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Università di Pisa

Anno Accademico 2015/2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79622995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

Introduction 2
0.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 3

1 The construction of De Concini-Procesi models 7
1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Combinatorics of arrangements . . . . . . . . . . . . . . . . . 10
1.3 The Model YG . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Projective arrangements . . . . . . . . . . . . . . . . . 14
1.4 Examples on Root Systems . . . . . . . . . . . . . . . . . . . . 15

2 The cohomology 19
2.1 Cohomology rings . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Bases for cohomology rings . . . . . . . . . . . . . . . . . . . . 20
2.3 Models of root systems . . . . . . . . . . . . . . . . . . . . . . 23

3 The Braid Case 28
3.1 Nested sets and set partitions . . . . . . . . . . . . . . . . . . 28
3.2 The Sn+k action on the Yuzvisnki basis . . . . . . . . . . . . . 30

3.2.1 A model example: YFA6
. . . . . . . . . . . . . . . . . 33

4 Models of complex reflection groups 39
4.1 Extension to G(r, 1, n), G(r, p, n) and G(r, r, n) . . . . . . . . 40

4.1.1 Nested set for FG(r,1,n) and FG(r,r,n) . . . . . . . . . . . 40
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Introduction

0.1 State of the Art

In 1995, in the fundamental article [8], De Concini and Procesi constructed
wonderful models for the complement of a subspace arrangement in a given
vector space. These models can be described in a combinatorial way and also
by an explicit sequence of blow ups; they are smooth varieties in which the
complement of these subspaces is unchanged but the family of subspaces is
replaced by a divisor with normal crossing.

The interest in these varieties was at first motivated by an approach to Drin-
feld’s construction [17] of special solutions for the Khniznik - Zamolodchikov
equation [39]. Then real and complex De Concini-Procesi models turned out
to play a relevant role in several fields of mathematical research: subspace
and toric arrangements [10], toric varieties [21], tropical geometry ([12], [22]),
box splines and index theory [10], discrete geometry [23], moduli spaces of
curves and configuration spaces [25].

The precursors of these models were Fulton and MacPherson’s compacti-
fications of classical configurations spaces of smooth algebraic varieties [25].
These compactifications show several properties similar to those characteriz-
ing wonderful arrangement models; for instance, the complement of the orig-
inal configuration space is a normal crossing divisor. Also cardinal notions of
building and nested sets, key elements in the combinatorics of arrangement
models, emerge initially in the Fulton - MacPherson construction for config-
uration spaces, thus are inspired by the combinatorics of partition lattice.

Over the years, De Concini- Procesi arrangement models have inspired sev-
eral more general constructions along the same lines of thought: for instance,
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0.2. STRUCTURE OF THE THESIS 3

compactifications of conically stratified complex manifolds by MacPherson
and Procesi [43], model constructions for mixed real subspace and halfspace
arrangements and real stratified manifolds by Gaiffi [27] (that use spherical
rather than classical blow ups), compactifications of open varieties by Hu
[37] and compactifications of arrangements of subvarieties by Li [41].
From the point of view of homological algebra, wonderful models construction
has made major contribution on an enduring open question in arrangement
theory, since in [8] it was proven that combinatorial data of subspace arrange-
ment determines the cohomology algebra of its complement. Previously, in
1980, Orlik and Solomon already showed an elegant description of the in-
tegral cohomology algebra of the hyperplanes arrangement complement in
terms of the intersection lattice [44], while Goresky and MacPherson proved
that integral cohomology modules of complements of subspace arrangements
are determined by the intersection lattice [34].

In general, given a subspace arrangement, there are several De Concini-
Procesi models related to it, depending on distinct sets of initial combi-
natorial data. Among these building sets there are always a minimal one and
a maximal one with respect to inclusion: as a consequence there are always
a minimal and a maximal De Concini-Procesi model.
In this thesis we will deal with minimal De Concini-Procesi models related
to classical Coxeter arrangements as well as more general complex reflection
groups, as described in the next section.

0.2 Structure of the Thesis

The first chapter is entirely dedicated to recall De Concini and Procesi origi-
nal combinatorial and geometric constructions arising from subspace arrange-
ments. We describe, given a finite family K of linear subspaces in a vector
space V or more generally in a projective space, an explicit construction of
a model for the complement AK of the union of the subspaces in the given
family. This is a smooth irreducible variety with a proper map to V which
is an isomorphism on the preimage of AK and such that the complement of
this preimage is a divisor with normal crossings.

The general construction consists in forming the closure of the graph of the
map

ρ : AK → V ×
∏

A∈K P(V/A)
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where K is a family of subspaces of V , P(V/A) denotes the projective space
of lines in V/A and the map from AK to P(V/A) is the restriction of the
canonical projection V/A → P(V/A). This map encodes the relative posi-
tion of each point in the arrangement complement AK with respect to the
intersection of subspaces in K. We will call this variety YK: it contains AK
as open set and for suitable classes of families K it can be obtained by a
sequence of blow up along smooth centers.
The combinatorics is rather complex and it is best described working in the
dual space. In the dual let C be the family of subspaces dual to all the sub-
spaces in K and their intersections. This family is clearly closed under sum.
We say that a family G ⊂ C is a building set in C if every element X ∈ C is
the direct sum X = ⊕iYi of its maximal elements (i.e. maximal elements Yi
of G contained in X). Then we say that X = ⊕iYi is the decomposition of
X relative to G.
The main theorem states that, if G is a building set relative to C, the variety
YG is smooth and the complement in YG of the open set AG is a divisor with
normal crossings. Moreover, one can build a sequence Gi of building sets
(relative to different families Ci ⊂ C) so that YG0 = V and YGi+1

is obtained
from YGi by blowing up a smooth subvariety.
The last fundamental concept to study these models is the notion of a G
nested set, i.e. a family A1, A2, . . . , Ak of elements of G with the property
that, if B1, B2, . . . , Bh are taken out of this family and are pairwise non com-
parable elements, then they form a direct sum X = ⊕hi=1Bi and this is the
decomposition of X relative to G.

In the second chapter we present main results about integer cohomology
rings of De Concini-Procesi models of subspace arrangements.
Firs of all we recall that, in 1997, Yuzvinsky [52] has found bases for the
Z−module H∗(YF ,Z) when F is the minimal building set which refines a
hyperplane arrangement (i.e. the building set of irreducibles). We summa-
rize a more general construction [26] that provides bases for the Z−modules
H∗(DS ,Z) and H∗(YG,Z), when DS are the smooth irreducible divisors in-
dexed by the elements S ∈ G whose union forms the complement of AK in
YG.
Then we specialize this cohomology basis to the case of classical Coxeter
arrangements of type An, Bn(= Cn), Dn, reducing the computation to sum-
mation over trees in a particular combinatorial fashion.

In the third chapter we will consider the real or complexified braid arrange-
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ment, i.e. the arrangement given by the hyperplanes defined by the equations
xi− xj = 0, 1 ≤ i < j ≤ n in Rn or Cn. It turns out that the minimal build-
ing set FAn−1 that contains the lines in V ∗ that are the annihilators of the
hyperplanes xi−xj = 0 is made by all the subspaces in V ∗ whose annihilators
in V are described by equations like xi1 = xi2 = · · · = xik (k ≥ 2). This
gives a bijective correspondence between the elements of FAn−1 and the sub-
sets of {1, 2, . . . , n} of cardinality at least two. As immediate consequence, a
FAn−1-nested set S is represented by a set (which we still call S) of subsets of
{1, 2, . . . , n} with the property that any of its elements has cardinality ≥ 2
and if I and J belong to S then either I ∩ J = ∅ or one of the two sets is
included into the other.
We recall that the minimal projective De Concini-Procesi model of type An−1
is isomorphic to the moduli space M0,n+1 of (n+ 1)-pointed stable curves of
genus 0. This isomorphism carries on the cohomology of the models YFAn−1

an hidden extended action of the symmetric groups Sn+1 that has been stud-
ied by several authors ([33], [48], [19]). In addition to this natural Sn+1

action, we present another hidden extended action of the symmetric group
on the minimal models of a braid arrangement as described in [3]. Thanks
to the combinatorial remark proven in [29], the symmetric group Sn+k acts
by permutation on the set of k−codimensional strata of the minimal model
of type An−1. This happens at a purely combinatorial level, and it does not
correspond to a geometric action on the minimal model, nevertheless it give
rise to an interesting permutation action on the elements of a basis of the
integer cohomology of the complex minimal model. The splitting of these
elements into orbits allows to write a generating formula for the Poincaré
polynomials of the complex minimal models that is different from the one
available in the literature (compare [26], [42] and [52] with [3]).
We follow [3] and we recall briefly here the combinatorial approach that we
use: elements of integer cohomology basis can be presented by graphs that
are oriented rooted trees on n leaves, with exponents attached to the internal
vertices; in [29] a bijection between rooted trees with k internal vertices and
the partitions of {1, 2, . . . , n + k − 1} into k parts of cardinality ≥ 2 has
been described. It turns out that, using this bijection, a new representation
of the integer cohomology basis monomials is provided by partitions with
exponents.
As an example we present an explicit construction of integer cohomology ba-
sis for the minimal complex model YFA6

through the presentation of nested
sets.

In the fourth and last chapter, we present De Concini-Procesi models as-
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sociated with finite irreducible complex reflection groups, giving an account
of the results in [31]. We recall that, according to Shephard - Todd classifi-
cation [50], these are the groups G(r, p, n), with r, p, n ∈ Z+ and p|r, plus 34
exceptional groups.
Then we extend the building and nested sets language to the more general
case of model YFG(r,p,n)

. Here, the combinatorial structure is richer: ver-
tices of two types appear as well as weights attached to the vertices and the
leaves. Even if the combinatorial picture is more complicated, also in this
more general case exponential formulas for the generating functions of the
Betti numbers have been obtained [31].
Finally, we generalize the model example presented in the third chapter in
the case YG(r,1,6) and we obtain in this exmaple formulas for dimension of non
vanishing integer cohomology groups that can be compared with the results
obtained before.



Chapter 1

The construction of De
Concini-Procesi models

In [8] De Concini and Procesi constructed wonderful models for the com-
plement of a subspaces arrangement in a vector space. This first chapter is
a short survey on their original construction, therefore all of the proofs are
omitted.

1.1 Basic Definitions

Let V be a finite dimensional vector space over an infinite field K and V ∗

its dual space. Given a finite family K of subspaces of V ∗, for every A ∈ K
consider its annihilator A⊥ ⊂ V . We also denote by PA the projective space
of lines in V/A⊥, remarking that a basis of A gives a system of projective
coordinates in PA.
Let VK = ∪A∈K A⊥ be the union of all the subspaces A⊥ and AK be the open
set of V complement of VK. For every A ∈ K we have a rational map:

πA : V − A⊥ → V/A⊥ → PA

defined outside of A⊥ and thus we have a regular morphism AK →
∏

A∈K PA.
Finally we have an embedding

ρ : AK → V ×
∏

A∈K PA

given by the inclusion on the first component and by the maps πA on the
other components.

Definition 1.1. We denote by YK the closure of the image ρ(AK).

We first make some general remarks about these wonderful models :

7
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1. From the construction of this variety it is clear that it does not depend
on the 1-dimensional subspaces A since in this case PA is a single point.

2. The projection p : V ×
∏

A∈K PA → V , restricted to YK, is a proper
birational map pK which is an isomorphism on AK.

3. Given two families K1 ⊂ K2 we have a canonical projection pK2
K1

: YK2 →
YK1 extending the identity on AK2 .

