
UNIVERSITÀ DI PISA

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Triennale in Matematica

Tesi di Laurea

Nonnegative Matrix Factorization:
Theory with an application to

translations invariant image processing

Relatori: Candidato:
Luca Gemignani Barbarino Giovanni
Francesco Romani

ANNO ACCADEMICO 2015-2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79622994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3

Intoduction
Nonnegative Matrix Factorization(NMF) is a common used technique in machine learn-
ing to extract features out of data such as text documents and images thanks to its natural
clustering properties and the easy interpretation of the output data.

Many papers cite the article of Lee & Seung [25] as the first formalization of the
method, but in the course of history it has been introduced by many authors in different
contexts and applications. For example, the problem is known as the self modeling curve
resolution in the field of chemometrics[24], and Paatero & Tapper [28] introduced it with
the name of Positive Matrix Factorization. It is used also in biology and medicine[6],
thanks to its application to vision research, in signal analysis[31], since it’s able to sep-
arate different frequencies superimposed on the same track, in graph clustering, and in
general in any application that needs a pattern recognition algorithm in order to analyze
and give an interpretation to large amounts of data.

In the first chapter we review the original NMF problem, its common variants, and
the main solving algorithms used nowadays. We’ll also see how its particular framework
makes it suitable for a lot of applications like clustering and text mining. In particular,
in the first Section we state the NMF framework, along with some equivalent formula-
tions, its common interpretation, and properties like uniqueness and sparseness of the
solutions. In the second one, we’ll take a look at the NMF applications to Clustering
and Text Mining, discussing how its characteristics make this framework suitable for
such problems, and in the last section of the chapter, we describe the state of art of the
algorithms proposed to solve the problem.

One of the main applications of NMF is the analysis and decomposition of images, as
shown by Lee & Seung[25], which processed a set of faces and recognized their principal
features like eyebrows, lips, noses, etc. One of this method drawbacks is that NMF can’t
recognize the same objects or parts of them if they’re located in different places on
multiple images, or when they’re rotated and stretched. In other words, NMF is not
invariant under space transformations, so the input data must always be pre-calibrated
and adjusted. Some authors have suggested to set some standard transformations of
the images (such as translations or symmetries) and to look for the features we want to
obtain, but this rises the number of the problem variables by a factor that’s usually larger
or equal to the number of pixels in a picture, like in [30] and [11], making the algorithm
complexity and memory go up by at least the same factor.

In the second chapter, we present a way to fix the problem for translations, that
keeps the interpretability property of the output to represent the wanted parts of images,
doesn’t change the original input data, and bounds the computational cost by the num-
ber of effective features we want to find. In the first section, we’ll study the application
of NMF to Image Processing, and state clearly why it lacks the ability to pinpoint the
common features under space transformations. In the second chapter we’ll describe a
new domain for the variables in the matrices, and see how this change the NMF setting.
In the third section we then devise a method to solve the new problem, and in the last
section, we’ll perform some experiments on handmade data.

The structure we built still lacks of a proper solid theory apparatus, so on the last
chapter, various suggestions on further works are proposed.

Contents

1 Nonnegative Matrix Factorization 6
1.1 Framework . 6

1.1.1 Features . 8
1.2 Applications . 11

1.2.1 Clustering . 11
1.2.2 Text Mining . 13

1.3 Algorithms . 13
1.3.1 Initializing Algorithms . 15
1.3.2 Projected Methods . 16
1.3.3 Convex Nonnegative Problems 18

2 Permutation NMF 23
2.1 Images and Permutations . 23

2.1.1 Permutations . 24
2.1.2 PermNMF . 27

2.2 Algorithm . 28
2.2.1 Update of W . 29
2.2.2 Update of H . 33
2.2.3 Extension to Multiple Images 36

2.3 Experiments . 37

3 Future Works 40
3.1 Further Research on PermNMF . 40
3.2 Real Shifts . 42

Appendices 44
A Properties of the Diamond Operator 45
B Computation of W Gradient and Hessian 48
C Proof of the Descent of MU . 51

5

Chapter 1

Nonnegative Matrix
Factorization

In all the document, we’ll call R+ the set of nonnegative real numbers, and use the
notations A . ∗B and A./B to indicate the element-wise product and division between
matrices.

Moreover, we’ll refer to the i-th column and row of a matrix A respectively with A:,i
and Ai,:, and we’ll use the MATLAB syntax A > 0, v > 0 to define the matrix or vector
containing ones in correspondence to the positive entries of A,v and zero otherwise.

1.1 Framework
In this section, we state the Nonnegative Matrix Factorization framework, and we’ll ex-
plore some of its properties, like existence and uniqueness of the solution, equivalent
formulations and alternative versions.

Problem 1.1.1 (NMF). Given a data matrix A∈Rn×m
+ and a natural number k, the NMF

problem statement is to find the matrices W,H that satisfy

min
W,H

F(W,H) = min
W,H

1
2
‖A−WHT‖2

F W ∈ Rn×k
+ H ∈ Rm×k

+ . (1.1)

We’ll refer to the problem of finding an exact nonnegative factorization A =WHT as the
Exact NMF problem, whereas we’ll call the above statement the Approximate NMF or
simply the NMF.

In the formulation above, we used the Frobenius norm, defined as

‖A‖2
F = ∑

i, j
a2

i j.

In some applications, various authors have explored different matrix distances d(A,WHT),
like other matrix norms, or the symmetric Kullback-Leibler[36] divergence, defined on

6

1.1. FRAMEWORK 7

real positive matrices A and B with sum of elements equal to 1, as

D(A||B) = ∑
i, j

Ai j log
Ai j

Bi j
.

The KL divergence is not a distance, but its usage in the NMF problem is important since
it optimizes exactly the same objective function, known with the name of Information
Divergence, as the Probabilistic Latent Semantic Indexing[7], that is a statistical tech-
nique for the analysis of co-occurrence data. In the rest of the document, for simplicity,
we’ll consider only the Frobenius norm.

Interpretations A natural interpretation of NMF derives from the observation that a
solution to the problem gives the best approximation of the columns of A among the
combinations of k nonnegative vectors, the columns of W , with nonnegative coefficients
stored in the columns of HT .

A∼WHT =⇒ A:,i ∼ Hi,1W:,1 +Hi,2W:,2 + · · ·+Hi,kW:,k ∀i.

This means that the problem is equivalent to find a nonnegative set of k vectors that
approximately generate, through nonnegative coefficients, all the columns of A. In ap-
plications, we set k much smaller then the other dimensions n,m since the NMF is often
used as a low-rank decomposition algorithm, and the resulting columns of W , called
features or components, have a meaningful representation as characteristics or parts of
the original data.

Since the problem is symmetrical in W and H, we can transpose the expression, ob-
taining ‖AT −HW T‖, so we can repeat all the considerations done till now for the rows
of A and the columns of H.

An other interpretation of the problem comes from the geometry. We call Γ(M) the
simplicial cone generated by the columns of M defined as

M ∈ Rn×m
+ Γ(M) = {Mα | α ∈ Rm

+ } ⊆ Rn
+,

that are all the linear combination of the columns with nonnegative coefficients. The
Exact NMF problem applied on A is equivalent to find a nonnegative matrix W ∈ Rn×k

+

such that
Γ(A)⊆ Γ(W)⊆ Rn

+,

since

∃W ∈ Rn×k
+ ,H ∈ Rm×k

+ : A =WHT ⇐⇒ ∃W ∈ Rn×k
+ : A:,i ∈ Γ(W) ∀i

⇐⇒ ∃W ∈ Rn×k
+ : Γ(A)⊆ Γ(W).

We’ll see how particular conditions on A,W,H (sparsity, separability, etc.) translate into
this geometric interpretation.

KKT conditions NMF is a non-convex optimization problem, so finding a local min-
imum of (1.1) with the nonnegativity constraint is equivalent to solve the following
system of Karush-Kuhn-Tucker conditions

8 CHAPTER 1. NONNEGATIVE MATRIX FACTORIZATION

W.∗∇W F(W,H) =W.∗ (WHT H−AH) = 0,

H.∗∇HF(W,H) = H.∗ (HW TW −ATW) = 0,

∇W F(W,H) =WHT H−AH ≥ 0, ∇HF(W,H) = HW TW −ATW ≥ 0,

W,H ≥ 0.

Notice that (W,H) = (0,0) is a solution to the above system, so it is an useless local
minimum of the NMF problem, and any solving algorithm has to deal with this incon-
venience.

Since the above described system is too big, it is common use to consider two smaller
convex problem, obtained fixing alternatively one of the two matrices W or H. In fact,
if we consider H as a constant, then the problem reduces to

min
W∈Rn×k

+

F(W,H) = min
W∈Rn×k

+

‖A−WHT‖2
F , (1.2)

that is a convex least square problem with convex constraints, so it can be attacked with
the usual optimization methods. In particular its KKT conditions become a lot more
simple

W.∗∇W F(W,H) =W.∗ (WHT H−AH) = 0,

∇W F(W,H) =WHT H−AH ≥ 0,

W ≥ 0.

These equations are solved exactly by Active-Set Methods, and are approximated by
algorithms like the Coordinate Descend, Hierarchical ALS and Projected Gradient.

1.1.1 Features
Nonnegative Rank The number k of the columns of W sometimes isn’t fixed but can
vary in a range of positive integers [a,b], so that an algorithm solving NMF must also
find automatically the optimal k. In any case, we know ([16],[8]) that there exists a
minimum k, called nonnegative rank, such that A is exactly factorisable, indicated as
rk+(A).

We can notice that if the columns of A are generated by linear combinations of k
vectors, then the rank of A must be less or equal to k, and moreover they are always
generated as nonnegative linear combinations of the canonical base of Rn. This leads to

rk(A)≤ rk+(A)≤min{n,m}

since we can repeat the same reasoning for the rows of A and the columns of H.

In applications, usually A is a matrix of real measurements, distances or intensities,
so it is often affected by random noise, that makes it a full-rank matrix. The nonnegative
rank becomes thus equal to the rank, so if we fix k = rk+(A) we obtain a trivial solution
(W = I and H = AT or viceversa), that does not contain any information.

1.1. FRAMEWORK 9

Moreover, the number of solutions for the Exact NMF grows when the parameter k
rises,

k is usually tuned to be fairly low, since a large value of k implies a large set of
solutions for the exact NMF problem, and it translates into a lot of local minima into the
minimization problem, that leads to inaccuracy on the algorithmic part, and ambiguity in
the interpretation of solutions. Another problem is that a big k may lead to the overfitting
of the data, meaning that the error is lower then the expectations, and the solution isn’t
human-readable, but just an artificial one found by the method with no link to the real
structure of the original data. When k is too large, we enter in the field of overcomplete
representation[10], where the number of features is comparable with the dimension of
the data set n or the number of the objects introduced m.

Since k is the number of columns of W , then the nonnegative rank is also the minimal
number of extremal rays of the simplicial cone Γ(W). After a normalization, the prob-
lem to find the minimum k translates into the problem of finding the polytope with the
minimum number of vertices that contains the convex hull of the columns of A, called
conv(A), and that is contained into ∆n =

{
x ∈ Rn

+

∣∣ ‖x‖1 = 1
}

. This problem is called
the Nested Polytopes Problem (NPP) [19], and it is still equivalent to the original NMF.

