |0, 0, k〉 . (2.2.46)

This state transforms in a mixed representation of SO(d − 1), as there is no

symmetry condition on the indices. As the little group is SO(d − 1), this state

must be massless, so the critical dimension in closed strings is still d = 25, and

the ground state is still a tachyon with the same negative square mass.

Open string states contain massless vector bosons, and closed string states

are interpreted in the same way. A two indices tensor can be decomposed in the

sum of a symmetric traceless tensor, an antisymmetric tensor and a scalar tensor.

The symmetric part is interpreted as the graviton, while the antisymmetric part

and the trace part are respectively called Kalb-Ramond field and dilaton.
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Those interpretations are justified in the following way: by calling gµν(X) the

wavefunction associated to the symmetric part of (2.2.46), Bµν(X) the antisym-

metric part of the wavefunction (Kalb-Ramond field) and by φ(X) the scalar part,

the most general Polyakov action with the same symmetries of the original one in

the presence of a closed string background is given by

SP = − 1

4πα′

∫ √
|h|
(
hαβ∂αX

µ∂βX
νgµν + εαβ∂αX

µ∂βX
νBµν + α′Rhφ

)
dτdσ,

(2.2.47)

where Rh is the Ricci scalar associated to the background metric h. The vanishing

of the variation with respect to h gives equations of motions for the fields g, B

and φ. Varying the action with respect to h and taking the trace of the result, we

have

Tαα = − 1

2α′
βgµνh

αβ∂αX
µ∂βX

ν − 1

2α′
βBµνε

αβ∂αX
µ∂βX

ν − 1

2
βφRh = 0, (2.2.48)

where the β functions are, to order α′

βgµν = −α′
(
Rµν + 2∇µ∇νφ−

1

4
HµρσH

ρσ
ν

)
, (2.2.49a)

βBµν = α′
(
−1

2
∇ρHρµν +∇ρφHρµν

)
, (2.2.49b)

βφ = α′
(
d− 25

6α′
− 1

2
∇2φ+∇µφ∇µφ− 1

24
HµνρH

µνρ

)
, (2.2.49c)

where the covariant derivative ∇ and the Ricci tensor Rµν are calculated from the

tensor g and H is the exterior derivative of B, in components Hµνρ = ∂µBνρ +

∂νBρµ + ∂ρBµν . The physical condition is that the β functions must vanish sep-

arately. In the case of constant dilaton field and vanishing Kalb-Ramond field,

only the first β function has to vanish, giving the Einstein equations in vacuum

Rµν = 0. This way quantum gravity is included in string theory. Lastly, we remark

that from the following action

S =
1

2κ̃

∫ √
|g|e−2φ

(
R + 4∇µφ∇µφ− 1

12
HµνρH

µνρ − 2(d− 25)

3α′

)
dd+1x,

(2.2.50)

the equations of motion for the β functions descend, so it can be used as an effective

action, and the normalization constant κ̃ will be specified in a moment. Assuming

φ0 as the boundary condition for φ, we can rewrite the action by defining

φ̃ = φ− φ0 κ = κ̃eφ0 =
√

8πG26 g̃µν = e
4

1−d φ̃gµν , (2.2.51)
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Figure 2.5: Two typical examples of interacting string graphs. To the left, an

open string separates in two open strings. There is no hole in the middle of the

graphs, so the left diagram has g = 0. To the right, a closed string splitting in

two closed strings, then rejoining in a single one. With an hole in the middle, the

right diagram has g = 1.

(where G26 is the 26-dimensional gravitational constant) obtaining the action

S =
1

2κ2

∫ √
|g̃|
(
R̃− 4

d− 1
∇µφ∇µφ− (2.2.52)

1

12
e−

8
d−1

φ̃HµνρH
µνρ − 2

d− 25

3α′
e

4
d−1

φ̃

)
dd+1x.

String interactions

Here we give a short picture of interaction of strings. The interaction of strings

is a vast topic, and explaining the procedure that brings us to calculable results is

out of the scope of this thesis, so we limit ourselves to the general ideas that can

be used to visualize string interactions and to understand the genus expansion,

that is related to the 1/N expansion of QCD. We refer to [39] for details. String

interaction happens when the metric of spacetime is promoted as a propagating

field, so a string will self-interact through gravity. Free string worldsheets have

the topology of a strip for open strings, and a cylinder for closed strings: we can

picture interactions through worldsheets with more involved topologies, as strips

separating or cylinders separating and rejoining, as illustrated in figure (2.5). The

basic idea for calculations is to use Feynmann path integral, using as functional

variables the string X and the background metric h, imposing constraints that

derive from Weyl symmetries. Thus, the basic object is of the form

Z =

∫
Σ

[dX][dh]e−SP , (2.2.53)
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where Σ denotes integration over all possible worldsheets (akin to integration over

all paths), [dX] indicates functional integration, Sp is the Polyakov action, Wick

rotation has been performed and the sources are suppressed. We can add to SP a

term: defining

S ′P = SP −
λ

4π

∫
Σ

√
|h|Rhdτdσ = SP − λχ, (2.2.54)

we can verify that this addition does not change the equations of motion. Turns

out that χ is a topological term, and it is entirely determined by the topology of

the worldsheet. For closed string worldsheets, labeling as g the genus of the sheet,

or the number of holes, we have that χ = 2−2g. Then, we can write an expansion

in g:

Z =
∑
g

∫
Σg

[dX][dh]e−SP−λ(2−2g) =
∑
g

e−λ(2−2g)

∫
Σg

[dX][dh]e−SP , (2.2.55)

where Σg denotes all worldsheets with genus g. We see that sheet contributions

are suppressed if g is non zero, so the genus number can be used to define an

order of expansion. Closed string coupling is identified with gcs = eλ, so the genus

expansion in powers g2n
cs , with n assuming values from −1 to ∞: if the coupling

constant is small (or λ is small) then higher genus worldsheets decay. An important

fact is that λ is not an external constant, but it is related to the dilaton field φ,

or its expectation value, thus the interaction is inserted in a natural way. We do

not prove this, but we note that the motivation can be intuitively understood by

(2.2.50), where the dilaton field multiplies the whole action of the effective fields,

that can be thought as the dilaton field multiplying the interaction pieces. In the

case of open strings, all proceeds in the same way, with a fundamental difference:

as the open string worldsheet has more boundaries than a closed string worldsheet

with the same genus, the contribution of χ is varied: to account for that, we

identify gos = e
λ
2 . Then we have an expansion in powers of g2n

os , with n from −1

to ∞, as before.

Fermionic string

The previous quantization has a fundamental limit (besides the tachyon state,

that disrupts causality): all states obtained by applying the creation operators are

of bosonic statistics. To introduce fermionic degrees of freedom in the spectrum,
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we must introduce the fermionic string. This is done by introducing the embedding

Ψµ and its conjugate Ψ̄µ, that are Grassmann fields, vectors in the target space and

spinors in the parameter space. Introducing γ matrices on the parameter space,

we write the Polyakov action in conformal gauge and flat space as

SP = − 1

4πα′

∫
ηαβ(iΨ̄µγα∂βΨν + ∂αX

µ∂βX
ν)ηµνdτdσ. (2.2.56)

We have added the bosonic string to have the most general action possible, but

from now on we concentrate on the fermionic part. Writing in component Ψ =

(ψ−, ψ+) and introducing light cone coordinates on the parameter space, we have

SP =
i

2πα′

∫
(ψµ−∂+ψ−µ + ψµ+∂−ψ+µ)dτdσ. (2.2.57)

The equations of motion with boundary conditions are then{
∂+ψ− = 0, ∂−ψ+ = 0,

(ψ− · δψ− − ψ+ · δψ+)|σ00 = 0.
(2.2.58)

The last row gives the boundary conditions.2

As in the bosonic string, the boundary conditions can be solved by imposing

open or closed topology. We start by considering open strings: then we have to

make the differences in (2.2.58) vanish separately at σ0 (that we take as π as

in open bosonic strings) and at 0. As overall signs are irrelevant in fermionic

strings, we solve those constraints by setting ψ−(τ, 0) = ψ+(τ, 0). We have two

different choices for the endpoint π: the condition ψ−(τ, π) = ψ+(τ, π) gives rise

to states that are in the Ramond sector, or R sector, while the opposite choice

ψ−(τ, π) = −ψ+(τ, π) gives the second sector, called Neveu-Schwartz or NS sector.

Functions solving those constraints are expanded as

R sector: ψµ± =
1√
2

∑
n∈Z

dµne
−inσ± , (2.2.59)

NS sector: ψµ± =
1√
2

∑
n∈Z− 1

2

bµne
−inσ± . (2.2.60)

2Constraints as Virasoro constraints should be imposed, but one should also consider addi-

tional constraints derived by the fact that there is a supersymmetry transformation rotating the

bosonic string in the fermionic one and vice versa. We will omit discussion of those constraints,

and take the resulting mass formulas from [39]
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In the NS sector the sum runs over half integers. Quantization of the theory is

done in light cone gauge, in a way similar to the bosonic string. Reintroducing the

coordinates i = 2...d we must have

{bim, b
j
−n} = δijδmn, {dim, d

j
−n} = δijδmn. (2.2.61)

We then interpret bn and dn with n > 0 as annihilation operators, those with

n < 0 as creation operators and a vacuum state |0〉 (with an underscript NS or

R to indicate which operators annihilate the state). The spectrum of states can

then be obtained by acting with creation operators on the vacuum state.

There are two problems to address before going further. In the NS sector,

the state bi−1/2 |0NS〉 has mass

M2 =
1

α′

(
1

2
− d− 1

16

)
, (2.2.62)

and must be massless for the same reason as in the bosonic string: this implies

d = 9, so with fermionic strings the critical dimension turns out to be lower than

in the bosonic string. This implies that the vacuum state is tachyonic. In the R

sector, there is an operator bi0 that is not a creation or distruction operator, but it

anticommutes with all other operators. Acting with bi0 on |0R〉, we obtain another

state with the same energy from which particle states can be built, so the ground

state is degenerate.

Both problems are solved by introducing the GSO projection, a superselection

rule on states: introducing the operator (−)F that acts as identity on |0NS〉 and

anticommutes with all creation operators, we have that (−)F effectively counts

how many times a fermionic operator is applied to a state modulo 2, so (−)F

has only eigenvalues 1 and −1. In the R sector, we choose a ground state and

proceed in the same way: the other degenerate ground state will have eigenvalue

−1. GSO projection consists in choosing as physical states only those in a fixed

subspace of (−)F : in the NS sector we only choose those with eigenvalue −1, so

the true vacuum is bi−1/2 |0NS〉, belonging to the vector representation of SO(8).

In the R sector we can choose the eigenvalue and the ground states have different

chirality: they are in the spinor representations of SO(8) with definite chirality.

We introduce a notation to indicate irreducible representations of SO(8), includ-

ing spinorial representations: 1 is the scalar representation, 35± are symmetric

representations that are either dual or self dual, 8 and 8′ are the two (chiral) fun-

damental spinorial representations, 8V is the vector representation. We will also
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Sector State (−)F Representation m2

R+ |0R〉 +1 8 0

R- |0′R〉 -1 8′ 0

NS- |0NS〉 -1 1 −1/2α′

NS+ bi−1/2 |0NS〉 +1 8V 0

Table 2.1: Field content of the ground states in open superstring quantum theories.

need other higher spin representations: 28 denotes a representation of differen-

tial forms with two indices, 56T is a tensorial representation of differential forms

with three indices, 35± denote differential forms with four indices, whose exterior

derivatives satisfy a self duality (or anti self duality) condition, 35 is a representa-

tion of symmetric, traceless, two indices tensors, while 56 and 56′ denote spinor

vector representations. The representations of the ground states are collected in

table (2.1) Here we have conventionally named |0R〉 as the ground state of R sector

with eigenvalue +1 for the fermion number operator and as |0′R〉 the state obtained

through application of di0.

We now analyze the closed string spectrum. As for bosonic string, we ob-

tain that the closed string can be seen as two copies of the open string, and the

quantum states obey a level matching condition. Each closed string is defined by

the choice of two open string sectors: as an example, we can have the (R+,R-)

string, whose quantum states are built by applying creation operators on the vac-

uum |0R, 0′R, k〉 (where k is an overall string momentum) and physical states are

subject to the level matching condition (2.2.44) with obvious substitutions. We

can choose freely the sectors, but we always exclude the NS- sector, as it contains

a tachyon. Using results from representation theory of SO(8), we write the ground

states representations in the sectors that we will use in table (2.1).

Two common quantum superstring theories that are used in AdS/CFT corre-

spondence are Type IIA and Type IIB supergravity. They are obtained by studying

the effective action of closed strings in the sectors

Type IIA : (NS+,NS+), (R+,NS+), (NS+,R-), (R+,R-), (2.2.63a)

Type IIB : (NS+,NS+), (R+,NS+), (NS+,R+), (R+,R+). (2.2.63b)

The field content of those theories is given by summing the appropriate entries of
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Sector Representation

(NS+,NS+) 8V ⊗ 8V = 1⊕ 28⊕ 35

(R+,NS+) 8⊗ 8V = 8′ ⊕ 56

(R+,R+) 8⊗ 8 = 1⊕ 28⊕ 35+

(NS+,R-) 8V ⊗ 8′ = 8⊕ 56′

(R+,R-) 8⊗ 8′ = 8V ⊕ 56T

Table 2.2: Field content of the ground state in some sectors of closed superstring

quantum theories. Masses are omitted, as we choose only sectors with massless

ground states. Sectors that differ only by permutation of open string sectors (like

(R+,R-) and (R-,R+)) share the same field content.

Field Representation

φ 1

ψ, ψ̄ 8, 8′

C1 8V

B2 28

gµν 35

λ, λ̄ 56, 56′

C3 56T

Field Representation

φ, C0 12

ψI , I = 1, 2 8′2

C2, B2 282

gij 35

C4 35+

λI , I = 1, 2 562

Table 2.3: Physical fields and their SO(8) representation in Type II A (left) and

Type II B (right) supergravity. Bn and Cn are differential forms with n indexes.

B2 is interpreted as the Kalb-Ramond field, g as the metric and φ as the dilaton.

table (2.2):

Type IIA : 1⊕ 8⊕ 8′ ⊕ 8V ⊕ 28⊕ 35⊕ 56⊕ 56′ ⊕ 56T, (2.2.64a)

Type IIB : 12 ⊕ 8′
2 ⊕ 282 ⊕ 35⊕ 35+ ⊕ 562. (2.2.64b)

We can see that Type IIA supergravity is nonchiral, as for each representation of

definite chirality the representation of opposite chirality is also contained. On the

other and, Type IIB supergravity is chiral, and some representations appear twice.

We give names to the fields in the representations as in table (2.3).

We can write an effective action for supergravity, by combining the fields of

table (2.3) in an action. We start with Type IIB, concentrating only on the bosonic
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part. We write the field strengths

Fp = dCp−1 H3 = dB2 F̃3 = F3 − C0H3 F̃5 = F5 −
1

2
C2H3 +

1

2
B2F3,

(2.2.65)

where wedge product between forms is implicit. Self duality of F̃5 has to be

imposed: F̃5 = ∗F̃5, where ∗ denotes Hodge dual. We also define F̄ as the

complex conjugate of F and define∫ √
|g||Fp|2d10X =

∫ √
|g|gµ1ν1 ...gµpνpF̄µ1...µpFν1...νpd10x. (2.2.66)

In those terms, the action is

SIIB =
1

2κ̃2
10

∫ (√
|g|
(
e−2φ

(
R + 4∂µφ∂

µφ− 1

2
|H3|2

)
(2.2.67)

−1

2

(
|F1|2 + |F̃3|2 + |F̃5|2

))
−1

2
C4H3F3

)
d10x.

R is calculated from g, and the last term is a topological term, and is not multi-

plied by the metric. The constant κ̃10 can be related to Newton’s constant in ten

dimensions by defining κ = κ̃eφ0 =
√

8πG10, where φ0 is the boundary condition

for the dilaton field, φ.

For Type IIA supergravity we use the same conventions, with the addition of

F̃4 = dC3 − C1F3. (2.2.68)

The action is then

SIIA =
1

2κ̃2
10

∫ (√
|g|
(
e−2φ

(
R + 4∂µφ∂

µφ− 1

2
|H3|2

)
(2.2.69)

−1

2

(
|F2|2 + |F̃4|2

))
− 1

2
BF4F4

)
d10x.

D-branes

We conclude this introduction on string theory by discussing D-branes. When

imposing boundary condition on the open strings, we discarded Dirichlet boundary
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Brane/Coordinate 0 1 2 3 4 5 6 7 8 9

D4-brane ◦ − ◦ ◦ − − ◦ − ◦ −

Table 2.4: A typical scheme used to define D-branes. We call the brane Dp-brane,

and indicate with a dot tangential coordinates and with a line normal coordinates.

conditions. Those are easily visualized with the use of D-branes. Dirichlet bound-

ary condition assumes that some string endpoints can be fixed to hypersurfaces,

breaking impulse conservation (by breaking translational invariance): impulse con-

servation can be recovered with the use of D-branes, that become dynamical ob-

jects of the theory, with an action, gravitational field and charge.

We start by studying a single D-brane, following the presentation of [56]. A

D-brane is an hypersurface in spacetime. Let us assume the D-brane of dimension

p+ 1: it is customary to study it by introducing p+ 1 tangential coordinates and

their completion, d− p normal coordinates. We write the coordinates as

X0, X1, ..., Xp︸ ︷︷ ︸
p+ 1 tangential coordinates

, Xp+1, ..., Xd+1︸ ︷︷ ︸
d− p normal coordinates

. (2.2.70)

We choose the normal coordinates such as the hypersurface representing the D-

brane is at coordinates x̄a, where a runs from p+1 to d+1. A physical condition is

that the time coordinate (here expressed by X0) must always be tangential to the

D-brane, as we want string endpoints attached to the brane to always move forward

in time. Each normal coordinate is a constraint on string endpoint motion. The

case of bosonic string in 25 space dimensions with N boundary conditions on all

coordinates and endpoints can be thought here as a D-brane with p = 25 filling the

whole space. A D-brane is defined by indicating which coordinates are tangential

and which coordinates are normal, and it is customary to talk about Dp-branes,

embedding their dimensionality in their name.

When we define open strings in a spacetime with a filling D-brane, we must

have the string endpoints on the D-brane at all times. This amounts to imposing

Dirichlet boundary conditions on the normal coordinates, and Neumann conditions

on the tangential coordinates. We can expand the string embedding X in those

coordinates as

Xa(τ, σ) = x̄a +
√

2α′
∑
n6=0

1

n
αane

−inτ sinnσ, (2.2.71)
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while we make the N expansion for coordinates α = 0, ..., p. There is no zero mode

in this expansion. Quantizing such a string is done by rotating into light cone

coordinates in the tangential subspace, so we divide the tangential coordinates in

light cone coordinates X± = X0 ±X1 and use the index i to run from 2 to p+ 1.

We get that states are obtained by acting on the vacuum with creation operators

a†in and a†an , the critical dimension is always d = 25 and the mass of those states is

given by

m2 =
1

α′

(
−1 +

∞∑
n=1

p+1∑
i=2

na†in a
i
n +

∞∑
n=1

d+1∑
a=p+2

na†an a
a
n

)
. (2.2.72)

The ground state is tachyonic, while the first excited states generated by a†i1 and

a†a1 are massless. Furthermore, a†i1 has p − 1 indices, the same number of indices

that a massless vector boson on the brane would have, so the state generated by

a†i1 can be thought as a Maxwell field on the brane. We can assign a classical EM

charge to string endpoints, and they will interact with such a Maxwell field.

We now consider the situation where N parallel Dp-branes are present, speci-

fied by the normal coordinates x̄ai (the lower latin index on the symbols x̄a is not a

Lorentz index, but a counting label from 1 to N). We still impose NN conditions

on tangential coordinates. String endpoints can begin on the i-th brane and end

on the j-th brane, and their mode expansion is

Xa(τ, σ) = x̄ai + (x̄aj − x̄ai )
σ

π
+
√

2α′
∑
n6=0

1

n
αane

−inτ sinnσ. (2.2.73)

Strings starting from the i-th brane and ending on the j-th brane are denoted by

the labels [ij], called Chern-Paton factors. Each different choice of [ij] gives rise

to a different sector in quantum theory: oscillations from the string [12] contribute

to the [12] sector, and so on: the vacuum is the tensor product of all vacuums in

the single [ij] sectors. The mass for the modes of a string in the [ij] sector is given

by

m2
[ij] =

1

α′

(
−1 +

∞∑
n=1

p+1∑
i=2

na†in a
i
n +

∞∑
n=1

d+1∑
a=p+2

na†an a
a
n

)
+

d+1∑
a=p+2

(
x̄aj − x̄ai

2πα′

)2

.

(2.2.74)

We see that stretched strings get a mass contribution. In the case of coincident

branes, we can still use Chern-Paton factors to distinguish the sectors, and all
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states a†i1
∣∣0[ij]

〉
are massless vectors in the [ij] sectors. As there are N2 possible

sectors, we have N2 gauge bosons, that interact when the string endpoints that

generate the bosons in the sector touch on the same brane. The numbers and

index structure are just right to identify the N2 vector fields as belonging to the

adjoint representation of U(N). Thus, as a single brane has a Maxwell field living

on it, N coincident branes have a non abelian U(N) gauge field living on them.

In the case of a Dp- and a Dq-brane (with q < p), we assume that we can

divide the coordinates as

X0, ..., Xq︸ ︷︷ ︸
Common tangential

, Xq+1, ..., Xp︸ ︷︷ ︸
Mixed coordinates

, Xp+1, ..., Xd+1︸ ︷︷ ︸
Common normal

. (2.2.75)

On the mixed coordinates, we have to use DN (or ND, depending on string orien-

tation) boundary conditions. Calling x̄r the Dp-brane coordinates (with r running

from q + 2 to p+ 1), we can expand the mixed coordinates as

Xr(τ, σ) = x̄r + i
√

2α′
∑

n∈Zodd

2

n
αrn/2e

−in
2
τ cos

(nσ
2

)
. (2.2.76)

Quantizing in light cone gauge, we discover that the mass of the modes of a string

stretching from one brane to the another is given by

m2 =
d+1∑
a=p+2

(
x̄aj − x̄ai

2πα′

)2

+
1

α′

(
Nm − 1 +

1

16
(p− q)

)
, (2.2.77)

where the weighted number of modes Nm is given by

Nm =
∞∑
n=1

q+1∑
i=2

na†in a
i
n +

∞∑
n=1

d+1∑
a=p+2

na†an a
a
n +

∞∑
n∈Zodd

p+1∑
r=q+2

n

2
a†rn/2a

r
n/2. (2.2.78)

We still have to introduce brane dynamics. This is done by introducing an

action, the Dirac-Born-Infield action or DBI action, that is the most general pos-

sible action for a D-brane in curved spacetime. The natural tensors that can be

written on a D-brane are the pullback of the metric gµν , the pullback of the Kalb-

Ramond field Bµν and, additionaly, on a single string a gauge field can be present.