4. If f is a linear isomorphism of V , then f extends to as isomorphism
YK → Yf(K), where f(K) = {f(A)|A ∈ K}; in particular the group of
linear simmetries of K acts on YK.

5. Given A minimal in K set K′ := K − A and define the family K(A) in
V ∗/A by

K(A) := {(B + A)/A|B ∈ K′}.

By identification we have made (B+A/A⊥) = B⊥∩A⊥, then VK′∩A⊥ =
VK(A), AK′ ∩A⊥ = AK(A), AK = AK′ −A⊥. The closure of AK(A) in YK
is isomorphic to YK(A) and we have a commutative diagram:

YK(A) YK′

A⊥ V

i

pK(A) pK′

We start our analysis with a basic case given by the following definition:

Definition 1.2. A set S of subspaces in V ∗ is nested if, given any U1, . . . , Uk ∈
S pairwise non comparable, they form a direct sum U = ⊕iUi and U /∈ S.

A nested set can be recursively constructed as follows. Choose subspaces
Ai which form a direct sum. Then in each Ai choose a nested set Si containing
Ai. Finally set S to be the union of the Si.
Let S be a nested set of subspaces. For every non empty set A ⊂ V ∗ the
set of subspaces in S ∪{V ∗} containing A is linearly ordered and non empty.
Let be pS(A) (or p(A)) to be the minimum of them.
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Lemma 1.1. The set of x ∈ V ∗−{0} with pS(x) = U equals U−∪iUi−{0},
where Ui are the maximal proper subspaces of U in S. Given a subspace G
there is an x ∈ G such that p(x) = p(G).

Let S be a generical nested set of subspaces.

Definition 1.3.

1. A basis b of V ∗ is adapted to S if, for all A ∈ S, the set

bA := b ∩ A = {v ∈ b|p(v) ⊂ A}

is a basis of A.

2. A marking of a basis b adapted to S is a choice, for all A ∈ S, of an
element xA ∈ b with p(xA) = A.

Lemma 1.2. An adapted basis always exists and for all A ∈ S, there exists
a x ∈ bA such that p(x) = A.

We now define an order in a marked basis by setting x ≤ y if p(x) ⊂ p(y)
and y is marked. Under this ordering each subspace A of the nested set has
as basis the set of elements {v ∈ b|v ≤ xA}.

As general digression we remark that, given a partial order µ on a finite
set E, we can define a map ρµ : KE → KE by the formula

a :=
∏

b≥a ub

where a ∈ E are chosen as coordinates on the target space while ua are co-
ordinates on the source of the map. Assuming that the partial ordering is
such that the elements greater than any given one a form a linearly ordered
set, then the map ρµ is a birational morphism.

Consider now a space Kb with coordinates indexed by the basis elements
and set ua := uy where y is the marked element associated to A. Define
v := uv

∏
B⊃A uB if A = p(V ) and v is not marked, or v :=

∏
B⊃A uB if

v = xA. This is the monomial map associated to the given ordering, and
since b is a basis of V ∗, we can consider it as map ρµ : Kb → V .

Proposition 1.3. The map ρµ restricts to an isomorphism between the open
set where uA are all different from 0 and the open set where vA are all different
from 0, and maps the hyperplane defined by uA = 0 in to the subspace A⊥.
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To study YS choose a basis b adapted to S, give it a marking and consider
the map ρµ. We notice that the composition of ρµ with the rational map
πA : V → PA in the projective coordinates for PA coming from the basis
bA of A, is given by the preceding formulas. Thus as monomials in the ux,
these coordinates are all divisible by the monomials expressing xA. We finally
deduce that:

Proposition 1.4. The map ρµ lifts to an open embedding into YS .

We denote by U bS the open set in YS given by the previous proposition
and identify the restriction to U bS of the projection from YS to V again with
ρµ. The open set U bS depends only on the marked elements of the basis and
not on the full basis.

Given S, one possible way to select adapted marked bases is the following.
Choose for every B ∈ S a basis bB of B of vectors non contained in any C ∈ S
properly contained in B. For every B choose a vector xB ∈ bB. These vectors
are linearly independent and thus can be completed to a basis b adapted to
S in which they are marked. As already mentioned, the corresponding open
set U bS does not depend on the way in which we complete the basis. Finally
we get a finite family M of open sets.

Proposition 1.5.

1. The variety YS is covered by the open sets U bS in the family M.

2. Given a minimal element A ∈ S and let S ′ = S − {A}. Then YS it is
the blow up of YS′ along the proper transform ZA of the subspace A⊥

which is a smooth subvariety.

3. ConsiderA = V −∪A∈SA⊥ embedded as an open set in YS . Then YS−A
is a divisor with normal crossing with smooth irreducible components
DSA for A ∈ S.

4. All intersections of the divisors DSA are irreducible.

1.2 Combinatorics of arrangements

Let C denote a finite set of non zero subspaces of V ∗ closed under sum.

Definition 1.4. Given a subspace U ∈ C a decomposition of U is a collection
of non zero subspaces U1, . . . , Uk ∈ C with U = U1 ⊕ . . . ⊕ Uk and, for
every subspace A ⊂ U in C, also A ∩ U1, . . . , A ∩ Uk lie in C and A =



1.2. COMBINATORICS OF ARRANGEMENTS 11

(A ∩ U1)⊕ . . .⊕ (A ∩ Uk).
If a subspace does not admit a decomposition it is called irreducible. The
set of all irreducible subspaces of C is denoted FC.

Observation 1.1. One can prove that every subspace U ∈ C has a unique
decomposition U = ⊕ki=1Ui into irreducible subspaces. In addition, if A ⊂ U
is irreducible, then A ⊂ Ui for some i.

Observation 1.2. As an example, let us consider a root system Φ in V (a
real or complex vector space) and its associated root arrangement: A⊥ is the
hyperplane arrangement provided by the hyperplane orthogonal to the roots
in Φ. In this case the building set of irreducibles is the set whose elements
are the subspaces spanned by the irreducible root subsystems of Φ.

Proposition 1.6. Given a direct sum U = ⊕ki=1Ui, this is a decomposition
if and only if, for every irreducible A, A ⊂ U implies that A ⊂ Ui for some i.
Given two irreducible subspaces A,B then either A + B is irreducible or
A⊕B is an irreducible decomposition.
If a subspace M is sum of irreducible subspaces Mi, its irreducible compo-
nents are also sum of subfamilies of the family Mi.

Let G be a set of subspaces in V ∗. Set CG the set of subspaces which are
sums of subspaces in G and FG = FCG the irreducibles in CG.

Theorem 1.7. The following three conditions on G are equivalent:

1. G satisfies:

(a) G ⊃ FG.
(b) If A,B ∈ G, A = ⊕ti=1Fi is the irreducible decomposition of A in
FG and B ⊃ Fi for some i, then A+B ∈ G.

2. Every element C ∈ CG is the direct sum C = G1 ⊕ . . . ⊕ Gk of the
maximal elements Gi ∈ G contained in C.

3. G satisfies

(a) G ⊃ FG
(b) If A,B ∈ G and A+B is not a decomposition, then A+B ∈ G.

Definition 1.5. A set G satisfying the previous three equivalent conditions
will be called a building set.

The following proposition gives us some fundamental examples of building
sets.
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Proposition 1.8. Let C be a set of non zero subspaces closed under sum.
Then

1. C is a building set.

2. FC is a building set.

3. Let G ⊂ FC be a subset with the property that, if X ∈ CG, then all its
irreducible components in FC lie in G. Then G is a building set.

4. Let A ∈ FC be a minimal element. Denote with φ : V ∗ → V ∗/A the
quotient morphism, and consider the set G = {φ(B)|B ∈ FC − {A}}.
Then

(a) the set H = FC − {A} is a building set;

(b) if φ(G) ∈ FG then either G is irreducible in C or G ⊃ A and there
is a irreducible G0 ⊂ G such that G = G0 ⊕ A is the irreducible
decomposition of G.

(c) G is a building set in V ∗/A.

In general, given a set of subspaces G, there are different building sets B
of subspaces of V ∗ such that CB = CG; if we order by inclusion the collection
of such sets, it turns out that the minimal element is FG and the maximal
one is CG.
Definition 1.6. Let G be a building set. A subset S ⊂ G will be called
nested relative to G or G-nested if

1. S is nested.

2. Given a subset {A1, . . . , Ah} of pairwise non comparable elements in
S, then C = ⊕hi=1Ah is the decomposition of C in G.

We remark that given a nested set S, the minimal set of subspaces C
closed under sum and containing S is formed by the direct sums of the
families of non comparable elements of S. Furthermore S coincides with the
set of irreducible elements of C.

1.3 The Model YG

Let us now take a building set G and let AG = A be the usual complement.
As in the previous sections we take the variety YG as the closure of the
embedding of A in V ×

∏
G∈G PG. Take a G-nested set S and a marked basis

b adapted to it. Let p(X) = pS(X) for any non zero subset X ⊂ V , and
ρm : Kb → V the morphism associated to S and B.
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Lemma 1.9. 1. Given any x ∈ V ∗ − {0}, suppose A = p(x) ∈ S. Then
x = xAPx(uv), where Px is a polynomial depending only on the vari-
ables uv, v < xA.

2. If S is a maximal nested and G ∈ G then p(G) = A ∈ S and there is
an x ∈ G with A = p(x) such that, writing x = xAPx(uv), Px does not
vanish in 0.

From the previous lemma, for a G ∈ G we shall define polynomials PG
x (u)

by the formula x = xAP
G
x (u). Let ZG be the subvariety in Kb defined by

the vanishing of these polynomials. It is defined in such a way that the map
Kb → V → V/G⊥ can be composed in Kb − ZG with the rational map
V/G⊥ → P(V/G⊥) = PG giving a regular morphism.

Definition 1.7. Given a G nested set S define the open set U bS as the com-
plement in Kb of the union of all the varieties ZG, G ∈ G.

On the set U bS are defined all the rational morphism to PG and so we get
an embedding jbS of U bS in YG. One can now prove

Theorem 1.10. 1. The map jbS is an open embedding.

2. YG = ∪SjbS(U b
S). In particular YG is smooth.

3. Set Db
S equal to the divisor defined by

∏
A∈S uA = 0. Set D =

∪SjbS(Db
S). Then A = YG −D and D is a divisor with normal crossing.

The next more precise statement will be useful in cohomology computa-
tions.

Theorem 1.11. 1. The complement D of A in YG is the union of smooth
irreducible divisors DG indexed by elements G ∈ G, where DG is the
unique irreducible component in D such that δ(DG) = G⊥ with δ :
YG → V is the projection map.

2. The divisors DA1 , . . . , DAn have nonempty intersection if and only if
the set S = {A1, . . . , An} is G-nested. In this case the intersection is
transversal and we obtain a smooth irreducible variety DS = ∩ni=1DAi

.

3. Let G a minimal element in G and let G ′ = G − {G}. Then YG is
obtained from YG′ by blowing up the proper transform TG of G⊥ and

TG is isomorphic to the variety YG where G is induced in V ∗/G by FG
as in Proposition 1.8.
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1.3.1 Projective arrangements

Associated to a nonempty family K of non zero subspaces in V ∗ one can also
consider the configuration of linear subspaces P(A⊥) in P(V ). As in the first
section we set V := ∪A∈KP(A⊥) and AK the open set of P(V ) complement of
V .
Using the same notation, the multiplicative group K∗ acts on AK and AK =
AK/K∗. The regular morphism AK →

∏
a∈K PA is constant on K∗ orbits and

we get an induced morphism AK →
∏

A∈K PA, its graph is a closed subset of

AK ×
∏

A∈K PA which embeds as open set into P(V )×
∏

A∈K PA. Finally we
have an embedding

ρ : AK → P(V )×
∏

A∈K PA.