Sparsity An other feature that is usually required to the input data or to the solution is
the sparsity, since it is proved that can improve the quality and understandability of the
solution, along with gaining uniqueness properties (for further studies, see Gillis[14],
that proposes a preprocessing to improve the sparseness of A). This lead to several
reformulations of the original problem, in order to add sparsity parameters, and their
general framework, called Constrained NMF, is presented as

min
W,H
‖A−WHT‖2

F +αJ1(W)+βJ2(H) W ∈ Rn×k
+ H ∈ Rm×k

+

where J1 and J2 are penalty functions used to ensure some additional condition on W,H,
and α,β are regularizing parameter. This setting has been taken in consideration due to
practical issues: in real applications, a normal algorithm may overfit the data (and the
phenomenon goes under the name of overcomplete representation) and the regulariza-
tion makes the problem numerically stable. If we want to find sparse matrices W,H, we
can set J1 and J2 as the Frobenius norm squared [29], but other applications may want
to minimize the L1-norm of H or W , leading to similar convex problems.

Back to the geometrical interpretation, we see that if a column of A or W have some
zero element, then the corresponding nonnegative vector is on the border ofRn

+. Consid-
ering that Γ(A)⊆Γ(W)⊆Rn

+, then a column of A on the border gives more constrains to
possible solutions W , and a formulation that ensure the sparsity of W has the same effect.

Separability The separability is a property introduced by [9], and later modified as
follows:

Definition 1.1.1. A factorization A = WHT is separable if W has a permutation of a
full-rank diagonal submatrix. Equivalently, for each column there is a positive entry that
is the only nonzero element of its own row.

Under this condition, given A and W , then H is easily computable, it is unique, and
moreover is composed by k rows of A rescaled with the k positive elements in W that

10 CHAPTER 1. NONNEGATIVE MATRIX FACTORIZATION

makes the decomposition separable. Moreover [1] and [14] showed exact polynomial-
time algorithm for computing separable solutions of the NMF under this hypothesis,
against the NP-Hardness of the original problem[33]. Less restrictive conditions like
the full-rank of W leads only to a computational time of O((nm)r2

) for the Exact NMF
(in this case, called Simplicial Factorization), but still can’t escape the curse of NP-
Hardness.

Geometrically, each column of W in a separable factorization belongs to a different
n− r + 1 vectorial space defined by its n− 1 zero components, meaning that they are
situated again on a border, with less degrees of freedom, as in the sparse case. More-
over, the decomposition A =WHT is separable if and only if Γ(AT) = Γ(H), since H is
composed by rows of A.

Uniqueness Let’s set k such that an exact factorization A = WHT exists, meaning
that the rank of A is less or equal to k. Given any solution (W,H) of the exact or the
approximation problem, we can take S = PD ∈ Rk×k

+ (called monomial matrix) where P
is a permutation matrix, and D is a positive diagonal matrix, and obtain

WHT = (WS−1)(SHT) WS−1 ∈ Rn×k
+ HST ∈ Rm×k

+

with (WS−1,HST) that is still a solution, since S−1 is nonnegative. The solution is thus
never unique, but we can inquire the uniqueness without considering permutations and
positive rescaling of the matrices columns.

The geometric intuition here is very useful: a permutation of the column of W or
a rescaling doesn’t change the cone Γ(W), and moreover, if a column of W is not an
extremal ray of the cone, then it isn’t useful, since can be obtained as a combination of
the others. These considerations tell us that the solution of NMF is unique if and only
if k is set as the nonnegative rank, and there’s only one simplicial cone with k extremal
rays that contains Γ(A).

Given a solution A = WHT , we can now normalize the columns of A and W in
norm L1 through monomial matrices, obtaining Ã = W̃ H̃T , where all the three matrices
are column stochastics. This leads to the NPP problem already described above, or
even to problems requiring to minimize[38] or maximize[34] the volume of the polytope
conv(W̃). Other formulations of NMF set the columns of W or H normalized with
different norms, such that the norm L2 or L∞.

Even if we look for the cones or the convex hulls, we may still have non-unique
solutions, for example when there’s a solution with a column of W strictly positive. In
this case, in fact, it’s easy to see that there’s always another nonnegative matrix W ′ such
that cone(A) ⊆ cone(W) ⊂ cone(W ′), so the results found on this topic always require
an additional hypothesis like sparsity or separability. For example, Gillis showed that

Theorem 1.1.1. Let A ∈ Rn×m
+ with rk(A) = rk+(A) = r. If A has r non zero-columns,

each having r− 1 zero entries whose corresponding rows have different sparsity pat-
terns, then the exact NMF of A is unique.

The conditions set are similar to the separability of the factorization, and the request
on the rank is also natural since the separation of WHT tells us that W has full rank, so
we expect even A to have the same rank, and it also leads to the full rank of H. More-
over, it has been proved that if A has rank 1 or 2, or one of n,m is less then 4, then this
condition is satisfied.

1.2. APPLICATIONS 11

Eventually, under the same condition on the rank of A, then the uniqueness of the
factorization A = WHT is equivalent to the non-existence of a non monomial matrix Q
such that WQ and Q−1HT are still nonnegative, and, as already said, it is even equivalent
to the uniqueness of a polytope with k nonnegative vertices that contains the convex hull
of the columns of A.

1.2 Applications
One of the most famous problem in data mining is the pattern recognition, namely the
problem of finding similar characteristics in different objects. The areas of Text Mining
and Image Processing require methods to solve these problems in order to categorize
the data, or to find some simple common features that let us describe the objects in a
compressed way.

One of the main tool used nowadays for compression and identification of common
features, is the PCA (Principal Component Analysis), obtained from the Singular Values
Decomposition of the data. In fact, given a set of objects (images, documents, signals,
etc.), identified by real vectors stacked as columns of the matrix A, the PCA finds the best
low rank approximation of the original data, and stores it in a space order of magnitudes
smaller than the input. We can use the SVD to find the k most prominent features that
are common to all the input objects as

Ak =UkΣkVk = SkVk

This formula suggests us to use the columns of Sk as features, and the columns of Vk
of the coefficients, in fact each object (column of A) will be approximated as a linear
combination of the features, with weights given by the Vk columns. The SVD gives us
the best rank k approximation of A in L2 and Frobenius norm, (and in general in any
unitarily equivalent norm) and is relatively easy to compute, so it is widely used in a lot
of applications.

A particularity of the PCA is that it produces negative entries in features and the
coefficients, even when A is nonnegative. Recently, many applications introduced the
nonnegative request to their pattern recognizing algorithm in order to gain the inter-
pretability of the output. In this context, we can use the NMF framework: its decompo-
sition, in fact, preserve the positiveness of the data, making the results readable. We’ll
see later how it is used in Image Processing, whereas we’ll now list some of the other
main applications of the NMF.

1.2.1 Clustering
The NMF is useful in a lot of practical problems, since it’s strictly related to the cluster-
ing problem in the euclidean space. In fact, given m points in Rn

+, we can consider them
as columns of A ∈ Rn×m

+ , and factorize them in

A∼WHT , W ∈ Rn×k
+ , H ∈ Rm×k

+ .

In this case W is called base matrix and H is the weight matrix, since the columns of
A can be approximated as linear combinations of W columns, with weights in H. The
columns of W are also called centroids, since we can partition the initially considered
points into k (or less) clusters, looking for the centroid in W that approximates them

12 CHAPTER 1. NONNEGATIVE MATRIX FACTORIZATION

better, through the weights in H: in fact, any column in A corresponds to a row in H,
and taken the highest weight in that row, we can select the best-fit centroid. After a
normalization of the elements in H, we can also see the columns of W like real points in
the space, and the actual centers of their own cluster.

This partition suffers from the lack of independence of the columns of W , the non-
uniqueness of the nonnegative factorization, and its instability, in particular his suscep-
tibility to transformations of the space, such as rotations, translations and scaling. One
of the possible solution to these problem is to use the variant SymNMF on a similarity
matrix S, like

Si j = exp(−c‖xi− x j‖2).

In fact, this formulation is invariant by translation and rotation, it solves the indepen-
dence problem, and the scaling is dealt with by setting the right constant c > 0. We also
know that this matrix is positive semidefinite; in fact, if we define a matrix hollow if all
its diagonal elements are zeros, then the following theorem holds.

Theorem 1.2.1. [32] Given an hollow symmetric matrix A ∈ Rn×n, then the following
are equivalent:

• A is a matrix of square distances of n points in Rm.

• exp(−λai j) = Si j is a positive semidefinite matrix.

The dimension of the problem changes into m×m, that is usually quite larger than
n×m, but the method tends to generate better solutions, and coupled with an hierarchical
strategy, can handle even density-type clusters[12]. In this situation, it is also common
to modify the classical structure of NMF in order to exploit the symmetry of S: more
precisely, we can solve the SymNMF problem

min
W∈Rn×k

+

‖S−WW T‖2
F , (1.3)

with k fixed as usual. One possibility is also to relax the symmetric condition adding a
penalty factor, obtaining a penalized SymNMF

min
W,H≥0

‖A−WHT‖2
F +α‖W −H‖2

F , W,H ∈ Rn×k
+ ,

where α > 0 is a parameter that adjust the loss of symmetry in W and H. We notice that
if the solution to this problem is symmetric, that is W = H, then the couple (W,H) is
also a solution to (1.3).

Partial Clustering From the clustering problem, we can consider a slightly modified
problem that arises when we work with incomplete informations. Let’s suppose that our
m points {x1,x2, . . . ,xm } in Rn

+ are partially classified, that is, there exists c1,c2, . . . ,cr
classes such that each one the first s points belongs to a class. We can then define the
binary matrix

C ∈ {0,1}s×r , Ci j =

{
1 if xi belongs to c j

0 otherwise

and the binary matrix

B =

(
C 0
0 I

)

1.3. ALGORITHMS 13

so that, given Z any (r+m− s)×k matrix, and H = BZ, we have that if xi and x j belong
to the same class, then the rows hi and h j are the same. We can now state the problem
[27], similar to NMF,

min
W,H≥0

‖A−WHT‖2
F = min

W,Z≥0
‖A−WZT BT‖2

F , W ∈ Rn×k
+ Z ∈ R(r+m−s)×k

+ .

We notice that a clustering obtained through this problem forcefully puts in the same
cluster points within the same class.

1.2.2 Text Mining
Other examples of NMF usage are the Text Mining methods that try to categorize a lot
of documents by topic. This type of application belongs to a generic pattern recognition
category, along with the Signal Analysis, that wants to detect monophonic input in a
complex audio track, and Image Processing, whose aim is to pinpoint common small
shapes into a large set of images.

In Text Mining, if we have a lot of text files, we can build the dictionary of their
words, and compute the relative frequencies of the words in respect with the documents;
these will be nonnegative vectors, and texts with similar topics will have similar words
frequencies. The NMF applied to the matrix of frequencies extracts the sets of words
that refer to the same topics, putting them in W , and the topics of a single document can
be read in the coefficients of H, since they’ll be approximated by the combination of the
topic words, each with a nonnegative coefficient that can tell us how much every single
topic is relevant in the text.