Denoting as r, s, t, u, ... indices on the brane (from 0 to p+1) and as ξr coordinates

on the D-brane parameter space, we have that the DBI action for the brane is

SDBI = − 1

(2π)pα′(p+1)/2

∫
e−φ
√
|P [g]rs + P [B]rs + 2πα′Frs|dp+1ξ, (2.2.79)
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where F is the Maxwell field strength associated to the field living on the brane

and the bars denote absolute value of the determinant. In supergravity, there are

n forms that can couple to the brane. Namely, a p brane couples naturally to a

form Cp+1 through the pullback

Sp =
1

gS(2π)pα′(p+1)/2

∫
Σp+1

P [Cp+1], (2.2.80)

where gS = eφ0 and Σp+1 is the brane worldsheet, and we call the coupling con-

stant µP . Lastly, we can generalize the previous piece in a Chern-Simons type

interaction,

SCS = µP

∫ ∑
q

P [Cp+1] ∧ eP [B]+2πα′F , (2.2.81)

where we only take from the exponential the terms with the right indices to get a

p+ 1-form to integrate.

We now study a supergravity solution, where the D-brane plays the role of a

soliton-like object. A Dp-brane solution in 10 spacetime dimensions reads (where

i still goes from 0 to p and a from p + 1 to d + 1, as in previous discussion of a

single brane spectrum, and define z2 = xixi) 3

g = Hp(z)−1/2ηµνdx
µdxν +Hp(z)1/2dxidxjδij, (2.2.82a)

eφ = gSHp(z)(3−p)/4 B = 0, (2.2.82b)

Cp+1 = (Hp(z)−1 − 1)dx0 ∧ dx1 ∧ ... ∧ dxp. (2.2.82c)

When plugged into supergravity equations, we get

∂i∂iHp(z) = 0 (2.2.83)

everywhere but in the origin: this is solved by

Hp = 1 +

(
Lp
z

)7−p

, (2.2.84)

giving the boundary condition of Minkowski space for r →∞, with vanishing Cp+1

form at infinity (necessary for finiteness of energy) and sending the dilaton to its

3We are using a different index convention from usual, that is explained in the notation,

section Holography.
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constant VEV. Lp is an integration constant. It can be recovered by integrating

dCp+1 = Fp+2 on an 8− p dimensional sphere at infinity, that gives the charge to

the brane:

Q =
1

2κ2
10

∫
S8−p
∗Fp+2. (2.2.85)

In this ansatz, it turns out that Q = NµP , so the charge is quantized in units of

µP and we can choose N to have a particular solution. This charge is conserved

in time evolution, and is related to Lp through

L7−p
p = (4π)(5−p)/2Γ

(
7− p

2

)
gSNα

′(7−p)/2. (2.2.86)

Using this ansatz in Type IIA or Type IIB restricts the brane dimensionality, as

the coupling fields Cp have to be found among the physical fields of the theory,

listed in table (2.3). A Dp-brane has dimension p + 1, so it naturally couples to

a Cp+1 form that can be integrated on its worldsheet. In Type IIA we only have

forms with odd number of indices (we can obtain higher indices forms through

Hodge dual: as an example, we can define C7 = ∗C3), so this solution only works

for p even. In Type IIB we can only have p odd for the same reason.



Chapter 3

The AdS/CFT correspondence

In this chapter, we’ll use the tools that we have developed in the previous

chapters to introduce the AdS/CFT correspondence. This correspondence has first

been proposed by Maldacena in 1998 [29] (and reviewed by Maldacena himself et

al. in [3]. The proposal arises from the similarity between Witten’s large N limit

of QCD and string genus expansion, and relates superstring theory in AdS5 × S5

(where S5 is introduced to have 10 dimensions and define a superstring theory, and

is a compact space) with a conformal theory defined on the boundary of AdS5. The

correspondence has not yet proved in its most general form, but it has been widely

used to get quantitative predictions for QCD. In particular, we’ll concentrate on

the Sakai-Sugimoto model [40,41], a model that describes low energy QCD in this

framework, obtaining an effective description for nuclear interaction.

3.1 Basics of the correspondence

The AdS/CFT correspondence, relating string theories and gauge theories, is

stated in three forms. In its strongest form, the conjecture is expressed in table

(3.1).

Gravity side and gauge side are dynamically equivalent in AdS/CFT, in the

sense that they only differ mathematically, but describe the same physics. Besides

the strongest form of the conjecture expressed in (3.1), there are two limits that

79
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N = 4 Super Yang Mills Theory with

gauge group SU(N) and Yang Mills coupling gY

is dinamically equivalent to

type IIB string theory, with string constant α′ and coupling gS
on AdS5 × S5 of radius L and N units of flux of F5 on S5

The map between constants is

g2
Y = 2πgS and 2g2

YN = L4/α′2

Table 3.1: Strongest form of the AdS/CFT conjecture.

make computations possible.

As those limits are related to the large N limit of the gauge theory, we reintro-

duce the ’t Hooft coupling, λ = g2
YN , that is fixed as N →∞. In the strong form

of the conjecture, we let N on the gauge side go to infinity, suppressing all non-

planar diagrams, while λ remains arbitrary. On the other side, this corresponds

to the approximation of free strings, gS → 0: we can see that in this framework

planar diagrams correspond to free strings, and this could be an hint of a deeper

relationship. In the weak form, we let N go to infinity as before (so gS → 0), and

we also take λ to go to infinity: this corresponds, on the gravity side, to the limit

L4/α′2 →∞, so the radius of the AdS space becomes large with respect to string

length
√
α′. With the curvature radius going to infinity, the Ricci scalar goes to

zero: we can then state that we are mapping a strongly coupled gauge theory (as

λ→∞ implies gY →∞) to a free string theory in a weakly curved space.

3.1.1 Symmetry matching

A first step in understanding the duality is to confront the symmetries of

the two theories. AdS5 space is maximally symmetric, and its symmetry group

is isomorphic to the conformal group in four spacetime dimensions. Part of this

symmetry can be interpreted in an interesting way. Let us consider AdS metric

(2.2.10) and perform the coordinate change z → 1/u. In those coordinates, the
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metric reads

g = L2

(
ηµνdx

µdxν +
du2

u2

)
. (3.1.1)

Dilation symmetry (x, z) → (λx, λz), leaving the metric invariant, is realized in

those coordinates as (x, u) → (λx, u/λ). We can take a different approach: a

scaling of the form (x, u) → (x, u/λ) = (x, u′) can be reabsorbed by successively

scaling x, as (x, u′) → (λx, u′). Performing successive scalings with λ > 1 brings

us to points in the spacetime that have a coordinate u approaching 0 and coor-

dinates x approaching infinity, while doing the scalings with λ < 1 brings us to

the opposite region. It is natural to identify u as an energy scale in a QFT . The

fact that a scaling of the energy can be reabsorbed through a scaling of the co-

ordinates matches the conformal symmetry of the QFT living at the boundary,

the Super Yang Mills theory: as the theory is conformal the scale dependence is

trivial, and in the ten dimensional space it can be reabsorbed through a coordinate

transformation.

S5 can be embedded in R6: the sphere is invariant under SO(6), that is

isomorphic to SU(4). SU(4) acts on the QFT at the boundary by leaving the gauge

field invariant (as it is in the scalar representation), rotating the four fermions λ

(that form a multiplet in the fundamental representation of SU(4)) and the six

scalars φ (that form a multiplet in the antisymmetric representation of SU(4)).

The symmetry group of the compact space is then implemented in the QFT as an

internal symmetry.

3.2 Details of the duality

3.2.1 D3-branes in high and low energy regimes

The AdS/CFT correspondence consists in interpreting the two sides of the

correspondence as two equivalent descriptions of the low energy limit of a string

theory. In particular, the low string coupling limit of that string theory is given by

a field theory, where the fields are the massless degrees of freedom of open strings

with their endpoint on some Dp-branes, and this limit would correspond to the

gauge side of the correspondence. In contrast, the large string coupling limit of
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Brane/Coordinate 0 1 2 3 4 5 6 7 8 9

D3-brane ◦ ◦ ◦ ◦ − − − − − −

Table 3.2: D3-branes embedding: the dot represents a tangential direction, the

line a normal direction. We can choose our coordinates and branes locations to

have the branes localized at x4 = ... = x9 = 0.

the low energy string theory is given by an explicit solution of Dp-branes, that

becomes a source of gravitational interaction (that is represented as interaction

with closed strings, that contain the graviton). We now expand on those limits.

Let us consider a stack of N coincident D3-branes (to have a coupling with C4,

thus a non null flux of F5), that extend as in table (3.2), and consider the low

string coupling limit, gSN << 1 (where we have to include an N to account for

the fact that strings can interact with N different branes, to each with coupling

gS). In this limit the branes can be considered as an immobile background, and

the theory is a theory of closed strings and open strings ending on the brane, with

interactions between closed and open strings. We can write the action as

S = Sopen + Sclosed + Sint, (3.2.1)

with obvious definitions. Those actions have been already discussed in the previous

chapter. For Sclosed, we can take (2.2.68), with just the field C4. Low string

coupling is obtained by expressing κ̃10 = gSκ10, with κ10 independent of gS (we

remember that κ10 =
√

8πG10) and taking a constant dilaton to make the coupling

constant cancels the e−2φ, and appear as multiplying the rest of the action, that

will be neglected in this limit. The only surviving terms in the low coupling regime

are then (renaming κ10 as κ for brevity)

Sclosed =
1

2κ2

∫ √
|g|
(
g2
Se
−2φ (R + 4∂µφ∂

µφ)
)
d10x. (3.2.2)

Taking the limit of constant dilaton and expanding the metric as g = η + κh, we

have

Sclosed =
1

2

∫
∂h · ∂hd10x+ o(κ) (3.2.3)

(the notation is symbolic, the integrand is the kinetic term for the graviton). Low

coupling closed string dynamic is then given by graviton dynamic, represented by

the metric perturbation h. The rest of the interaction can be written from the DBI
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action (2.2.79) in the low coupling regime, with vanishing Kalb-Ramond field. We

recall the action for a single brane

SDBI = − 1

(2π)pα′(p+1)/2

∫
e−φ
√
|P [g]rs + 2πα′Frs|d4ξ. (3.2.4)

When performing the pullback of the metric of the 10 dimensional space in a

4 dimensional space, the extra coordinates xi can be taken as fields, expressing

fluctuations in the brane positions: we define 2πα′φi−3 = xi, where i goes from

4 to 9. Low coupling limit is obtained expanding g as before, and keeping the

dilaton. The result can be identified as the sum of a self propagation for the open

strings and the interaction term between open and closed strings, up to additional

powers of α′:

Sopen = − 1

2πgS

∫ (
1

4
FµνF

µν +
1

2
ηµν∂

µφi∂νφi + o(α′)

)
d4x, (3.2.5a)

Sint = − 1

8πgS

∫
(φF µνFµν + o(α′))d4x. (3.2.5b)

In the first line, we have a U(1) theory (as we’re using a single brane) in flat space

and 6 scalar fields (with an internal rotation symmetry, as in Super Yang Mills),

while in the second line we see that the gauge field interacts with the dilaton of

the closed string sector. The case for N branes is straightforward: it amounts in

redefining the transverse fields φi as matrix fields, valued in U(N), do the same

for the gauge field and add traces. We have an additional element coming from

the U(N) theory, a self interaction between the transverse fields:

V =
1

2πgS

∑
i,j

∫
tr[φi, φj]

2d4x. (3.2.6)

In the low energy limit, that in string theory is given by α′ → 0 (that implies

κ→ 0), the open string part becomes the bosonic action of N = 4 supersymmetric

Yang-Mills, the interaction part is proportional to the dilaton, so performing a

similar rescaling as in (2.2.51) we can see that the whole interaction term vanishes.

Low energy and coupling limit of this theory is then given by an U(N) Yang-Mills

theory and free supergravity.

In the high coupling regime, we have a theory of closed strings interacting in

a brane background, where the branes source the various fields of Type IIB super-

gravity with which the closed strings interact. The branes provide a background
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field, of the form

g = H3(z)−1/2ηµνdx
µdxν +H3(z)1/2dxidxjδij, (3.2.7a)

eφ = gS, (3.2.7b)

C4 = (H3(z)−1 − 1)dx0 ∧ dx1 ∧ ... ∧ dx3 + ..., (3.2.7c)

H3(r) = 1 +

(
L

z

)4

. (3.2.7d)

with z2 = x2
4 + ... + x2

9, and L4 = 4πgSNα
′2, as from (2.2.86), the dots denote

additions to C4 that make F5 self dual and the dilaton field is taken as constant.

In the limit of z >> L, we have that H3 = 1 and we recover ten dimensional

flat Minkowski space, with vanishing C4. In the opposite case, we have the near-

horizon limit or throat limit : we can neglect the 1 in H3, and obtain, passing in

spherical coordinates on the i coordinates:

g =
z2

L2
(ηµνdx

µdxν + dz2) + L2dΩ5, (3.2.8a)

C4 =
z4

L4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 + .... (3.2.8b)

dΩ5 indicates spherical coordinates on S5. We see that, in the near horizon limit,

the metric of the space coincides with the metric of a five dimensional Anti de

Sitter space (given in (2.2.10)) and the metric of S5. We can say that, in this

limit, the 10-dimensional space becomes AdS5×S5. We study the behavior of two

types of closed strings, dominant in the low energy limit: we can have closed strings

in the flat background, localized at z >> L, or we can have strings localized in the

throat, z << L. Measuring energies from the flat background, we have that we

must correct the energy E of a string excitation in the closed throat to compensate

for the redshift: as this is a stationary spacetime, redshift factor is given by
√
−g00,

so the energy of a mode in the throat E, when observed by a spectator at infinity,

gets redshifted to H−
1
4E. Thus, low energy modes of closed strings with z >> L

are obtained from low frequency vibrations, while the frequency of the vibration

must grow in the throat zone, to account for redshift. Those two kinds of strings,

vibrating at very different frequencies, can be taken as noninteracting. The high

coupling regime is then given by a theory of two kinds of noninteracting closed

strings, one kind localized on an AdS × S5 spacetime, while the other is localized

in R9|1.

In synthesis, we have that the same theory behaves differently for different

values of the coupling limit, when taking the low energy limit:
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• In the low coupling limit, we have two non interacting theories: a N =4

Super Yang Mills and a theory of gravity (hence, closed strings) on R9|1.

• In the high coupling limit, we also have two uncoupled theories: closed strings

on R9|1 and closed strings in the throat, with geometry AdS5 × S5.

It is assumed that, as those two limits are the limits of the same theory, the

different theories should be dynamically equivalent. Gravitation on R9|1 is included

in both limits: we can then state the Maldacena conjecture as the equivalence of

the two remaining pieces of the theories, supergravity on AdS5 × S5 and Super

Yang Mills on flat space.

3.2.2 Dimensional reduction

To realize the duality is to build an invertible map that gives us correlation

functions of the CFT side in terms of objects of the supergravity description. To

do that, we must find out what to do with the 5 extra coordinates on the gravity

side: we now introduce the concept of Kaluza-Klein dimensional reduction, that

consents us to discard the compact dimensions of a spacetime. Let us consider

the situation where we want to reduce from M × Sn to M, with M an arbitrary

manifold. To do that, we first recall some basic facts about spherical harmonics

on an arbitrary n-sphere, Sn.

Spherical harmonics are defined by embedding the sphere in Rn+1, and using

standard Cartesian coordinates on Rn+1. Each spherical harmonic Y A
(l) of rank l

is defined through a totally traceless tensor CA
i1,...,il

, where indexes are raised and

lowered with the standard Euclideian metric and they run from 1 to n+ 1. To fix

normalizations, those tensors are taken to be orthonormal, CA
i1...il

CB,i1...il = δAB.

Calling xi the Cartesian coordinates on Rn+1, a spherical harmonic is given by

Y A
(l) = CA

i1...il
xi1 ...xil . (3.2.9)

Passing to polar coordinates, we obtain (at fixed radius) the spherical harmonics

in terms of coordinates on Sn. The Laplacian on the sphere �Sn has Y A
(l) as

eigenvectors, with eigenvalues depending on their rank l. Denoting as L the sphere
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radius

�SnY
A

(l) = − 1

L2
l(l + n− 1)Y A

(l). (3.2.10)

We can expand any function with coordinates on an arbitrary manifold containing

coordinates in Sn (that we collectively denote with Ω, while we collectively denote

with x the rest of the coordinates) through

ϕ(x,Ω) =
∞∑

A,l=0

Y A
(l)(Ω)ϕA(l)(x). (3.2.11)

The sum runs over the spherical harmonic rank and over the index A, that labels

different spherical harmonics with the same rank.

We make an explicit example of dimensional reduction in the simplest case.

Let us consider Rn+1: we take the last coordinate and compactify it on a circle

of radius R. The resulting space is then Rn × S1, and we call x the collective

coordinate on Rn and θ the coordinate on S1. Fields are distinguished by their

(anti)periodicity on the coordinate θ, that ranges from 0 to 2πR: we can impose

the boundary condition φ(x, θ + 2πR) = ±φ(x, θ). We choose ±1 as only possible

phases to have the condition φ(x, θ + 4πR) = φ(x, θ): winding around the circle

twice gives us the same value1. We first expand a periodic field φ, using standard

Fourier decomposition:

φ(x, θ) =
∑
j∈Z

φ(j)(x)eij
θ
R . (3.2.12)

If the original field obeys the massless propagation equation (�n + ∂2
θ )φ(x, θ) = 0,

with �n the standard Laplacian on Rn, the component fields φ(j)(x) will obey a

massive propagation equation on Rn:(
�n −

(
j

R

)2
)
φ(j)(x) = 0. (3.2.13)

Each field φ(j) obeys a massive propagation equation, with the exception of the

j = 0 field, that is massless. If we impose antiperiodic boundary condition, we

expand the field ψ as

ψ(x, θ) =
∑
j∈Z

ψ(j)(x)ei(j+
1
2

) θ
R . (3.2.14)

1This closely resembles statistical mechanics at a finite temperature β, that plays the role of

the compactified dimension: bosonic fields are periodic, fermionic fields are antiperiodic.
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The massless equation becomes, for the component field

(
�n −

(
j + 1

2

R

)2
)

= 0. (3.2.15)

Here, every field ψ(j) obeys a massive propagation equation.

Dimensional reduction allows us to trade the S5 in the geometry for a theory

on a smaller space, AdS5, but with more degrees of freedom. This is crucial in

holography, and it is another step towards the Minkowski space in the conformal

boundary of AdS5, where the gauge theory that we wish to study lives. Cal-

culations of Kaluza-Klein reductions of the theories that we’re interested in are

usually very cumbersome and we won’t give other examples. We refer to [25] for

the detailed reduction of Type IIB theory from AdS5 × S5 to AdS5.

Dimensional reduction on S1 is particularly important. By imposing antiperi-

odic boundary conditions for a field, we can make every field coming from the

reduction massive. As we have seen, using superstring theories forces us to deal

with fields that are peculiar to supersymmetry, as gauginos. Dimensional reduction

can be used to give mass to some fields, by imposing antiperiodic boundary con-

ditions for them, effectively removing them from the low energy theory (at least,

until the energy scale becomes comparable to 1/R). We will use this technique in

the Sakai-Sugimoto model, where we will use an additional compact direction to

give mass to supersymmetric partners, and make them negligible in the low energy

theory.

3.2.3 Holography

We now make the correspondence explicit, giving a list of steps to perform in

order to obtain correlation functions for the CFT side from physical results on the

AdS side. Let us call ϕ all fields in the supersymmetric Yang Mills living on the

AdS boundary and let us consider composite operators O, products of the fields

ϕ that are gauge invariant and have a fixed scaling dimension, ∆: the objective

is to calculate the correlation functions < O(x1)...O(xn) >. This is usually done

in QFT by introducing source fields for the operators O (called J(x)) and then
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building the partition function

Z[J ] =

∫
[dϕ] exp

(
iSCFT + i

∫
J(x)O(x)d4x

)
= exp(iW [J ]). (3.2.16)

Connected contributions to correlation functions are then obtained as

< O(x1)...O(xn) >C= (−i)n δW [φ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

. (3.2.17)

On the AdS side, in the large N and λ limits the theory of strings goes to its

noninteracting classical limit. The important object is the Kaluza-Klein reduced

supergravity action SSUGRA(φ), written in terms of some fields φ(x, z) that solve

the appropriate motion equations, coming from Type IIB equations. The map is

ZCFT [J ] = exp(iSSUGRA[φ])|limz→0 φ(x,z)=J (x) , (3.2.18)

or, in terms of the generator W

W [J ] = SSUGRA[φ]|limz→0 φ(x,z)=J (x) . (3.2.19)

The boundary condition J (x) is a classical field living entirely on the Minkowski

boundary of AdS, and in principle it can be determined from the sources J(x).

The difficult part of the computation consists in finding the duals, a mapping

O ↔ φ and J ↔ J , and this depends on the details of the problem.

We schematically synthesize the procedure.

• We start with an operator (composite or elementary) on the gauge side O

and introduce its source J . The objective is to calculate W [J ].

• We then find a gravity dual field to the operator, a field φ(x, z) among the

fields created from Kaluza-Klein reduction solving the equations of motion

of Type IIB superstring, with an arbitrary boundary condition J (x) on the

boundary. We will say, from now on, that the field φ lives in the bulk of the

theory. We must also find a relation between J (x) and J(x).