Definition 1.8. We let Y K to be the closure of the image of AK under ρ.

Consider the projection p : YK → V and let Y 0
K = YK− p−1(0) be an open

set in YK; it is K∗ stable and it equals the closure of AK in the embedding
AK → V −{0}×

∏
A∈K P(A). Furthermore, since V −{0}×

∏
A∈K PA/K∗ =

P(V )×
∏

A∈K PA it is possible to show that Y K = Y
0

K/K
∗.

We finally apply all this to the case of a building set G containing V ∗ and
deduce immediately

Theorem 1.12. 1. Y G is a smooth projective and irreducible variety.

2. YG is the total space of a line bundle on p−1(0) = DV ∗ and Y G is
isomorphic to p−1(0) = DV ∗ .

3. The morphism p : Y G → P(V ) is surjective and restricts to an isomor-
phism on AG.

4. D = Y G −AG is a divisor with normal crossing. The irreducible com-
ponents of D are smooth and in one to one correspondence with the
elements F ∈ G − {V ∗}.

5. Given a subset S ⊂ G−{V ∗} the corresponding divisors have nonempty
intersection if and only if S is nested.

An explicit description in local coordinates is the following.

Take S nested and consider a marked basis b and the associated open set
U b
S . By the explicit description of the coordinates uv, we immediately see

that U b
S is K∗ stable: the coordinates uv for v not maximal are fixed, while
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the maximal coordinate xV ∗ is multiplied by the scalars in K∗. If the nested
set is maximal contained in a building set G we can consider the open set U bS
defined as the complement of the union of the varieties ZG of equations Px,
x ∈ G.

We end this section by remarking that if G is a building set in V ∗, then
the set G ′ of subspaces in V ∗ ⊕K formed by the subspaces H ⊕ {0}, h ∈ G,
and the line L = {0} ⊕ K is again a building set and the complement of
the union of the corresponding linear spaces in P(V ⊕ K) equals the open
set AG. Thus applying the above results, we obtain a compactification of
AG in which the complement of AG is a divisor with normal crossing whose
irreducible components are in bijection with the subset S ⊂ G ′ which are
either G-nested subsets or are such that S − {L} is G-nested.

1.4 Examples on Root Systems

First of all we need to recall some basic terminology, in particular as it con-
cerns the combinatorial data of an arrangement.
The combinatorial data associated with an arrangementK = {U1, U2, . . . , Un}
is recorded in a partially order set, the intersection lattice L = L(K): the set
of intersections of subspaces in K ordered by reversed inclusion. We adopt
terminology from the theory of partially order sets and denote the unique
minimum in L(K) (the vector space V corresponding to the empty inter-
section) by 0̂ and the unique maximum element (the overall intersection of
subspaces in K) by 1̂. In the general theory the elements of the intersection
lattice are labeled by the codimension of the corresponding intersection. For
arrangements of hyperplanes, this information is registered in the rank func-
tion of the lattice: the codimension of an intersection X corresponds to the
number of elements in a maximal chain in the interval (0̂, X] in L(K).
Furthermore, we can consider the order complex ∆(L̊) of the interior part
L̊ = L\{0̂, 1̂} of the intersection lattice; it is the abstract simplicial complex
formed by the linearly ordered subsets in L̊. Besides ∆(L̊), we will refer to
the cone over ∆(L̊) obtained by extending the linearly ordered sets in L̊ by
the maximal element 1̂ in L: we will denote this complex by ∆(L \ {0̂}).
Example 1.1. The arrangement An−1, given by the hyperplanes

Hij = xi = xj, for 1 ≤ i < j ≤ n,

in a real n-dimensional vector space is called the (real) (n − 1)-rank braid
arrangement. There is a natural complex version of this braid arrangement:
it consists of hyperplanes Hij in Cn given by the same linear equations. At
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times, we will use the notation ARn−1, A
C
n−1 if we want to mark the real or

complex setting.
First of all, we observe that the diagonal ∆ = {x ∈ Kn|x1 = . . . = xn} is
the intersection of all hyperplanes in An−1. One can consider An−1 as an ar-
rangement in real or complex (n− 1)-dimensional space V = Kn/∆ without
changing the overall setting of the complement.
As the intersection lattice of the braid arrangement An−1 we recognize the
partition lattice Πn, the set of partitions of {1, 2, . . . , n} ordered by reversed
refinement. The correspondence to intersections in the braid arrangement
can be described as follows: the parts of a partition correspond to sets of co-
ordinates with identical entries, thus to the set of points in the corresponding
intersection of hyperplanes.
In Figure 1.1 we sketch the real braid arrangement A2 in V = R3/∆, its in-
tersection lattice Π3, and the order complex ∆(Π3 \{0̂}), denoting partitions
in Π3 by their non-trivial parts. The depicted complex is a cone over ∆(Π3).

Figure 1.1

Example 1.2. Choosing the maximal building set in the partition lattice Πn,
we obtain the order complex ∆(Πn \{0̂}) as the associated complex of nested
sets.
Instead, the minimal building set Gmin in Πn is given by partitions with ex-
actly one part of size larger or equal to 2. We can identify these partitions
with subsets of {1, 2, . . . , n} of size larger or equal to 2. A collection of such
subsets is nested if and only if for any pair of subsets they are either disjoint
or one is contained in the other.
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For the rank 3 partition lattice Π3, it is easy to observe that maximal and min-
imal building sets coincide, G = Π3 \ {0̂}. The nested set complex N (Π3,G)
is the order complex ∆(Π3 \ {0̂}) represented in Figure 1.1.
For the rank 4 partition lattice Π4, nested set complexes for the minimal
N (Π4,Gmin) and maximal N (Π4,Gmax) building set are depicted in Figures
1.2 and 1.3: recall that the complexes are 2-dimensional cones, both with
maximum 1234 over ∆(Π̊4), and we only draw their bases for graphics rea-
sons.

Figure 1.2: The nested set complex N (Π4,Gmin)
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Figure 1.3: The nested set complex N (Π4,Gmax)



Chapter 2

The cohomology

We are now interested in the integer cohomology rings of YG and of the sub-
varieties DS. They have been studied in [8], where presentations as quotients
of polynomial algebras have been obtained.

2.1 Cohomology rings

First of all suppose to fix a G-nested set S ⊂ G. Let us take a subset H ⊂ G
such that there is an element B ∈ G satisfying A ( B for all A ∈ H. Set
SB = {A ∈ S : A ( B}. As in [8], we define the nonnegative integer dSH,B.

Definition 2.1. Define

dSH,B = dimB - dim (
∑

A∈H∪SB

A).

Notice that dSH,B ≥ 0 and, if S
′ ⊃ S are two G-nested sets dSH,B ≥ dS

′

H,B.
To these data we associate the polynomial in Z[cA]A∈G given by

P S
H,B = (

∏
A∈H

cA)(
∑
C⊃B

cC)d
S
H,B .

We let IS be the ideal in Z[cA] generated by these polynomials, for fixed S
as H, B vary. We notice again that, if S

′ ⊃ S sre two G-nested set, the poly-

nomial P S
′

H,B divides P S
H,B, so I

′
S ⊃ IS and also we can assume thatH∩SB = ∅.

In [8] the cohomoolgy of the varieties DS is computed as follows.

Theorem 2.1. The natural map

φS : Z[cA]→ H∗(DS,Z)

19
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defined by sending cA to the cohomology class [DA] associated to the divi-
sor DA restricted to DS, induces an isomorphism between H∗(DS,Z) and
Z[cA]/IS. In particular, keeping the above definitions also in the case S = ∅,
we obtain

H∗(YG,Z) ' Z[cA]/I∅.

Finally, let us recall the following lemma, since it points out some relevant
polynomials in the ideals IS.

Lemma 2.2. LetH ⊂ G be such thatH∪S is not G-nested. Then
∏

A∈H cA ∈
IS.

Observation 2.1. Notice that, if H denotes the set of maximal elements of H,
we have that P S

H,B divides P S
H,B. Therefore IS is generated by the polynomials∏

A∈H cA for H ∪ S not G-nested, and P S
H,B for H ∪ S, G-nested.

Example 2.1. Keeping in mind the description of braid arrangements given
in Examples 1.1 and 1.2, one can read integer cohomology rings as follows.
For Π3 and its only building set Gmin = Gmax we have the following expression:

H∗(YGmin
,Z) ' Z[cA]/I∅ = Z[c12, c13, c23, c123]/I3 with

I3 =< c12c13, c12c23, c13c23, c12 + c123, c13 + c123, c23 + c123, c
2
123 >

In fact, from Lemma 2.2 and Observation 2.1 we are interested only in
monomials of the form

∏
A∈H cA forH∪S not G-nested, and P S

H,B forH∪S, G-
nested: the former are c12c13, c12c23, c13c23, while the latter are c12+c123, c13+
c123, c23 + c123, c

2
123.

Finally, noting that in the quotient ring the following relations hold c12 =
c23 = c13 = −c123 and c12c13 = c12c23 = c13c23 = c2123, one can write the
cohomology ring in the simpler form H∗(YGmin

,Z) ' Z[c123]/[c
2
123].

2.2 Bases for cohomology rings

Let G be a building set and let s ⊂ G be a G-nested set. Set SA = {E ∈
A|E ( A}. As described in [26] we want to give a Z-basis for H∗(DS,Z). As
already mentioned, when S = ∅, we will get a basis for H∗(YG,Z).

Definition 2.2. A function f : G → N is called G, S-admissible if it is f = 0
or if f 6= 0, supp f ∪ S is G-nested and, for every A ∈ supp f ,
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f(A) < dS(suppf)A,A = dimA− dim (
∑

B∈(suppf)A∪SA

B).

Since suppf ∪ S is G-nested, we observe that dS(suppf)A,A for every A ∈
supp f .
Now, given a G, S-admissible function f , we will call G, S-admissible the
monomial mf =

∏
A∈G(cA)f(A). Thanks to Lemma 2.2 all such monomials lie

in H∗(DS,Z) ' Z[cA]/IS.

Theorem 2.3. Given G and S as above, the set BG,S of G, S-admissible
monomials is a Z basis for H∗(DS,Z).

Proof. First we prove that the elements in BG,S span H∗(DS,Z).
For a certain function g : G → N let mg =

∏
A∈G(cA)g(A) be a monomial in

H∗(DS,Z): because of Lemma 2.2 supp g must be G-nested. Let us suppose
that g is not G, S-admissible, therefore there is an A ∈ supp g such that
g(A) > dS(suppf)A,A. We call such an A a bad component for the monomial if it
is minimal with this property. We will prove the claim by reverse induction
on the rank of bad components.
We notice that if a bad component A of mg is a maximal element in G then
the polynomial P S

(suppg)A,A
divides mg, so mg = 0. Otherwise, given a bad

component A, we note that the polynomial

(
∏

B∈(suppg)A

cB)(cA)
dS
(suppg)A,A

divides mg so, using the expression of P S
(suppg)A,A

, we can express mg as sum
of monomials that are in BG or have bad components strictly greater than
the ones of mg. We can conclude by using inductive hypothesis.
It remains to prove the linear independence of monomials in BG,S; we will do
it first in the simple case S = ∅.
Let χ(YG) denote the Euler - Poincar characteristic of YG. Now, given a
minimal element G ∈ G and keeping the same notation as in Theorem 1.11,
we already know that YG can be obtained by blowing up YG′ along a subvariety
isomorphic to YG, so we deduce

χ(YG) = χ(YG′ ) + (dimG− 1)χ(YG).