Here each property of the NMF already listed have a special role:

• The uniqueness of the solution is important, since different outputs result into dif-
ferent classifications of the documents, meaning that the supposed topics change
from one solution to the other, and it is not conceivable at all.

• The input is sparse, since if we have a lot of documents that refers to different
topics, the overall dictionary will be larger than the words used in each text. In
particular, even W will be sparse, since its columns represent the topics, and each
one of them only takes a small fraction of the words used. Thus, in this applica-
tion, sparsity is a natural request to be called upon the output.

• Even separability have a meaning in this context: a factorization will be separable
if for each topic there exists at least one word that doesn’t belong to any other
topic. This is also a very reasonable assumption we can make on the data.

These are enough reasons for justifying the use of regularizing parameters in order to
ensure the sparsity of the output [2].

1.3 Algorithms
The results on the Exact NMF factorization also gives us a bound on the computational
time for the Approximate NMF:

Theorem 1.3.1. Let A ∈ Rn×m
+ such that there exists a nonnegative couple (W,H) with

inner dimension k satisfying ‖A−WHT‖F ≤ ε‖M‖F . Then there is an algorithm that

14 CHAPTER 1. NONNEGATIVE MATRIX FACTORIZATION

computes nonnegative matrices (W ′,H ′) satisfying

‖M−W ′(H ′)T‖F ≤ O(ε1/2k1/4)‖M‖F

in time 2poly(k log(1/ε)) poly(n,m).

Usually k is fixed and low, so we could consider it a constant, but n and m are really
high parameter, so in practical uses, a time of poly(n,m) is acceptable only when it is
linear in both n and m.

Since NMF is a useful tool in a variety of applications, the scientific literature and
software tools on the subject are rapidly expanding, but the majority of existing algo-
rithms are typically iterative, and converge at local minima in order to keep the com-
plexity low when dealing with huge amount of input data. In general, they follow the
same scheme:

General NMF Algorithm
Inputs : k ∈ N, A ∈ Rn×m

+

Initialize W (and H)
repeat

update W,H
until a Stop Condition is satisfied

At each external iteration, the matrices W,H, or only one of them, are randomly
initialized in order to converge at different local minima, or we use particular initial-
izing techniques based on PCA or k-means clustering. The internal iterations, where
we update W,H, are executed until a stopping condition is verified, for example when
‖A−WHT‖ is small enough, or when the number of iteration is too high, meaning that
the convergence is really slow. In order to rise the algorithm probability of success and
lower the computational cost, usually the stopping condition include a control on the
gain between two consecutive internal iterations: when the gain is low, then W,H al-
ready reached a minimum, so it’s useless to go ahead anymore.

In general, the solving algorithms use the fact that we can decouple the problem into

min
X
‖A−WXT‖2

F , min
X
‖A−XHT‖2

F .

The main differences between the algorithm are the methods used to solve these two sub-
problems, and the domain of the variable X . In all its formulation, though, the variable
X varies in a convex set, making the two subproblem convex, so all the approximation
methods exploit the fact that the local minima are actually absolute minima.

Even with alternative versions, the same idea is applied. For example, in the Penal-
ized Symmetric NMF setting

min
W,H≥0

‖A−WHT‖2
F +α‖W −H‖2

F , W,H ∈ Rn×k
+ ,

we can write two associated convex problems fixing the matrices W,H one at a time

min
H∈Rn×k

+

∥∥∥∥(A√
αW T

)
−
(

W√
αI

)
HT
∥∥∥∥2

F
, min

W∈Rn×k
+

∥∥∥∥(A√
αHT

)
−
(

H√
αI

)
W T
∥∥∥∥2

F

1.3. ALGORITHMS 15

and similarly, in the CNMF we can encode the regularization parameters of

min
W,H
‖A−WHT‖2

F +α‖W‖2
F +β‖H‖2

F , W ∈ Rn×k
+ , H ∈ Rm×k

+

into the two convex sub-problems

min
H∈Rn×k

+

∥∥∥∥(A
0

)
−
(

W√
β I

)
HT
∥∥∥∥2

F
, min

W∈Rn×k
+

∥∥∥∥(AT

0

)
−
(

H√
αI

)
W T
∥∥∥∥2

F
.

We’ll thus focus mainly on how to solve the convex subproblem on the real field or on
its nonnegative orthant.

1.3.1 Initializing Algorithms
NNDSVD The solution to the problem without positivity constraints obtained through
the SVD, in general doesn’t solve the NMF problem, because there may be some neg-
ative elements in the matrices W,H, but if we put the negative elements to zero, or we
perform some other process in order to make them nonnegative matrices, we can use the
SVD solution as a starting point for the iterative algorithms, in spite of initializing W
and H randomly.

The Nonnegative Double Singular Value Decomposition (NNDSVD) try to adjust
the SVD in a slightly different way, producing directly a nonnegative decomposition
[4]. Given the SVD of A

A =
k

∑
i=1

σiuivT
i ,

consider the positive and negative parts of the singular vectors

u+i = ui .∗ (ui > 0) ∈ Rn
+, u−i =−ui .∗ (ui < 0) ∈ Rn

+, ui = u+i −u−i ,

v+i = vi .∗ (vi > 0) ∈ Rm
+, v−i =−vi .∗ (vi < 0) ∈ Rm

+, vi = v+i − v−i ,

so we can write

A =
k

∑
i=1

σi
[
u+i (v

+
i)

T +u−i (v
−
i)

T]− k

∑
i=1

σi
[
u+i (v

−
i)

T +u−i (v
+
i)

T]
and it’s possible to prove that the SVD decomposition of (uivT

i)
+ is

(uivT
i)

+ = ‖u+i ‖‖v
+
i ‖

u+i
‖u+i ‖

(v+i)
T

‖v+i ‖
+‖u−i ‖‖v

−
i ‖

u−i
‖u−i ‖

(v−i)
T

‖v−i ‖
.

The idea is to approximate each uivT
i with the leading singular component of (uivT

i)
+,

so we set the columns of W and H as follows:{
wi = σiu+i hi = v+i if ‖u+i ‖‖v

+
i ‖> ‖u

−
i ‖‖v

−
i ‖,

wi = σiu−i hi = v−i if ‖u−i ‖‖v
−
i ‖ ≥ ‖u

+
i ‖‖v

+
i ‖.

The variables W and H are both positive, but they are usually sparse, so they get modified
by adding an ε smaller than the mean of elements to the zero entries.

In the symmetric case, this method can be adjusted in order to get W =H, and it gains
in computational cost, since the SVD can be replaced by a diagonalization process.

The drawback of this initialization method it’s that has no random part, so an NMF
algorithm will output only one local minimum. It is nonetheless one of the optional
initialization routine in the NMF algorithm of the Python package Sklearn, along with
its variants.

16 CHAPTER 1. NONNEGATIVE MATRIX FACTORIZATION

K-means Another way to initialize the matrices employs a spherical k-means cluster-
ing [35]. As we saw before, NMF is strictly related to the clustering problem in the
euclidean space, so it makes sense to use a clustering algorithm in order to boost the
performance of the factorization.

In particular, given the nonnegative matrix A ∈ Rn×m
+ , we can see its columns as

points in Rn
+, and apply a simple k-means clustering, or a spherical one to obtain the

matrix of centroids W .
The spherical k-means guarantees the linear independence of centroids, improving

the initialization obtained for the factorization. Also, choosing different starting cen-
troids for the k means algorithms, we can obtain different initial W , so this process is
not deterministic and the final output of NMF may vary.

1.3.2 Projected Methods
These methods solve iteratively the convex problems associated to NMF without posi-
tivity constraints

min
X∈Rm×k

‖A−WXT‖2
F , min

X∈Rn×k
‖A−XHT‖2

F ,

and then project them on the positive orthant, usually putting negative entries of W and
H to zero.

ALS The Alternating Least Square method solve the two subproblems with a QR de-
composition. For example, given the update of H, we can decompose W into QR, where
Q is an orthogonal matrix of size n×n, and R a rectangular and upper triangular matrix
of size n× r. Since we usually impose n >> r, the R matrix has only r nonzero rows,
so we can delete the other n− r rows, and the last n− r columns of Q to obtain Q̃R̃ with
Q̃ a rectangular matrix of size n× r with orthonormal columns, and R̃ a square upper
triangular matrix of size r× r, so we can rewrite the problem as

‖A−WXT‖2
F = ‖A− Q̃R̃XT‖2

F = ‖Q̃T A− R̃XT‖2
F ,

and solve it columnwise through a k× k triangular system. Various author have also
proposed quasi-Newton modifications to the algorithm in order to gain in computational
time, like [37].

One of the most common way to modify W,H so that they become nonnegative, is
to put the negative entries to zero, but it usually makes the error rise so much that at the
end of a single update loop, the overall gain can be negative. One way to deal with this
problem is to use the following OBS method.

OBS This is a second-order method used in origin to prune Neural Networks (hence
the name Optimal Brain Surgeon)[18]. The operation to put the negative entries of W,H
to zero makes the error ‖A−WHT‖ rise too much, so we can look for the best matrices
W̃ , H̃ that have zeros on that positions. Namely, after we solve

W̃ = argmin
X∈Rn×k

‖A−XHT‖2
F ,

with ALS or modified algorithms, we look for

W = argmin
X∈Rn×k

{∥∥A−XHT∥∥2
F

∣∣∣ (W̃ < 0) .∗X = 0
}
,

1.3. ALGORITHMS 17

and then we put the nonnegative entries of W to zero. A visual representation of this phe-
nomenon is in the following Figure 1: the dashed lines are contour lines for a function
we want to minimize, and it can be noted that the ALS algorithm starting at any point
P1 always return in 1 step the projection P2 of the correct solution for the unconstrained
problem Q∗, that may have greater error value than the starting point, whereas the OBS
modification, produces in 1 step the correct solution P∗.

P1P2 P∗

Q∗

×××

Figure 1

ALSOBS Update Method
Inputs : A ∈ Rn×m

+ , W ∈ Rn×k
+

H̃ = argminX∈Rm×k

∥∥A−WXT
∥∥2

F

H = argminX∈Rm×k

{∥∥A−WXT
∥∥2

F

∣∣∣ Xi j = 0 ∀(i, j) : H̃i j < 0
}

put negative entries of H to zero.

W̃ = argminX∈Rn×k

∥∥A−XHT
∥∥2

F

W = argminX∈Rm×k

{∥∥A−XHT
∥∥2

F

∣∣∣ Xi j = 0 ∀(i, j) : W̃i j < 0
}

put negative entries of W to zero.

The analogy with neural network is that we’re literally "pruning" the negative entries
of W and H. We observe that the operation to put negative entries to zero is common
also to algorithms different from ALS, so we can use OBS wherever we need.

PG We can use a method of Projected Gradient to solve problem, where the updates
of H,W are simultaneously updated through the rule

PG Update Method

18 CHAPTER 1. NONNEGATIVE MATRIX FACTORIZATION

Inputs : A ∈ Rn×m
+ , W ∈ Rn×k

+ , H ∈ Rm×k
+

(W,H) = (W,H)−α(∇W Φ(W,H),∇HΦ(W,H))

Set negative entries of H,W to zero.

or alternated as

PG Update Method
Inputs : A ∈ Rn×m

+ , W ∈ Rn×k
+ , H ∈ Rm×k

+

H = H−αH∇HΦ(W,H) = H−αH(HW TW −ATW)

Set negative entries of H to zero.
W =W −αW ∇W Φ(W,H) =W −αW (WHT H−AH)

Set negative entries of W to zero.