• With the field φ(x, z), we calculate the action SSUGRA. This action will be

a functional of the boundary condition J , that is functions of J(x). By

making the J(x) dependence explicit, we obtain the functional W [J ].



3.2. DETAILS OF THE DUALITY 89

• Once we have W [J ] we can use it as a standard generating functional to

obtain correlation functions.

The supergravity equations of motion for the Kaluza-Klein fields are often

complicated, but we can expand W [J ] in terms of J in the standard way. If we

need an n−point correlation function, we must find a term in W [J ] that contain

n times J . To find such a term, we can also develop the supergravity Lagrangian

in terms of the field φ that we need, and keep all orders up to n. This will be

sufficient to find the dependence of W [J ] up to Jn terms.

This duality approach has its advantages. First, it is a nonperturbative ap-

proach, so it does not rely on smallness of coupling constants. On the contrary,

it can give us insights on the high coupling strength regime of QCD, once we

find out a way to make the CFT more similar to QCD (this will be studied in

the Sakai-Sugimoto model). Second, instead of numerically calculating generat-

ing functionals, once we establish a duality the problem consists in solving PDEs

with arbitrary boundary conditions. This is still an hard task, but it can be done

through numerical analysis with much more ease.

Before going on to detailed examples, we make a quick one: if the CFT has a

global symmetry and a conserved current Jµ, it is natural to couple it to a gauge

vector field in the bulk, Aµ. Let us restrict, for simplicity, to an abelian bulk gauge

field: then the coupling JµAµ is always gauge invariant, as

∫
AµJ

µddx→
∫
AµJ

µddx−
∫
∂µΛJµddx =

∫
AµJ

µddx+

∫
Λ∂µJ

µddx.

(3.2.20)

The last term vanishes due to current conservation, ∂µJ
µ = 0, when Λ is well

behaved. This reasoning can also be used in reverse: a gauge field in the bulk must

be coupled to a conserved current for the coupling to be gauge invariant. This is

an example of a general fact in AdS/CFT: global symmetries on the boundary

become gauge symmetries in the bulk.

As stated, finding a gravity dual is the hardest part. We illustrate a typical

example in the next part.
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3.2.4 Bulk scalar field

To do this example, we will think in reverse: we take a scalar field φ(x, z) in

the bulk among the Kaluza-Klein fields and find which boundary operators can

have this field as source. We consider the action

S = − 1

2κ2

∫ √
|g|(∂Σφ∂Σφ+m2φ2)d5x, (3.2.21)

where g is the metric of AdS5. The motion equation is expressed in terms of the

Laplacian on AdS5, that is

�|g =
1

L2

(
z2∂2

z − 3z∂z + z2ηµν∂µ∂ν
)
. (3.2.22)

The motion equation and the boundary conditions are

(�|g −m2)φ(x, z) = 0 lim
z→0

φ(x, z) = J (x), (3.2.23)

where J (x) is arbitrary.

To find a solution, we perform the Wick rotation. This is possible in AdS

because the metric is diagonal, so x0 still plays the role of a time coordinate, and

applying to x0 the same procedures as in the notation section gives a correctly

Wick rotated theory. We assume plane wave form for the x dependence.

φ(x, z) = exp(ipµxµ)φp(z). (3.2.24)

We also define φp(z) = (pz)2ϕ(pz): with this definition, ϕ(pz) must solve the

equation

(pz)2ϕ′′ + (pz)ϕ′ − ((pz)2 + ν2)ϕ = 0, (3.2.25)

where the derivatives are with respect to pz and ν2 = 4+m2L22. This is a modified

Bessel equation, of solution

ϕ(pz) = C(p)Kν(pz) +D(p)Iν(pz). (3.2.26)

2ν is well defined for any positive mass squared, but it is also well defined when 0 ≥ m2L2 ≥
−4. Fields with negative mass squared in Minkowski space can exist, but the action has a

maximum in correspondence of those fields and so they are instable. In the case of AdSd+1

space, as shown in [13], the contribution from the spacetime curvature actually allows us to have

a slightly negative mass: solutions with m2L2 ≥ −d2/4 are found to be stable. The mass is

chosen at the end of the calculation as it is identified with physical quantities: this allows us to

have a greater mass range to choose from.
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I and K are the modified Bessel functions. Of those, Iν goes to infinity as its

argument goes to infinity, while K decays exponentially. For this reason, to have

finite action we must set D(p) = 0, so the solution is

φp(z) = z2C(p)Kν(pz). (3.2.27)

We can extract the behavior of the function at the boundary z = 0 by using the

expansion

Kν(x) ' 1

2

((x
2

)ν
Γ(−ν) +

(x
2

)−ν
Γ(ν)

)
, (3.2.28)

valid for small x. Near the boundary, we have

φp(z) ' 1

2
C(p)

((
(pz)2+ν

2ν

)
Γ(−ν) +

(
(pz)2−ν

2−ν

)
Γ(ν)

)
. (3.2.29)

As ν > 2, the first term in the sum vanishes when z → 0, while the second surely

diverges. We can now find the correspondence of J with the boundary condition

of φp: to have a non divergent J(x), we impose the identification on the Fourier

transform

J(p) =
2ν−1

Γ(ν)
lim
z→0

zν−2φp(z) = C(p)p2−ν . (3.2.30)

J(x) is found by transforming back. We have added some constants for later

convenience.

With the solution at hand, we can calculate the action. We first write its

Euclidean version

S =
1

2κ2

∫ √
|g|(∂Σφ∂

Σφ+m2φ2)d5x, (3.2.31)

where g is now given by

g =
L2

z2

(
δµνdx

µdxν + dz2
)
. (3.2.32)

We perform an integration by parts

S =
1

2κ2

∫
∇Σ

√
|g|(φ∂Σφ)d5x+

1

2κ2

∫
φ(−�+m2)φd5x (3.2.33)
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(∇ is the covariant derivative with respect to the metric). The second term is

zero, as φ solves the equations of motion, so we just have to evaluate the boundary

term. We have two distinct boundaries: the one at z =∞ and the other at z = 0.

At z = ∞ the Bessel function decays exponentially, so there is no border term

from ∞. To avoid divergences, we impose an UV cutoff by placing the boundary

at z = ε. Using Stokes, we have

S = − 1

2κ2

∫
gzz
√
|g|(φ(x, ε)∂εφ(x, ε))d4x. (3.2.34)

3 We can now insert the metric coefficients and perform the Fourier transform,

obtaining

S = − 1

2κ2

L3

(2π)4

∫
φp(ε)∂εφq(ε)

ε3
d4pd4q. (3.2.35)

We write the integrand, using (3.2.27) and (3.2.28)

C(p)C(q)

4
p2q2

(( ε
2

)2ν

pνqν(Γ(−ν))2(2 + ν) +
( ε

2

)−2ν

p−νq−ν(Γ(ν))2(2− ν)+

(3.2.36)

Γ(ν)Γ(−ν)((2 + ν)p−νqν + (2− ν)pνq−ν)
)
.

The first term of the sum vanishes for ε → 0, while the second diverges and the

third is constant. To get rid of the divergent term, we use holographic renormal-

ization [9]: we add to the action a boundary term, that does not change motion

equations in the bulk. Calling γ the restriction of the metric to the boundary

S → S +
FL3

2κ2(2π)4

∫ √
|γ|φp(ε)φq(ε)d4pd4q, (3.2.37)

where F is chosen to remove the divergence. Substituting φp(ε) and power devel-

oping, after some algebra we choose F = (2 − ν)/L4 to remove the divergence.

The action then becomes

S = − 1

4κ2

L3

(2π)4

∫
d4pd4qC(p)C(q)Γ(ν)Γ(−ν)νp2−νq2+ν . (3.2.38)

We use (3.2.30): the result is identified as the Wick rotated generating functional

W for the CFT .

W [J ] = − L3

4κ2
Γ(ν)Γ(−ν)ν

∫
J(p)J(−p)p2ν d4p

(2π)4
. (3.2.39)

3A minus sign has to be inserted to account for the orientation of the boundary.
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From this identification, we have

< O(p)O(−p) >= − L3

2κ2
Γ(ν)Γ(−ν)νp2ν . (3.2.40)

The position space propagator is then proportional to

< O(x)O(y) >∝ 1

|x− y|2ν+4
, (3.2.41)

so we can identify the scaling dimension of O through ∆ = ν+2. Inverting, we get

the relation m2L2 = ∆(∆ − 4), that tells us what value of m2L2 we must choose

to have a field in the bulk that is dual to an operator of scaling dimension ∆. Not

any ∆ can be represented, though: as ∆ = ν + 2 and ν > 0, we will surely have

∆ ≥ 2.

3.2.5 Wilson loops and static quark-antiquark potential

Even without explicitly inserting quark flavors in the model, we can calculate

the static quark-antiquark potential, in the limit where the particles are taken as

infinitely massive and at a distance R. This is done through calculating the Wilson

loop on a rectangle in the (x0, x1) plane, of lengths T and R, in Euclidean space

and in the limit T >> R [52], through

< W (C) >∝ exp(−V (R)T ) (3.2.42)

The Wilson loop in Euclidean space around a loop C is formally expressed as

W (C) = Tr

(
P exp

(
i

∮
C

Aµ(x)dxµ(s)

))
, (3.2.43)

where P denotes path ordering, and xµ(s) parametrizes the loop. In AdS/CFT

framework, the proposed gauge dual is a two dimensional surface Σ, that extends

from the boundary z = 0 (where it becomes the rectangle around which we’re

Figure 3.1: Rectangle on which the Wilson loop is calculated, with orientation.

We assume T >> R: the short side has length R, the long side has length T .
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Figure 3.2: Holographic dual of a circular Wilson loop.

calculating the Wilson loop) in the AdS space, and its surface minimizes the

Nambu-Goto action (2.2.13). The correct identification in the weak form of the

correspondence is

< W (C) >' exp(−SNG(Σ)), ∂Σ = C. (3.2.44)

We perform the calculation explicitly. Assuming that the loop lies in the

(τ, x1 = x) plane (τ is the Euclidean time), the surface Σ will lie in the (τ, x, z)

hypersurface. Using the Euclidean metric for AdS (3.2.32), we write the Nambu-

Goto action as

SNG(Σ) =
1

2πα′

∫
Σ

(
det

(√
gMN

∂ΣM(σ1, σ2)

∂σα

∂ΣN(σ1, σ2)

∂σβ

))
dσ1dσ2, (3.2.45)

where ΣM parametrizes the surface. The only components of Σ that are not

vanishing are along the τ , x and z directions. We parametrize it by choosing

Στ = σ1, Σx = σ2 and Σz = Σz(σ2): in this parametrization, the surface is entirely

specified by a function z(x) = Σz(Σx). As always, we must impose an UV cutoff to

go on the boundary: we impose the boundary condition z(−R/2) = z(R/2) = ε.

We explicitly calculate the determinant and integrate over σ1 = τ (the integrand
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is constant), obtaining

SNG(Σ) =
T

2πα′

∫ R/2

−R/2

√
gττgxx + z′(x)2gττgzzdx =

TL2

2πα′

∫ R/2

−R/2

√
1 + z′(x)2

z(x)2
dx.

(3.2.46)

We can adimensionalize the integral, by changing variables as x = r/R and

z = l/R. We also use the CFT variables using the duality map.

SNG(Σ) =
T

π

√
λ

2

1

R

∫ 1/2

−1/2

√
1 + l′(r)2

l(r)2
dr. (3.2.47)

We must now solve a variational problem to determine l, requiring that the integral

value must be minimized under the boundary conditions l(−1/2) = l(1/2) = ε/R.

We interpret the integrand as a Lagrangian: as there is no explicit r dependence,

the Hamiltonian (without substituting the canonical pulse) is conserved: we obtain

l2
√

1 + l′2 = l2∗ =⇒ l′ =

√(
l∗
l

)4

− 1, (3.2.48)

where l∗ is a constant. As we expect z to be symmetric for x→ −x, we can impose

l∗ = l(0) to implement l′(0) = 0. We integrate and change variables to obtain

r = l∗

∫ 1

l(r)/l∗

s2

√
1− s4

ds. (3.2.49)

We can obtain l∗ by imposing l(R/2) = ε/R, obtaining

l∗ =
Γ(1/4)

2
√
πΓ(3/4)

. (3.2.50)

Inserting l′ in (3.2.47) and performing the integration, we obtain

SNG(Σ) =
T

π

√
2λ

l∗

1

R

∫ 1

ε/R

1√
1− s4

ds

s2
. (3.2.51)

The integral can be solved exactly, obtaining

SNG(Σ) =
T

π

√
2λ

l∗

1

R

(
R

ε
−
√
πΓ(3/4)

Γ(1/4)

)
. (3.2.52)
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In the limit ε→ 0 the first term diverges, but it is alsoR independent: we can safely

interpret it as a self energy. We can then safely neglect it and interpret the resulting

potential as the interaction potential. Using the holographic identification (3.2.44)

and (3.2.42), we can write the interaction potential between static quark and

antiquark as4

V (R) = − 4π2

Γ(1/4)2

√
2λ

R
. (3.2.53)

We see that the potential in Super Yang Mills goes as 1/R and not R, as it would

be expected from a confining theory. We conclude that Super Yang Mills is not

confining (as we would expect from a conformal theory), so we will have to modify

the AdS/CFT correspondence to use it for QCD. The main idea is intact: QCD

in four dimensions is equivalent to some string theory on AdS5 × S5. We’ll have

to modify our theory in the bulk to have QCD in the boundary: this is done in

the Sakai-Sugimoto model, that is the argument of the next section.

3.3 The Sakai-Sugimoto model

The Sakai-Sugimoto model [40,41] goes towards an holographic dual of QCD.

Its main characteristics are the inclusion of quark flavors through the use of probe

branes, the complete breaking of supersymmetry, the presence of confinement and

the pattern of spontaneous breaking of the axial non abelian symmetry, when

more than one flavor is inserted. We will see how this model is related to the low

energy limit of QCD, and how an holographic description of baryons in terms of

quantum instantons can be obtained [24]. To agree with conventions used in the

Sakai-Sugimoto model, we will make use of the string length parameter, that we

recall to be defined as lS =
√
α′.

3.3.1 The brane background: D4 background

We first introduce the brane background in the 10 dimensional space where

the string theory is defined. This has been first studied in [54], and expanded

4Equation (3.2.42) comes with a ∝ symbol: proportionality constants can be interpreted as

counterterms, used to remove terms that are diverging constants, as in (3.2.52).
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Brane/Coordinate 0 1 2 3 (4) 5 6 7 8 9

D4-brane ◦ ◦ ◦ ◦ ◦ − − − − −

Table 3.3: D4 brane configuration. The parentheses around the fourth dimension

indicate that the dimension is compactified.

in [27], and is often referred as Witten background. The main difference with the

AdS/CFT classical model is the use of Dp-branes with p even: we are then using

Type IIA superstring theory. We will study a D4-brane background, where a stack

of N D4-branes are oriented as in table (3.3), with an important modification: we

compactify one of the dimensions tangent to the brane on a circle. We will specify

the radius of that circle by demanding regularity of the solution. In a certain

limit that we will specify, the solution becomes the solitonic solution of Type IIA

supergravity. There are some slight differences from the solution we have obtained

studying D-branes. The solution reads (we use conventions as in [40])

g =

(
U

R

) 3
2

(ηµνdx
µdxν + f(U)dτ 2) +

(
R

U

) 3
2 dU2

f(U)
+R

3
2U

1
2dΩ4, (3.3.1)

eφ = gS

(
U

R

) 3
4

, F4 = dC3 =
2πN

V4

εS4 , f(U) = 1− U3
KK

U3
R3 = πgSNl

3
S.

Some comments are in order. We are defining a scale UKK , with dimensions of

length. This scale indirectly sets the radius of the S1 coordinate τ , as we can think

as the coordinates (U, τ) being the radial and angular coordinates in R2: regularity

at the origin of R2 demands that the coordinate τ must be periodic with period

δτ =
2π

MKK

, MKK =
3

2

U
1
2
KK

R
3
2

. (3.3.2)

To have the right signature of spacetime, we must impose f(U) > 0: this implies

that the coordinate U is bounded from below by the scale UKK . Minkowski space-

time is located on the boundary U →∞. The radius of the circle in the τ direction

shrinks as u→ UKK : if we set the period as in (3.3.2), the radius of the circle will

shrink to zero smoothly, and the manifold presents no singularities. The form F4

is normalized through the total surface of S4, V4 = 8π2/3, and is proportional to

the standard volume element of S4 εS4 , giving the quantized flux∫
S4

F4 = 2πN. (3.3.3)
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We now propose the duality: the field theory at the boundary U →∞ is specified

by the number of colors N , the ’t Hooft coupling λ and the scale MKK (that can

be considered an energy cutoff: our approximation will break down for energies

larger than MKK), while on the string side we have the AdS radius L, the string

coupling gS and the scale UKK . We relate those quantities through the map

R3

l2S
=

1

2

λ

MKK

,
UKK
l2S

=
2

9
λMKK ,

gS
lS

=
1

2π

λ

NMKK

. (3.3.4)

As in (3.3.1), lS is related to the other parameters through R3 = πgSNl
3
S.

Supergravity approach is applicable when the curvature of spacetime is ev-

erywhere small, when compared to the fundamental string length. We attain

maximum curvature for U = UKK : in this case, the curvature turns out to be of

order (UKKR
3)− 1

2
. We must require

U
1
2
KKR

3
2

l2S
>> 1. (3.3.5)

Using our dictionary, we see that the quantity on the LHS is actually proportional

to λ: then the supergravity approach is reliable only when the ’t Hooft coupling

for the theory at the boundary is large, λ >> 1 [27]. Using this background one

can calculate the expectation values of Wilson loops, to check if the theory shows

confinement: the calculation is done in [54], showing that this theory does indeed

include quark confinement.

3.3.2 Inserting quark flavors: D8-D8 probe branes

With N coincident D4 branes in the space, we have a rather poor number of

possible particles: by taking only the massless ones, strings beginning and ending

on the D4 brane give rise to a gauge field Aµ, the gauginos λ and the scalar

transverse oscillations φ. We are still missing quarks in this picture, and we now

review the way they are inserted in the Sakai-Sugimoto model.

We insert quark flavors in the theory by inserting Nf D8-branes and D8-branes

in the spacetime as in (3.4) (with the bar over the D8 branes indicating that those

branes have opposite charge with respect to the D8 branes) treating them as probe

branes : we suppose Nf << N (that is certainly true in the large N limit), so the
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Brane/Coordinate 0 1 2 3 (4) 5 6 7 8 9

D8-D8-brane ◦ ◦ ◦ ◦ − ◦ ◦ ◦ ◦ ◦

Table 3.4: D8-D8 brane configuration.

contribution of the probe branes on the metric of spacetime (called backreaction)

can be considered negligible. For now, we concentrate on the embedding of a single

D8 brane, that is entirely specified by a function U(τ). This function can be used

to minimize the area of the branes, inserted in the background (3.3.1). Pulling the

background metric on the brane, we have

g|8 =

(
U

R

) 3
2

ηµνdx
µdxν +

((
U

R

) 3
2

f(U) +

(
R

U

) 3
2 U ′

f(U)

)
dτ 2 +R

3
2U

1
2dΩ4,

(3.3.6)

where U ′ is the derivative of U with respect to τ . The DBI action with just the

metric pullback is given by the determinant of g|8 through (integrating all compact

degrees of freedom but τ)

SDBI ∝
∫
e−φ
√
|g|8|d4xdτ ∝

∫
U4

√
f(U) +

(
R

U

)3
U ′2

f(U)
d4xdτ. (3.3.7)

We can determine U(τ) by minimizing SDBI . The motion equation is easily found,

as the coordinate τ does not explicitly appear in the integrand. Assuming bound-

ary conditions U(0) = U0 and U ′(0) = 0, we can implicitly write the solution

as

τ(U) = ±U4
0 f(U0)

1
2

∫ U

U0

dx(
x
R

) 3
2 f(x)

√
x8f(x)− U8

0 f(U0)
. (3.3.8)

Let us analyze the solution. By taking its derivative, we have

τ ′(U) = ±
(
U

R

)− 3
2

f(U)−1 U4
0 f(U0)

1
2√

U8f(U)− U8
0 f(U0)

. (3.3.9)

Let us analyze U0 = UKK . In this case, the derivative τ ′(U) is null for every

U , so the embedding solution τ(U) must be constant. The integral τ(U) is ill

defined when U0 = UKK (as the factor multiplying the integral goes to zero, but

the integral diverges), so we change variables as

y(x) =
f(x)

f(U0)
, x(y) =

UKK

(1− f(U0)y)
1
3

. (3.3.10)
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In those coordinates, the integral is written as

τ(U) = ± R
3
2

3UKK

∫ f(U)
f(U0)

1

x
5
2 (y)

y

√(
x(y)
U0

)8

y − 1

dy. (3.3.11)

Now the integral is well defined for each value of U0, including UKK : in that simple

case, we have f(U0)→ 0, so the integral goes from 1 to ∞ and the function x(y)

acquires constant value UKK . We can, in this case, explicitly compute the integral,

obtaining

τ(U) = ± πR
3
2

3U
1
2
KK

= ±δτ
4
. (3.3.12)

To have a stable embedding, we must assign constant value to the angular coordi-

nate τ of the flavor branes. We choose to embed the D8 branes to have τ = δτ/4

and, for the D8 branes, τ = −δτ/4. In this configuration, the branes are antipodal,

joining at U = UKK .

We should check the stability of this configuration with respect to small os-

cillations, but we just refer to the calculation in [40].

3.3.3 Open strings on the branes

We now study the possible excitations of the branes that we have placed,

starting with the excitations of the color brane. Strings starting and ending on the

color brane give rise to an U(N) gauge field, A, its gauginos λ and λ̄ transforming in

a spinorial representation of SO(5) and a set of five scalar fields, φi, transforming

in the fundamental representation of SO(5). The gauge field A is furthermore

divided in its Minkowski part Aµ, transforming as a vector in SO(3, 1), and an

additional A4, scalar under SO(3, 1), and also scalar under the gauge group when

we consider gauge transformations independent of the compact coordinate.