Since the odd degree components of H∗(YG,Z) are zero, it suffices to show
that |BG| = χ(YG).
We will proceed by induction on the cardinality of G, the case |G| = 1 being
obvious. Given G and G as before we can divide admissible functions in two
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sets: Z1 = {f(G) = 0} and Z2 = {f(G) > 0}. We observe that there is
a bijective correspondence between MZ1 , the set of monomials associated to
admissible functions in Z1, and BG′ , so |Z1| = |BG′ |. Moreover, if f ∈ Z2

satisfies f(B) > 0 for some B 6= G, we have that either B ∩ G = {0} or
G ⊂ B. So the function f : G → N constructed by putting f(D) = f(D) if
f(D) > 0 and 0 otherwise, is G-admissible.
We next observe that the established correspondence between Z2 and the set
of G-admissible functions is surjective and dimG− 1 to 1, so we have

|Z2| = |BG|(dimG− 1).

We have then proved that |BG| satisfies the same recurrence relation as
χ(YG):

|BG| = |Z1|+ |Z2| = |BG′ |+ |BG|(dimG− 1).

Thus the first claim follows by induction. Let now suppose S 6= ∅ to be
a G-nested set. The proof will be given in various steps.

Step 1. S ∪ {G} is not G-nested.

In this case S is G ′-nested and the restrictions to DS of the natural pro-
jection p : YG → YG′ is an isomorphism onto its image, i.e. the variety D

′
S

associated to S in YG′ .
The theorem is true, by induction, for H∗(D

′
S),Z, and since a function

f : G → N is S-admissible if and only if suppf ⊂ G ′ and f|G′ is S-admissible,
it is also true for H∗(DS,Z).

Step 2. S ∪ {G} is G-nested but G /∈ S.

In this case S is still G ′-nested. In addition, we can consider the set S = {A :
A ∈ S} ⊂ G which turns out to be G-nested.
From Theorem 1.11 we know that if D

′
S is the subvariety associated to S in

YG′ , then DS can be obtained by blowing up D
′
S along a subvariety isomor-

phic to DS in YG. So the proof is analogous to the one of the case S = ∅ and
we omit it.

Step 3. G ∈ S.

In this final case, let S̃ = S − G and S̃ ⊂ G be the projection of S̃ in
G: it turns out to be G-nested. Now DS is the exceptional divisor in DS̃, i.e.
it is the preimage of D

S̃
in YG. Then it is a PdimG−1 bundle over D

S̃
, so
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dimZH
∗(DS,Z) = (dimCG)(dimZH

∗(D
S̃
,Z)).

But now, given an S-admissible function f : G → N we can define an S̃-
admissible function f̃ : G → N as follows: f̃(D) = f(D) for every D ∈ G and
D 6= G.
This map turns out to be surjective and (dimG) to 1, so we finally obtain

|BG,S| = (dimG)|BG,S̃|,

and the theorem is proved by induction.

Remark 2.1. It follows from Theorem 5.2 of [8] that the degree of generators
cA of R = H∗(YG,Z) is 2. Grading R by one half of the degree, from now
on we assume that the degree of these generators is 1, i.e. the grading of
R = ⊕q≥0Rq is generated by the standard grading of the polynomial ring
Z[cA]/I∅.
We denote by ∆q, q > 0, the set of monomials in R that corresponds to
G, ∅-admissible functions with

∑
A∈G f(A) = q and we also put ∆0 = {1}.

It is now obvious that, for every q, the set ∆q is a basis of Rq over Z.

2.3 Models of root systems

In this section we specify the monomial basis for the reflection arrangements
of classical types An, Bn (= Cn) and Dn.

Type An We have already introduced minimal wonderful model of the braid
arrangement of type An−1. We saw that FAn−1 can be identified with the
poset of all subsets of {1, 2, . . . n} of cardinality at least two ordered by in-
clusion. A collection S of these subsets is nested if and only if for every
I, J ∈ S either I ∩ J = ∅, or one of these sets lies in to the other. We note
that for every S ∈ FAn−1 we have rank S = |S| − 1.
Nested collections in FAn−1 admit another interpretation in term of trees.
Suppose that S is a nested collection, fix a maximal A ∈ S and consider
SA = {B ∈ S|B ( A}. Then we can define a rooted tree F(A) correspond-
ing to SA. For the set of vertices of F(A) we take {A}∪SA∪A, with A itself
serving as the root. Two elements of SA are connected by an edge if one of
them is a maximal subset of the other. An element p ∈ A is connected by an
edge to B ∈ SA if B is the minimal set of SA containing p. Since SA is nested
F(A) is indeed a tree. The set of leaves of F(A) coincides with A. Then
for any nested collection S we obtain a forest F(S) with at most n leaves
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whose connected components are trees F(A) where A is running through the
maximal elements of S (see Figure 2.1).

Figure 2.1: On top of the picture there is a nested set S with 6 elements in FA8 .
In the middle there is its representation by an oriented labeled rooted tree.

We will always consider rooted trees provided with the standard direction
of growth from the root to the leaves. Then it is not hard to see that for
every nested collections S and for every internal vertex v of F(S) that is not
a leaf, we have d∅S,v = |out(v)| − 1, where out(v) is the set of all outgoing
edges from v. Thus the basis ∆q of Rq is in one to one correspondence with
the forests whose internal vertices are marked by positive integers f(v) such
that f(v) < |out(v)| − 1 and

∑
v f(v) = q. Notice that the necessary and

sufficient condition for the existence of such marking is |out(v)| ≥ 3 for every
internal vertex v.

Type Bn The arrangement of type Bn can be defined in a n-dimensional
space by the equations xi = 0, xi = ±xj, 1 ≤ i < j ≤ n. Each element of the
intersection lattice L is defined by a system of several of these equations.
In order to describe FBn we fix an element X ∈ L and consider two cases.
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1. There are equations xi = 0 among equations for X. Denote by S the
set of all such subscripts i. Then the arrangement AS of hyperplanes
xi = 0, i ∈ S, and xi = ±xj, i, j ∈ S, is an irreducible component
of AX . Thus if X ∈ F then AS = AX and we will identify X with
S and call S strong. Notice that S can be any nonempty subset of
{1, 2, . . . , n}.

2. There is no equation xi = 0 among equations for X. Thus from any pair
of equations xi = xj and xi = −xj only one can be among equations for
X. As in the case of type An the equations xi = xj define a partition of
AX . The equations xi = −xj connect some elements of this partition
tying them in pairs. Again if X ∈ FBn−1 then the described diagram
is connected. Thus in this case X can be identified with a subset
of {1, 2, . . . , n} of cardinality at least 2 provided with an unordered
partition {S1, S2} (S = S1 ∪ S2). The element X is defined then by
the system {xi = xj, xi = −xk}, where i and j belong both to one of
the sets Sr (r = 1, 2) and i and k belong to the different sets. We call
these subsets S weak.

The order on FBn can be now interpreted as follows. All subsets of
{1, 2, . . . , n} larger than a strong subset are strong and they are ordered by
inclusion. A weak subset S is smaller than a strong subset T if S ⊂ T . A
weak subset S = S1 ∪ S2 is smaller than a weak subset T = T1 ∪ T2 if first
S ⊂ T and second either Si ⊂ Ti (i = 1, 2) or S1 ⊂ T2 and S2 ⊂ T1.
One can now easily computes ranks of elements of FBn after the identifi-
cation of them with strong and weak sets above. If S is a strong set then
rankS = |S|, if it is weak then rankS = |S| − 1. A collection of elements
is nested if and only if the following two conditions hold. First, every two
sets in this collection are either disjoint or one is embedded into the other.
Second, no two strong sets in this collection are incomparable that is they
are totally ordered by inclusion. Notice that a set S can be represented twice
in the collection: as a strong set and as a weak set with partition.

It is again convenient to associate forests of rooted trees with the nested
collections. This can be done similarly to type An−1 except now the vertices
of each tree are divided in two classes: weak and strong. It is useful to regard
the leaves (that do not correspond to elements of FBn) as weak vertices; then
in each tree, for any strong vertex v all vertices closer to the root than v are
strong. Furthermore, a forest can have at most one connected component
with strong vertices. Let us call the forests satisfying all these conditions
admissible.
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Of course, after passing to admissible forests we loose the partitions on weak
sets; this will amount to counting the same forest as many times as there are
nested collections corresponding to this forest. In particular the following
lemma shows that exponents of admissible monomial mf depend only on the
forest structure.

Lemma 2.4. Let S be a nested set and v an internal vertex of the correspond-
ing forest. Then d∅S,v = dS,v = |out(v)− 1|, if v is weak and dS,v = |wout(v)|
if v is strong, where wout(v) is the set of all edges outgoing from v to weak
vertices (including leaves).

Proof. By definition, we have dS,v = rank v -
∑

w∈out(v) rank w, where we
put rankw = 0 if w is a leaf. By the expressions for the rank above we see
that rankw is the number of leaves connected by a directed path to w if w
is strong, and the same number decreased by 1 if w is weak. The result
follows.

Now we want to compute the number of nested collections corresponding
to the same forest.

Lemma 2.5. Let S be a nested collection and F(S) the corresponding forest.
Let π = π(F(S)) be the number of the nested collections T such that F(T ) =
F(S). Then log2 π =

∑
rank v, where the sum is taken with respect to all

closest to the roots weak vertices of F(S).

Proof. To compute π we need to compute the number of ways of defining
one or two element partitions on the weak vertices of F(S) so that they are
included in each other in the opposite direction to the order on F(S). Notice
that the closest to the roots weak vertices correspond to the maximal weak
sets in S. Thus any partitions on these sets will uniquely define partitions
on all the weak sets of S. Choose T one of these sets and put k = |T |. Then
the number of unordered partitions on T with at most two parts is 2k−1 and
recall that k − 1 = rank T . Multiplying with respect to all such sets we get
the result.

Summing up we see that the basis ∆q, for q > 0, is mapped onto the set
of admissible forests of rooted trees having not more than n leaves whose
internal vertices are marked by positive integers f(v) such that

∑
v f(v) = q,

and f(v) < |out(v)−1| if v is weak and f(v) < |wout(v)| if v is strong. Notice
the following necessary and sufficient condition for the existence of such a
marking for some q > 0: for any weak vertex v we should have |out(v)| ≥ 3
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and any strong vertex should be connected by edges to at least 2 weak ver-
tices.

Type Dn The arrangement of this type can be defined in a n-dimensional
space by the equations xi = ±xj, 1 ≤ i < j ≤ n. The poset FDn can be
described similarly to type Bn with the main difference that every strong
subset of {1, 2, . . . , n} should have at least 3 elements (e.g. for the element
X ∈ L given by the system {x1 = x2, x1 = −x2} the arrangement AX is not
irreducible). These arrangements will be described in more detail in 4.1.



Chapter 3

The Braid Case

In this section we will consider the real or complexified braid arrangement,
i.e. the arrangement given by the hyperplanes defined by the equations
xi − xj = 0, 1 ≤ i < j ≤ n in Rn or Cn. As mentioned before, FAn−1 is the
minimal building set that contains the lines in V ∗ that are the annihilators
of the hyperplanes xi − xj = 0: it is made by all the subspaces in V ∗ whose
annihilators in V are described by equations like xi1 = xi2 = · · · = xik (k ≥
2). We already observed that there is a bijective correspondence between
the elements of FAn−1 and the subsets of {1, 2, . . . , n} of cardinality at least
two. As immediate consequence, a FAn−1-nested set S is represented by a set
(which we still call S) of subsets of {1, 2, . . . , n} with the property that any
of its elements has cardinality ≥ 2 and if I and J belong to S then either
I ∩ J = ∅ or one of the two sets is included into the other.