Here αW and αH are the magnitude of the step along the decreasing direction given
by the gradient, and usually it’s dependent on W and H, or on the number of the iteration
reached, and they generally tend to zero.

A drawback of this algorithm is that usually after the first iteration, (W,H) will
converge to the useless stationary point (0,0), but since the parameter α is chosen at each
step in order to lower the error, it’s sufficient to find an initializing algorithm ensuring
the initial couple (W0,H0) to satisfy

‖A‖F > ‖A−W0HT
0 ‖F .

The descending property of the methods highly depends on the choice of the parame-
ters, that have to be set through line search (usually using the Armijo rule or first order
approximation).

It is actually one of the solving algorithm included in the NMF routine of Python
package sklearn, but has been deprecated in the newest version.

1.3.3 Convex Nonnegative Problems

An other option is to use an Alternating Nonnegative Least Squares(ANLS) method, that
considers the convex subproblems

H = argmin
X∈Rm×k

+

‖A−WXT‖2
F , W = argmin

X∈Rn×k
+

‖A−XHT‖2
F .

These two problems are usually difficult to solve exactly, and makes the computational
cost rise substantially, but it also guarantees that the limit points of the (W,H) se-
quence in the algorithm is a local minimum of the error function thanks to the following
theorem[3][17]:

1.3. ALGORITHMS 19

Theorem 1.3.2. Let f be a continuously differentiable function over Ω = Ω1×Ω2×
·· · ×Ωm, where Ωi ⊆ Rni are closed convex sets, and ∑i ni = n. Let’s partition the
vector x ∈ Rn into x = (x1, . . . ,xm) where xi ∈ Rni , and let’s generate a succession of
points y(k) ∈ Rn where y(0) is random, and ∀ 0≤ r, 0 < i≤ m{

y(rm+i)
i = argminyi∈Ωi

f (yrm+i−1
1 , . . . ,yrm+i−1

i−1 ,yi,yrm+i−1
i+1 , . . . ,yrm+i−1

m)

y(rm+i)
j = y(rm+i−1)

j ∀ j 6= i

where the minimum is uniquely attained. Then every limit point of the succession y(K)

is a local minimum of f (x) over Ω. If m = 2, the uniqueness of the minimum is not
required.

An algorithm that solves it completely is the Active Set Method, and variants like the
Block NNLS that strife for lowering its computational cost. The most used methods are
inexact ones thanks to their efficiency, and even if there’s no theorem that binding their
errors, or proving their convergence, it has been shown experimentally that the solutions
generated are still pretty accurate, and the speed is considerably higher.

Active Set With the nonnegativity condition, we can adopt a dual-primal approach,
embodied in the Active Set method. We notice that the problem can be rewritten in a
row-wise fashion, in fact

min
Y∈Rn×k

+

‖A−Y HT‖2
F = min

X∈Rk×n
+

‖HX−AT‖2
F =

n

∑
i=1

min
xi∈Rk

+

‖Hxi−ai‖2
2,

where xi and ai are the rows of Y and A. This means that we can solve n smaller problem
with a Non-Negativity-Constrained Least Squares algorithm (NNLS), using the KKT
conditions

yi =
1
2

∇xi‖Hxi−ai‖2
2 = HT (Hxi−ai),

xi .∗ yi = 0, xi,yi ≥ 0.

Since the problem is convex, a local minimum is also a global minimum, so we need to
find only one solution of the KKT conditions. For any nonnegative vector, we can define
their Active and Passive sets as a partition of the n indexes given by

A (x) = { i | xi = 0} , P(x) = A (x)c = { i | xi > 0} ,

and from the last two KKT conditions, we notice that P(xi) ⊆ A (yi) and conversely
P(yi) ⊆ A (xi). Moreover, if x is an optimal solution, and we know S = A (x), we
can restrict the vectors and the matrix to these coordinates HS ,(xi)S ,(ai)S , solve the
unconstrained problem

min
(xi)S ∈R|S|

‖HS (xi)S − (ai)S ‖2, (1.4)

and the solution will be positive, thus optimal.
The Active-Set method aim is to find A (x) by iteratively generating various parti-

tions of the n indexes through some update rule, that may vary from algorithm to algo-
rithm, for example in [22] and [23]. In general, the updates are decided looking at the
sets associated to x and y at each step, so we have to compute

y = HT
P(y)(HP(x)x−ai),

20 CHAPTER 1. NONNEGATIVE MATRIX FACTORIZATION

and for (1.4), we need to solve the system

HT
S HS (xi)S = HT

S (ai)S .

This method is assured to finish and get the right solution in a finite number of steps,
since the updates make the cost function decrease, and there are a finite number of
possible partitions of the indexes, even if they can be potentially exponential.

Block NNLS Solving n distinct subproblem for each iteration is usually too expensive
for a NMF algorithm, but using combinatorial rules or block pivoting, like in the Block
Principal Pivoting ANLS [23], we are able to cut the computational cost.

First of all, we can compute only one time the matrices HT H and HT AT , so that all
the matrix used in the previous algorithm

HT
P(y)HP(x), HT

P(y)ai, HT
S HS , HT

S (ai)S

are actually their submatrices, and we don’t have to generate them at each step.
Moreover, we can update different columns with the same, or similar, active set alto-

gether, and also the process of update all the active sets can be done contemporaneously.
Like the NNLS, even this algorithm is bound to terminate in a finite number of steps and
to return the correct solution. The Block NNLS is indeed one of the most performing
algorithm known nowadays,

FNMA The FNMA (Fast Nonnegative Matrix Approximation) is a method that uses a
gradient descend algorithm that updates at each step only some of the variables, chosen
through a condition similar to the Active Set [21]. In particular, given the gradient of the
error function and the current approximation W , It defines the set of fixed variables as

I+ =
{
(i, j)

∣∣Wi, j = 0 ∇W F(W,H)> 0
}
,

and the set of free variables as his complementary G = IC
+. Ideally, we need to update

only the free variables, since the fixed ones already satisfy the KKT conditions. So the
updates will follow the rule

WG =WG−αD∇WGF(H,WG),

and then we put the negative entries of WF to zero. Here we used a parameter α > 0 and
a positive definite scaling matrix D that are updated at each stage, the first with a linear
search, the second with an approximation of the inverse of Hessian matrix. In particular,
the update of D follows the second-order BFGS (Broyden-Fletcher-Goldfarb-Shanno)
algorithm.

This algorithm is bound to converge to a stationary point(and thus resolving com-
pletely the problem) whenever H has full rank. It has also an Inexact version (called
FNMAI) where the parameter α and the number of iteration is given as an input, and the
matrix D is exactly the inverse of HHT , so it doesn’t vary along the iterations. This ver-
sion has weaker convergence results, in particular it doesn’t solve the problem exactly,
but it’s significantly faster than the exact version.

1.3. ALGORITHMS 21

MU This algorithm tries to solve two problems correlated with the classical NMF,
using its normal equation forms. In fact, supposing A∼WHT , we also have

W T A∼ (W TW)HT , AH ∼W (HT H). (1.5)

The advantage is that both W TW and HT H are matrix in Rk×k
+ , so very small compared

to A. On the other hand, the condition number of the matrices gets squared, leading to
instability of the methods.

The Multiplicative Update has been one of the first algorithm proposed for solving
NMF, since it can be viewed as a Projected Gradient method, where the parameters αH
and αW are the matrices

αH = H./(W TWH), αW =W./(WHHT).

The update operation can be written as

MU Update Method
Inputs : A ∈ Rn×m

+ , W ∈ Rn×k
+ , H ∈ Rm×k

+

H = H .∗
[
W T A ./ (W TWHT + ε111)

]
W =W .∗

[
AH ./ (WHT H + ε111)

]
where 111 is the matrix composed only by 1, and ε is a small constant that assure us the
positivity of the matrix at the denominator (usually ε ∼ 10−9). As shown in [26], each
update always makes the error function decrease, and it preserves the nonnegativity of
the variables, so that we don’t need the projection operator.

It’s wrong that the method always converge to a stationary point, but it tends to
produce sparse solutions, since each update is element-wise, so if H(or W) has a zero
entry at any step, the algorithm will return H(or W) with a zero in that position.

CD The Coordinate Descend is an iterative convergent method designed to return a
good solution in a short amount of time, but in general, the output is not optimal [20].

Given the convex problem with variable W , we try to approximate the optimal solu-
tion W one entry at a time. In fact, if at the r-th step we have an approximation W r, we
choose a couple of index (i, j), and solve

s∗ = argmin
s

{∥∥A− (W r + s · eieT
j)H

T∥∥2
F

∣∣∣ (W r)i j + s≥ 0
}
.

We produce the next approximation as W r+1 = W r + s∗ · eieT
j , and we can define the

relative gain as
di j = ‖A−W rHT‖2

F −‖A−W r+1HT‖2
F ,

If we call
G(X) = (XHT −A)H Q = HT H,

then we know that

s∗ =

{−G(W r)i j�Q j j
if Q j j 6= 0 and W r+1 > 0,

−(W r)i j otherwise,

22 CHAPTER 1. NONNEGATIVE MATRIX FACTORIZATION

di j =−2s∗G(W r)i j +(s∗)2Q j j,

so we can choose at each step the couple (i, j) by maximizing the gain di j, and even the
stopping condition depends on the magnitude of the maximum gain of the step.

It is actually one of the solving algorithm included in the NMF routine of Python
package sklearn, preferred with respect to the PG methods already discussed.

HALS A slight modification of this setting is called HALS [5], that decides the order
of the update described in the CD setting preemptively, updating the columns of W and
H in order. This method derives from the decomposition of the problem

‖A−WHT‖2
F = ‖A−∑

i
W:,i(H:,i)

T‖2
F .

In fact, if we fix the matrix H and the quantity

A(j) := A−WHT +W:, jHT
:, j = A−∑

i6= j
W:,i(H:,i)

T ,

then what remains is an expression in the variables W1 j,W2 j, . . .Wn j that we know how
to solve exactly, since it can be decomposed into n disjoint problem we already solved
in the CD section.

‖A(j)−W:, jHT
:, j‖2

F = ∑
i
‖A(j)

i,: −Wi j(H:, j)
T‖2

F .

We’ll report only the update of W (it is analogous for H):

HALS Update Method for W
Inputs : A ∈ Rn×m

+ , W ∈ Rn×k
+ , H ∈ Rm×k

+

B = AH

C = HT H

for i = 1,2, . . . ,k do
D:,i = ∑

i−1
l=1 W:,lCli +∑

i
l=p+1 W:,lCli

W:,i = max
(

0, B:,i−D:,i
Cii

)
end for

Since the first operation of the update is the most expensive in terms of computational
time, we can repeat the internal for cycle, obtaining an accelerated HALS algorithm[15]
essentially modifying the stopping conditions for the single update. This acceleration
can also be applied to other methods such as PG and MU through an accurate computa-
tion of the computational cost of each step.