Here the role of the compact S1 becomes clear. By imposing antiperiodic

boundary conditions for the fermionic fields on the coordinate S1 and Fourier

expanding as in section (3.2.2), we have that every component arising from the

reduction of the gaugino gets a mass of order MKK . As the supersymmetric part-

ners of the gauge fields become massive, the boundary conditions on S1 completely
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break supersymmetry, and for energies E < MKK the contribution from the gaug-

inos is negligible. The scalar fields φi can get massive from loop corrections, while

the potential A is protected by gauge symmetry from becoming massive in the

renormalization process (with the exception of the extra component A4). Thus,

considering only the color branes, the resulting theory (at low energy) is a pure

U(N) Yang Mills theory.

Quark flavors are added as strings with an end on the color branes and the

other on one of the flavor branes. As analyzed in [45], D4-D8 branes give rise to

two different fermions with different chirality, a fermion index (representing the

flavor brane on which one side of the string ends) and a color index (representing

the freedom of choosing a color brane for the other side of the string), while D4-D8

strings give rise to two other fields that can be interpreted as the antifermions.

Imposing the GSO projection, we are left with a left-handed quark field from D4-

D8 strings, qfL, and a right-handed quark field from D4-D8 strings, q̄fR. Both quark

fields are in the scalar representation of SO(5).

As argued in [40], D8-D8 strings are massive, due to the brane separation at

any U > UKK , so we can ignore them in the low energy limit. We’re left with the

excitations of the flavor branes: restricting only to bosonic excitations, we get a

gauge field A on each brane, for gauge group U(Nf ), and the quarks that arise

from color-flavor strings are charged in the fundamental representations of the

appropriate U(Nf ). Those two independent symmetries will be studied in detail

next section, where we will see how they give rise to the U(Nf )L×U(Nf )R global

symmetry.

3.3.4 Gauge fields on flavor branes

We now turn our attention to the excitations of the flavor branes. First, we

describe a coordinate change that will be useful in this section.

Let us restrict to the (U, τ) subspace. We can see those coordinates as coor-

dinates on a plane, where U represents distance from origin and τ the polar angle.

There is a peculiarity, though: U has a lower limit UKK > 0. We then make a new

radial coordinate r and rescale the angle τ to have a period of 2π through

U3 − U3
KK = UKKr

2, θ =
2π

δτ
τ. (3.3.13)
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Field U(N) SO(5) SO(3, 1) U(Nf )L U(Nf )R
Aµ adj 1 (1

2
, 1
2
) 1 1

qfL fund. 1 (1
2
,0) fund. 1

q̄fR fund.∗ 1 (0, 1
2
) 1 fund.∗

Table 3.5: Fields of the model and their charge under the transformations. We

indicate as U(Nf )L and U(Nf )R the gauge groups that arise from the symmetry

of the D8 and D8 branes, respectively. SO(5) parametrizes transformations that

are transverse to the D4 brane, while U(N) is the gauge group for color brane

symmetry. A ∗ symbol indicates conjugate representation. We do not indicate

gauge fields on the flavor branes, as we’ll study them in detail in the next section.

Note that, as SO(5) is not a QCD symmetry, we want all phyisical fields to be

scalars under the group.

Then, we can introduce Cartesian coordinates y and z through

y = r cos θ, z = r sin θ. (3.3.14)

The metric of the (U, τ) plane becomes

g|8,(U,τ) =
4

9

(
R

U

) 3
2
(
UKK
U

dr2 + r2dθ2

)
= (3.3.15)

4

9

(
R

U

) 3
2

((1− h(r)z2)dz2 + (1− h(r)y2)dy2 − 2h(r)zydzdy)

with

h(r) =
1

r2

(
1− UKK

U

)
. (3.3.16)

The embedding of the D8 and D8 branes translates, in those coordinates, to y = 0,

as τ = δτ/4 corresponds to θ = π/2. This makes the embedding simpler, and the

metric on the z line is obtained by restraining the previous metric to y = 0, so

z = r. Lastly, we define Uz(z) = (U3
KK + UKKz

2)
1
3 . We note that the coordinate

z spans from −∞ to ∞ and the point z = 0, corresponding to U = UKK , is the

point at which the branes join: in the upper space we embed the D8-brane, while

in the lower space we embed the D8 brane (coherent with the fact that the first

brane is at angle θ = π/2, the second one is at angle θ = −π/2).

We now write the DBI action for the D8 brane, making use of the new

coordinates. We define T = 1/((2π)8l9S) and T̃ = (2/3)R3/2U
1/2
KKTV4g

−1
S . As we’re
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working with a non abelian gauge theory (with gauge group U(Nf )), we have to

generalize (2.2.79) in the case where many coincident strings are placed in the

spacetime. This is naturally done by introducing the symmetrized trace, defined

as

S Tr(A1...AN) =
1

N !
Tr(A1...AN + all permutations). (3.3.17)

Using the symmetrized trace, we rewrite the DBI action as (the integral on z runs

over all positive values, up to ∞)

SD8,DBI = −T
∫
e−φS Tr

(√
| det(g|8 + 2πl2SF )|

)
d4xdzdΩ4. (3.3.18)

We rewrite the metric on the D8 brane, with the z coordinate:

g|8 =

(
U

R

) 3
2

ηµνdx
µdxν +

4

9

(
R

U

) 3
2

(1− h(z)z2)dz2 +R
3
2U

1
2dΩ4. (3.3.19)

We can expand in terms of the gauge field A. This field has 9 components, as it

lives on the D8 brane: the Minkowski part Aµ, the holographic component Az and

the components on S4, Aα, with α spanning the remaining indices. We want all

our fields to be SO(5) singlets after Kaluza-Klein reduction, so we impose Aα = 0

and require that all of our fields depend only on the coordinates (xµ, z). We can

expand the action and perform the sphere integral, obtaining

SD8,DBI = −2π2T̃ l4S

∫
R3

Uz
tr(F µνFµν) +

9

2

U3
z

UKK
tr(F µ

zFµz)d
4xdz. (3.3.20)

We see that the DBI part is equivalent to a Yang-Mills theory in warped space. We

now use our dictionary (3.3.4) to write constants in terms of Yang-Mills constants.

We also remove our dimensionful units. As explained in [41], we can set

2

9
M2

KK l
2
S = λ−1 (3.3.21)

and then set MKK = 1: this determines the other constants, through

UKK = 1, R3 =
9

4
,

1

gSl3S
=

4π

9
N. (3.3.22)

In those simple units, we can write the action as (defining H(z) = (1 + z2)
2
3 )

SD8,DBI = − λN

216π3

∫
1

2
H(z)−

1
2 tr(FµνF

µν) +H(z)
3
2 tr(FµzF

µ
z)d

4xdz. (3.3.23)
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We are also interested to Chern-Simons terms that can arise from the interaction

with the form C3. From the Chern Simons term (2.2.81), the coupling (generalized

to N coincident strings) is5

SD8,CS =
1

48π3

∫
D8

C3 tr
(
F 3
)
. (3.3.24)

This integral can be computed by defining ω5(A) such as dω5(A) = Tr(F 3). By

explicit computation, ω5(A) can be written as

ω5(A) = tr

(
F 2A− 1

2
FA3 +

1

10
A5

)
. (3.3.25)

We can then use Stokes to write the integral as6

SD8,CS =
N

24π2

∫
ω5(A). (3.3.26)

We have performed the integral on the angular variables through (3.3.1) and the

F independence from the angular coordinates, so the integral is on the Minkowski

spacetime and the coordinate z. A problem arises when noting that ω5(A) is not

gauge independent: we postulate that ω5(A) takes this form when we choose a

gauge where A falls off to 0 when z → ±∞.

This is the action that we will need in this work. In principle, other forms

could couple through CS terms, but we will neglect them. The action for the gauge

field on the flavor branes acquires the form

SD8 =− N

24π2

(
λ

9π

∫
1

2
H(z)−

1
2 tr(FµνF

µν) +H(z)
3
2 tr(FµzF

µ
z)− ω5(A)d4xdz

)
.

(3.3.27)

It is interesting to note that we can also write the action more compactly, by

defining the metric on the five dimensional space (x, z)

g = H(z)ηµνdx
µdxν +

1

H(z)
dz2 (3.3.28)

5We are here normalizing our CS term differently with respect to (2.2.81). We won’t pause

on this normalization, that is explained in Appendix A of [40].
6Actually, there are problems of definition for (3.3.24) when F4 has a nontrivial flux. The

integral after Stokes (3.3.26) is always well defined, so we should really take it as definition of

the Chern Simons term.
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In this five-dimensional space, we revert to our standard notations with capital

Greek indices: the action is

S = − Nλ

216π3

∫ √
|g|1

2
tr
(
FΓ∆F

Γ∆
)
d4xdz +

N

24π2

∫
ω5(A)d4xdz. (3.3.29)

This is the action of a pure Yang Mills (gauge group U(Nf )) in warped space

with metric (3.3.28), plus a topological Chern Simons term. We have analyzed the

excitation of the D8 gauge field, with z > 0, and we can repeat the analysis for the

D8 field, with z < 0: the complete action is then (3.3.29), with the z integration

running from −∞ to ∞. The two fields join at the branes joining point z = 0.

3.3.5 The pion in the Sakai-Sugimoto model

We now illustrate how the Sakai-Sugimoto model can be used to build an

effective theory of baryons and mesons, making a phenomenological model of low

energy QCD. We will see that this model is closely related to the Skyrme model,

and phenomenological parameters like the pion decay constant can be related to

the gravity side constants.

We start by performing a mode expansion of the potential. We start simple,

from the Nf = 1 case: in this case, the gauge field is Abelian. We expand in terms

of complete sets functions ψn(z) and φn(z), whose properties will be defined later.

Aµ(x, z) =
∞∑
n=1

Bµ,n(x)ψn(z), Az(x, z) =
∞∑
n=1

ϕn(x)φn(z). (3.3.30)

Let us define FΣΞ,B,n = ∂ΣBΞ,n − ∂ΞBΣ,n and consider just the DBI contribution

to the D8-D8 configuration, neglecting the CS term. Let us consider, for now, the

terms containing only the Bµ,n in the action. They read

S = −κ
2

∫ (
1

2
H(z)−

1
2

∞∑
m,n=1

Fµν,B,nF
µν
B,mψnψm+ (3.3.31)

H(z)
3
2

∞∑
m,n=1

Bµ,nB
µ,mψ′nψ

′
m

)
d4xdz.

where κ is the prefactor to the DBI part in (2.2.79), a convention that we will

adopt in this part of this work only to offer better confrontation with our main
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references and ψ′n is just the derivative of ψn. We define the scalar products

(f, g) =

∫ +∞

−∞

f(z)g(z)

H
1
2

dz, < f, g >=

∫ +∞

−∞
H

3
2f(z)g(z)dz. (3.3.32)

so we can rewrite the action as

S = −κ
2

∫ ( ∞∑
m,n=1

1

2
Fµν,B,nF

µν
B,m(ψn, ψm) +

∞∑
m,n=1

Bµ,nB
µ,m < ψ′n, ψ

′
m >

)
d4x.

(3.3.33)

We now choose our ψn functions to have κ(ψn, ψm) = δnm. We also impose that

the ψn solve the equation

H
1
2∂z(H

3
2∂zψn(z)) + k2

nψn(z) = 0 (3.3.34)

for some numbers kn. This way, by partial integration, we can see that

δnm = κ(ψn, ψm) = κ
< ψ′n, ψ

′
m >

k2
n

. (3.3.35)

Substituting those scalar products, we obtain a Proca action for the fields Bµ. We

now turn on the contribution of the fields ϕn. We impose κ < φn, φm >= k2
nδnm:

with this choice, we can just set φn = ψ′n. The φn obey the differential equation

∂z(H
1
2∂z(H

3
2φn(z))) + k2

nφn(z) = 0. (3.3.36)

There is a subtlety: if we set kn = 0, we see that φn ∝ H−
3
2 is a solution. We also

have that < φ0, φ0 > converges, and it has value π, so we can include φ0 in the

expansion of Az. The right normalization to have κ < φ0, φ0 >= 1 is

φ0 =
1√
κπ
H(z)−

3
2 . (3.3.37)

We note that the primitive of φ0, that would be ψ0 = 2
π

arctan z, still solves

(3.3.34), but does not fall off to infinity and is not normalizable under the scalar

product (ψ0, ψ0), so we cannot include it in the mode expansion.

We can numerically calculate the functions ψn in the following way. Let f(k)

be the asymptotic value for z → +∞ of an even solution to (3.3.34) with k in

place of kn, and let g(k) be the same for odd functions. Searching for normalizable

solutions of (3.3.34) then amounts in finding the zeroes of f(k) and g(k). We plot
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Figure 3.3: Asymptotic functions f(k) and g(k), plotted against k. Their zeroes

indicate a meson mass. We can see the alternation of the zeroes.

those functions in (3.3). The zeroes of f(k) are the entries of kn with n odd, while

the zeroes of g(k) are the entries of kn with n even. In addition, we have to insert

k0 = 0. Equation (3.3.34) becomes then an ordinary PDE, to solve numerically.

To insert the ϕn fields, we must explicitly compute Fµz,B,n, that reads

Fµz,B,n = ∂µϕ0φ0 +
∞∑
n=1

(∂µϕn −Bµ,n)φn. (3.3.38)

We can use the original gauge symmetry to transform Bµ,n → Bµ,n + ∂µϕn, effec-

tively reabsorbing every ϕn but ϕ0, for which no analogous Bµ,0 exists. The final

action reads

S = −
∫ (

1

2
∂µϕ0∂

µϕ0 +
∞∑
n=1

(
1

4
Fµν,B,nF

µν
B,n +

1

2
k2
nBµ,nB

µ
n

))
. (3.3.39)

We can recognize the dynamics of a massless pseudoscalar (due to its parity for

z → −z) field, that can be identified with the pion field, and a tower of heavier

vector meson states.

We are working in a gauge where AΞ fall to zero as z → ±∞. This condition

is preserved by a group of gauge transformations with matrices g(x, z) ∈ U(Nf )

satisfying

lim
z→±∞

g(x, z) = g±(x), lim
z→∞

∂Ξg(x, z) = 0. (3.3.40)
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The U(Nf ) matrices g+ and g− have a clear interpretation in terms of the holonomy

U(x) = P exp

(
i

∫ +∞

−∞
Az(x, z)dz

)
. (3.3.41)

In fact it can be noted that, if we take g± independent of x and, under a transfor-

mation with the matrix function g, the action on the holonomy is

U(x)→ g+U(x)g−1
− . (3.3.42)

This is exactly the U(Nf ) × U(Nf ) transformation in the sigma models of the

pion matrix U . The fact that we generically have g± dependent on x corresponds

to the fact that in the bulk theory global symmetries are represented by gauge

symmetries, and the value at the boundary of the corresponding gauge fields can

be used as an external current for the global conserved currents. Now, we apply

the gauge transformation

h(x, z) = P exp

(
−i
∫ z

0

Az(x, z
′)dz′

)
. (3.3.43)

It can be verified immediately that, after gauge transformation, we have Az =

0. Defining ξ± = limz→±∞ h(x, z), we also have that, in the limit z → ±∞,

Aµ → −iξ±∂µξ−1
± . Now we expand Aµ in terms of the eigenfunctions ψn(z): as

we are dropping the requirement for Aµ to go to zero at z → ±∞, we can insert

ψ0 = 2
π

arctan z in the development. For simplicity, we drop the terms proportional

to ψn with n 6= 0. The expansion, in terms of ψ±(z) = i
2
(1± ψ0(z)), reads

Aµ(x) = A
ξ+
µ,L(x)ψ+(z) + A

ξ−
µ,R(x)ψ−(z), (3.3.44)

where ξ± are the limits of h and the coefficients in the expansion are written in

the form

A
ξ+
µ,L = ξ+Aµ,Lξ

−1
+ + iξ+∂µξ

−1
+ , (3.3.45a)

A
ξ−
µ,R = ξ−Aµ,Rξ

−1
− + iξ−∂µξ

−1
− . (3.3.45b)

From the asymptotics of ψ±, we can see that A
ξ+
L is the limit of the gauge field

for z → +∞, while A
ξ−
R is the limit for z → −∞. There is a nice interpretation

of those fields in terms of the U(Nf )L × U(Nf )R symmetry of the chiral model.

We can perform a transformation on the whole space given by the z independent

matrix l(x), and successively two separate transformations, one for z > 0 and one
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for z < 0, also independent of z and denoted as s±(x). The fields are transformed

as

Aµ,L → g+Aµ,Lg
−1
+ + ig+∂µg

−1
+ , (3.3.46a)

Aµ,R → g−Aµ,Lg
−1
− + ig−∂µg

−1
− , (3.3.46b)

ξ± → hξ±g
−1
± . (3.3.46c)

The interpretation is now clear: AL and AR are the gauge fields that correspond

to the gauge symmetry U(Nf )L×U(Nf )R, that is the dual of the global symmetry

of the chiral models. Those fields are the holographic duals of the flavor currents

JL and JR.

We now set U(x) = ξ−1
+ (x)ξ−(x) and fix residual gauge transformations by

requiring ξ− = 1: then

Aµ(x, z) = U−1(x)∂µU(x)ψ+. (3.3.47)

With this form of the gauge field, we explicitly compute the action in terms of U .

After long but simple calculations, we have

S = −κ
∫

tr
(
A(U−1∂µU)2 +B[U−1∂µU,U

−1∂νU ]2
)
d4x (3.3.48)

with

A =
9

4π
, B =

9

8π4

((
arctan z +

π

2

)2

,
(

arctan z − π

2

)2
)

=
9

8π4
b (3.3.49)

(the numerical integral b can be approximated by 15.25...). We can make the

identifications

f 2
π =

4κ

π
, e2 =

1

32κb
(3.3.50)

to recover the Skyrme model, and introduce a relation between the pion decay

constant fπ and the parameters N and λ from the large N theory. We have then

proved that the decomposition of the gauge field on the flavor branes give rise to

meson dynamics, in particular to the pion dynamics. We did not introduce the

rest of the tower, formed by the analogues of Bµ in the U(Nf ) case, but we just

refer to [40] for that insertion.
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3.3.6 The baryons in the Sakai-Sugimoto model

We conclude this introduction on the Sakai-Sugimoto model by introducing a

concept that will be studied in more detail in the next chapter. In the language of

holographic QCD, baryons are represented by wrapped D4 branes on the sphere

S4 [55]. This picture involves complicate branes configurations, but there is an

alternative description of baryons: from the fact that the action of the flavor branes

can be written as the Skyrme action, and as baryons can be seen as solitons in the

Skyrme model, it is tempting to identify instantonic configurations of the gauge

fields on the flavor branes with the holographic duals of baryons.

A wrapped D4 brane has a charge, indicating the wrapping number around

the sphere. Let this number be n, and R4 the subspace (x1, x2, x3, z): as argued

in [15], this number is related to the instantonic charge of the field on the flavor

branes as

n =
1

8π2

∫
R4

tr(FIJFKL)εIJKL = B[A]. (3.3.51)

As A, we take the gauge field of the unbroken U(Nf )V vector symmetry. By

dividing A = Ainst + a1, where Ainst is an instantonic configuration of charge n

and a is an U(1) perturbation, we get from the Chern Simons term in the D8

action

S = nN

∫
R
a. (3.3.52)

This action has an immediate interpretation. The form of the action is similar to

the electromagnetic coupling to a point like particle, where the integral is taken on

the world line of the particle: under the U(1)V group, our configuration has charge

nN . A single quark has charge 1, and it takes N quarks to form a baryon: the

interpretation of the instanton of charge n as representing an n baryons system is

then supported by this calculation. Furthermore, as tr(FIJ ∗ FIJ) = dω3(A), with

ω3(A) = tr

(
AF − 1

3
A3

)
(3.3.53)

and using the limits from the previous section

lim
z→+∞

Aµ(x, z) = U−1∂µU, lim
z→−∞

Aµ(x, z) = 0, (3.3.54)
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we can express the charge as

n =
1

8π2

∫
∂R4

ω3(A)|z=+∞ = − 1

24π2

∫
R3

tr
(
U−1dU

)3
, (3.3.55)

as the topological charge (and, consequently, the baryon number) is expressed in

the Skyrme model.

Studying baryons in the Sakai-Sugimoto model corresponds then to the prob-

lem of identifying the topological sectors of the gauge theory on the flavor branes,

and then finding explicit, classical solutions. Unfortunately, due to the geometry

of the space, this is a difficult task, and only approximate solutions are known even

for the sector of charge 1, as we cannot even use the standard technique of radial

symmetry [10,23,24]. In the next chapter, we will present the modern calculations

on the charge 1 sector, and then we will begin the study of the charge 2 sector,

that should contain interesting physical phenomena, as the binding of proton and

neutron in the formation of the deuteron.
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Chapter 4

Sakai-Sugimoto solitons

In the previous chapter, we have found a possible candidate for an holographic

dual of QCD, the Sakai-Sugimoto model. We have also exhibited a low energy ac-

tion for the gauge field on the flavor branes ((3.3.29)) and we have also found

that we can identify the dual of baryons in QCD as instantonic configurations

of that gauge theory. In this chapter, we explicitly study the low energy action

(3.3.29), concentrating on solitonic solutions of the theory. We state that states

of the approximate quantum mechanical system obtained from moduli space ap-

proximation can be identified with physical baryons, as explained in (1.4). The

chapter is organized in a brief review of the works in [10,24] where the sector with

topological charge 1 is studied both classically and quantum mechanically. Those

results will be used in the second part, where we begin the study of the sector of

charge 2, by gluing together two solutions at large spatial distances and find an

interaction potential between the two objects. This potential is proposed as an

interaction potential between nucleons, and the system is quantized to show that

in the spectrum there is a state with the same quantum numbers of the deuteron

that has minimal energy, with a quantization scheme that is parallel to the scheme

used in [11, 12]. We use the quantum model to confront our potential with the

one obtained in [26] through a different approach. Lastly, we use our quantum

model to give physical predictions about the binding energy of the deuteron in

our model, comparing with experimental results, and we give some indications

about how the analysis can be generalized for topological sectors of arbitrarily

high charge, provided that the single instantons are located at the appropriate

distances.