3.1 Nested sets and set partitions

First of all we are interested to point out a purely combinatorial action on
the poset B(n − 1) that indexes the strata of the model YFAn−1

. This does
not correspond to an action on the variety YFAn−1

, but it gives rise, as we will
see later, to an useful permutation action on the monomials of the Yuzvinski
basis of H∗(YFAn−1

,Z).

Let us denote by F k(B(n− 1)) the subset of B(n− 1) made by the elements
of cardinality k + 1 (these elements indicize the k-codimensional strata of
YFAn−1

). In [29] it has been described an explicit bijection between F k(B(n−
1)) and the set of unordered partitions of {1, 2, . . . , n + k} into k + 1 parts
of cardinality greater than or equal to 2. To recall this bijection, we identify
the elements of YFAn−1

with subsets of {1, 2, . . . , n} as before.

28
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Definition 3.1. We fix the following strict partial ordering on YFAn−1
: given

I and J in YFAn−1
, we put I < J if the minimal number in I is less than the

minimal number in J .

Let us consider a nested set S that belongs to F k(B(n − 1)). It can be
represented by an oriented rooted tree on n leaves, namely the sets {1}, {2},
· · · , {n}. Now we put labels on the vertices of this tree, starting by labeling
the vertices {1}, {2}, · · · , {n} respectively by the labels 1, 2, . . . , n.
Then we can partition the set of vertices of the tree into levels: level 0 is
made by the leaves, and in general, level j is made by vertices v such that
the maximal lenght of an oriented path that connects v to a leaf is j.
Now we can label the internal vertices of the tree in the following way. Let
us suppose that there are q vertices at level 1. These vertices correspond
to pairwise disjoint elements of FAn−1 , therefore we can totally order them
using the ordering in Definition 3.1, and we label them with the numbers
from n+ 1 (the minimum) to n+ q (the maximum).
At the same way, if there are t vertices in level 2, we can label them with the
numbers from n + q + 1 to n + q + t, and so on. At the end of the process,
the root is labeled with the number n+ k + 1. We can now associate to this
tree an unordered partition of {1, 2, . . . , n+ k} into k + 1 parts by assigning
to every internal vertex v the set of the labels of the vertices covered by v.

Figure 3.1: The same nested set S with 6 elements in FA8 in Figure 2.1. At the
bottom one can read the resulting partition of {1, 2, . . . , 14} into 6 parts.
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This bijection allows us to consider new actions of the symmetric group
on B(n− 1): every subset F k(B(n− 1)) is equipped with an action of Sn+k.

Remark 3.1. We observe that when k > 2, if we first embed Sn into Sn+k in
the standard way and then restrict the Sn+k action to Sn we do not obtain
the natural Sn action on B(n − 1). For example, let us consider n = 6 and
k = 4, and the following nested set S ∈ B(5):

S = {{1, 2}, {3, 4}, {3, 4, 5}, {3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}.

On one hand, the natural action of the transposition (1, 3) sends S to

S ′ = {{2, 3}, {1, 4}, {1, 4, 5}, {1, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}.

On the other hand, the partition of {1, 2, . . . , 10} associated with S is

{1, 2}, {3, 4}, {5, 8}, {6, 9}, {7, 10},

that is sent by the transposition (1, 3) to {2, 3}, {1, 4}, {5, 8}, {6, 9}, {7, 10}.
This last partition corresponds to the nested set

S ′′ = {{1, 4}, {2, 3}, {2, 3, 5}, {2, 3, 5, 6}, {1, 2, 3, 4, 5, 6}}

and we notice that S ′ 6= S ′′ .
Moreover, we observe that the natural S6 action on F 4(B(5)) and the S6

action restricted from S10 differ in the number of orbits, therefore when
we consider the associated permutation representations they differ in the
multiplicity of the trivial representations.

3.2 The Sn+k action on the Yuzvisnki basis

As we observed in the preceding section, the combinatorial action of Sn+k
on F k(B(n − 1)) can be read as an action on the k-codimensional strata
of YFAn−1

. Moreover we notice that this action can in turn be extended to

the Yuzvinski basis of H∗(YFAn−1
,Z). In fact we can represent this basis by

labeled partitions in the way described by the following example.

Example 3.1. Let n = 9 and let us consider the monomial c3A1
c2A2

in the
Yuzvinski basis of H10(YFA8

,Z), where {A1, A2} is the nested set given by
the subspaces A1 = {1, 3, 5, 7, 9}, A2 = {2, 4, 6, 8}. Since V does not belong
to this nested set, we write this monomial as c3A1

c2A2
c0V . Now we can associate

to the nested set {A1, A2, V } the following partition of the set {1, 2, . . . , 11}:

{1, 3, 5, 7, 9}{2, 4, 6, 8}{10, 11}
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where, A1 corresponds to {1, 3, 5, 7, 9}, A2 corresponds to {2, 4, 6, 8} and V
corresponds to {10, 11}. Finally we associate to c3A1

c2A2
the following labeled

partition of {1, 2, . . . , 11}:

{1, 3, 5, 7, 9}3{2, 4, 6, 8}2{10, 11}0.

We notice that this representation provides us an easy way to find the
bounds for the exponents in the Yuzvinski basis. More in detail, the bounds
d
{V }
(suppf)A,A

can be translated in this language in the following way. Let I be

a part of a labeled partition of {1, 2, . . . n + k} that represents a monomial
in the Yuzvinski basis: then the exponent αI of I satisfies 0 ≤ αI ≤ |I| − 2.
Moreover, it may be equal to 0 only if I contains the number n+k, i.e. when
I represents V , and in the monomial the variable cV does not appear. In
particular all the sets in the partition have cardinality ≥ 3 except eventually
for the set containing n+ k, that may have cardinality equal to 2.
Now we observe that Sn+k acts on the labeled partitions of {1, 2, . . . , n+ k}
into k + 1 parts, and this provides us with a permutation action on the
monomials of Yuzvinski basis of H∗(YFAn−1

,Z):

1. Sn+k acts on the set of all the monomials that are represented by a
labeled partition of {1, 2, . . . , n + k} into k + 1 parts with all positive
labels;

2. Sn+k−1 acts on the set of all the monomials that are represented by a
labeled partition of {1, 2, . . . , n + k} into k + 1 parts with one of the
labels equal to 0. If there is a part labeled by 0, it must contain the
number n+ k and Sn+k−1 is embedded into Sn+k as the subgroup that
keeps n+ k fixed.

This representation, once restricted in the standard way to Sn, is not
isomorphic to the natural Sn representation.

Example 3.2. Let us consider, for instance, the multiplicity of the trivial
representation in H6(YFA7

,Z). The key point is provided by the monomials
of type c1A1

c1A2
c1A3

c0V that span an invariant subspace W for both the natural
S8 action and the extended S10 action. By an argument similar to that of
Remark 2, one can check that on W the natural S8 representation and the
S8 representation restricted from S10 differ in the multiplicity of the trivial
representation (that is respectively 3 and 4).

The orbits of this action can be used to write a generating formula for
the Poincaré polynomials of the models YFAn−1

(see [?] that is different from
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the recursive formula for the Poincaré series discovered in [26], [42] and [52].

Let us denote by ψ(q, t, z) the following exponential generating series:

ψ(q, t, z) = 1 +
∑

n≥2,S∈N (FAn−1
)

P (S)z|S|
tn+|S|−1

(n+ |S| − 1)!

where, for every n ≥ 2,

• S range over all the nested sets of the building set FAn−1 ;

• P (S) is the polynomial, in the variable q, that expresses the contribu-
tion to H∗(YFAn−1

,Z) provided by all the monomials mf in the Yuzvin-
ski basis such that suppf = S. For instance, with reference to the last
example, if S is the nested set {A1, A2}, then P (S) = (q+q2+q3)(q+q2)
since we have to take into account all the possible ways to label the
partition

{1, 3, 5, 7, 9}{2, 4, 6, 8}{10, 11},

while if S is {A2, V } then P (S) = (q + q2 + q3 + q4)(q + q2) since we
are dealing with the possible labelings of the partitions

{2, 4, 6, 8}{1, 3, 5, 7, 9, 10}.

We observe that the series ψ(q, t, z) encodes the same information of the
Poincaré series: for a fixed n, the Poincaré polynomial of the model YFAn−1

can be read from the coefficients of the monomials whose z, t components is
tkzs with k − s = n− 1.

Theorem 3.1 (see [3], Theorem 10.1). We have the following formula for
the series ψ(q, t, z)

ψ(q, t, z) = et
∏
i≥3

ezq[i−2]q
ti

i!

where [j]q denotes the q-analog of j: [j]q = 1 + q + . . .+ qj−1.

Proof. It is again useful to think of the monomials of the Yuzvinski basis
as labeled partitions. Then we can single out the contribution given to ψ
by all the parts represented by subsets with cardinality ≥ 3 and with non
trivial label. If in a partition there is only one such part, its contribution
is z(q + q2 + . . . + qi−2) t

i

i!
; if there are j such parts their contributions is

zj(q+q2+ . . .+qi−2)j
( t

i

i!
)j

j!
. The total contribution of all the parts represented

by subsets with cardinality ≥ 3 and with non trivial label is provided by
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ez(q+q
2+...+qi−2) t

i

i! − 1.
Let us now calculate the contribution to ψ that comes from the parts with
cardinality ≥ 2 and with label equal to 0. For every monomial in the basis
there is at most one such part and its contribution is ti−1

(i−1)! . The exponent is
now decreased to i−1 to take into account that such part does not contribute
to the cardinality |S|. The total contribution of the elements with label equal

to 0 is therefore
∑

i≥2
ti−1

(i−1)! . Summing up all contributions, we observe that
the expression

et
∏
i≥3

ezq[i−2]q
ti

i!

allows us to take into account the contribution to ψ of all the possible mono-
mials in the Yuzvinski basis.

3.2.1 A model example: YFA6

Let us consider the model YFA6
. If one wants to compute the Poincaré poly-

nomial of this model, one can single out all the monomials in ψ whose z, t
component is tkzs, with k − s = 6. Therefore, starting from the product of
exponential functions that appears in the formula

ψ(q, t, z) = et
∏
i≥3

ezq[i−2]q
ti

i!

we are only interested in the following truncated series expansions:

ψ(q, t, z) =(1 + t+
t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+
t6

6!
)·

(1 +
zt3

3!
q +

z2t6

2!3!3!
q2 +

z3t9

3!3!3!3!
q3)·

(1 +
zt4

4!
(q + q2) +

z2t8

2!4!4!
(q + q2)2)·

(1 +
zt5

5!
(q + q2 + q3))·

(1 +
zt6

6!
(q + q2 + q3 + q4))·

(1 +
zt7

7!
(q + q2 + q3 + q4 + q5)) · · · other terms

We can now single out contributions to the Poincaré polynomial taking into
account every pair of exponents (k, s) with k−s = 6 for the component tkzs.
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• (k, s) = (6, 0): the only contribution is given by the trivial term t6

6!
[1];

• (k, s) = (7, 1): now the contributions have to be found among mul-

tiplications of terms of the form zti

i!
(q + q2 + . . . , qi−2) by t7−i

(7−i)! for

i = 3, 4, 5, 6, 7. Summing up all such terms we found zt7

7!
[ 7!
3!4!
q+ 7!

4!3!
(q+

q2) + 7!
5!2!