Thanks to Theorem 1.3.2, we know that this method surely converge to a station-
ary point, since we’re minimizing a function on (n+m)k variables in order, and each
variable is optimally updated on a convex domain. Moreover, HALS is, on par with the
Block NNLS, one of the most performing algorithms known nowadays.

Chapter 2

Permutation NMF

2.1 Images and Permutations
One of the problem confronted by researchers in image processing is to decompose
different images into common parts or features, both for identification purposes or for
compression ones. For example, a common technique used in animation in order to
contain the memory used is to not memorize into digital supports every pixel of each
single frame, but to memorize only particular compressed or coded informations that
lets a recorder to reproduce the film with little loss of quality.

In general, when confronted with a large set of images like the frames of a film, or
a database of similar pictures, it can be convenient to memorize the common parts only
one time, gaining space and also computational time for the recombining process. The
problem is thus to find an efficient algorithm that automatically recognizes the common
features and an intelligent way of storage of the informations.

Given a gray-scale image M expressed as a matrix of pixels, with values in the real
range [0,1], we can transform it into a real vector with as many coordinates as the pixels
in the image. In particular, if M ∈ Rr×s

+ , then we stack the columns of the matrix on top
of one another, and obtain the vector v ∈ Rrs

+ defined as

vi+(j−1)r = Mi j ∀ i, j.

Given a set of pictures {Mi }i=1:m of the same shape, we can now vectorize them and
stack the corresponding vectors as the columns of our data matrix A, and if we call
n = rs the number of pixels of a single picture, A becomes a nonnegative matrix in
Rn×m
+ , so, after having fixed the number k of common component we want to find, the

NMF framework produces two matrices W,H such that A∼WHT .
As already noticed, each column of A is approximated by a linear combination of the

columns of W , that are nonnegative vectors of length n = rs. After having normalized
W by multiplication with a diagonal positive matrix (as discussed above), we can see
its columns as images in the shape r× s, so a generic column of A, that is one of the
original images, is now approximated as the superimposition of the pictures represented
by some of the columns of W .

Ideally, the images in W are parts of the pictures in A, like localized objects in the
2D space, so they’re usually sparse and disjoint images, that translates into sparse and
nearly orthogonal vectors, so the separability is a natural condition to impose, even in
this case. In a famous experiment, Lee & Seung [25] processed a set of faces and the

23

24 CHAPTER 2. PERMUTATION NMF

NMF automatically recognized their principal features like eyebrows, lips, noses, eyes,
and so on, so that they were immediately human-recognizable. This example shows the
importance of NMF as a decomposition tool for graphical entities.

As already said, the sparseness and the choice of k are important factors. The sparse-
ness is an index of the uniqueness of the solution, that is important on the side of inter-
pretation of the output, since different solutions usually brings up set of pictures not
human-recognizable as real objects and features. On the side of compression, we can
see that the original nm pixels of A are now coded into kn pixels in W and km coeffi-
cients in H, so the compression is useful when the approximation is good with a low k.
On terms of images, it means that there are few components that span the whole set of
pictures.

Transformations Issues When we use NMF on a matrix A we usually expect the
original images to have some predominant common features, so that the algorithm can
find them with little noise. This may be true in the case of sets of static pictures, when
calibrated and centered, but even in the case of facial recognition, there may be cases of
misalignment, as already noticed by [13] and many others. In general, the NMF suffers
in this cases since it is not invariant under a vast set of transformations, for example
shifts, rotations, symmetry, stretches and so on, in fact the common features must be in
the exact same positions on the different pictures in order to be pinpointed.

This is a common problem faced in the animations programs, since, even if the
subjects in a scene of a footage are the same, they constantly move on the screen, so
their detection must follow some temporal scheme, and can’t be performed by a simple
NMF.

Possible ways to deal with this problem are to change the data in one of the three
matrices A,W or H. For example, if we add to A a transformed copy of each original
picture for every transformation in a set we choose, then the common features get de-
tected even if they’re deformed, but this increases the size of the problem by the square
of the number of alterations used, that’s usually greater than the number of pixels in a
single image. One possible solution is obviously to rise the parameter k, but this leads
to instability in the solution, as we already discussed.

A good idea seems instead to rise the quantity of data contained in the matrix H,
since we strife to maintain the graphical property of the columns of W to represent the
common features of the original images. In the next chapters we’ll define new nota-
tions and operators to deal with a matrix whose elements are capable to transmit more
informations on pictures than simple real numbers.

2.1.1 Permutations
In this document, our focus is on the problems related to the lack of translation invariance
of NMF, so we use shift permutations to modify the kind of elements contained in the
matrix H. First of all, we review a bit of theory on permutations and their expansion
to the permutation algebra, whose elements will be used in the matrix H to encode the
space transformations of the picture. Then we define an operator between matrices with
real elements or permutation ones, and exploit it to reformulate the NMF problem in
order to gain the shift invariance.

Permutation Algebra Given an element τ ∈ R× Sn, it is represented by a couple
τ ≡ [r,σ], where r is a real number, and σ is an element of Sn, the group of permutation

2.1. IMAGES AND PERMUTATIONS 25

of n indexes. It is well defined the action of τ on a real vector v ∈ Rn as

τ(v) ∈ Rn : τ(v)i = [r,σ](v)i = rvσ(i) ∀ i.

The action of τ onRn makes it a linear operator, so it can be represented by a matrix, and
in particular, since the action of each permutation σ ∈ Sn is associated with a permutation
matrix Pσ , it’s easy to see that

τ ≡ [r,σ] =⇒ τ(v) = rPσ (v).

The algebra generated by the permutation group over the real field is denoted asRSn,
defined as

Definition 2.1.1. The algebra RSn is composed by sums of R×Sn elements

α ∈ RSn =⇒ α = ∑
σ∈Sn

[rσ ,σ] rσ ∈ R.

The sum is defined element-wise

α = ∑
σ∈Sn

[rσ ,σ] β = ∑
σ∈Sn

[tσ ,σ] =⇒ α +β = ∑
σ∈Sn

[rσ + tσ ,σ],

and the multiplication is Cauchy-like

α = ∑
σ∈Sn

[rσ ,σ] β = ∑
σ∈Sn

[tσ ,σ] =⇒ α ·β = ∑
σ∈Sn

[
τ◦µ=σ

∑
τ,µ∈Sn

rτ tµ ,σ

]
.

As before, these elements have a natural action on Rn, that is an extension of the
action of R×Sn, given by

α(v) =
s

∑
i=1

[ri,σi](v) =
s

∑
i=1

riPσiv =

(
s

∑
i=1

riPσi

)
v,

so there exists an homomorphism of R algebras ϕ : RSn→ Rn×n that associates to each
element of the algebra a real matrix. It is not surjective if n ≥ 2, since its image is the
set of matrices with sum of rows equal to sum of columns, and it isn’t injective if n≥ 3
since the dimension of RSn as vectorial space is n!, whereas the dimension of the image
is (n−1)2 +1. The kernel of ϕ are elements that act on all the vectors in Rn as the zero
matrix, so we call them all "zero elements".

The homomorphism preserves the algebra operations, and in particular the compo-
sition of the permutations becomes the multiplication of matrices. We already said that
the image of a permutation σ ∈ Sn is a permutation matrix Pσ that is orthogonal, so the
inverse coincides with the transposition, and given α ∈ RSn, we can define its transpo-
sition as

Definition 2.1.2. Given α = ∑σ∈Sn [rσ ,σ] an element of RSn, we define its transpose as

α
′ := ∑

σ∈Sn

[rσ ,σ
−1].

26 CHAPTER 2. PERMUTATION NMF

It is thus easy to prove that ϕ(α ′) coincides with the transpose of ϕ(α)

ϕ(α ′) =ϕ

(
∑

σ∈Sn

[rσ ,σ
−1]

)
= ∑

σ∈Sn

rσ ϕ(σ−1)

= ∑
σ∈Sn

rσ P−1
σ =

(
∑

σ∈Sn

rσ Pσ

)T

= ϕ(α)T .

Shifts Given n a natural number, we can denote as Tn the cyclic subgroup of the per-
mutation group Sn whose elements shift cyclically all the indexes of vectors in Rn by an
integer constant. We’ll call σp the shift by p position, where p ∈ Z�nZ:

σp ∈ Tn v ∈ Rn p ∈ Z�nZ =⇒ σp(v) = w : wi = vi+p ∀i,

where the indexes are to be considered modulus n.
The images of Tn through the above mentioned homomorphism ϕ are sparse circu-

lant matrix. In particular, the element σ1 is associated to the circulant matrix C that
has 1 on the first cyclic superdiagonal and 0 anywhere else, and σp = σ1 ◦ · · · ◦σ1, so
ϕ(σp) = ϕ(σ1)

p =Cp that has 1 on the p-th cyclic diagonal and zero otherwise.

ϕ(σ1) =C =

0 1

0 1

0
. . .
. . . 1

1 0

, ϕ(σ2) =C2 =

0 0 1

0 0
. . .

0
. . . 1

1
. . . 0

0 1 0

. . .

σp(v) =Cpv.

The elements of type α = [r,σp] ∈ R+× Tn are positive multiples of the circulant
matrices described above, and since the shift σp is completely identified by the remain-
der class p, we’ll refer to α from now on as the couple [r, p]. We’ll use these elements
to define a new problem with the same shape of a normal NMF, but we need to define
beforehand an operator between matrices with entries in this group.

Diamond Operator Let’s now suppose that N is a matrix with entries in the above
described algebraRSn, and M is a real matrix. We need an operator to apply the elements
of N to the columns of M , so we define the diamond product :

Definition 2.1.3 (Diamond Product). The diamond operator between a real matrix A ∈
Rn×m and a matrix N ∈ (RSn)

m×k is defined as

(A�N):,i := ∑
j

N ji(A:, j),

and returns a real matrix in Rn×k.

2.1. IMAGES AND PERMUTATIONS 27

In other words, the i-th column of the diamond product is a linear combination of
permutations of M columns, with coefficients and permutations described by the ele-
ments of the N’s i-th column.

Let’s also define the multiplication between two matrices with entries in the algebra
of permutations. Remember that RSn is an algebra, so sum and product are well defined,
and the elements of RSn can be viewed as well as matrices through the homomorphism
ϕ , so the two operations correspond to the usual sum and composition of matrices.

Definition 2.1.4 (Diamond Product). The diamond operator between two matrices M ∈
(RSn)

n×m and N ∈ (RSn)
m×k is defined as

(M �N)i j := ∑
k

Nk j ·Mik,

and returns a matrix in (RSn)
n×k.

This operation differs from the normal multiplication of matrices only because RSn
isn’t a commutative algebra, so we need to specify the order of the multiplication be-
tween the elements. The inverted order is necessary to partially maintain the associativ-
ity of the operation: given a real matrix A, and two matrices N,M with elements in the
algebra, it’s easy to verify that

(A�M)�N = A� (M �N).

Ideally we need to invert the elements of N and M since M is the first to act on the
columns of A, followed by N.

One downside of this operation is that it doesn’t cope well with the normal matrix
multiplication: given A,B real matrices, and M a matrix in the permutation algebra, then

A(B�M) 6= (AB)�M.

Some of this operator’s properties are given and proved in the AppendixA.
Let’s now return to image transformations, and focus on a particular subgroup of the

permutation algebra.