113
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4.1 Topological sector of charge one: the baryon

4.1.1 Classical solution

We start by following [10, 24], studying the field theory of action (3.3.29) at

a classical level and the moduli space of the instantonic solution. We temporarily

adopt the convention to call the gauge field Ã and its associated strength tensor

as F̃ . In those terms, we are studying a field theory

Ã : R → su(Nf ), (4.1.1)

where R has the topology of R4|1, and metric

g = H(z)ηµνdx
µdxν +

1

H(z)
dz2, (4.1.2)

where H(z) is

H(z) =

(
1 +

z2

U2
KK

) 2
3

. (4.1.3)

As in [41], we work in units of MKK (that does not explicitly appears in the gauge

theory): with this choice of units, we have UKK = 1. From now on, we adopt

those units. The action is given by

S = − Nλ

216π3

∫ √
|g|1

2
tr
(
F̃Γ∆F̃

Γ∆
)
d4xdz +

N

24π2

∫
ω5(Ã)d4xdz. (4.1.4)

It is interesting to note that N is an overall multiplicative constant: the classical

theory is thus completely independent of N , and quantum corrections are always

negligible when we take N to infinity.

We want to find static solutions of this theory. To do so, we divide the field in

two components: an abelian component Â and the non abelian part A and doing

the same for the field strength, as

ÃΓ = AΓ +
1

Nf

ÂΓ, F̃ΓΞ = FΓΞ +
1

Nf

F̂ΓΞ. (4.1.5)

We rescale the action as

S =
216π3

Nλ
S (4.1.6)
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and define the coupling

Λ =
8λ

27π
. (4.1.7)

Furthermore, we restrict to Nf = 2 for simplicity. The rescaled action reads

S =

∫ (
− 1

4H
1
2

F̂µνF̂
µν − H

3
2

2
F̂µzF̂

µz − 1

2H
1
2

tr(FµνF
µν)−H

3
2 tr(FµzF

µz)

)
d4xdz+

+
1

Λ

∫ (
ÂΓ tr(F∆ΣFΞΦ) +

1

6
ÂΓF̂∆ΣF̂ΞΦ

)
εΓ∆ΣΞΦd4xdz. (4.1.8)

The term in the second line is the Chern-Simons term, up to total derivatives. We

now perform the static ansatz: we choose

AI = AI(xJ), A0 = 0, ÂI = 0, Â0 = Â0(xI). (4.1.9)

that is, we remove all dependence from time coordinates, the time part of the non

abelian gauge potential and the space part of the abelian gauge potential. In this

ansatz, we also suppose that Â0 is not a propagating field, but a constrained field

fixed by the equations of motion. With this ansatz, the action reads

S =

∫ (
1

2H
1
2

(∂iÂ0)2 +
H

3
2

2
(∂zÂ0)2 − 1

2H
1
2

tr
(
F 2
ij

)
−H

3
2 tr
(
F 2
iz

))
d4xdz+

+
1

Λ

∫
Â0 tr(FIJFKL)εIJKLd

4xdz. (4.1.10)

and the motion equations are (where D is the covariant derivative with respect to

the field A)

1

H
1
2

DjFji +Dz(H
3
2Fzi) =

1

Λ
εiJKLFKL∂JÂ0, (4.1.11a)

H
3
2DjFjz =

1

Λ
εijkFjk∂iÂ0, (4.1.11b)

1

H
1
2

∂i∂iÂ0 + ∂z(H
3
2∂zÂ0) =

1

Λ
tr(FIJFKL)εIJKL. (4.1.11c)

The last equation defines Â0 as the non homogeneous solution of the equation,

obtained through convoluting the Green function of the LHS operator with the

RHS. We will come to this point explicitly.

The presence of a gauge field used to stabilize a soliton is not a peculiarity of

this model, and it has been amply studied as an alternative term used to stabilize
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the Skyrmion (where the interaction is added ad hoc). See [1, 46] for examples

about that problem, and [18] for an example of a Baby Skyrmion stabilized by a

similar interaction.

To have a finite action solution, the non abelian gauge field must approach

pure gauge configuration on the sphere at infinity, S3
∞:

AI(x
I)|S3

∞ = g∂Ig, g : S3
∞ → SU(2). (4.1.12)

As π3(SU(2)) = Z, we have a discrete (but infinite) number of topological sectors,

labeled by the topological charge

B =

∫
B0(x, z)d3xdz = − 1

32π2

∫
tr(FIJFKL)εIJKLd

3xdz (4.1.13)

that assumes integer values. We have an additional constrained field, Â0, that

can be interpreted as an electrostatic potential for the electric field F̂0I = −∂IÂ0,

sourced by the topological charge.

We want to find a solution for the B = 1 sector. We assume a central ansatz

AI = AI(ρ), with ρ =
√
xIxI , even if the curvature along the z direction explicitly

breaks invariance for translations along z. We make the ’t Hooft ansatz: defining

σij = εijkσk, σzi = σi, σIJ = −σJI , (4.1.14)

we can try the ansatz

Â0 = a(ρ), AI = −σIJ∂Jb(ρ). (4.1.15)

We now have to explicitly plug ansatz (4.1.15) in the topological charge (4.1.13)

to impose the constraint B = 1 (that will give boundary conditions for b), and

then we can minimize the action with fields of this form. The full solution can be

found in [10], here we just cite the results. The appropriate boundary conditions

are

lim
ρ→∞

ρ2b(ρ) = 1, b′(0) = 0. (4.1.16)

a(ρ) is obtained from b(ρ) through equation (4.1.11c). Inserting the ansatz in the

action and developing in order of 1/Λ, we see that, at order Λ0 in the scaled action

and neglecting warp factors, we have the same action of the instanton. We can

then find b(ρ):

b(ρ) =
1

Λ(ρ2 + µ2)
, (4.1.17)
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where µ2 represents the instanton size. Up to Λ−2, the rescaled energy E = −S is

given by

E = 2π2

(
4 +

2

3
µ2 +

256

5Λ2µ2

)
+ o(Λ−2). (4.1.18)

Now we note the first difference from the classical instanton: the instanton size

was a modulus of the solution, and the energy was independent from it. In this

case size matters: the metric corresponds to a gravitational field, for which the

equilibrium position is z = 0. The energy of the instanton then grows with its size,

and with the gravitational effect alone the instanton becomes pointlike and placed

at z = 0. The second term in the energy represents the influence of gravity. The

instanton would shrink to zero size, would it not be for the Chern-Simons term: the

abelian field Â0 acts as an effective electric potential, and as the topological charge

density is positive everywhere the net effect of the electric field is to expand the

graviton, giving the third contribution to the energy. Those two effects combine

to give an instanton of definite size, with

µ =
4√
Λ

(
3

10

) 1
4

. (4.1.19)

µ ceases to be a modulus. a is given by

a(ρ) =
8

Λ

ρ2 + 2µ2

(ρ2 + µ2)2
. (4.1.20)

In normal units, the soliton has energy (that we interpret as rest mass)

E = M0 =
NΛ

8
+

√
2

15
N. (4.1.21)

We now turn our attention to the moduli space. We have explicit transla-

tional invariance along the xi coordinates, so we have three moduli X i, indicating

the position of the instanton in physical space. Translations along the holographic

direction z are not a symmetry, so the position Z is not a modulus, neither is the

instanton size µ, fixed to a specific value. We also have global gauge transforma-

tions, that do not fall off to zero at infinity. We get as moduli space

M = R3 × SU(2) (4.1.22)
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The calculation of the metric on the moduli space is similar to the standard cal-

culation for the standard YM instanton. It reads

g|M = dxidxi + 2µ2dΩSU(2), (4.1.23)

where dΩSU(2) is the standard SU(2) metric. Actually, in [24] the instanton size

µ and the coordinate along the z direction are considered as approximate moduli,

and the appropriate potentials obtained from small modifications of µ and z from

their equilibrium values are calculated (as an example, the potential for µ is given

by the second two terms in (4.1.18)). In the same reference, it is argued that the

masses of those modes are expected to be of order Λ0, so their contribution can

become important when extrapolating Λ to physical values, so a quantization of

those modes is necessary to confront physical values. We will not pursue this road,

as their quantization is way more difficult in the topological sector of charge 2.

We will leave this issue for a future analysis.

4.1.2 The linear approximation

We now perform an expansion in 1/Λ of the gauge potential that we have just

obtained. The objective is to find an expression for the fields and the equations

of motion (4.1.11a), (4.1.11b) and (4.1.11c) and identify the linear region of the

soliton, the region of space where we can approximate the gauge potential with its

first term in the 1/Λ expansion. As before, we take the results from [10], giving

just a review of the facts that we will need to compute the interaction potential

between two instantons.

We define the 1/Λ approximation through

AI = A
(1)
I + A

(2)
I + ... (4.1.24)

where each term A
(n)
I is of order 1/Λn. We are interested in the motion equations

for the field A
(1)
I . In the linear zone (that is given by ρ > 1/

√
Λ as argued in [10]1)

we can take only the A
(1)
I contributions to the action and the equations of motion,

1Actually, in the cited article the authors note that the linear approximation is valid up to

ρ < ln Λ: in the region ρ > ln Λ the contributions A
(n)
I with n > 1 become more important than

A
(1)
I , so the linear approximation breaks down in that region. We will consider the situation

where Λ >> 1 and neglect that zone.
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effectively linearizing the system. The RHS sides of the motion equations are

0 in the linear region, but their contribution is not trivial: as an example, the

RHS of the third equation is proportional to the topological charge density, and

its integral on the whole space is not vanishing. Before proceeding, we divide the

field Ai = A+
i +A−i , where the superscript indicates parity with respect to z → −z:

the Az part is an even function, in the gauge where the core potential has been

obtained, so Az = A+
z . Restricting to the order 1/Λ terms in the motion equations

(and dropping the (1) superscript), we have

∂i∂i

H
1
2

Â0 + ∂z(H
3
2∂zÂ0) = source1, (4.1.25a)

∂j∂j

H
1
2

A+
i + ∂z(H

3
2∂zA

+
i ) = source2, (4.1.25b)

H
3
2 (∂i∂iA

+
z − ∂i∂zA−i ) = source3, (4.1.25c)

∂j∂jA
−
i − ∂j∂iA−j
H

1
2

− ∂z(H
3
2 (∂iA

+
z − ∂zA−i )) = source4. (4.1.25d)

where the source terms are delta functions or derivatives, centered in (x, z) = (0, 0).

By developing the core solution to first order in 1/Λ, we obtain explicit expressions

for Â, AI and use them to calculate the source terms.

To do that, we use the functions defined in (3.3.34), (3.3.36). We change the

normalization of the functions in order to have a normalization that is independent

of N and Λ, by imposing ψn(0) = 1 for n odd or ψ′n(0) = 1 for n even, where the

prime is the derivative with respect to z. Obvioulsy, the derivatives φn(z) =

∂zψn(z) follow opposite boundary conditions. Their normalization now reads

(ψn, ψm) = cnδnm, < φn, φm >= dnδnm. (4.1.26)

where cn and dn have to be determined numerically. As k2
n(ψn, ψm) =< ψ′n, ψ

′
m >

we have k2
ncn = dn. The only particular value is the norm of φ0(z) = H−

3
2 (z):

we have d0 = π, while c0 is divergent. With this normalization, the completeness

relations are
∞∑
n=1

ψn(z)ψn(z′)

H
1
2 (z)cn

= δ(z − z′),
∞∑
n=1

H
3
2 (z)

φn(z)φn(z′)

dn
= δ(z − z′). (4.1.27)

We define, following [23]

G(x, z, x′, z′) = − 1

4π

∞∑
n=1

ψn(z)ψn(z′)

cn

e−kn|x−x
′|

|x− x′|
, (4.1.28a)
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L(x, z, x′, z′) = − 1

4π

∞∑
n=0

φn(z)φn(z′)

dn

e−kn|x−x
′|

|x− x′|
. (4.1.28b)

Those functions can be used as Green functions for the operators in the left

hand sides of the motion equations, as they obey (with the functions evaluated in

(x, z, x′, z′))

∂i∂i

H
1
2 (z)

G+ ∂z(H
3
2 (z)∂zG) = δ3(x− x′)δ(z − z′), (4.1.29a)

∂i∂iL− ∂z∂′zG = δ3(x− x′)δ(z − z′), (4.1.29b)

∂z(H
3
2 (z)L) +H−

1
2 (z)∂z′G = 0. (4.1.29c)

We now take the linear approximation to the core solution from [10]. In terms of

the functions G and L, they can be written as

Â0(x, z) = −32π2

Λ
G(x, z, 0, 0), A+

i (x, z) = −2πµ2εijkσk∂jG(x, z, 0, 0),

(4.1.30a)

A−i (x, z) = −2πµ2σi∂z′G(x, z, 0, z′)|z′=0, A+
z (x, z) = −2πµ2σi∂iL(x, z, 0, 0).

(4.1.30b)

We now apply the operators of the linear motion equations, obtaining the form of

the source terms:

∂i∂i

H
1
2

Â0 + ∂z(H
3
2∂zÂ0) = −32π2

Λ
δ3(x)δ(z), (4.1.31)

∂j∂j

H
1
2

A+
i + ∂z(H

3
2∂zA

+
i ) = −2πµ2εijkσk∂jδ

3(x)δ(z), (4.1.32)

H
3
2 (∂i∂iA

+
z − ∂i∂zA−i ) = −2πµ2σi∂iδ

3(x)δ(z), (4.1.33)

∂j∂jA
−
i − ∂j∂iA−j
H

1
2

− ∂z(H
3
2 (∂iA

+
z − ∂zA−i )) = 2πµ2σiδ

3(x)∂zδ(z). (4.1.34)

We can generalize the linear form with an arbitrary SU(2) phase G and an arbi-

trary R3 position, X: this is done by substituting G(x, z, 0, 0) with G(x, z,X, 0)

(and analogous for L), and every occurrence of the Pauli matrices σi with GσiG
†.

We will use the linear form of the fields and the values of the motion equations

when calculating the interaction potential.
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4.1.3 Quantum model

We now write an effective zero mode lagrangian for the Sakai-Sugimoto in-

stanton, that will give us a description of the baryon in our model. As stated, the

moduli space is

M = R3 × SU(2), (4.1.35)

with metric

g|M = dX idX i + 2µ2dΩSU(2). (4.1.36)

The zero mode lagrangian is then given by (in non scaled units)

L =
1

2
M0Ẋ

iẊ i +M0µ
2ωiωi −M0, (4.1.37)

where ωi represent the angular velocity on SU(2), ωi = −i tr
[
G†Ġσi

]
. We have

the same Lagrangian and moduli space as in section (1.4), so the quantization

scheme is the same. We define canonical momenta

P i = M0Ẋ
i Ji = 2M0µ

2ωi, (4.1.38)

and write the Hamiltonian as

H =
P iP i

2M0

+
JiJi

4M0µ2
+M0. (4.1.39)

We impose canonical commutation relations

[X i, P j] = iδij [G, Ji] = −iiσi
2
G, (4.1.40)

with all other commutator vanishing: we then write a generic ket state as

|ψ〉 =
∣∣pi, j,ml,mr

〉
, (4.1.41)

with pi impulse, j assuming only semi-integer values to quantize the instanton as

a soliton and ml and mr being interpreted, respectively, as isospin and spin of the

particle. In the rest frame of the instanton, pi = 0, the energy eigenvalues are

E1 =
j(j + 1)

4M0µ2
+M0. (4.1.42)
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We identify proton and neutron states as the lowest energy states, with j = 1/2:

their mass is given by

E1,pn = M0 +
3

16M0µ2
. (4.1.43)

The proton is identified as the particle with isospin up, while the neutron has

isospin down. States with an higher value of j (always being semi integer) give

heavier baryons: as an example, we identify states with j = 3/2 with the ∆ states.

(4.1.42) can be taken as a baryon mass formula, giving the mass of the baryonic

states in our model. Some comments are in order. As M0 ∝ N , we get the right

dependence from the number of colors, and the baryon is infinitively massive in the

approximation N →∞. Quantum corrections due to the spinning are subleading,

of order N−1, and they correctly become neglectable when N → ∞, as expected

from the fact that N multiplies the action. M0 is also proportional to Λ: when

Λ→∞, the interaction of the gauge field Â0 with the topological charge becomes

weak (as the relative term is multiplied by Λ−1). In this case, the soliton size

shrinks to zero (as the electric field does not contrast the shrinking anymore) and

we get an infinitively massive point-like instanton.

4.2 Topological sector of charge two

4.2.1 The interaction potential

We now perform the main calculation of this thesis, the holographic potential

between nucleons. To do so, we place the instantons with their cores distanced,

with a distance R greater than 1/Λ, but we set both holographic coordinates for

the two instantons to zero to minimize the energy. We write the single instanton

fields by writing the first one as in (4.1.30b),(4.1.30a) and writing the second one

by translating it to (R, 0, 0) and assigning an arbitrary phase matrix G.

In figure (4.1), we picture the situation. We call Ãp the gauge field centered

in the origin, (0, 0, 0), and Ãq the gauge field centered in (R, 0, 0). Due to the

distance of the fields, we can take the gauge field in the whole space to be Ãp+ Ãq:

in the P region, Ãq is small and can be considered as a small perturbation, while

the opposite situation happens in Q. There is a zone contained within Q (that we
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P
R

Q

Figure 4.1: Soliton configuration for the charge two sector: the soliton location is

indicated by the dots. The shaded region, called P , is where we can approximate

the field to the core field, studied previously. The radius of P is greater than 1/Λ

so the border of the region lies in the zone where we can approximate the field

with its linear approximation. It is also assumed that the distance is greater than

2/Λ: this way, we can consider the contribution of the field centered in (R, 0, 0) as

a linear perturbation to the field sourced by the instanton in the origin. On the

border of P , the linear approximation holds for both instantons.

do not need to specify) where both fields are weak, and can be approximated by

their linear form.

The energy of the configuration can be found by using the fact that the B = 2

field can be approximated by the sum of two B = 1 fields, and one of the coefficients

of the sum can always be taken as a linear perturbation. We start by writing the

scaled energy, through an integration by parts:

E =

∫ (
1

2H
1
2

tr
(
F 2
ij

)
+H

3
2 tr
(
F 2
iz

)
− 1

2
Â0

(
∂i∂i

H
1
2

+ ∂z(H
3
2∂z)

)
Â0

)
d3xdz.

(4.2.1)

In the integration by parts, we have used the fact that the functions Â0 are sup-

posed to vanish at the boundaries fast enough for the energy to be finite. We

split this integral in two: we will see that the first two terms (called E1) give the

dipole interaction contribution, while the last one (called E2) gives a monopole

interaction.
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Let us start with the evaluation of the monopole term

E2 = −
∫

1

2
Â0�Â0d

3xdz, (4.2.2)

where � is the Laplace-Bertrami operator, that is the operator between the Â0’s

in (4.2.1). In our approximation, we can divide the topological charge density as

B0 ' B0,p + B0,q, so we also divide the gauge field in Âp + Âq, such as �Âp =

−(32π2Λ−1)B0,p and similar for Âq. (4.2.2) becomes

E2 = −1

2

∫
(Âp0�Â

p
0 + Âq0�Â

q
0 + Âp0�Â

q
0 + Âq0�Â

p
0)d3xdz. (4.2.3)

The terms Âp0�Â
p
0 + Âq0�Â

q
0 contribute to the self energies of the instanton, and

we are really interested in the cross terms (as we will subtract the self energies

to extract the potential). Let us then take Âp0�Â
q
0 = −32π2Λ−1ÂpB0,q. B0,q is

peaked in the q zone, where Âp must be taken as its linear approximation. We

can then suppose B0,q to be strongly localized in the (R, 0, 0) point, as a delta

function: B0,q ' δ3(x − R)δ(z). In this approximation the topological charge of

the soliton Ãq is still one. Any contribution that tends to enlarge the soliton comes

from the electrostatic field, and is then multiplied by some negative power of Λ: as

we’re keeping the linear order in Λ we can neglect those contributions. With the δ

functions, the integral is easily performed, and we can do that with the other term,

too. Summing everything and removing self energies, we get to the monopole part

of the potential. Using the linear forms of the field, we have

Vmp =
16π2

Λ
(Âp0(R, 0) + Âq0(0, 0)) =

256π3

Λ2

∞∑
n=1

1

c2n−1

e−k2n−1R

R
. (4.2.4)

This is the monopole potential, where only the contribution of kn with odd n

matters. This monopole interaction can be interpreted as a classical analogous of

the exchange potential between the instantons, that interact by exchanging mesons

ω2n−1 with masses k2n−1.

The contribution of the dipole part can be calculated through a trick, similar

to the one used in [38]. Dividing the space in the P and Q region, we split the

integral as ∫
R

=

∫
P

+

∫
Q

. (4.2.5)
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In the P region, we can take as a first approximation the whole gauge field to be

coincident with ApI . Then, we relax this approximation admitting variations of the

form δApI = AqI , always taking the first order in AqI . The integral over the P region

of the unperturbed field is a contribution to its self energy, while the variation of

this energy accounts for the interaction between the instantons, so it is the only

piece that we need. We write the variations that we need:

δF p
IJ = Dp

IA
q
J −D

p
JA

q
I δ

∫
tr(F p

IJF
p
IJ)d3xdz = 4

∫
tr(F p

IJD
p
IA

q
J)d3xdz.

(4.2.6)

Notation is obvious: F p and Dp are the field strength and the covariante derivative

built from ApI . We can do the same in the Q region, interchanging the roles of the

fields. Noting

P
(p,q)
ij =

2F
(p,q)
ij

H
1
2

P
(p,q)
iz = 2H

3
2F

(p,q)
iz , (4.2.7)

we can write

Vdp =

∫
P

tr(P p
IJD

p
IA

q
J)d3xdz +

∫
Q

tr(P q
IJD

q
IA

p
J)d3xdz. (4.2.8)

As the gauge field in the core region goes as 1/Λ for great Λ and so does the linear

approximation, we can approximate the covariant derivative with the usual one.