(q+ q2 + q3) + 7!
6!1!

(q+ q2 + q3 + q4) + 7!
7!

(q+ q2 + q3 + q4 + q5)].

• (k, s) = (8, 2): in this case there are two different ways to build the

expression t8z2. We can consider multiplication of terms z2tj by t8−j

(8−j)!
for j = 6, 8, or multiplications of terms ztk by zt8−k for k = 4, 5. The
total amount of the contribution is z2t8

8!
[ 8!
3!3!2!2!

q2+ 8!
4!4!2!

(q+q2)2+ 8!
4!3!
q(q+

q2) + 8!
5!3!
q(q + q2 + q3)].

• (k, s) = (9, 3): the last possible contribution comes from the single
term z3t9

9!
[ 9!
3!3!3!

q3].

Finally, taking into account all the possible contributions, we can now
express the Poincaré polynomial of the model YFA6

:

1 + 99q + 715q2 + 715q3 + 99q4 + q5.

Remark 3.2. We notice that it is possible in small examples to verify the
correctness of the formula for the series ψ(q, t, z) directly from the expression
for the admissible monomials in the Yuzvinski basis. For instance, referring
to our example YFA6

, one can try to list all the possible admissible monomials
mf for every generating set ∆q (q > 0). We recall from Definition 2.2 that
not every FA6-nested set S brings with itself an admissible function f , i.e. an
admissible set of exponents for the elements of S, as shown in the following
example.

Example 3.3. Let us consider the FA6-nested sets

S1 = {{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}}, S2 = {{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5}},

S3 = {{1, 2, 3, 4, 5, 6, 7}},

in our usual partitions language, within an admissible function f . From the
very definition one can evaluate f on the nested set Si, i = 1, 2, 3 to find
every possible monomial mf referred to these sets.
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• First consider S1 = {{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}}. We have

f(A) < d∅(suppf)A,A = dimA− dim(
∑

B∈(suppf)A

B)

for every A ∈ suppf . In particular f({1, 2, 3, 4, 5, 6, 7}) < 1 and we
conclude that there are no admissible monomials indexed with S1 be-
cause the only possible exponent for the element {1, 2, 3, 4, 5, 6, 7} ∈ S1
is 0.

• We consider now the slightly different case S2. This time an admissible
function f satisfies f({1, 2, 3, 4, 5, 6, 7}) < 2 and f({1, 2, 3, 4, 5}) < 4.
Therefore all the admissible monomial are c{1,2,3,4,5,6,7} · cj{1,2,3,4,5}, for
j = 1, 2, 3.

• In the latter case S3 our admissible functions satisfy f({1, 2, 3, 4, 5, 6, 7}) <
6, therefore we find admissible monomials of the form cj{1,2,3,4,5,6,7} for
j = 1, 2, 3, 4, 5.

Finally, one can recover the exact expression of Poincaré series collecting
all possible admissible nested sets, i.e. nested sets that generate admissible
monomials, and assigning to every such monomial its contribution to the
Poincaré polynomial, as summarized in the following table.
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Nested set structure Monomial Tot. nested sets Contribution

S mf P (S)

{123} c{123}
(
7
3

)
= 35 35q

{123}, {456} c{123} · c{456}
(7
3)·(

4
3)

2
= 70 70q2

{1234} c{1234}
(
7
4

)
= 35 35q

{1234} c2{1234}
(
7
4

)
= 35 35q2

{1234}, {567} c{1234} · c{567}
(
7
4

)
= 35 35q

{1234}, {567} c2{1234} · c{567}
(
7
4

)
= 35 35q2

{12345} c{12345}
(
7
5

)
= 21 21q

{12345} c2{12345}
(
7
5

)
= 21 21q2

{12345} c3{12345}
(
7
5

)
= 21 21q3

{12345}, {123} c{12345} · c{123}
(
7
5

)
·
(
5
3

)
= 210 210q2

{123456} c{123456}
(
7
6

)
= 7 7q

{123456} c2{123456}
(
7
6

)
= 7 7q2

{123456} c3{123456}
(
7
6

)
= 7 7q3

{123456} c4{123456}
(
7
6

)
= 7 7q4

{123456}, {1234} c{123456} · c{1234}
(
7
6

)
·
(
6
4

)
= 105 105q2

{123456}, {1234} c{123456} · c2{1234}
(
7
6

)
·
(
6
4

)
= 105 105q3

{123456}, {123} c{123456} · c{123}
(
7
6

)
·
(
6
3

)
= 140 140q2

{123456}, {123} c2{123456} · c{123}
(
7
6

)
·
(
6
3

)
= 140 140q3

{1234567} c{1234567} 1 q
{1234567} c2{1234567} 1 q2

{1234567} c3{1234567} 1 q3

{1234567} c4{1234567} 1 q4

{1234567} c5{1234567} 1 q5

{1234567}, {12345} c{1234567} · c{1,2,3,4,5}
(
7
5

)
= 21 21q

{1234567}, {12345} c2{1234567} · c{12345}
(
7
5

)
= 21 21q2

{1234567}, {12345} c3{1234567} · c{12345}
(
7
5

)
= 21 21q3

{1234567}, {12345}, {123} c{1234567} · c{12345} · c{123}
(
7
5

)
·
(
5
3

)
= 210 210q3

{1234567}, {123} c{1234567} · c{123}
(
7
3

)
= 35 35q2

{1234567}, {123} c2{1234567} · c{123}
(
7
3

)
= 35 35q3

{1234567}, {123} c3{1234567} · c{123}
(
7
3

)
= 35 35q4

{1234567}, {123}, {456} c{1234567} · c{123} · c{456}
(7
3)·(

4
3)

2
= 70 70q3

{1234567}, {1234} c{1234567} · c{1234}
(
7
4

)
= 35 35q2

{1234567}, {1234} c2{1234567} · c{1234}
(
7
4

)
= 35 35q3

{1234567}, {1234} c{1234567} · c2{1234}
(
7
4

)
= 35 35q3

{1234567}, {1234} c2{1234567} · c2{1234}
(
7
4

)
= 35 35q4
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Therefore the Poincaré polynomial of YFA6
is 1 + 99q + 715q2 + 715q3 +

99q4 + q5, as we expected from the computation of the generating series
ψ(q, t, z).

Observation 3.1. We notice that, starting from either the exponential formula
for ψ(q, t, z) or the equivalent language of combinatorial nested set over par-
tition of {1, 2, . . . , n}, it is possible to compute expressions for the dimension
of the cohomology groups H2(YFAn−1

,Z) and H4(YFAn−1
,Z).

For instance, we have the following expression for the dimension of the first
not vanishing cohomology group

dim H2(YFAn−1
,Z) = 2n − n(n+ 1)

2
− 1.

In fact one can easily observe that we are interested in counting FAn−1-
nested set associated with admissible monomials on ∆1; these are in one to
one correspondence with subsets of {1, 2, . . . , n} with cardinality ≥ 3. Re-
moving from the total number of subsets 2n every singletons and pairs of the
form {i}, i = 0, . . . , n, and {i, j}, 1 ≤ i � j ≤ n, and also the empy set ∅,
the desired formula follows.

Increasing the size of the cohomology groups, the formulas for their dimen-
sion become more elaborate. For example, our language of combinatorial
nested set can help us to find expression for the dimension of the second non
vanishing cohomology group H4(YFAn−1

,Z), as follows.
We are interested in counting admissible monomials of three distinct forms:
c2A, cA · cB with B ( A, and cA · cB with A ∩ B = ∅, for every subset
A,B ⊂ {1, 2, . . . , n} of cardinality at least 3.

Monomials of the form c2A arise every time n − 2 ≥ 2, i.e. n ≥ 4 and
they are in one to one correspondence with the subsets of {1, 2, . . . , n} of
cardinality at least 4. Thus they are

∑n
k=4

(
n
k

)
.

Then we observe that monomials of the second type, cA · cB with B ( A,
are admissible if and only if |A| − |B| ≥ 2 and |B| ≥ 3 (see Example
3.3). Thus they arise only when n ≥ 5 and their total number is given
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by
∑n

i=5

∑i−2
k=3

(
n
i

)
·
(
i
k

)
Monomials of the third type arise only if n ≥ |A| + |B| ≥ 6. These kind
of monomials are in one to one correspondence with different admissible
monomials in the set ∆n−1−k

1 ×∆k−1
1 for k that varies from 3 to n−3. Taking

care of all possible collisions (i.e. every monomial of the form cA · cB with
|A| = |B| appears twice in our expression), we find the following contribution∑bn

2
c

i=3

∑n−i
k=i αik

(
n
i

)
·
(
n−i
k

)
, where αik = 1 if i 6= k or 1

2
if i = k.

Finally, we can sum up all possible contributions given by admissible mono-
mials of all three species to find the following formula:

dim H4(YFAn−1
,Z) =

n∑
k=4

(
n

k

)
+

n∑
i=5

i−2∑
k=3

(
n

i

)
·
(
i

k

)

+

bn
2
c∑

i=3

n−i∑
k=i

αik

(
n

i

)
·
(
n− i
k

)
,

where αik = 1 if i 6= k or 1
2

if i = k.



Chapter 4

Models of complex reflection
groups

In this section we are interested in studying De Concini - Procesi models as-
sociated with finite irreducible complex reflection groups. We recall that, ac-
cording to Shephard - Todd classification [50], these are the groups G(r, p, n),
with r, p, n ∈ Z+ and p|r, plus 34 exceptional groups.
If we call C(r) the cyclic group of order r generated by a primitive r-th root
of unity ζ, then the group G(r, 1, n), the full monomial group, is the wreath
product of C(r) and the symmetric group Sn. For our purposes it is useful
to view G(r, 1, n) as the group generated by all the complex reflections in
GL(Cn) whose reflecting hyperplanes are described by equations xi = ζαxj,
whith α = 0, 1, . . . , r − 1, and xi = 0.
Its elements are all the linear transformations g(σ, ε) : Cn → Cn defined on
the standard basis by g(σ, ε) = ε(i)eσ(i), where σ ∈ Sn and ε ranges among
the functions from {1, 2, . . . , n} to C(r).
The group G(r, p, n) is the subgroup of G(r, 1, n) formed by all the g(σ, ε)
such that the product ε(1)ε(2) · · · ε(n) is a power of ζp. If p < r the sets of
reflecting hyperplanes of G(r, p, n, ) and G(r, 1, n) coincide. The set of reflect-
ing hyperplanes of G(r, r, n) is obtained from that of G(r, 1, n) by deleting
the coordinate hyperplanes.
We observe that G(1, 1, n) = Sn is the well known Weyl group of type An−1,
while G(2, 1, n) and G(2, 2, n) are respectively the Weyl groups of type Bn

(=Cn) and Dn.

39
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4.1 Extension to G(r, 1, n), G(r, p, n) and G(r, r, n)

It is natural to extend the building and nested sets language to the more
general case of model YFG(r,p,n)

. The building sets of irreducibles FG(r,1,n)

(that is equal to FG(r,p,n) when p < r) consists of two families of subspaces.
The strong subspaces H i1,...,ik that are the annihilators of the subspaces in
Cn described by the equations xi1 = · · · = xik = 0, with 1 ≤ k ≤ n. We
can represent them by associating to H i1,...,ik the subset {0, i1, . . . , ik} ⊂
{0, 1, . . . , n} (the word strong comes from the analyis of Bn in Section 2.3).
The second family is made by the weak subspaces that are the annihilators
Hi1,i2,...,ik(α2, . . . , αk) of the subspaces in Cn described by the equations: xi1 =
ζα2xi2 = · · · = ζαkxik , with 2 ≤ k ≤ n and 0 ≤ αs ≤ r − 1. For every choice
of i1 < · · · < ik, we can represent these weak subspaces by associating to
Hi1,...,ik(α2, . . . , αk) the weighted subset {i1, iα2

2 , . . . , i
αk
k } of {1, . . . , n}. The

weights are considered modulo r and if a weight is 0 we will omit it.