2.1.2 PermNMF
Given a gray-scale image M, we’ve seen how to transform it into a vector v ∈ Rrs

+. We
want now to codify a shift on the image as a vectorial transformation: a shift of the
original image M by r1 position on the horizontal axis and s1 position on the vertical one
will be encoded as a circular shift on v of magnitude p = r1r+ s1, that is, we produce a
vector w whose i-th coordinate is the (i+ p)-th coordinate of v.

This shift is easily encoded by the already defined elements [r, p] ∈ R+×Tn, where
n = rs is the number of pixels in M, and the length of v. For example, if τ = [1,r1r+ s1],
then τ(v) corresponds to the translation of the image described above, and we can vary
the constant term to regulate the intensity of the image. With this tools, we are not able
to formulate the problem we want to solve.

Now we reconsider the classic NMF, and widen the domain of the matrix H. Our
aim here is to find a new method to decompose pictures into common components, even
when they’re shifted, so, like in the NMF, we stack the original images as columns of

28 CHAPTER 2. PERMUTATION NMF

the matrix A, and look for a matrix W whose columns are the wanted common features,
and a matrix H with elements in R+×Tn, so that it can tell us both the intensity and the
position of each component in W into each original picture in A.

In particular, we want to rewrite the NMF problem as

Problem 2.1.1 (PermNMF). Given a matrix A is in Rn×m
+ , we want to find a matrix H

in (R+×Tn)
m×k and a matrix W in Rn×k

+ that minimize

F(W,H) = ‖A−W �HT‖2
F .

The diamond operator is defined on elements of RSn, but we restrict the entries of H
to elements in R+×Tn, so that a single image (column of A) is a linear combination of
the images represented by the columns of W , but shifted.

Working with this group also ensure a low computational cost: a shift of a vector can
be performed in constant times with the right structures, so given a real matrix A∈Rn×m

and a matrix M ∈ (R+×Tn)
m×k, the operation A �M costs the same as a matrix multi-

plication, so O(nmk). In our case, the computation of F(W,H) costs O(nmk).

We notice that expanding further the domain of H usually leads to trivial and useless
solutions; for example, if we let the elements of H be inR+Tn, that are linear nonnegative
combinations of permutations in Tn, then even with k = 1 there’s a trivial solution that
decomposes perfectly the matrix A:

A =W �HT , W = e1, Hi,1 = ∑
j
[Ai j, j−1].

In fact,
(W �HT):,i = Hi,1(W) = ∑

j
Ai jσ j−1(e1) = ∑

j
Ai je j = A:,i.

In other words, a linear combination of the translations of a single pixel can reconstruct
any image, so it is an exact and completely useless solution. Moreover, expanding the
group Tn usually leads to the dismembering of the images represented by the columns
of W , so we stick to work with this framework for this document.

An other particularity of this formulation is that, if we impose each element of H to
be of the type [r,0], that is, we fix all the permutations to be the trivial identity, then the
problem returns exactly the original NMF, and the diamond operator coincides with the
normal matrix multiplication.

2.2 Algorithm

The PermNMF has the same structure of the normal NMF, so we can try to use similar
solving algorithms, but we lost the symmetry of the expression, so it’s necessary to
resort to different methods for the two updates. We’ll see that the MU and PG settings
can be adapted for the update of W , whereas H will undergo an update similar to CD. In
general, we follow the alternating framework already discussed, meaning we update W
and H one at a time, and we iterate the updates until the error gets small enough, or the
convergence becomes too slow.

2.2. ALGORITHM 29

Alternated Update Method
Inputs : A ∈ Rn×m

+ , W ∈ Rn×k
+ , H ∈ (R+×Tn)

m×k

newerr = ‖A−W �XT‖F

repeat
err = newerr

H = argminX∈(R+×Tn)m×k ‖A−W �XT‖2
F

W = argminX∈Rn×k
+
‖A−X �HT‖2

F

newerr = ‖A−W �HT‖F

until err−newerr ≤ ε

Rounding and Threshold In order to choose the error threshold ε , we remember that
the pixels into images can be represented by integers in the range [0,255], so an error of
±0.4 is still acceptable, since it would be rounded off. If we translate this to matrices
with pixels in the real range [0,1], then the acceptable error becomes ±0.4/255, that we
round to 10−3. An error matrix A−W �HT with all elements in absolute value less than
10−3 is thus acceptable, and its Frobenius norm squared is ε2 = 10−6nm.

In the same way, we can show that a change of elements bound by the same constant
is again not important, so we use ε to tell if the update does converge too slowly. In fact,
given a matrix X , and called E the matrix with all entries equal to 1, then

|‖X‖F −‖X−10−3E‖F | ≤ ‖10−3E‖F = ε.

For the sake of speed, we’ll give only approximated solution to the inner problems,
as we’ll see in the next two sections, and in the methods used, we will round off to zero
the elements in the matrices W and H that are too small. In particular, we already saw
how in a normal picture, a value of 10−3 for a pixel is negligible, but in general, it is
proportional to the intensity of the entire figure. On average, each pixel has an intensity
of 0.5, so the mean Frobenius squared norm for an n×m matrix X is nm/4, meaning
that a pixel can be put to zero if

X2
i j ≤ 4 ·10−6‖X‖2

F/nm = δ
2.

In the next sections, we’ll use the notation X = X+ to indicate that we are setting the
entries of X less than δ to zero, including all the negative ones.

Eventually, we’ll need also a stopping criterion based on the magnitude of the changes
for every step, in order to detect slow convergences. As before, we can say that a step
that brings the matrix X to the matrix X ′ is not relevant if X −X ′ is element-wise small
in comparison to X . In particular, we can stop if

‖X−X ′‖2
F ≤ ‖δE‖2

F = δ
2nm = 4 ·10−6‖X‖2

F .

2.2.1 Update of W
The update of W requires to solve a convex problem, so we can use a Projected Gradient,
that is particularly good for this case, since we can’t transpose the expression in order

30 CHAPTER 2. PERMUTATION NMF

to obtain the setting of the Active Set algorithms. The ALS method here is inapplicable,
since we would need a QR decomposition of the matrix H, that’s still not well defined,
and adaptations of HALS/CD methods become too expensive.

DPG The most simple algorithm simply computes the deepest descend for the oppo-
site direction with respect to the gradient, and then project the obtained element on the
positive orthant. This means we have to find the best positive parameter α such that

W −α∇W F(W,H)

minimizes the error. The computation for the gradient in the algorithm are developed in
Appendix A, and it shows that

∇W‖A−W �HT‖2
F =−2(A−W �HT)�H ′,

where the matrix H ′ entries are the transpose elements of H. If we call DW =∇W F(W,H),
then we compute the optimal α by putting its gradient to zero.

∂

∂α
‖A− (W −αDW)�HT‖2

F =2α‖DW �HT‖2
F +2 sum((A−W �HT) .∗ (DW �HT))

=⇒ α
∗ =− sum((A−W �HT) .∗ (DW �HT))

‖DW �HT‖2
F

.

Where "sum(B)" indicates is the sum of all entries of the matrix B. Using the property
of the Diamond Operator proved in Appendix A, we obtain

α
∗ =− sum((A−W �HT) .∗ (DW �HT))

‖DW �HT‖2
F

=− sum(DW .∗ ((A−W �HT)�H ′))
‖DW �HT‖2

F

=
sum(DW .∗ DW)

2‖DW �HT‖2
F

=
‖DW‖2

F

2‖DW �HT‖2
F
.

With this, the Deepest PG (DPG) algorithm is presented as

DPG Update Method
Inputs : A ∈ Rn×m, W ∈ Rn×k, H ∈ (RSn)

m×k

W ′ =W

repeat
W =W ′

α = ‖∇W F(W,H)‖2
F/2‖∇W F(W,H)�HT‖2

F

W ′ = (W −α∇W F(W,H))+

until ‖A−W ′ �HT‖F < ε or ‖W ′−W‖F < 2 ·10−3‖W‖F

return W ′

2.2. ALGORITHM 31

We use also a maxiter variable to bound the number of inner loops performed, that will
usually be set as a low number. We’ll refer to this function from now on as

W = DPG(A,W,H).

The operations performed in each cycle of the method have a computational cost of
O(mnk), and in particular the most expensive operations are the computation of the gra-
dient and of the error matrix.

PPG Usually the DPG algorithm tends to converge slowly when the global minimum
of F(W,H) is not located in the positive orthant, because the negative gradient points
outside the feasible region, and the projection has to bring the variable W back at ev-
ery step. A way to correct this behavior is to not let the direction in each step of the
method point outwards, meaning that if W is on a border of the orthant, then the di-
rection shouldn’t have a part perpendicular to the border and pointing towards negative
coordinates.

After having corrected the step descent direction from −DW to −D, we can recom-
pute the deepest step α and obtain

α =− sum((A−W �HT) .∗ (D�HT))

‖D�HT‖2
F

=− sum(D .∗ ((A−W �HT)�H ′))
‖D�HT‖2

F

=
sum(D .∗ DW)

2‖D�HT‖2
F

.

We can then write the Positive PG (PPG) algorithm as

PPG Update Method
Inputs : A ∈ Rn×m, W ∈ Rn×k, H ∈ (RSn)

m×k

W ′ =W

repeat
W =W ′

D = ∇W F(W,H)

D(D > 0 && W = 0) = 0
α = sum(D .∗ ∇W F(W,H))/2‖D�HT‖2

F

W ′ = (W −αD)+

until ‖A−W ′ �HT‖F < ε or ‖W ′−W‖F < 2 ·10−3‖W‖F

return W ′

We again use a maxiter variable to bound the number of inner loops performed. We’ll
refer to this function from now on as

W = PPG(A,W,H).

32 CHAPTER 2. PERMUTATION NMF

The method has the same asymptotic computational cost of the DPG algorithm, but the
operations performed in each cycle are strictly more.

SPG Even with the different Descent Direction in the PPG, the method generates
points that don’t belong to the positive orthant, so that a projection is always needed.
A way to get rid of this operation is to determine the step α so that the variable never
get negative values. In particular, after computing the deepest descend step α , we can
ensure that W −αD by the update

α = min{α, min
i, j:Di j 6=0

{W (i, j)/D(i, j)}}.

If we add this line to the PPG algorithm, we obtain the Strictly Positive Gradient (SPG).

We notice that when the minimum of the problem lies on the interior of the positive
orthant, then the algorithms above mentioned are usually equivalent, whereas when the
solution is located on the border, then the DPG algorithm has some problem, as can be
seen in Figure 2, and if the solution has a lot of zero entries, then the SPG becomes slow
as well, since it has to perform at least one step for each zero.

P×××

×××
P1 P2 P3 P4 ×××P

∗

Figure 2: The methods DPG, PPG, and SPG compared on a bidimensional plane. The
dashed ellipsoids are the contour lines of a function we want to minimize on the positive
quadrant. If we start from the point P, both the algorithms PPG, marked with circles,
and SPG, marked with crosses, converge to the optimum in 2 steps (P→ P2→ P∗ and
P→ P1 → P∗), whereas the DPG method, whose iterations are drawn with dots and
straight lines, needs a lot more steps to get near the optimum.

MU Like in the original NMF, the Multiplicative Update can be applied even in this
case, substituting the normal matrix multiplication with the diamond operator, and ap-
plying few other adjustments.