We can then use Stokes, using the fact that ∂P = −∂Q: we get

Vdp =

∫
∂P

(P p
IJA

q
J − P

q
IJA

p
J)dΓI , (4.2.9)

where dΓI is a normal vector field to ∂P , pointing outwards (remember that P is

a ball in four dimensions). In the region ∂P , both fields take their linear form,

so we can linearize the field strength tensors (neglecting the commutator) and

approximate every A(p,q) with their linear approximations. We use Stokes again

to return inside the P region. Derivatives act only on the field strength, as when

they act on the gauge field the first term cancels the second one. Using the linear

motion equations, we have that ∂IP
q
IJ = 0, as we’re integrating in the P region

and the core of Aq is outside it. Performing the division in parity components, we

have the integral

Vdp =2

∫
P

tr

(
A+,q
i

(
∂j∂jA

+,p
i

H
1
2

+ ∂z(H
3
2∂zA

+,p
i )

))
d3xdz+ (4.2.10)
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+2

∫
P

H
3
2 tr
(
A+,q
z

(
∂i∂iA

+,p
z − ∂i∂zA−,pi

))
d3xdz+

+2

∫
P

tr

(
A−,qi

(
∂j∂jA

−,p
i − ∂j∂iA−,pj

H
1
2

− ∂z(H
3
2 (∂iA

+,p
z − ∂zA−,pi ))

))
d3xdz.

Using motion equations (4.1.32), (4.1.33) and (4.1.34), we get that the operators in

the parentheses applied to the Ap fields give terms proportional to a Dirac delta,

so the integrals are simply done by evaluating Aq at the origin and adding the

necessary constants and derivatives. The first line of the potential reads

Vdp,1 =
256π3

Λ2

6

5

∞∑
n=1

1

c2n−1

(
Miik

2
2n−1R

2 e
−k2n−1R

R3
−Mij∂i∂j

e−k2n−1R

R

)
. (4.2.11)

Here we have used the explicit form of µ2 (4.1.19) to obtain the Λ−2 dependence,

just as with the monopole term. The matrix Mij = Mij(G) is equal to

Mij(G) =
1

2
tr
(
σiGσjG

†). (4.2.12)

This term can be interpreted as a sum of Yukawa dipole interactions between the

two objects, mediated by the infinite tower of mesons ρ2n−1 that have the same

masses as the ω2n−1 mesons. While the monopole interaction is always repulsive,

the dipole interaction depends on the phase matrix G, that is interpreted as the

isorotation that we must perform on the first object to obtain the same isoorien-

tation of the second object. We will give an easy way to visualize the matrix with

the complete potential.

The last part of the potential comes from the last two lines of (4.2.10). They

combine in the term

Vdp,2 = −256π3

Λ2

6

5

∞∑
n=0

1

d2n

(
Miik

2
2nR

2 e
−k2nR

R3
−Mij∂i∂j

e−k2nR

R

)
. (4.2.13)

There are some fundamental differences between Vdp,1 and Vdp,2. The first one is

the overall sign, and the very important difference comes from the fact that we are

also summing a k0 contribution: as k0 = 0, Vdp,2 contains a massless, long range

interaction. The particle that we classically take as the mediator of this long range

interaction is the pion, that is massless in our model. The other mesons, of mass

k2n, are interpreted as a tower of a2n mesons.

Now that we have a final result for the interaction potential, we scale back to

physical units and perform some changes, to have a more general result that we
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will use in the following sections. We denote the coordinates of the first instanton

as (X1, B) and the coordinates of the second instanton as (X2, C), where X are 3-

vectors. We make the change of variables X1,i−X2,i = ri and Ri = (X1,i+X2,i)/2,

as usual in two bodies problem: the potential will only depend on the relative

distance ri. It is also easy to be convinced that G has to be substituted simply by

B†C, indicating the relative orientation of the two objects. We define

Pij(r, k) = δij((rk)2 + rk + 1)− rirj
r2

((rk)2 + 3rk + 3), (4.2.14)

with r on the RHS indicating the modulus of the position vector, and express the

potential as

V (r,B†C) =
4πN

Λ

(
∞∑
n=1

(
1

c2n−1

e−k2n−1r

r
+

6

5

1

c2n−1

Mij(B
†C)Pij(r, k2n−1)

e−k2n−1r

r3

−6

5

1

d2n

e−k2nr

r3
Mij(B

†C)Pij(r, k2n)

)
− 6

5π

1

r3
Mij(B

†C)Pij(r, 0)

)
. (4.2.15)

We have separated the pion contribution from the rest of the a meson tower and

explicitly calculated d0 = π.

4.2.2 Looking for a bound state: the classical deuteron

We can obtain a classical description of the deuteron by looking for a mini-

mum configuration, where we choose the coordinates of our instantons to minimize

(4.2.15).

The first thing to do is to calculate the coefficients dn and cn. By taking kn as

in section (3.3.5), we can solve the PDE (3.3.34) and (3.3.36) to find the functions

ψn and φn. Then, we set cn = (ψn, ψn) and dn =< φn, φn > (as a check, we could

verify that k2
ncn = dn).

We now have to choose the relative orientation of the instantons. To do

that, it is useful to use axis-angle notation to write the matrix Mij. As Mij is

an SO(3) matrix, it can be specified by giving two components of a versor, the

axis of rotation n (where the third component is decided from the normalization

of the vector, up to sign) and an angle α, indicating the rotation around the axis

(counterclockwise). We can then express any M through

Mij = cosαδij + (1− cosα)ninj + εijknk sinα. (4.2.16)
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The orientation dependent part is then given by

MijPij(r, k) =

(
1 + cosα− (1− cosα)

(n · r)2

r2

)
(rk)2− (4.2.17)

− (1− cosα)

(
3

(n · r)2

r2
− 1

)
(rk + 1).

We need a negative contribution from the dipole part to contrast the monopole

part. Our best bet is to choose r and α, n to get a positive contribution fromMijPij,

as that would mean that the long range force mediated by the pion is attracting

the two objects, contrasting the potential. We then choose the configuration of

phase opposition, where we choose r and n to be orthogonal and α to indicate an

half rotation: we can choose ri = (R, 0, 0), ni = (0, 0, 1) and α = π, corresponding

to MijPij = 2rk + 2. This corresponds to B†C = ±iσ3: we will choose B = 1

and C = iσ3 as phase opposition configuration. Later numerical analysis with

Mathematica confirmed that the global minimum is attained in phase opposition.

The potential in the phase opposition is plotted against the distance R in figure

(4.2).

Figure 4.2: Attractive channel potential, with N/Λ = 1. We can note the existence

of a local minimum around x = 2: that minimum is also a global minimum.

We will further analyze the potential during the later sections, obtaining phys-

ical results.

We confront our potential with the potential obtained in [26] through con-

sidering an effective QFT of fermions (representing baryons) exchanging bosons

(the mesons) obtained from the Sakai-Sugimoto model, by calculating scatterings
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between the instantons mediated by intermediate mesons at tree level. Note that

there is yet another normalization difference for the functions ψn, φn: in the cited

article (ψn, ψm) = δnm =< φn, φm >. The correct identifications to make are then

(LHS normalized as in this chapter, RHS normalized as in the cited article)

1

cn
= ψn(0)2 1

dn
= ψ′n(0)2. (4.2.18)

We get that the potentials look the same, apart from a numerical coefficient of

three in front of the dipole part: our dipoles are three times as strong as in the

cited article. The reason of this difference will be clarified in the next parts.

4.2.3 Moduli space: the zero mode manifold

We want to identify the manifold of zero modes, the subspace in the twelve

dimensional space M2, parametrized by the coordinates (X1, B,X2, C), on which

the potential assumes a constant value. M2 can be defined by introducing an

alternative notation: we indicate with A(x − X) a B=1 instanton field centered

in X, that is a 3-vector, and with standard isoorientation. In this notation, an

arbitrary field of topological charge 2 in the linear approximation can be written

as

BAI (x−X1)B† + CAI (x−X2)C†. (4.2.19)

The space M2 is defined as the set of field configurations of the form (4.2.19).

This manifold can be defined by using the symmetries of the system. The

symmetry group of the action is

L = R3 × SU(2)I × SU(2)J × P , (4.2.20)

where R3 is the group of space translation, SU(2)I is the global part of the gauge

group, SU(2)J is the double covering of the rotation group SO(3) and P is the

parity operation, that sends x → −x while keeping the holographic coordinate

invariant. Let Ã be any static gauge field: the continuous part of L acts on Ã

according to

Ã(x, z)→ U [M(E)∗Ã(M(E)−1x, z)]U †, (4.2.21)



130 CHAPTER 4. SAKAI-SUGIMOTO SOLITONS

where U ∈ SU(2)I , E ∈ SU(2)J , M is the usual transformation from SU(2) to

SO(3), M∗ is the pullback on the vector field (rotating the fields Ai and leaving

the field Az invariant). The parity operation acts on the fields as

Ãi(x, z)→ Ãi(−x, z) Ãz(x, z)→ −Ãz(−x, z). (4.2.22)

We want to explicitly apply the transformation to the configuration Ap +Aq that

we used to calculate the potential. As the transformation properties of the core

solution and the linear approximation are the same, we can just use the linear

approximation fields: all calculations can be repeated in the core regions.

We start from a minimum energy configuration

ÃI(x) = AI

(
x− R

2

)
+ σ3AI

(
x+

R

2

)
σ3, (4.2.23)

where we define R = (R0, 0, 0) and R0 as the position of the minimum of the

potential in the attractive channel. From the linear approximation, we study the

action of L on the field AI(x−X). The R3 part is trivial: taking a as translation, it

is sufficient to translate x as AI(x−X)→ AI(x−a−X). An SU(2)I transformation

acts in the usual way:

AI(x−X)→ UAI(x−X)U †, (4.2.24)

while an SU(2)J transformation acts as

Ai(x−X)→M(E)ijAj(M(E)−1x−X) Az(x−X)→ Az(M(E)−1x−X).

(4.2.25)

We can do some manipulations to the SU(2)J transformation. When we studied

the skyrmion moduli space in (1.3.2), we saw that an isorotation and a rotation are

equivalent. In that case, we were rotating around the place where the skyrmion was

centered. In this case, our instantons (whose moduli space resembles the skyrmion

moduli space) are not located in the center, so there are some differences. In the

following, M = M(E).

Ai(x−X, z)→ −2π2µ2Mij(εjmlσl∂
M
m + σj∂z′)G(M−1x, z,M−1MX, z′)|z′=0.

(4.2.26)

After transforming, the derivative ∂Mm is with respect to M−1x. Note that we have

multiplied X by identity: by using the fact that G only depends on |x − x′|, we
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can remove M−1. We must then transform the derivative according to

∂Mm =
∂

∂(M−1x)m
=
∂Mka(M

−1x)a

∂(M−1x)m
∂

∂xk
= Mkm

∂

∂xk
= Mkm∂k. (4.2.27)

Then, we substitute in the expression for Ai, obtaining

Ai(x−R, z)→ −2π2µ2(MijMkmεjmlσl∂k +Mijσj∂z′)G(x, z,MX, z′)|z′=0.

(4.2.28)

We can use the fact that ε is an invariant tensor, εijkMaiMbjMck = εabc, by substi-

tuting εjmlMijMkmσl∂m = εijkMklσl∂j. Then, we use Mijσj = E†σiE to obtain

Ai(x−X, z)→ E†Ai(x−M(E)X, z)E. (4.2.29)

The action on Az is the same:

Az(x−X, z)→ −2π2µ2σi∂
M
i L(M−1x, z, 0, 0). (4.2.30)

Working as before, we get

Az(x−X, z)→ E†Az(x−M(E)X, z)E. (4.2.31)

Regarding parity, it is trivial to verify that (remembering that ε takes a minus sign

for the parity operation)

Ai(x−X, z)→ Ai(x+X, z) Az(x−X, z)→ Az(x+X, z). (4.2.32)

The action of the continuous part of G on the fields is then

ÃI(x, z)→UE†A
(
x−M(E)

R

2
, z

)
(UE†)†+ (4.2.33)

+ Uσ3E
†A

(
x+M(E)

R

2
, z

)
(Uσ3E

†)†.

Eventually, parity can be used to change the sign of R
2

. A discrete subgroup of L
forms the isotropy group of Ã. To describe it, we use the notation in [28] (where

a similar analysis in the Skyrme model is given): Oai represents an isorotation

of π around the a-th isoaxis and the i-th spatial axis, while Pai represents the

composition POai. a and i take values 1, 2, 3, and they can eventually take value 0

to indicate no rotation around that axis (e.g., O02 is a pure spatial rotation around

the 2 axis, represented by the matrix E = iσ2 while U takes value 1). It is easily
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verified that P21, P22 and P33 leave ÃI invariant. Those 3, together to the identity

1, generate the stabilizer, that is composed of 8 distinct elements:

H = {1, O11, O12, O03,P30,P21,P22,P33}. (4.2.34)

We have to quotient this stabilizer out. The zero mode manifold is then given

by the orbit of (4.2.23) under the group L/H. As we can obtain the second four

transformations from the first four and parity, we can rewrite this group in a

simpler way: calling V = {1, O11, O12, O03} we have that the previous group is

diffeomorphic to

G = R3 × SU(2)I × SU(2)J/V. (4.2.35)

We can then finally say that the zero mode manifold Z, that is a subset ofM2, is

given by the orbit of (4.2.23) under (4.2.35). Coordinates on Z can be read from

(4.2.34), and they are the two SU(2) matrices (U,E).

We want to build a Lagrangian on this manifold. For each instanton, we derive

its kinetic energy through metric (4.1.23). In our usual coordinates (X1, B,X2, C)

and defining angular velocities ωB,i = −i tr
(
B†Ḃσi

)
and analogous for ωC,i we

take the result from the B = 1 sector to write the metric as

g|M = dX i
1dX

i
1 + 2µ2dΩSU(2),B + dX i

2dX
i
2 + 2µ2dΩSU(2),C . (4.2.36)

The kinetic energy on M2 is then

T =
1

2
M0

(
Ẋ i

1Ẋ
i
1 + Ẋ i

2Ẋ
i
2 + 2µ2ωB,iωB,i + 2µ2ωC,iωC,i

)
. (4.2.37)

We modify the spatial coordinates as usual, defining a mass center coordinate ri
and a global translation Xi. From now on, we will neglect global translations,

redefiningM2 through the coordinates (r, B,C), that specify a field configuration

through

BAI

(
x− r

2

)
B† + CAI

(
x+

r

2

)
C†. (4.2.38)

The kinetic energy becomes

T =
1

2
M0

(
1

2
ṙiṙi + 2µ2ωB,iωB,i + 2µ2ωC,iωC,i

)
. (4.2.39)
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We must embed Z intoM2, finding a law that allows us to find the coordinates on

M2 through the coordinates of Z. The embedding law is obtained by confronting

(4.2.34) with (4.2.38): 
ri = M(E)ijRj,

B = UE†,

C = Uiσ3E
†.

(4.2.40)

To transform the kinetic energy in the zero mode manifold, we need to transform

the velocities. We define angular velocities ωi relative to the matrix E and Ωi

relative to the matrix U . First, we compute the derivative Ṁij(E). Inverting the

relation defining ωi, we get

E†Ė =
i

2
ωiσi. (4.2.41)

This can be used to compute

Ṁijσj =Ė†σiE + E†σiĖ = (4.2.42)

E†σiEE
†Ė − E†ĖE†σiE =

i

2
Mijωk[σj, σk] = Mijεkjlωkσl.

This implies

Ṁij = εlkjMilωk. (4.2.43)

In the following, we denote M ′
ij = 1

2
Tr
(
σiEσ3σjσ3E

†), while M is the usual SO(3)

matrix associated to E.
B†Ḃ = E(U †U̇ − E†Ė)E† =⇒ ωB,i = Mij(Ωj − ωj),
C†Ċ = E(σ3U

†U̇σ3 − E†Ė)E† =⇒ ωC,i = M ′
ijΩj −Mijωj,

ṙi = ṀijRj = εjklMikωlRj.

(4.2.44)

We obtain

ωB,iωB,i + ωC,iωC,i = 2ωiωi + 2ΩiΩi − 2(δkl +MikM
′
il)ωkΩl, (4.2.45)

ṙiṙi = εjklMikωlRjεacbMiaωcRb = ω2R2 − (ω ·R)2 = (ω2
2 + ω2

3)R2
0.

The matrix δkl+MikM
′
il has only a non null element, the element 33 that has value

2 (this becauseMikM
′
il represents a rotation of π around axis 3). The kinetic energy

in the zero mode manifold M then becomes

T |Z =
1

2
M0

(
4µ2ω2

1 +

(
4µ2 +

R2
0

2

)
ω2

2 +
R2

0

2
ω2

3 + 4µ2(Ω2
1 + Ω2

2 + (Ω3 − ω3)2)

)
.

(4.2.46)
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In the zero mode manifold, the potential attains its minimum value, that we call

Vmin. We also have to add 2M0 to the potential function as the rest mass of the

two objects. The Lagrangian is then given by

L|Z = T |Z − Vmin − 2M0. (4.2.47)

4.2.4 The quantum deuteron: quantizing the zero mode

manifold

We quantize the zero mode manifold Z by calculating the conjugate momenta

from LZ : calling Li the momenta obtained by deriving with respect to ωi, while

Ii are obtained by deriving with respect to Ωi, we have

J1 = 4M0µ
2ω1, J2 = M0

(
4µ2 +

R2
0

2

)
ω2, J3 = M0

((
4µ2 +

R2
0

2

)
ω3 − 4µ2Ω3

)
,

I1 = 4M0µ
2Ω1, I2 = 4M0µ

2Ω2, I3 = 4M0µ
2(Ω3 − ω3). (4.2.48)

The Hamiltonian is

H|Z =
1

2

 J2
1

4M0µ2
+

J2
2

M0

(
4µ2 +

R2
0

2

) +
(J3 + I3)2

1
2
M0R2

0

+
I2

1 + I2
2 + I2

3

4M0µ2

+ 2M0 + Vmin.

(4.2.49)

Quantization proceeds as usual. We impose canonical commutation relations

[U, Ii] = −iiσi
2
U [E, Ji] = −iiσi

2
E. (4.2.50)

Let us call j, j3,L, j3,R the eigenvalues relative to the momenta Ji and i, i3,L, i3,R
the eigenvalues relative to the momenta Ii. We identify Ji with the deuteron spin,

and Ii with the deuteron isospin (as the first one arises from spatial rotation, the

second one from isospatial rotations). Actually, as we already have distinct spin

and isospin operators (totally unrelated), we can neglect the projections i3,R and

j3,R, fixing their values. Renaming the other projections, the ket is specified by

|ψ〉 = |i, i3, j, j3〉 . (4.2.51)

We have to add Finkelstein-Rubenstein constraints. Actually, we need a more

generic form of those constraints. We previously stated that a wavefunction for a
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baryon described by the matrix B must be odd under the sign inversion B → −B.

This is a specific case of the more general Finkelstein-Rubenstein constraints. In

the moduli space of a single instanton, we consider the curve B(t), starting at

identity at t = 0 and finishing at minus identity at t = 1. In SU(2) this is an open

curve, but due to the invariance under B → −B of the classical configuration this

path gives a closed loop in the moduli space. As π4(SU(2)) = Z2, loops are divided

in two topological sectors. When quantizing the system, we must assign a phase

to each loop: we choose to assign a phase of −1 to loops homotopic to the one

that we have just considered, and a phase of +1 to loops that are not homotopic.

In our case, this procedure must be repeated for each (non-identity) element in

the stabilizer group V : we have to assign a phase to loops ending at O11, O12 and

O03, and we can only assign two phases, as π4(SU(2)×SU(2)) = π4(SU(2)) = Z2.

The situation is the same as in [28], and we recover the same results.

We first consider a rotation of a single instanton. We are looking for a path

(U(t), E(t)) that is implemented as a closed loop in Z, that can be interpreted as a

rotation of one instanton while keeping the other one fixed. We are then requiring

U(t)E†(t) = 1∀t and U(1)iσ3E
†(1) = −σ3. Such a path is given by{
U(t) = exp

(
iσ1

π
2
t
)
,

E(t) = exp
(
iσ1

π
2
t
)
.

(4.2.52)

Incidentally, U(1) = iσ1 and E(1) = iσ1: a rotation of a single instanton by 2π

is equivalent to a contemporaneous rotation and isorotation of the whole two-

instanton system by π. This means that the path associated to O11 is noncon-

tractible. A path ending at O21 is homotopic to the previous, through the homo-

topy 
U(s, t) = exp

(
iσ1

π
2
t
)
,

E(s, t) = exp
(
iσ(s)π

2
t
)
,

σ(s) = σ1 cos π
2
s+ σ2 sin π

2
s,

(4.2.53)

with s going from 0 to 1, as t. This means that O21 and O11 are endpoints

of noncontractible loops, while O03, that can be obtained by composing the two

previous transformations, is the endpoint of a contractible loop. Thus the phase−1

must be associated to the first and second loop, the phase +1 must be associated

to the third.

Those constraints give restrictions to the possible physical kets of the system.
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As Ji generates rotations and Ii generates isorotations, we must have the following

constraints on physical states |ph〉:

exp(iπ(±J1 ± I1)) |ph〉 = − |ph〉 , exp(iπ(±J2 ± I1)) |ph〉 = − |ph〉 , (4.2.54)

exp(±iπJ3) |ph〉 = |ph〉 .

The ± factors indicate the fact that, as example, the transformation O03 can be

represented by two different couples of matrices, (iσ3,1) and (−iσ3,1), while the

other symmetries can be realized by four couples of matrices.

Those constraints remove some states from the physical spectrum. The states

with j = i = 0 are obviously unphysical, as rotation operators act as the identity

and paths with assigned phase −1 cannot be implemented. We then look for the

ground state among the physical states with the lowest angular momentum. The

only states that are compatible with constraints (4.2.55) are

|D〉 = |0, 0, 1, 0〉 , |I0〉 = |1, 0, 0, 0〉 , |I1〉 =
1√
2

(|1, 1, 0, 0〉+ |1,−1, 0, 0〉).

(4.2.55)

We see that |D〉 has the right quantum numbers to be identified as the deuteron

state (isospin singlet and spin triplet). We want our deuteron to be the state of

minimum energy, so we compute H|Z on the states that we have found:

H|Z |D〉 =

 1

8µ2M0

1 +
1

1 +
R2

0

8µ2

+ 2M0 + Vmin

 |D〉 ,
H|Z |I0〉 =

(
1

4µ2M0

+ 2M0 + Vmin

)
|I0〉 ,

H|Z |I1〉 =

(
1

4M0µ2

(
1 +

4µ2

R2
0

)
+ 2M0 + Vmin

)
|I1〉 . (4.2.56)

For every value of R0 and µ, the deuteron state turns out to be the lowest energy

state, with the lowest rotational energy contribution.