Observation 4.1. We observe that the building sets of irreducibles FG(r,r,n)

can be obtained from FG(r,1,n) by removing some strong subspaces, i.e. the
hyperplanes H i for i = 1, 2, . . . , n. Moreover, in the case r = 2 one needs to
remove also the two dimensional subspaces H i,j: in fact we notice that the
subspaces H i,j are irreducible only if r ≥ 3, since the r lines Hi,j(α) belong
to FG(r,r,n), and when r ≥ 3 it is not true that the two dimensional subspace
H i,j is the direct sum of the maximal subspaces of FG(r,r,n) contained in it.

Observation 4.2. This last observation explains that, when n ≥ 3 and r ≥ 3,
the varieties YFG(r,r,n)

and YFG(r,1,n)
are isomorphic: the building set FG(r,1,n)

can be obtained from FG(r,r,n) by adding some lines.

4.1.1 Nested set for FG(r,1,n) and FG(r,r,n)

According to our representation of the irreducibles subspaces, a nested set
for FG(r,1,n) is represented by a set {A′1, . . . , A

′
m} of possibly weighted subsets

of {0, 1, . . . , n} with the following properties:

• the subsets that contain 0 are not weighted and they are linearly or-
dered by inclusion;

• the subsets that do not contain 0 are weighted;

• for any pair of subsets A
′
i, A

′
j, we have that, beside their weights, they

are one included into the other or disjoint: if both represent weak
subspaces one included into the other, then their weights must be com-
patible. Since we adopt for A

′
i, A

′
j the notation with weights reduced



4.1. EXTENSION TO G(R, 1, N), G(R,P,N) AND G(R,R,N) 41

modulo r, this means that, up to multiplication of all weights of A
′
i by

the same power of ζ, the weights associated to the same numbers must
be equal.

We can represent a FG(r,1,n)-nested set in a way similar to the one de-
scribed in the braid case FG(1,1,n). Here, a nested set is represented by an
oriented weighted forest. Every internal vertex v represents the subset made
by the leaves that belong to the subtree stemming from v. In particular, if
v is a weak vertex then it represents a weighted subset in the following way:
if v is the root of a tree, we put its weight to be equal to 0; then, given any
weak vertex w, the weight that one appends to the leaf i, in its associated
weighted subset, is given by the sum of the weights that one finds in the
oriented path from w to i. According to the above rules, there is a unique
way to put the weights in the weighted forest respecting our notations.
A description of the same type holds for the nested sets of FG(r,r,n) when
n ≥ 3 and r ≥ 3 (the only difference is that the substes {0, j} do not ap-
pear). As for the nested sets of FG(2,2,n) (≥ 2), also the subsets {0, j, k}
do not appear. Furthermore, there is an exception to the rule that for any
pair of subsets A

′
i, A

′
j, forgetting their weights, they are one included into

the other or disjoint: in a nested set there may be one (and only one) pair
{i, j}, in this case any other element B of the nested set satisfies (forgetting
its weights) B ∩ {i, j} = ∅ or {0, i, j} ( B.

Figure 4.1: A nested set in the case G(4, 1, 13). The big internal vertices
represent the strong subspaces and red numbers are the weights. The nested
set represented in the picture is therefore made by the strong subspaces:

{0, 2, 4, 5, 8, 12}, {0, 1, 2, 3, 4, 5, 6, 8, 11, 12} and by the weak subspaces {4,
3
5,

2
12

}, {2,
2
4,

1
5, 12}, {3,

2
6}, {1,

2
3, 6}{7,

3
9,

2
10}, {7,

3
9,

2
10, 13}.
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Observation 4.3. A monomial from the basis of YFG(r,a,n)
(with a = 1 or r)

can be represented by a weighted partition with exponents in the following
way. Suppose at first that the support of the monomial is given by a nested
set formed only by weak subspaces: for instance the support of the monomial

c
{4,

3
5,

2
12}
c2
{2,

2
4,

1
5,8,11,12}

c
{7,

3
9,

2
10}
c3
{1,3,6,7,

3
9,

2
10,13}

in H∗(YFG(4,1,13)
), is described by the weighted forest in the Figure 4.2.

Figure 4.2

Then, following [29], we can label the internal vertices as in the next
figure: we put labels level by level, and the label of a vertex v is less than
the label of a vertex w if, and only if, the subtree that stems from v contains
a leaf whose label is smaller than the labels of all the leaves in the subtree
that stems from w. If the forest has more than one connected component,
we add an extra vertex on top with the maximum label.

Figure 4.3: We can label internal vertices of the forest in Figure 4.2 with the
numbers 14,15,16,17 and we add a vertex on top with maximum label 18.
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We can now associate to the support of the monomial mf a weighted
partition by looking at the internal vertices of the labeled forest and taking
into account, for each internal vertex, the labels and weights of the vertices
covered by it. For instance, considering the weighted forest represented in
the previous figure, we associate to it the weighted partition:

{4,
3

5,
2

12}{2, 8, 11,
2

14}{7,
3

9,
2

10}{1, 3, 6, 13, 15}{16, 17}.

Finally, we can associate to the monomial

c
{4,

3
5,

2
12}
c2
{2,

2
4,

1
5,8,11,12}

c
{7,

3
9,

2
10}
c3
{1,3,6,7,

3
9,

2
10,13}

the following weighted partition of {1, 2, . . . , 17} with exponents attached in
order to keep into account the exponents in the monomial:

{4,
3

5,
2

12}{2, 8, 11,
2

14}2{7,
3

9,
2

10}{1, 3, 6, 13, 15}3{16, 17}0

Remark 4.1. This construction, if applied to a forest with more then one
connected component, adds an extra vertex on top of the figure. In this case
we obtain a part with exponent 0, as {16, 17}0 in the previous example. We
notice that this part necessarily contains the maximum of {1, 2, . . . , 17}, i.e.
17.

Let us suppose now that the support of the monomial contains some
strong subspaces: then this support can be represented by a forest that has
a shape like the one suggested in the Figure 4.4.

Figure 4.4
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There may be at most one connected component with strong vertices.
Then the strong vertices form a chain, and below each of them there is a
subgraph made by weak vertices. There may be other connected components
that are made only by weak vertices.

4.2 Poincaré series

We now describe some theorems from [31] that extend the results of Chapter
3 to the computation of Betti numers of YFG(r,1,n)

(= YFG(r,p,n)
when p < r)

and YFG(r,r,n)
. We will give a non recursive formula for the Poincaré series

ΦG(r,a)(q, t) = 1 +
∑
n≥2

Poin(YFG(r,a,n)
)(q)

tn

n!

where Poin(YFG(r,a,n)
)(q) is the Poincaré polynomial of the model YFG(r,a,n)

.

We start by extracting the contribution to ΦG(r,a)(q, t) given by monomi-
als of the Yuzvinski basis whose support does not contain strong subspaces.

Definition 4.1. Let us denote by KG(r,a)(q, t, z) the following exponential
generating series:

KG(r,a)(q, t, z) = 1 +
∑
n≥2,S

P (S)z|S|
tn+|S|−1

(n+ |S| − 1)!

where, for every n 6= 2 (while a = 1 or a = r, and r remain fixed)

• S ranges over all the FG(r,a,n)-nested set that do not contain strong
subspaces;

• P (S) is the polynomial that expresses the contribution toH∗(YFG(r,a,n)
,Z)

given by all the monomials mf in the Yuzvinski basis such that suppf =
S.

We observe that the series KG(r,a)(q, t, z) does not change in the two
cases G(r, 1, n) or G(r, r, n), since only computations over weak subspaces
are involved. We present now an explicit formula that is essentially a variant
of the one found in the braid case, i.e. the model YFG(1,1,n)

.

Theorem 4.1 (see [31], Theorem 5.1). We have the following formula for
the series KG(r,a)(q, t, z) (when a = 1 or a = r):

KG(r.a)(q, t, z) = et
∏
i≥3

e
z
r
q[i−2]q (rt)i

i!
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where [j]q denotes the q-analog of j: [j]q = 1 + q + . . .+ qj−1.

Proof. Let us denote by B(r, 1)weak the set of all the Yuzvinski basis mono-
mials of all the models YFG(r,1,n)

(n ≥ 3) whose support is made by weak
subspaces. As we observed before, we can represent these monomials as
weighted partitions with exponents attached to the parts. Let us denote
by P(r, 1) the union, for every j ≥ 3, of the set of weighted partitions of
{1, 2, . . . j} with exponents, such that:

• at most one of the parts has exponents equal to 0 (and cardinality ≥ 2).
If this part exists, it contains the maximum number j;

• the other parts I have cardinality ≥ 3 and their exponent αI satisfies
1 ≤ αI ≤ |I| − 2.

As a consequence of Theorem 2.1 in [29], we know that the map from
B(r, 1)weak to P(r, 1) is bijective.
Then we can first single out the contribution given to KG(r,a)(q, t, z) by all
the parts represented by subsets with cardinality i ≥ 3 and with nonzero
exponent. If in a weighted partition there is only one such part its contri-

bution is z
r
(q + q2 + . . . + qi−2) (rt)

i

i!
. If there are j such parts the associated

contribution is ( z
r
)j(q + q2 + . . .+ qi−2)j

(
(rt)i

i!
)j

j!
. The total contribution of all

the parts represented by subsets with cardinality ı ≥ 3 and with non zero
exponent is provided by

e
z
r
(q+q2+...+qi−2)

(rt)i

i! − 1.

Let us now focus on the contribution that comes from the part with
cardinality i ≥ 2 and with exponent equal to 0. For every monomial in the
basis there is at most one such part, and its contribution is ti−1

(i−1)! . We note
that, by construction, all the weights of the numbers that belong to this part
are equal to 0, since it does not represent a subspace in the support of the
monomial.
The total contribution of the elements with exponent equal to 0 is therefore∑

i≥2
ti−1

(i−1)! . Summing up, we observe that the expression

et
∏
i≥3

e
z
r
q[i−2]q (rt)i

i!

takes into account the contribution to KG(r.a)(q, t, z) of all the elements in
P(r, 1).
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Let us introduce the following series that will play a key role in computing
the contribution of a weak subtree that stems from a strong vertex:

γG(r,1)(q, t, z) = (
∑
i≥2

ti−1

(i− 1)!
q[i− 1]q)

∏
i≥3

e
z
r
q[i−2]q (rt)i

i! .

We can evaluate the series γG(r,1)(q, t, z) in z = ∂
∂t

and then integrate formally
with respect to the variable t (with constant equal to 0). As a result we get
a new series in the variables q, t which we denote by ΓG(r,1)(q, t):

ΓG(r,1)(q, t) =

∫
γG(r,1)(q, t,

∂

∂t
).

Remark 4.2. We remark that every time we say that we evaluate a series in
z = ∂

∂t
, we mean that first we compute the series expansion and only then

we put z = ∂
∂t

in every monomial in the final expression.

With the same process we define the new series

KG(r,1)(q, t) = 1 +

∫
KG(r,1)(q, t,

∂

∂t
).

We are now ready to find a formula for the Poincaré series ΦG(r,1)(q, t) for
the models YFG(r,1,n)

.