W =W .∗ (A�H) ./ (W �HT �H ′).

2.2. ALGORITHM 33

We’ll prove in Appendix C that

Theorem 2.2.1. The MU update makes the error of PermNMF drop, as long as W �
HT �H ′ has all elements positive.

In the case that the condition isn’t satisfied, the proof of the theorem suggests that
the addition a small constant ε to each zero entry of the numerator doesn’t change much
the output, so the update is well defined in any case. The computational time in this case
is still O(nmk), so it is comparable with the PG update.

Let’s now focus on the update of H, that requires to solve an optimization problem
on the group R×Tn.

2.2.2 Update of H

Like in the W update, the QR decomposition of the ALS algorithm isn’t useful, since the
diamond operator behaves poorly with triangular matrices, and it lacks the associativity
property (QR) �HT 6= Q(R �HT). Even here, the HALS algorithm loses its efficiency,
and, on the contrary of the W update, PG and MU methods aren’t useful either, since
the expression lacks a derivation for the entries in H, and in particular both algorithms
don’t know how to update the shifts.

We then devise an other method, that follows the idea of the CD to update one
variable at a time. We need first to solve an analogous of the NNLS problem, called
Single Permutation NNLS, that gives us an update rule for single variables in the space
R+×Tn.

Single Permutation NNLS Let’s suppose to have two vectors v,w in Rn, and we want
to find the best element τ = [r, p] of R+×Tn that minimizes

E(τ) = ‖v− τ(w)‖2,

where the norm used is the euclidean one.
A natural assumption is that w 6= 0, otherwise every element τ gives the same value

of E(τ) = ‖v‖2. If we knew the optimal p, then we could find r without fail, because it
becomes a simple Nonnegative Least Squares (NNLS) problem.

rp := argmin
r∈R

‖v− rσp(w)‖2 = vT
σp(w)�

σp(w)T
σp(w),

r+p := argmin
r∈R+

‖v− rσp(w)‖2 =

0 vT σp(w)< 0,
vT σp(w)�

σp(w)T σp(w) vT σp(w)≥ 0.

A simple solution consists into computing the optimal r+p for every σp ∈ Tn, and check
which couple [r+p , p] gives us the minimal error. We know that σp(w)T σp(w) = ‖w‖2,
so we can compute the error as a function of p

‖v− rpσp(w)‖2 = ‖v‖2−
(vT σp(w))2

‖w‖2 .

The problem is thus equivalent to maximize (vT σp(w))2, but we’re interested only in
the positive case, so we focus on maximizing the scalar product vT σp(w), since if

34 CHAPTER 2. PERMUTATION NMF

vT σp(w)< 0 then r+p = 0 for every p, so E([r+p , p]) = E([0, p]) = ‖v‖2.

By definition, σp(w) is the vector w shifted, so we can call Circ(w) the real nonneg-
ative matrix that has all the shifted versions of w as columns, and compute the maxi-
mal component of vTCirc(w). Since Circ(w) is a circulant matrix, this operation costs
O(n logn) if performed with Fast Fourier Transformations, so this method is fast and
gives us the correct solution.

Single Permutation NNLS
Inputs : v,w ∈ Rn, w 6= 0

p = 1− argmaxi (v
TCirc(w))i

if vT σp(w)> 0 then
r = vT σp(w)/‖w‖2

else
r = 0

end if
return [r, p]

From now on, we’ll use this algorithm with the syntax

τ = SinglePermNNLS(v,w).

This method will be used in the setting we’re going to explain in the next paragraphs.

CD Given now a vector v ∈ Rn, and a bunch of vectors w1,w2, . . . ,wk ∈ Rn we can
now try to find the best elements τ1, . . . ,τk ∈ (R+×Tn) that minimize the quantity

‖v− (τ1(w1)+ τ2(w2)+ · · ·+ τk(wk))‖.

We’re thus looking for the best linear combination with positive coefficients of the
shifted vectors wi that gives us the original vector v. If we call W the matrix with wi
as columns, and x the (column) vector of τi, then we can rewrite the problem in a com-
pact way as

min
x∈(R×Tn)k

‖v−W � x‖2, v ∈ Rn
+ W ∈ Rn×k

+ .

A way to solve this problem is using the precedent algorithm in an alternated fashion. In
fact, if we fix τ2,τ3, . . . ,τk, then it becomes a Singular Permutation NNLS problem on
τ1, and we know how to solve it exactly.

So we can solve the problem sequentially for each τi and repeat. The initial value
of x is usually given as an input parameter, but it can also be generated casually at the
beginning of the algorithm.

Multiple Permutations NNLS
Inputs : v ∈ Rn, W ∈ Rn×k, x ∈ (R+×Tn)

k

2.2. ALGORITHM 35

w =W � x

for i = 1 : k do
w = w− xi(W:,i)

xi = SinglePermNNLS(v−w,W:,i);
w = w+ xi(W:,i)

end for
return x

The internal loop is usually repeated a given number maxiter of iterations, before
returning the output x. From now on, we’ll use this algorithm with the syntax

x = MultPermNNLS(v,W,x).

Its computational cost is the number of iterations multiplied k times the cost of the Sin-
gle Permutation Problem, so it is O(kn log(n)). In particular cases, it may be useful to
randomize the choice of the index i, since it’s important not to impose a preference order
on the components in W .

This algorithm has an immediate application to the original problem

H = argmin
X∈(R+×Tn)m×k

‖A−W �XT‖2
F .

Like the normal NMF, it can be decomposed into smaller problems

‖A−W �XT‖2
F =

m

∑
i=1
‖A:,i−W � (XT):,i‖2,

Hi,: = argmin
x∈(R+×Tn)k

‖A:,i−W � x‖2,

that can be solved with the Multiple Permutation NNLS algorithm. If we put everything
together, we obtain the final method

CD Update Method
Inputs : A ∈ Rn×m

+ , W ∈ Rn×k
+ , H ∈ (R+×Tn)

m×k

for i = 1 : m do
Hi,: = MultPermNNLS(A:,i,W,(Hi,:)

T)

end for

Every step of this Update Method costs O(kmn log(n)) if we consider the number
of iterations in the internal methods as constants. We will stop the updates when the
convergence is too slow, when we loop on the same matrices, or when we reach a number
of iterations too high.

36 CHAPTER 2. PERMUTATION NMF

2.2.3 Extension to Multiple Images
Given a set a pictures, now we’re able to perform a PermNMF and obtain a set of k com-
mon features that can reconstruct the original data once combined through coefficients
and permutations codified in H. Given one of the images in W , the algorithm tells us
if it is present in the original images, but it doesn’t detect if it appears multiple times.
One example of such instance may be a set of radar images, in which different objects
intercepted by the wave signals have distinct shapes, but each one can appear multiple
time in the same picture.

One possible solution is to perform an initial PermNMF with a parameter k pro-
portional to the effective number of distinct objects with multiplicity that can appear
on a single image, discard the found components with low coefficients, and repeat the
PermNMF on the output components with a low k corresponding to the number of dis-
tinct shapes without multiplicity. Let’s call K the first larger parameter, and A ∈ Rn×m

+

the set of pictures to analyze. We obtain

A∼ W̃ �HT
1 ∼ (W �HT

2)�HT
1 =W � (HT

2 �HT
1),

where W̃ ∈ Rn×K
+ , W ∈ Rn×k

+ and H1 ∈ (R+×Tn)
m×K , H2 ∈ (R+×Tn)

K×k, so the final
decomposition will be again a real matrix with k components, and a matrix HT

2 �HT
1 ∈

(R+Tn)
k×m. This last matrix is able to tell, for each component, even if there are multiple

instances in every original image.
The computational cost of such method (for each cycle, till convergence) is

O(nmKlog(n)+nKklog(n)) = O(nKlog(n)(m+ k)),

that, under the assumption k << m, is equivalent to O(nmKlog(n)), meaning that the
second step has a negligible computational cost compared to the first. If K is still on the
order of magnitude of k, the asymptotic cost doesn’t change, but if that’s not the case, it
is better to look for other ways.

On this topic, Potluru, Plis and Calhourn in [30] offer an algorithm that uses Fast
Fourier Transformations and circulant matrices in order to compute and codify per-
mutations of the components, called ssiNMF (sparse-shift invariant NMF). As in the
PermNMF, the basic idea is to find k components and a set of permutations that could
reconstruct the original images, but the ssiNMF sets as target the permutations in the
group R+Tn, corresponding through ϕ with all the circulant nonnegative matrices, so
that all the operations can be performed through FFTs. Thanks to this, their algorithm is
able to directly construct an approximation

A∼W �HT , W ∈ Rn×k
+ , H ∈ (R+Tn)

m×k.

Eggert, Wersing and Korner in [11] took a more general approach to the problem: as
we set a subgroup of Sn, they chose a general set of transformations of the plane, seen
as operators on the columns of W , and multiplied the number of parameter of H by the
cardinality of the chosen set, so that for each transformation of the components there
would be coefficients in H stating their intensity in the original images.

Both the approaches suffer by the presence of the trivial and exact solution described
in section 2.3: a single pixel can generate any image if we allow too many transforma-
tions of the space. They propose to perform a common modification on the NMF frame-
work, that is adding a penalty factor to ensure the sparseness of the output, since the

2.3. EXPERIMENTS 37

presence of a single pixel in the component output corresponds to a lot of positive coef-
ficients in H, and it leads to the presence of an additional parameter λ to set manually
or through validations techniques.

An other common characteristic of both the algorithms is the rise in memory used
and asymptotic computational cost by at least a factor on par with the number of pixels
on a single image, leading to a cost by iteration at least of O(n2mk). When compared
with the PermNMF algorithm, we see that they’re comparable when K ∼ nk/ log(n),
meaning that a component have to appear in the original image on average n/ log(n)
times.

2.3 Experiments
First, let’s give some immediate visual representation of the output of such algorithms.
In these experiments, we use the PermNMF algorithms seen in the previous chapter, with
the different updates for W . We’ll use as initial parameters W and H some randomly gen-
erated matrices, and the maxiter variable set to 10 in both the MultPermNNLS and the
PG methods.

Figure 3: On the first 2 rows, there are the original 10 images, that are the columns of A.
The other 2 rows are the components found as columns of W .

In the first set of experiments (Figure 3) we use 2 simple shapes (a square and a
cross) of 9 pixels that move into a frame of dimensions 20×20, and add a casual error.
We’ll compare the PPG, DPG, SPG and MU updates for W , specifying for each one the
running time and showing the graph of the error at each iteration of the algorithm.

All the methods usually manage to find the right components after less than 10 rep-
etitions on average, but it may happen that the convergence leads to bad local minima,
so for each algorithm we specify also the rate of success, computed as the percentage
of different random initial points that leads to a solution with error less or equal to the
noise introduced in the original images in 20 steps. The images shown on the bottom
row are the column of W , and they’re distinguishable as a cross and a square, with little
noise given by the imperfections on the original images.