4.2.5 The expectation value of the potential

We are now in the position to understand the origin of the factor of 3 that

differs between our potential and the one in [26]. For this, we compute the expec-

tation value of the potential on the deuteron state. We can use a method from [23]
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to compute matrix elements between one baryon states, then adapt our results to

the deuteron.

In the B = 1 topological sector, the SU(2) part of the quantized wavefunction

can be written using four real coordinates aI under the constraint aIaI = 1. There

are two kinds of angular momenta that can be written through those aI , left and

right invariant: we will use them both. They are given by

Ii =
i

2

(
a0

∂

∂ai
− ai

∂

∂a0

− εijkaj
∂

∂ak

)
, (4.2.57)

Ji =
i

2

(
−a0

∂

∂ai
+ ai

∂

∂a0

− εijkaj
∂

∂ak

)
. (4.2.58)

From now on, we will work by fixing the eigenvalues of I and J to 1/2, and always

omit that number from the ket.

Eigenvalues of the angular momenta are built in a similar way to the spherical

harmonics: they are given by a linear combination of the four coordinates, with

the condition that the sum of the squares of the coefficients must be 0. We can

nicely organize the states in a matrix: calling a the SU(2) matrix a = a0I + iaiσi,

we can verify through direct calculation that

1

π
σ2a =

1

π

(
a1 + ia2 −i(a0 − ia3)

i(a0 + ia3) −(a1 − ia2)

)
:=

(
〈aI |p, ↑〉 〈aI |p, ↓〉
〈aI |n, ↑〉 〈aI |n, ↓〉

)
. (4.2.59)

The ket is organized as follows: the first letter stands for the I3 eigenvalue. Proton

(p) corresponds to isospin 1
2
, while neutron (n) corresponds to isospin −1

2
. Arrows

describe the J3 eigenvalue in the obvious way: ↑ for 1
2
, ↓ for −1

2
. One can check

that the assignments of the quantum numbers are correct by explicitly applying

I3 and J3 to the single states.

The useful information here is given by the peculiar form of matrix elements

of an operator. Let O be any operator depending on the SU(2) degrees of freedom:

matrix elements are of the form

〈I3, J3|O(aI) |I ′3, J ′3〉 =
1

π2

∫
dΩa(σ2a)I3,J3O(aI)(σ2a)I′3,J ′3 (4.2.60)

(dΩa is the Haar invariant measure on SU(2)). In interesting cases, O(aI) depends

on the coordinates through the matrix a. The following integrals from [23] are

useful: ∫
dΩaaija

−1
kl = π2δilδjk (4.2.61)
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dΩaaija

−1
kl amna

−1
pq =

π2

3
(2(δilδmqδjkδnp + δiqδmlδjpδnk)− (4.2.62)

− δilδmqδjpδnk − δjkδnpδiqδml).

Two particle states (described by two unit vectors, aI and bI) are direct product

of two one particle kets, appropriately changing the coordinates. As an example

〈aI , bI |p, ↑, n, ↑〉 := 〈aI |p, ↑〉 〈bI |n, ↑〉 = (4.2.63)

i

π2
(a1 + ia2)(b0 + ib3) =

1

π2
(σ2a) 1

2
, 1
2
(σ2b)− 1

2
, 1
2
.

The rules to find the eigenvalues of the total spin and isospin are similar to the

rules for the three dimensional angular momentum, in particular, two nucleons can

have total spin 1 or 0 and total isospin 1 or 0, but they do not need in principle to

be equal. As before, when we compose two particles we will have two projections

of the (iso)spin, a left and a right invariant operator, and in principle we would

need to give both eigenvalues. We will neglect this additional eigenvalue, and we

will write the value of the projections of (iso)spin as sums of the projections on

single particle states (as example, the state that we just wrote has I3 = 0 and

J3 = 1.

The state of deuteron has J = 1, J3 = 0, I = 0, I3 = 0. Denoting it as |D〉,
we can verify that the only combination of states with the right quantum numbers

(and eigenvalue −1 under exchange of particles, that in this model consists in

switching the first two eigenvalues with the last two) is given by

|D〉 =
1

2
(|p, ↑, n, ↓〉+ |p, ↓, n, ↑〉 − |n, ↓, p, ↑〉 − |n, ↑, p, ↓〉) . (4.2.64)

Using those techniques, we can compute the expectation value of the potential that

we’ve written. In particular the spatial variables are intact after averages. We take

states that are localized around the position of equilibrium, so we do not quantize

spatial coordinates. The only average to perform is the average of the phase matrix

Mij. We remember that this phase matrix is related to the isospin orientation

matrices B and C as Mij = M(B†C) = M(B†)M(C), and every M factor contains

two coordinate matrices. We can then use formula (4.2.63) to compute the matrix

elements in the 16 dimensional basis formed by the combinations of single particle

states, and then evaluate the resulting matrix on the deuteron vector. The result

is

〈D|M |D〉 =
1

3

 −1 0 0

0 −1 0

0 0 1

 . (4.2.65)
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This matrix is proportional to the phase opposition matrix that we found classi-

cally, with an extra factor of 1/3. The expectation value of our potential is exactly

equal to the potential found in [26].

The lack of the factor 1/3 in the classical potential is given by the fact that

we are choosing the phases to be locked in the attractive channel. The relative

phase among the instantons is not considered a coordinate. Actually, in a full

quantum approach one should consider the relative phase as a coordinate, and

find the contribution to the energy eigenvalues of those coordinates. Once we

write a wavefunction for the relative coordinate, the average of the dipole part of

the potential should get a factor in between 1/3 and 1.

The next two sections are dedicated to preparing the analyisis of the massive

modes, the distance between the objects and the relative phase. We will propose

a Lagrangian for those coordinates, but solving the full quantum system requires

a separate study, that we postpone for future analysis.

4.2.6 The massive modes: harmonic approximation

We now extend our quantization scheme to massive modes, such as relative

translations and changes of relative phase. Before quantizing the exact dynamics

on M∈, we first approximate the massive modes through the harmonic approxi-

mation. To do so, it is convenient to switch back to (r, B,C) coordinates.

To perform this approximation, we calculate the second derivatives of the po-

tential with respect to the coordinates. The derivatives with respect to the spatial

coordinates r are standard derivatives, but we need a coordinate representation

of the matrices (B,C) to identify numerical coordinates for the derivation. We

choose coordinates through the exponential map

B = exp
(
iBi

σi
2

)
, C = exp

(
iCi

σi
2

)
. (4.2.66)

Bi and Ci are real, unconstrained numerical coordinates. They have a finite range

but, as we are interested in small changes of Bi and Ci, we do not need to specify

the range. In those coordinates, the velocities are

ωB,i = −i tr
(
B†Ḃσi

)
= Ḃi, ωC,i = −i tr

(
C†Ċσi

)
= Ċi, (4.2.67)
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V =



0.142 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0.662 0 0.681 0 0 0.681 0

0 0 0 0 0 0 0 0 0

0 0 0.681 0 0.701 0 0 0.701 0

0 0 0 0 0 0.542 0 0 −0.542

0 0 0 0 0 0 0 0 0

0 0 0.681 0 0.701 0 0 0.701 0

0 0 0 0 0 −0.542 0 0 0.542


N
Λ

Table 4.1: Potential matrix at the equilibrium position.

and, after canonical quantization of the matrix coordinates B and C, we recover

the quantum commutation relations

[Bi, JB,j] = iδij [Ci, JC,j] = iδij, (4.2.68)

with JB,i = 2M0µ
2ωB,i and analogous for JC,i. Those coordinates can be used as

canonical coordinates, and we can perform the little oscillations approximation in

the standard way. Returning back to the Lagrangian, we perform the derivatives

and set the coordinates to their equilibrium values, r = (R0, 0, 0), Bi = (0, 0, 0),

Ci = (0, 0, π). Calling ηa the displacement from equilibrium coordinates (with

a = 1, ..., 9), the approximated Lagrangian can be written as

L|M2 =
1

2
Mabη̇

aη̇b − 1

2
Vabη

aηb − Vmin − 2M0, (4.2.69)

where the mass matrix Mab is the diagonal matrix of eigenvalues[
1

2
M0,

1

2
M0,

1

2
M0, 2M0µ

2, 2M0µ
2, 2M0µ

2, 2M0µ
2, 2M0µ

2, 2M0µ
2

]
, (4.2.70)

and Vab has been computed numerically and written in table (4.1) Solving the sec-

ular equation det(ω2Mab − Vab) we obtain three non null frequencies, as expected.

ω1 =
1.509

Λ
ω2 =

0.995√
Λ

+ o

(
1√
Λ5

)
, (4.2.71)

ω3 =
1.131√

Λ
+

4.678√
Λ3

+ o

(
1√
Λ5

)
.

We can identify ω1 with the radial oscillation, that allows the constituents of the

deuteron to vibrate along the axis joining them: this interpretation is suggested
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by its Λ dependence, as the translational mode inertia is proportional to Λ and all

entries in the V matrix are multiplied by Λ−1, giving an overall Λ−2 dependence

of the squared frequency. The other two frequencies are relative to small, non

global isorotations of the two objects, that cost energy. The dependence Λ−
1
2 of

the leading order comes from the fact that the moment of inertia has leading order

proportional to M0µ
2, that is proportional to Λ0, giving an overall Λ−1 dependence

of the squared frequencies.

The quantum hamiltonian is readily written. We also include the contribution

from the zero modes.

H|M2 =
∑
i=1,2,3

ωi

(
a†iai +

1

2

)
+H|Z + Vmin + 2M0. (4.2.72)

The ground states of the oscillators then give a contribution to the energy of the

deuteron. The ground state of this Hamiltonian is given by

E0,approx =
ω1 + ω2 + ω3

2
+ Vmin + 2M0 +

1

8µ2M0

1 +
1

1 +
R2

0

8µ2

 . (4.2.73)

We will investigate this result numerically in another section.

4.2.7 The massive modes: full Lagrangian

After using the harmonic approximation, we write the Lagrangian on M2

to set up the quantum system. We want to have as many cyclic coordinates as

possible, as their contribution to energy eigenvalues is trivial. We then introduce

the coordinates (η, U, F,E): η is a number, representing the absolute value distance

between the instantons, U and E are global rotation and isorotation matrices, while

F is an SU(2) matrix describing the relative orientation. We have a total of 10

coordinates, while M2 is 9 dimensional: the reason of this apparent discrepancy

will be clarified.

The coordinates (η, U, F,E) are related to the coordinates (r, B,C) through
ri = M(E)i1η,

B = UE†,

C = UFE†.

(4.2.74)
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We must introduce velocities relative to the matrix F , and we call them ξi. We

note that, if we perform the transformation
U → UN(α),

E → EN(α),

F → N †(α)FN(α),

(4.2.75)

with

N(α) = cos
α

2
1 + i sin

α

2
σ1, (4.2.76)

we have that the coordinates ri, B, C do not change. This is the reason of the

additional coordinate: the new set of coordinates has the advantage of isolating

the zero modes from the massive modes, but an unphysical mode appears, and

it must be taken care of. The fact that this mode is unphysical is confirmed by

computing the new kinetic energy: through the velocities transformation
ωB,i = M(E)ij(Ωj − ωj),
ωC,i = M(E)ij(M(F )kjΩk + ξj − ωj),
ṙi = Ṁ(E)i1η +M(E)i1η̇.

(4.2.77)

Calculations are performed as usual, and the kinetic energy in the new coordinates

read

T |M2 =M0

(
1

4
η̇2 + (2µ2 +

1

4
η2)ωiωi −

1

4
η2ω2

1+ (4.2.78)

+µ2(2ΩiΩi + ξiξi − 2ξiωi)− 2µ2M(F )ijωiΩj − 2µ2(δij +M(F )ij)ωiΩj

)
.

By writing the kinetic energy in scalar product form, we can explicitly verify that

the determinant of the associated matrix is 0, its rank being 9: one of the motion

equations is really a constraint. The potential in those coordinates assumes the

form2

V (η, F ) =
4πN

Λ

(
∞∑
n=1

(
1

c2n−1

e−k2n−1η

η
+

6

5

1

c2n−1

Mij(iσ3)Pij(η, k2n−1)
e−k2n−1η

η3

−6

5

1

d2n

e−k2nη

η3
Mij(iσ3)Pij(η, k2n)

)
− 6

5π

1

η3
Mij(iσ3)Pij(η, 0)

)
.

(4.2.79)

2In Pij , the first argument should be a vector: it is sufficient to insert η as the vector (η,0,0).
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The coordinates U and E do not appear in the potential, so their contribution to

the energy eigenvalues remains the same as in the zero mode quantization. The

Lagrangian should be supplemented with a term implementing some constraint

to account for the zero mode given by the symmetry under (4.2.75). This is a

complicated problem to solve, that we postpone to a future study. For now, we

set F = iσ3, ξi to zero and we keep the radial coordinate quantized. Locking the

relative phase in the attractive channel, we choose to neglect the factor in front of

the dipole part that could arise from quantization of this coordinate, as discussed

in (4.2.5). Defining the momentum Πη = M0η̇/2, imposing canonically [η,Πη] = i

and noting V (η) = V (η, iσ3), we get the Hamiltonian

H|M2 =
Π2
η

M0

+H|Z + V (η) + 2M0. (4.2.80)

We note that the term Vmin is absent. We are not taking instantons fully localized

in their equilibrium positions, but we allow their distance to be a quantum variable.

4.2.8 Insertion of quark mass: massive pion

We conclude the theoretical study of this model by inserting a term that can

be used to give mass to the quarks. As massive quarks explicitly break the axial

SU(Nf ) symmetry, this result in a massive Goldstone boson. In this model, giving

mass to quarks explicitly makes the pion massive.

The insertion of a mass quark term in the gravity dual is a complicated issue,

studied in [4, 22]. We just cite the result: insertion of pion mass in the Nf = 2

Sakai-Sugimoto low energy action is done through the term

Sm =
Λ

3
2

16
√

2π
3
2

∫
P [M exp

(
−i
∫ +∞

−∞
Azdz

)
+ exp

(
i

∫ +∞

−∞
Azdz

)
M − 21]d3xdz.

(4.2.81)

P denotes path ordering and M is the mass matrix, a diagonal 2 × 2 matrix

containing as entries the mass of the up and down quark. We approximate them

to be the same: in this case M = m1, with m adimensional. This term turns out

to give a mass mMKK to quarks in the boundary theory. It is interesting to note

the fact that this term is similar to the Skyrme mass term, (see as example the

Skyrmion chapter in [32]), when we identify the exponential as the Skyrme field

U .
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We study this nonlocal term by approximating the exponential to the first

nontrivial order, giving a crude estimate of the pion mass. We obtain the approx-

imated action

Smass = − Λ
3
2

16
√

2π
3
2

∫
d3xdzdz′ tr[Az(x, z)Az(x, z

′)]. (4.2.82)

We study the effect of this term in the nonlinear region. The only changed motion

equation is

H
3
2 (z)(∂i∂iA

+
z − ∂i∂zA−i )−

√
32π3Λm

N

∫ +∞

−∞
Az(x, z

′)dz′ = −2π2µ2σi∂iδ
3(x)δ(z).

(4.2.83)

We want to study the effect of the additional term in the first term of the tower

defining Az, that is the pion term. To this end, it is sufficient to make the ansatz

A−i = 0 A+
z = −2πµ2H(z)−

3
2∂i

e−k0|x|

|x|
. (4.2.84)

Neglecting the δ(z) on the RHS (that is accounted for when writing the whole

tower), we have to set

k2
0 =

√
(2π)5Λ

N
m. (4.2.85)

k0 is the pion mass, in units of MKK . The potential is modified by just modifying

the last part: as the functions ψ(z) and φ(z) do not change in this crude approx-

imation, everything remains the same until the last part. All the non numerical

results in the previous sections hold, provided that we use as potential

V (η, F ) =
4πN

Λ

(
∞∑
n=1

(
1

c2n−1

e−k2n−1η

η
+

6

5

1

c2n−1

Mij(F )Pij(η, k2n−1)
e−k2n−1η

η3

−6

5

1

d2n

e−k2nη

η3
Mij(F )Pij(η, k2n)

)
− 6

5π

e−k0η

η3
Mij(F )Pij(η, k0)

)
. (4.2.86)

4.3 Calculations and results

We conclude our study of the B=2 sector by giving some numerical calcula-

tions in this model. We are particularly interested in the binding energies, and
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in the confrontation between the classical and quantum model. We also want to

determine the quantum spectrum of the system: this should be composed of only

one bound state, as there is no known bound state between proton and neutron

that is different from the deuteron state. We organize this last section as follows:

we start by computing the meson and baryion masses, then we give some numer-

ical classical result for the deuteron and we use our potential to give a rather

crude estimate of the binding energies of nuclei with B between 2 and 6. Then, we

switch to the quantum picture, determining the spectrum of states of the system

and studying how the binding energy of the deuteron is modified when taking into

account various levels of quantum corrections. We compare the results with the

experimental results.

We focus our attention on the N and Λ dependence of the physical quantities.

As we are working in the Λ → ∞ and N → ∞, we will comment those limits

before trying to extrapolate to physical values. As in real physics we have N = 3

and Λ is often chosen to fit the pion decay constant (3.3.50), giving a value of

Λ = ΛSS =' 1.569, we do not expect quantitatively correct results, but we will

make qualitative considerations to motivate further study of the model.

For completeness, we recall the dependence of fπ and e from the physical

parameters. In our units, fπ has the dimension of a mass, while e is adimensional.

fπ =

√
NΛ

4π
3
2

, e ' 15.88√
NΛ

. (4.3.1)

4.3.1 Meson and baryon masses

We confront the meson masses in our model with the ones present in [35].

We take the masses of the first mesons ρ, a and ω and we compare them with the

masses k1, k2. The comparison is reported in tables (4.2).

The baryon mass formula

Mj = M0 +
j(j + 1)

4M0µ2
. (4.3.2)

can be used to compute the baryon masses. Using the explicit values, we get

Mj =
NΛ

8
+

√
2

15
N +

1

4N

√
5

6
j(j + 1) + o(N−2,Λ−1). (4.3.3)
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Meson Predicted mass (MKK) Observed mass (MeV )

ρ 0.819 775.3

ω 0.819 782.7

a 1.257 980.0

Meson mass ratio Predicted ratio Observed ratio

ρ/ω 1 0.9905

ρ/a 0.652 0.791

ω/a 0.652 0.799

Table 4.2: Comparison of the experimental values and the predicted values of the

masses. In the second table, we give the adimensional ratios, finding good accord

with the experimental values. All those ratios are independent of the parameters

of the theory.

The pieces proportional to N are the rest mass of the instanton: as the whole

action is proportional to N , they are of order N1. Those are the leading terms in

the mass: we reproduce the large N result that the baryon mass should go as N

when N →∞. The third part is the quantum correction due to the fact that the

baryons always have non null spin (being j semi integer). The states with j = 1/2

are interpreted as proton and neutron states, while the states with j = 3/2 are

interpreted as ∆ states.

The masses of the nucleons with j = 1/2 and j = 3/2 are

M 1
2

= M0 +
3

16M0µ2
, M 3

2
= M0 +

15

16M0µ2
. (4.3.4)

Evaluating at ΛSS, we get M 1
2

= 1.704 and M 3
2

= 1.784 (in units of MKK). Their

mass difference is

∆Mn = M 3
2
−M 1

2
=

3

4M0µ2
, (4.3.5)

that, evaluated at ΛSS, gives a difference of 0.08. We choose to fit MKK by fitting

the mass of the ρ meson, obtaining MKK = 949MeV . With this value of MKK ,

our baryons are quite heavy (M 1
2
' 1617MeV and M 3

2
' 1693MeV ) and their

mass difference is too small (circa 80MeV ) when comparing those values with the

physical values (respectively, 938MeV , 1240MeV and circa 300MeV ).
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4.3.2 Analysis of the classical potential

From now on, we take the pion as massless, unless stated otherwise. In the

attractive channel, the potential (sketched in figure (4.2)) assumes a minimum in

R0 = 2.059, of value Vmin = −0.152N/Λ. The classical energy in the B=2 sector

is then given by

E2,c = 2M0 − 0.152
N

Λ
. (4.3.6)

Everything is of order N , and in the large N limit the second term (that can be

interpreted as the classical energy) goes to infinity: this parallels what happens

in large N QCD. If Λ→∞, we get non interacting baryons (of infinite mass and

zero size).

We confront the value of E2,c with the classical energy of the B=1 sector,

E1,c = M0, calculating the classical binding ratio. This turns out to be independent

of N . We have

B2,c =
E2,c − 2E1,c

2E1,c

= − 1.216

2.921Λ + Λ2
. (4.3.7)

As this quantity is always negative, for every value of Λ and for every value of N

the classical deuteron turns out to be bound.

The experimental value for comparation is calculated from the data of [35]:

with md deuteron mass, 1875.613MeV , mp proton mass, 938.272MeV and mn

neutron mass, 939.565MeV , we have

B2,exp =
md − (mp +mn)

mp +mn

= −1.2 · 10−3. (4.3.8)

For comparison, we choose Λ as in [40], to fit the experimental value of the pion

decay constant: Λ = ΛSS = 1.569. With this value of Λ it is evident that our

approximations are not so solid. With ΛSS we get B2,c = −0.173, two orders of

magnitude greater than the experimental value.