Theorem 4.2 (see [31], Theorem 5.2). We have the following formula for
the Poincaré series of the models YFG(r,1,n)

:

ΦG(r,1)(q, t) =
1

1− ΓG(r,1)(q, t)
KG(r,1)(q, t).

Proof. First of all we observe that

KG(r,1)(q, t) = 1 +

∫
KG(r,1)(q, t,

∂

∂t
) = 1 + t+

∑
n≥2,Sweak

P (S)
tn

n!

= 1 + t+
∑
n≥2

Poinw(YFG(r,1)
)(q)

tn

n!
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where we are considering only weak nested set S made by weak subspaces,
while Poinw(YFG(r,1)

)(q) is the contribution to the Poincaré polynomial given
by the basis monomials whose support is a weak nested set.
At this point we observe that the difference between the series γG(r,1)(q, t, z)

andKG(r,1)(q, t, z) consists only in the first exponential factor (
∑

i≥2
ti−1

(i−1)!q[i−
1]q): the q-polynomial q[i−1]q counts the contribution to the Poincaré series
given by a strong vertex which covers i weak vertices in the related graph.
Then the evaluation z = ∂

∂t
and the subsequent integral transform, gives us

the correct contribution to the Poincaré series of a strong vertex and of the
weak subgraph stemming from it.
Since the strong vertex are linearly ordered, if there are m strong vertices
their contribution is given by ΓG(r,1)(q, t)

m, so the total contribution of strong
vertices is

ΓG(r,1)(q, t) + ΓG(r,1)(q, t)
2 + ΓG(r,1)(q, t)

3 + . . .

Finally, multiplying by KG(r,1)(q, t) we take into account the contribution of
the components of the forest that do not have strong vertices, proving our
formula.

Remark 4.3. We recall that, for r ≥ 3, the series ΦG(r,r)(q, t) coincides with
ΦG(r,1)(q, t), but when r = 2, i.e. the Dn case, we need a slight modification
as explained in the next theorem.

Theorem 4.3 (see [31], Theorem 5.3). We have the following formula for
the Poincaré series of the model YFG(2,2)

:

ΦG(2,2)(q, t) =
(1− q t2

2 )

1− ΓG(2,1)(q, t)
KG(2,1)(q, t).

Proof. When r = 2, the only modification we have with respect to the com-
putation of the previous theorem is that among the forests that represent the
supports of Yuzvinski monomial, we do not have forests whose lower strong
vertex corresponds to a two dimensional subspace H i,j. The contribution to
ΦG(2,1)(q, t) of the associated monomials is computed from the series

q
t2

2

1− ΓG(2,1)(q, t)
KG(2,1)(q, t),

so we have to subtract it from ΦG(2,1)(q, t), proving the formula.
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4.2.1 A model example: YFG(r,1,6)

With arguments similar to the ones used in Section 3.2.1, we can recover
the Poincaré polynomial of the more general model YFG(r,1,n)

, for instance the
model YFG(r,1,6)

.

Starting from the generating series

ΦG(r,1)(q, t) =
1

1− ΓG(r,1)(q, t)
KG(r,1)(q, t).

we are interested in single out the coefficient (in the variables q, r) of
the component t6

6!
. Some easy calculations suggest us to consider only the

following series expansions:

KG(r,1)(q, t) = 1 +

∫
{(1 + t+

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
)(1 +

zt3qr2

3!
+
z2t6q2r4

2 · 3!3!
)

(1 +
zt4(q + q2)r3

4!
)(1 +

zt5(q + q2 + q3)r4

5!
)

(1 +
zt6(q + q2 + q3 + q4)r5

6!
) + other terms}z= ∂

∂t

= 1 + t+
t2

2
+
t3

3
+
t4

4!
+
t5

5!
+
t6

6!
+
t3qr2

3!
+
t4(q + q2)r3

4!
+

t5(q + q2 + q3)r4

5!
+
t6(q + q2 + q3 + q4)r5

6!
+
t4qr2

3!
+

t5(q + q2)r3

4!
+
t6(q + q2 + q3)r4

5!
+
t5qr2

2 · 3!
+
t6(q + q2)r3

2 · 4!
+

t6qr2

3!3!
+
t5q2r4

2 · 3!
+

7t6(q2 + q3)r5

3!4!
+ other terms.

and
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ΓG(r,1)(q, t) =

∫
{(tq +

t2(q + q2)

2!
+
t3(q + q2 + q3)

3!
+
t4(q + q2 + q3 + q4

4!
+

+
t5(q + q2 + q3 + q4 + q5)

5!
)(1 +

zt3qr2

3!
+
z2t6q2r4

2 · 3!3!
)

(1 +
zt4(q + q2)r3

4!
)(1 +

zt5(q + q2 + q3)r4

5!
) + other terms}z= ∂

∂t

=
t2q

2
+
t3(q+2)

3!
+
t4(q + q2 + q3)

4!
+
t5(q + q2 + q3 + q4)

5!
+

t6(q + q2 + q3 + q4 + q5)

6!
+
t4q2r2

3!
+
t5(q2 + q3)r3

4!
+

t6(q2 + q3 + q4)r4

5!
+
t5(q2 + q3)r2

2 · 3!
+
t6(q2 + 2q3 + q4)r3

2 · 4!
+

t6(q2 + q3 + q4)r2

3!3!
+

7t6q3r4

2 · 3!3!
+ other terms.

Then it is sufficient to observe that

ΦG(r,1)(q, t) = (1 + ΓG(r,1)(q, t) + ΓG(r,1)(q, t)
2 + ΓG(r,1)(q, t)

3 + . . .)KG(r,1)(q, t)

to compute the correct expression of the Poincaré polynomial of the model
YFG(r,1,n)

:

ΦG(r,1)(q, t)[t6] = 1 + q(57 + 20r2 + 15r3 + 6r4 + r5)

+ q2(302 + 220r2 + 75r3 + 82r4 + 36r5)

+ q3(302 + 220r2 + 75r3 + 82r4 + 36r5)

+ q4(57 + 20r2 + 15r3 + 6r4 + r5) + q5.

Observation 4.4. We observe that one can evaluate at r = 1 the expression
of the Poincaré polynomial in the general case G(r, 1, n) to recover formulas
for the braid case analyzed in Section 3.2.1.
For instance, it easy to check the following equality:

P (q)YFG(r,1,6)
|r=1 = 1 + 99q + 715q2 + 715q3 + 99q + 1,

the same polynomial found in the braid case YFA6
.

Remark 4.4. In Section 3.2.1 we proposed a combinatorial verification to the
formula for the Poincaré series, enumerating all possible admissible Yuzvin-
ski monomials along with their corrispective contribution to the Poincaré
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polynomial. This enumeration allowed us to find formulas for the first coho-
mology groups.
A similar process can be done in this more general case of complex reflection
groups, taking care of the more complex structure of underlying combinato-
rial data.

For instance, in the next table we collect all possible admissible YFG(r,1,6)
-

nested set, i.e. nested sets that generate admissible monomials, along with
their related contribution to the Poincaré polynomial. We remark that in
this more general case the structure of the nested sets is slightly different. In
particular we can have three different forms of nested set:

• nested sets that purely refer to some strong subspaces, for example
{{0, 1, 2, 3, 4, 5}, {0, 1, 2}} in our usual (weighted) partition disguise;

• (weighted) nested sets that purely refer to some weak (weighted) sub-

spaces, for example {{1, 2,
1

3, 4,
2

5, 6}, {1, 2,
1

3, 4}};

• mixed nested sets that contain some strong and some weak (weighted)

subspaces, for example {{0, 1, 2, 3, 4, 5}, {0, 1, 2}, {3,
2

4, 5}}.

Summing up all the possible contributions collected in the table, we find,
as expected, the same expressione as before for the Poincaré polynomial of
YFG(r,1,n)

:

PG(r,1)(q, r) = 1 + q(57 + 20r2 + 15r3 + 6r4 + r5)

+ q2(302 + 220r2 + 75r3 + 82r4 + 36r5)

+ q3(302 + 220r2 + 75r3 + 82r4 + 36r5)

+ q4(57 + 20r2 + 15r3 + 6r4 + r5) + q5.
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Nested set structure Total nested sets Contribution

S P (S)
Strong

{012} 15 15q
{0123} 20 20(q + q2)

{01234}, {012} 90 90q2

{01234} 15 15(q + q2 + q3)
{012345} 6 6(q + q2 + q3 + q4)

{012345}, {012} 60 60q(q + q2)
{012345}, {0123} 60 60q(q + q2)
{0123456} 1 q + q2 + q3 + q4 + q5

{0123456}, {01234} 15 15q(q + q2 + q3)
{0123456}, {01234}, {012} 90 90q3

{0123456}, {0123} 20 20(q + q2)2

{0123456}, {012} 15 15q(q + q2 + q3)
Weak

{123} 20 20qr2

{1234} 15 15(q + q2)r3

{12345} 6 6(q + q2 + q3)r4

{12345}, {123} 60 60q2r4

{123456} 1 (q + q2 + q3 + q4)r5

{123456}, {123} 20 20q(q + q2)r5

{123456}, {1234} 15 15q(q + q2)r5

{123}, {456} 10 102r4

Mixed
{012}, {345} 60 60q2r2

{012}, {3456} 15 15q(q + q2)r3

{0123}, {456} 20 20q(q + q2)r2

{01234}, {123} 60 60q2r2

{012345}, {123} 60 60q(q + q2)r2

{012345}, {1234} 30 30q(q + q2)r3

{0123456}, {123} 20 20q(q + q2 + q3)r2

{0123456}, {1234} 15 15(q + q2)2r3

{0123456}, {12345} 6 6q(q + q2 + q3)r4

{0123456}, {12345}, {123} 60 60q3r4

{0123456}, {123}, {456} 10 10q3r4

{0123456}, {01234}, {123} 60 60q3r2

{0123456}, {012}, {345} 60 60q3r2
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Observation 4.5. Also in this more general case we notice that, starting from
either the formula for ΦG(r,1)(q, t, z) or the equivalent language of combi-
natorial nested set over (weighted) partition of {0, 1, 2, . . . , n}, it is pos-
sible to compute expressions for the dimension of the cohomology groups
H2m(YFG(r,1,n−1)

,Z).
The first non vanishing cohomolgy group has dimension given by the follow-
ing formula

dim H2(YFG(r,1,n−1)
,Z) = 2n−1 − 2n+ 1− (n− 1)(n− 2)

2
r +

(1 + r)n−1 − 1

r
.

First of all we observe that evaluating the previous expression for r = 1 we
found the same result for H2(YFAn−1

,Z), as expected. Then recall that we
are interested in counting only admissible monomials cA with A either strong
or weak subspace (Mixed nested sets give their contribution only in higher
dimension).
The total ammount of strong subspace is in one to one correspondence with
subspace of {0, 1, . . . , n−1} with cardinality at least 3 that necessarily contain
the first element 0: they are

∑n−1
i=2

(
n−1
i

)
= 2n−1 − n. On the other hand,

weak subspaces are in one to one correspondence with weighted subspace of
{1, 2, . . . , n−1} with at least 3 elements. Since we can fix the first exponent,
the correct number is given by the following summation

n−1∑
i=3

(
n− 1

i

)
ri−1 =

(1 + r)n−1 − 1

r
− (n− 1)− (n− 1)(n− 2)

2
r.

In addition to the number of strong subspaces previously calculated, we find
the desired expression

dim H2(YFG(r,1,n−1)
,Z) = 2n−1 − 2n+ 1− (n− 1)(n− 2)

2
r +

(1 + r)n−1 − 1

r
.
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