We now use the potential to give some predictions about equilibrium configu-

rations for sectors with 2 ≤ B ≤ 6, provided that the instantons are far away (each

instanton core is localized in the linear zone of all other instantons). Calculations

are done as follows: for B instantons, we define the potential VB as the sum of



148 CHAPTER 4. SAKAI-SUGIMOTO SOLITONS

single potentials (4.2.15) between all instantons, then we find a minimum energy

configuration. To find it, we use axis-angle notation (4.2.16) for the matrix Mij

and we put one instanton in the center, with spatial and angular coordinates put to

zero. We allow the phase coordinates of the remaining B−1 instantons to assume

all possible values, but we restrict the spatial coordinates to impose particularly

symmetric configurations. This is done because the number of free coordinates in

principle should be 6(B − 1) in each B sector, so the number of coordinates to fix

grows rather quickly. We report the results of our analysis in table (4.3), where

we list the binding energies in different sectors, trying different shapes for the so-

lution. Here, n denotes the topological sector, and Vmin,n are to be multiplied by

N/Λ: consequently, the binding ratios Bn = Vmin/nE1 is to be multiplied by Λ−2,

keeping only the Λ1 contribution in E1. We compare our results to the experimen-

tal results in figure (4.3). We note that the minimum energy configuration among

those that we have tried in the 3, 4 and 5 sector consist of instantons placed on the

edges of a face centered cubic lattice. This result resembles the results of [20], so

an immediate future direction would be to find global minimums in those sectors

and see if the global minimums reproduce the results in the article.

n Shape Details Vmin,n Bn

2 Line Distance=2.059 −0.152 −0.608

3 Straight line Neighbor distance=5.000 −0.249 −0.644

Equilateral triangle Side=4.878 −0.386 −0.824

4 Rectangle Sides=2.138,4.737 −0.386 −0.772

Tetrahedron Side=5.456 −0.507 −1.014

5 Pentagon Side=2.844 −0.438 −0.701

Rectangular pyramid Base=2.884,2.196 Height=3.193 −0.451 −0.722

Tetrahedron + particle∗ Center distance=3.679 −0.644 −1.030

6 Icosahedron Base=3.034,4.195 Height=1.766 −0.851 −1.135

Table 4.3: Particular many-bodies configurations and relative binding ratios. Var-

ious shapes are considered, and the details on the shape of minimum energy are

found. In the 5 sector, we have a particular configuration: as there is no known

stable nucleus composed of five baryons, we tried a configuration with a n = 4

tetrahedron plus a free instanton. This turned out to give the minimum energy

configuration.
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Figure 4.3: Binding ratios for various values of Λ. The binding ratios at Λ = ΛSS

are large and are not reported: this is expected, as quantization is necessary to

lower the binding energy. We report three values of Λ, where the last one has been

determined by minimizing the squared distances to the experimental values. We

do not reproduce the bump at n = 4, but we see that the difference between n = 4

and n = 3 is greater than the differences between n = 5 or n = 6 and n = 4. All

binding ratios are calculated for stable nuclei by dividing their binding energy per

nucleon with the average proton-neutron mass. The exception is for n = 5, where

the mass of the unstable 5Li is taken. Nuclear data are taken from [34].

4.3.3 The quantum spectrum

We now use the quantum model that we have developed to study the contri-

bution of quantum corrections to the energy. We will start from the contribution

that arises from the quantization of zero modes, then we will add the contribution

of the massive modes, first trying the harmonic approximation and then numeri-

cally solving the Schrodinger equation for the radial coordinate. We will see how

the results vary in those approaches. We study the dependence of the first terms

in the 1/Λ approximation, for Λ→∞, with a particular attention to the physical

region, where Λ is comparable to ΛSS to fit the pion decay constant. We will see if,

extrapolating those results to physical Λ, the quantum model gives qualitatively

correct answers, or if we need to further study the model, inserting higher order

contributions.

From the quantization of the zero modes, the wavefunction for the system can
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be indicated as

|ψ〉 = |i, i3, j, j3〉 . (4.3.9)

We have seen that the Finkelstein-Rubenstein constraints allow only three states:

|D〉 = |0, 0, 1, 0〉 , |I0〉 = |1, 0, 0, 0〉 , |I1〉 =
1√
2

(|1, 1, 0, 0〉+ |1,−1, 0, 0〉).

(4.3.10)

The first state has spin one and isospin zero, and we identify it with the deuteron.

Bound states of spin zero and isospin one have not been observed, so we have to

check which state is the ground state and which state has less energy than the

state containing two nucleons (accounting for their rotational energy).

The quantum Hamiltonian is given by

H =
1

2

 J2
1

4M0µ2
+

J2
2

M0

(
4µ2 +

R2
0

2

) +
(J3 + I3)2

1
2
M0R2

+
I2

1 + I2
2 + I2

3

4M0µ2

+ 2M0 + Vmin.

(4.3.11)

In the base given by the three previous states, the Hamiltonian is diagonal, and

the eigenvalues have been written in (4.2.56). We write them at leading orders,

up to N−1 and Λ−1.

ED = 2M0 −
0.152N

Λ
+

1

N

(
0.114 +

1.236

Λ

)
+ o(Λ−2), (4.3.12a)

EI0 = 2M0 −
0.152N

Λ
+

1

N

(
0.228− 0.667

Λ

)
+ o(Λ−2), (4.3.12b)

EI1 = 2M0 −
0.152N

Λ
+

1

N

(
0.228 +

0.902

Λ

)
+ o(Λ−2). (4.3.12c)

We see that the rotational corrections to the masses are of order 1/N , as in large

N QCD. We also see that, at leading order in Λ, the deuteron state turns out to

be the lowest energy state, while the |I0〉 and |I1〉 states have the same energy.

The coefficients of the 1/Λ terms indicate that we must have a pretty high Λ for

this ordering to be true (Λ > 20), but from the analytical forms (4.2.56) we can

analytically see that this ordering holds for generic Λ. The large Λ limit suggests

EI1 > EI0 everywhere, but the analytical forms give the opposite result, so we

cannot extrapolate those values to physical Λ, but we need the full energies.
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Figure 4.4: Binding energies with respect to Λ at order 1/Λ. We see that the

physical ordering ED < EI0 < EI1 is inverted for Λ < 20. The separation between

the asymptotic values is of order N−1. At large Λ, all three states are bound.

We now calculate the binding energies. To this scope, we need the baryon

mass formula to calculate E1 for the proton and neutron states, from (4.1.43). We

approximate the rotational term to o(Λ−2) and keep the mass M0 as it is, as it

will cancel in the binding energy.

E1 = M0 +

√
15

2

1

16N
− 1

2NΛ
+ o(Λ−2). (4.3.13)

To leading orders, we get the differences

∆ED = ED − 2E1 = −
√

5

6

1

4N
+

2.236

NΛ
− 0.152N

Λ
+ o(Λ−2), (4.3.14a)

∆EI0 = EI0 − 2E1 = −
√

5

6

1

8N
+

0.333

NΛ
− 0.152N

Λ
+ o(Λ−2), (4.3.14b)

∆EI1 = EI1 − 2E1 = −
√

5

6

1

8N
+

1.902

NΛ
− 0.152N

Λ
+ o(Λ−2). (4.3.14c)

At leading order in Λ, every state is bound, but the deuteron state’s binding energy

turns out to be twice the binding energy of the other two states. We plot the

binding energies in (4.4). For completeness, we plot in (4.5) the binding energies

calculated from the full form of the zero modes contribution, that is exact.

We now consider the massive modes. At first, we consider the harmonic

approximation, with frequencies given by (4.2.72). The contribution from those
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Figure 4.5: Binding energies with respect to Λ, with full form of the zero modes

rotational energies. The physical ordering is always obeyed, and the states are

always bound.

frequencies is given by

Emass =
ω1 + ω2 + ω3

2
=

1.063√
Λ

+
0.755

Λ
+ o

(
Λ

3
2

)
. (4.3.15)

We add this energy to the state energies and plot the result in (4.6). This quantum

contribution goes to zero as Λ→∞, so it does not affect the asymptotic behavior.

The contribution is great with respect to the other contributions: the result is that

all three states are unbound for Λ . 200, while in the range 200 . Λ . 800 only

the deuteron state is bound, while the other two states decay in two nucleons.

We now quantize the radial coordinate and neglect the other two massive

coordinates. A generic state in the system can then be written as

|ψ〉 = |f〉 × |i, i3, j, j3〉 . (4.3.16)

The radial dependence factorizes from the zero mode dependence, and we call f(η)

the wavefunction relative to the radial coordinate. To factorize the Λ dependence,

we take the mass M0 at leading order in Λ, discarding the Λ0 factor: this will

produce a binding energy proportional to 1/Λ, substituting Vmin. To numerically

solve the problem, we choose N = 3. We numerically solve with Mathematica the

equation(
− 1

M0

∂2
η + V (η)− E

)
f(η) = 0, f(0) = 0, f ′(0) = 1 (4.3.17)
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Figure 4.6: Addition of the massive modes. For small Λ, the result is inverted. In

this graph the energies of I0 and I1 are approximatively equal.

(the value of f ′(0) is chosen arbitrarily, f will need to be normalized) and then

plot in (4.7) the asymptotic value of f (at a large η, say η = 1000). If f represents

a bound state solution, then it will have value approximatively zero at that value.

We plot the wavefunction in (4.8). We obtain a binding energy of

Vquan = −0.022

Λ
+ o(Λ−2), (4.3.18)

much smaller than the classical binding energy. We substitute Vquan to Vmin in

the binding energy formulas, with exact rotational energy contributions. We plot

those results in (4.9).

We repeat the calculations adding the pion mass. In terms of the quark mass

m, this is given by

m2
π =

√
(2π)5Λ

N
m. (4.3.19)

We choose to use mπ as input. As MKK = 949MeV and the experimental value

is mπ = 135MeV , we must have mπ = 0.142. The pion mass is then given by

m = 2 · 10−4 N√
Λ
. (4.3.20)

The minimum separation changes to R0 = 2.228 and

Vmin = −0.115
N

Λ
. (4.3.21)
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Figure 4.7: Asymptotic value of f(η) against the energy parameter E. Every

crossing of the blue line indicates a bound state, and the energy of the bound

state can be read from the intersection of the blue line with the x axis, that

represents the energy. There is only one bound state, so no radial excited states

are found.

As expected, with a massive pion the bound becomes weaker and the classical

nucleon-nucleon distance becomes greater. The rotational energies are affected by

the R0 change, but their form is the same. Quantizing the radial coordinate, we

get a single radial bound state, of energy

Vquan = −0.003

Λ
+ o(Λ−2). (4.3.22)

We plot the same quantities as before: the binding energies of the states |D〉,|I0〉,|I1〉,
in figure (4.10). The picture is similar to the final picture with no pion mass: the

large Λ limit is the same, but at low Λ we get that the |I1〉 state is unbound, while

the |I0〉 state and the |D〉 state have similar energy.

Computing the deuteron energy with MKK = 949MeV at ΛSS gives a binding

energy of approximatively 15.72MeV , against an experimental binding energy of

2.26MeV . The picture of this sector in the large Λ limit is complete: we have

three states, and among those we have a state with the quantum numbers of the

deuteron. Of all those states, the deuteron is the state at lowest energy, but all

three are bound states (stable with respect to the decay in two separated nucleons).

At ΛSS one of the states is unbound when taking into account the quantization of

the radial coordinate, but we still have two bound states. Our model predicts at

ΛSS the existence of an excited state of the deuteron, that is unphysical. As our
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Figure 4.8: Wavefunction of the ground state of the quantum system (4.3.17),

normalized. It has no nodes, confirming the fact that it is the ground state wave-

function.

results are valid in the large Λ limit, we need in principle to add corrections to

our results. We wish for those corrections to remove the unphysical excited state

from the bound states.
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Figure 4.9: Binding energies with radial dependence quantized. The value of Λ

that is used to fit the pion decay constant with MKK to fit the ρ mass is Λ = 1.569:

we see that in this zone the state |I1〉 is not bound.

Figure 4.10: Binding energies with radial coordinate quantized and pion mass

inserted. As before, we see great differences from the low Λ and high Λ zones.

Here, we zoomed in the low Λ region: the results in the high Λ region are the same

as before.



Conclusions

In this thesis, we examined how the Sakai-Sugimoto model is built from the

principles of holographic QCD, and what properties does it share with real QCD.

We have stated (through proving or referencing) that Sakai-Sugimoto model con-

tains both U(N) ' SU(N) color gauge fields (in the N →∞ limit) and massless

quark flavors in the fundamental representation of the gauge group, and has prop-

erties like quark confinement and the U(Nf )L×U(Nf )R symmetry. From the action

on the flavor branes, we have obtained a Yang-Mills U(Nf ) theory in curved space,

whose solitonic solutions can be interpreted as baryons.

We have summarized how in previous works [10, 24] this picture has already

been used to obtain baryon properties from instantons of topological charge 1, and

we have extended that description to instantons of topological charge 2. The action

of the theory depends principally on two parameters: N (the number of colors) and

Λ (the ’t Hooft coupling): while N multiplies the whole effective action and has

no effect on the classical theory (it is just a scaling factor), Λ−1 weights the Chern

Simons term against the standard curved space Yang Mills action: in the static

theory, the presence of the Chern Simons term generates a static field that is akin

to the classical electrostatic field, while the topological charge acts as an electric

charge: point particles with topological charge of the same sign repel, and the

combined action of gravity and Chern-Simons term generate an (approximatively)

spherical instanton of dimension µ ∝ Λ−
1
2 . The classical solution has moduli space

R3 × SU(2): those moduli can be interpreted as position and spin-isospin of the

instanton. The classical picture of the baryon is then that of a spherical body

(in three dimensions), with an orthonormal frame attached to it that represents

its orientation, exactly as a rigid body. In the quantum picture, the body has an

intrinsic, half integer spin, so states of proton and neutron can be interpreted as

spinning spheres with j = 1/2.
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We have extended this picture to the charge 2 sector, to build a quantum

model of the deuteron. Working in the limit Λ→∞, we can place the instantons

at a great spatial distance with respect to their sizes 2µ, and compute the static

energy of the theory at order Λ−1. We interpret the difference between this energy

and the energy of two separated instantons as an interaction potential between the

instantons and, using the arguments of Sakai and Sugimoto, we have interpreted

this interaction potential as a classical potential for nucleon-nucleon interaction.

We have shown that this potential depends on the relative distance and the relative

orientations of the single instantons, so the potential splits in a central part and a

non central part. We have identified a maximally attractive channel by fixing the

relative orientation and shown the existence of a classical bound state, computing

the separation between the two objects and the binding energy. The resulting

picture of the two instantons system is analogous to a rigid rotator, composed

of two masses attached at a fixed distance, with a rotational degree of freedom

that is interpreted as the classical spin and an internal degree of freedom that is

interpreted as an additional angular momentum, the isospin.

Quantization forces this rotor to rotate. We have found three rotational states

(with spin zero and isospin one or viceversa) that are compatible with the require-

ment that the charge 1 instanton must be quantized as a fermion, and one of them

has the quantum numbers of the deuteron: it has spatial spin one and isospin zero.

We computed the rotational energies of the three states and found that they are of

order 1/N , while for Λ → ∞ the two other additional states become degenerate,

with a rotational energy that is double the energy of the deuteron. Quantizing the

distance between the instantons, we have found one radial bound state at N = 3.

Confronting the energy of those three low lying states with the energy of infinitely

separated instantons, we obtained that, in the large Λ limit, all of those three

states are bound states.

Large N and large Λ limits are pretty different. We summarize them.

• In the large N limit, the picture is entirely classical: more and more states

arise from quantizing the radial coordinate, until they form a continuum.

The rotational energies of the states tend to zero in this limit, so the three

states become degenerate. Mass and interaction of the baryons go to infinity

as N , so the interaction term is always present. This picture is in agreement

with large N QCD.
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• In the large Λ limit, the baryons shrink to zero size, but acquire infinite

mass. The interaction potential goes to zero, but at any Λ we can calculate Λ

independent rotational energies, in the sector of charge 2 and in the sector of

charge 1. The binding energy from the quantization of the radial coordinate

goes to zero, but at any Λ at least one state is present. The energy of the non

deuteron state tend to the same value, twice than the energy of the deuteron

state. All states are stable and do not decay in two separated instantons.

Extrapolating to physical values can be challenging. Sakai-Sugimoto model

requires us to take the limit N →∞, and the linear approximation that we have

used to calculate the potential is equivalent to keeping only the dominant terms in

the 1/Λ expansion. As the physical value of Λ that is used extensively in literature

(to fit the pion decay constant) is even smaller than the color number, ΛSS =

1.569, we need in principle higher 1/Λ corrections to the interaction potential to

extrapolate numerical values that can be considered correct in the model and can

be used to confront physical data. The picture in the large Λ limit is complete,

but unrealistic, as it predicts two possible excited states of the deuteron that are

still bound, but to ΛSS we have that at least one of those two extra states become

unbound, and can be considered a scattering state.

Quantization of the lowest energy states is not complete: we have neglected

approximated moduli with light mass (instanton sizes and holographic direction

position), that have been used in [24] to identify the extra states with nucleon

resonances. The hope for the large Λ picture is that the contribution from those

moduli effectively separates the deuteron state from the extra state at ΛSS, giving

a picture that is at least qualitatively correct. We also have to take into account

the relative rotation between the two instantons.

This will be our concern for the near future, completing the picture with

particular attention to the ΛSS region. If we obtain satisfactory results, we would

pursue a full simulation of the model, that is needed to get finite Λ reliable results.

The model of Sakai and Sugimoto is very promising in getting a picture of non

abelian gauge theories (at least, in the large N limit and low energy limit), because

it is a top down approach that has very few parameters to fit, so we believe that

it deserves a more in depth analysis.
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Notations and symbols

Differential geometry

When describing spacetimes, we will always use a ”mostly pluses” signature.

This means that, in d+ 1 dimensions, we take the Minkowski metric to be

η = diag(−1, 1, ..., 1︸ ︷︷ ︸
d

)

Otherwise, for a generic metric tensor g, we always have signature(g) = (d, 1, 0).

We will always set c = 1. With this signature, for a d + 1-vector xµ x0 is the

”time” component, while xi is the ”space” vector. We always use Greek indexes

to denote indexes from 0 to d, while we use Latin indexes for indexes from 1 to

d, unless differently noted. On target manifolds, we will often use Latin indexes

from the beginning of the alphabet (a, b, c, ...), but we won’t be too pedantic and,

when two indexes sets have the same range, we can freely exchange them. We

denote the scalar product between two vectors with x · y = xµyµ, and use (x)2 as

shorthand for x · x.

The Levi Civita symbol ε is normalized as ε0123...d = 1, this implies that

ε0123...d = −1.

Wick rotation is defined as xd+1
E = ix0 and xi = xiE, replacing the 0 coordinate

with a d+ 1 coordinate. After this rotation, the metric becomes the identity, with

all plus signs. We always suppress the labels E after Wick rotating. See the last

section for indications about the ranges of the various kinds of indices. The ε tensor

is changed according to ε123...d+1,E = ε0123...d. The euclideian action is defined as

−SE = iS, after expressing S in terms of the Euclideian fields.
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When indexes are repeated, sum convention is always intended, unless other-

wise specified.

Pauli matrices

We indicate the Pauli matrices as σa or σi, neglecting distinction between

upper and lower indices, and use normalization tr[σaσb] = 2 and [σa, σb] = 2iεabcσc.

An explicit representation is given by

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
σ matrices obey σaσb = δab1 + iεabcσc, where 1 is taken as symbol for identity in

all dimensions (in this case, it is the two dimensional identity).

Fourier transformations

We define the Fourier transform of a function in Rn as

φ(p) =

∫
e−ip·xφ(x)dnx

and its inverse as

φ(x) =

∫
eip·xφ(p)

dnp

(2π)n

We always omit tildes on functions: the transformation is denoted by the argument

p. The product p · x is done with the metric of the space on which φ is defined.

Gauge theories

We define a gauge transformation on an arbitrary multiplet of fields φ as

φ→ eiΛ(x)φ = U(x)φ
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where Λ(x) is an arbitrary real function for U(1) symmetry, an N×N matrix of the

form Λ(x) = gY T
aΛa(x) with T a the Hermitian generators of the representation

of the group to which the multiplet Φ belongs, Λa arbitrary real functions and gY
is a coupling constant. φ can be expressed as φ = gY φ

aT a. The index a runs from

1 to the dimension of the Lie algebra of the group. In the case of the fundamental

representation, the generators are denoted as τa and normalized as tr
(
τaτ b

)
= 1

2
δab.

This means that, in SU(2), the generators are given by τa = σa
2

. Any T a obey the

commutation relation [T a, T b] = ifabcT c, with the totally antisymmetric tensor f

the same for all representations.

The gauge field is hermitian, Aµ = A†µ, and for a fixed representation is de-

composed in components through Aµ = gYA
a
µT

a. Aaµ are real fields. The covariant

derivative of fields in the adjoint representation (transforming as φ → UφU †) is

given by

Dµφ = ∂µφ+ i[Aµ, φ] = gY ∂µφ
aT a + ig2

Y xA
a
µφ

b[T a, T b]

The transformation rule for the gauge field is then

Aµ → UAµU
† + i∂µUU

†

The field strength tensor is Fµν = ∂µAν−∂νAµ+ i[Aµ, Aν ]. Pure gauge Yang Mills

in curved space (metric g) is then given by

SYM = − 1

2g2
Y

∫ √
|g| tr[FµνF µν ]dd+1x

g is the metric determinant, always negative in Minkowski space, and the prefactor

has been chosen to assure canonical normalization for the vector fields Aaµ. We

perform Wick rotation on the gauge field by A0,E = −iA0 and Ai,E = Ai: this

means that F0i,E = iF0i and Fij,E = Fij.

Indices range

During this thesis, we will have to do with manifolds of different dimensional-

ity, and we will need to use many types of indices. When dealing with Minkowski

space, we make the usual choice of labeling indices with greek letters, like µ, ν,

going from 0 to 3. This convention persists when we Wick rotate, but after Wick
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rotation the index range is from 1 to 4. The spatial part of Minkowski space is

described through latin letters, like i, j, going from 1 to 3. In string theory, we

have to deal with d dimensional spaces: in this case, we still use greek letters to

cover the whole manifold (from 0 to d−1), but latin letters indicate the use of light

cone coordinates, and they run from 2 to d− 1. While dealing with the AdS/CFT

correspondence, we will use manifolds of the form M× Sn: in this case, we use

greek letters to cover M and latin letters to cover Sn. After Kaluza-Klein reduc-

tion, we always end up with a space with the topology of AdS: this can be seen as

the standard space with an additional spatial dimension. In this case, we indicate

the extra dimension with z, use capital greek letters Ξ,Ψ to cover the whole AdS

space (from 0 to 4) and lowercase letters to exclude the non holographic part (from

0 to 3). If we want to exclude time, we use latin letters: uppercase I, J to include

the holographic part (from 1 to 4), lowercase otherwise (from 1 to 3).
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