38 CHAPTER 2. PERMUTATION NMF

µ
Success Rate / Time

DPG PPG SPG MU

0 91/1.756 88/1.693 89/2.690 0
0.01 88/1.748 88/1.713 94/2.609 94/1.678
0.1 89/1.750 90/1.734 86/2.133 88/1.609
0.3 1.857 1.827 1.961 1.616
0.5 1.901 1.901 2.026 1.636
0.7 2.061 2.054 2.122 1.623
1 2.034 2.023 2.0093 1.5815

random 1.965 1.909 1.862 1.571

Figure 4: All these values refer to the experiments with the images in Figure 3, with the
exception for the last row, that refers to 10 randomly generated images of sizes 20×20.
The intensity of the noise introduced is indicated by µ , and each row contains success
rate (if it is below 100%) and computational time in seconds per iteration.

Figure 5: In order, from left to right and from top to bottom there are the graphs of the
errors for the 4 methods with µ = 0,0.01,0.1,0.3,0.7 and the random case.

2.3. EXPERIMENTS 39

After having generated the original images with squares and crosses whose pixels
have intensity 1 (2 if they intersect), we introduce a random noise, where each pixel
has intensity between 0 and 1, and multiply it by a parameter µ . In Figure 4, we can
see how higher µ correspond with higher computational time, since the internal PG and
MultPermNNLS methods reach more frequently the maxiter number of iterations.

From µ = 0.3 the Success Rate is always 100%, meaning that the methods usually
find better solutions in term of error than the one initially generated. In general the
success rate is high enough, with the only exception of the MU method when there’s not
noise, since it always converge to not optimal local minima. When we add even a little
noise of 0.01, though, the MU update is successful, and we can notice from Figure 5
that it is competitive with the other methods.

As we can see from the error graphs, the DGP and PPG algorithm are practically
indistinguishable in all cases, but the computational time estimated suggest that PPG
is slightly better. The SPG fail both in computational time and in reduction of error,
whereas the MU behaves well enough with little noise, but in general tend to produce
poor solutions, as we can see from the random case and in the noiseless case.

Figure 6: On the first 2 rows, there are the original 20 images, composed by three
base pictures translated and superimposed. on the third row there are the components
found by the first PermNMF, and in the last row there is the final output of the second
PermNMF, that coincide with the base pictures.

In the second experiment, we generate 20 images of shape 30x30 from three simple
figures (a plane, a tank and a ship), with a noise of mean 0.15. Each image can include
up to two copies of the same figure, so we need to perform a first PermNMF with k = 6,
and then a second time with k = 3 to extract the original ones. The first application of
the algorithm is slowed down by the presence of the same shapes multiple times in the
images, but the second application is really fast. As said, we managed to extract first the
common features with their multiplicity, and then the actual features. Multiplying the
two H matrices we obtained in the two steps of the algorithm, we can deduce the actual
position with multiplicity of the shape found in all the 20 original images.

Chapter 3

Future Works

3.1 Further Research on PermNMF
The PermNMF has not been throughly studied and analyzed. First of all, it lacks a
convergence result, both because the usual arguments used for the classical ANLS algo-
rithms vastly use the fact that the two subproblems in the NMF are convex, and because
we switched the framework to non-continuous spaces such as R+×Z�nZ, where it is
still not even well defined a canonical concept of "local minimum" (the usual topological
embedding of this space in R3 gives a notion of stationary points that doesn’t cope well
with the nature of permutations).

One suggestion is to define, for each one of the nkm possible combinations Ω of
shifts in the elements of H, an error function F(Ω)(W,H) = ‖A−W � (H(Ω))T‖, where
H has Ω as shifts and can vary only in its real variables, and then use as global error the
minimum F(W,H) = minΩ F(Ω)(W,H). This error function is continuous, but requires
an efficient algorithm that, given W and the real constants in H, can find the best shifts
among the possible nkm ones.

On the point of view of the PermNMF problem, there’s a lot to say, for example,
on whether there exists an exact algorithm, or if there are bounds on the minimum k, or
even if the solution is unique (up to trivial transformations). In [14], Gillis find a prepro-
cessing for the input data A that gives a more well-posed problem then the normal NMF,
so such a transformation could be beneficial even to the PermNMF. In [1], the authors
found precise conditions for A under which there exists a polynomial time algorithm for
the exact NMF problem, and stated that in general the approximation problem is NP-
hard, so it’s highly possible that even the PermNMF problem is a NP-hard problem, and
that a the polynomial time algorithm could be adapted for this case.

On the side of the algorithm itself, an efficient adaptation for HALS or CD method
for the update of W has still to be found, altogether with an exact algorithm that would
follow the ideas of the Active Set Method. A feature we’d like to obtain is also the
sparseness of the solutions, so it has to be searched if it’s possible to adapt a Constrained
NMF for this case. The H update, moreover, is naturally inclined to a parallel compu-
tation, and like in the classical CD algorithm, it’s also possible to devise a method to
choose preemptively which element to update in every cycle, in order to make the error
drop faster.

40

3.1. FURTHER RESEARCH ON PERMNMF 41

Eventually, we studied the problem when the elements of H are restricted toR+×Tn,
but it’s possible also to consider other subgroups and subalgebras of RSn in order to
encode different transformations of the plan, or just to make the NMF invariant with re-
spect to particular linear operators. For example, the horizontal symmetry of the images
is easy to encode as an element of Sn, and added to Tn produces the dihedral group Dn.

Sparsity Conditions for Extensions As already discussed in the last chapter, the al-
gorithms devised for PermNMF work with the group R+×Tn, so they are not able to
detect if a component in W appears more than once in a single original image in A. If we
extend the group to R+Tn, then we can differentiate the error function even on H, since
its entries can now vary in the whole set of circulant matrices.

If we associate to each element Hi j the first row of its correspondent circulant matrix,
then some computations show that

DHi j :=
∂

∂Hi j
F(W,H) =−circ((A−W �HT):,s)W:,k,

where circ(v) stands for the circulant matrix with first row the vector v. We can now
perform a PG method even for H, like

H← H−α ∗D,

where D and α are chosen in the same way as the PPG method: D is the opposite of
the above-computed gradient DH where we set to zero its entries if they lead to negative
values for H; the parameter α is the deepest step for D, computed as

α =− sum((A−W �HT).∗ (W �DT))

W �DT .

The update of W is the same, since the computations for the gradient made in the Ap-
pendix B hold for the general algebraRSn. The main difference with the previous case is
that now the diamond operator requires multiplications between circulant matrices and
vectors, that are performed usually in O(nmk log(n)). The good news is that the dia-
mond operator is now the most expensive operation performed along all the algorithm,
so that the final asymptotic computational cost is again O(nmk log(n)), like the previous
algorithm.

As already anticipated, this algorithm has a big flaw: it always converges to the trivial
solution previously discussed, that is the one-pixel image. Moreover, there are a lot of
other exact solutions, usually containing few pixels, and as proposed in the other papers,
a way to deal with this issue is to adopt a CNMF setting, adding a sparsity constraint

min
W,H
‖A−W �HT‖2

F +λ‖H‖2
∗,

where λ has to be set manually, and ‖ · ‖∗ is an appropriate norm. The norm 1 is the
most used, since it is the convex envelope of the "0-norm"1 on the norm-1 unitary ball,
but it can be substituted with the Frobenius norm for simple computations.

Even this algorithm is in testing phase, since it’s hard to choose the proper parame-
ters, being dependent on the specific original data in A.

1Defined as the cardinality of the non zero entries in a vector

42 CHAPTER 3. FUTURE WORKS

3.2 Real Shifts
In the previous section, we’ve seen an extension of PermMNF that let us encode the
possibility of multiple images in the same original picture, and we tried to approach it
with a PG method. the derivation became possible thanks to the particular structure of
RTn, but a similar operation is still not defined for the H update when using elements in
the group R+×Tn.

As already stated, we can see the elements of H as a couple of numbers [r,s], with
r real and s natural less or equal to n. We can extend the second component to all the
integer set Z simply adding a periodic condition, that is

(r,s) = (r,n+ s) ∀ r ∈ R, s ∈ Z.

Since we want to do actual derivations on the second component, we furthermore to
extend it to R. Given a vector v ∈Rn and an interpolation function f :Rn→R such that
it is periodic of period n and f (i) = vi for all the components i, we can define a real shift
through f as

Definition 3.2.1. The real shift of a vector in Rn by a real number t through a function
f described above, is

σt(v)i = f (i+ t) ∀ i.

In particular, if t is a natural number, then the real shift σt coincides with the old
shift of t places. It follows that the regularity of the real shifts as operators with respect
to t is the same regularity of f , so we look for interpolating functions at least C2, that is,
with the second derivative continuous.

One possible solution is to use a Cyclic Spline interpolation, meaning that each
segment f (x) in the range x ∈ [m,m+1] with m integer, is actually a cubic polynomial
function. Spline functions are really useful in this case, since it has a nice control over its
curvature (the natural splines have a Smoothness Theorem that assures the minimality of
the function mean curvature), and the coefficients of the cubic polynomial are obtained
through circulant systems from the entries of v, so that their computation is fast through
FFT.

It’s easy now to compute the gradient of the error function, in both the constant and
shift variable of each entry in H, and thus a PG method is now applicable, with the same
complexity of the CD algorithm we have already seen, that is O(nmk log(n)). An other
good news is that each entry in H actually varies in the space R+×R�nZ, where the
elements with zero constant are all identified. The described space is homeomorphic
equivalent to R2 through classical polar operations

[r, t]→ (r cos(2πt/n),r sin(2πt/n)).

We can thus apply the PG method directly to the image space R2, and this would output
a matrix H with elements still in R+×R�nZ, with no need to take the positive part,
opposed to the classical PG.

In the case of images, the cyclic splines interpolate the pixel to create a continuous
picture. An inconvenient is that the resulting interpolating formula may have negative
values, but we round them off to zero, and it doesn’t change much the overall function,
since the spline tends to not generate such elements, opposed to a parabolic interpolation

3.2. REAL SHIFTS 43

that can oscillate too much between positive and negative values, and linear interpola-
tion, whose interpolating function is nonnegative in every point, but it is not derivable.

An other problem is the loss of focus in the image through interpolation. For ex-
ample, a linear interpolation is proved to always mix the pixels in the image in order to
make them more homogeneous, like in the case of a chessboard with alternating pixels
of magnitude 1 and 0, that after a real shift of 0.5, becomes totally monochromatic. The
splines seem to solve even this problems, as experimental tests shows that even after
a thousand of real shift with cubic interpolation, the images don’t lose much of their
clearness.

A feature of all the algorithms that works on Tn is that they don’t recognize adjacent
pixels as actually near to each other, but totally independent entities. Any interpolation
mixes together the pixels, but the vectorization of the images doesn’t let the shifts to mix
vertically near pixels, so even here the whole picture is dismembered. A way to contrast
this phenomenon is to perform a double cyclic spline interpolation on the images, that
means to interpolate periodically on R2 the values of the pixels as if they were on the
lattice of natural points (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m. These splines have still
good concavity properties, coincide on unitary squares with double cubic polynomials,
and the coefficients can still be calculated easily through circulant systems, so that the
final cost remains the same. The downside is that we lose the polar representation of the
shifts, and we have to work with double shifts for any entry in H, that is, we have to
work in R+×Tr×Ts if the original sizes of the image were (r,s).

The method has not been used in this document, since it still needs proper tuning
and studies.

Appendices

44

Appendix A

Properties of the Diamond
Operator

The Diamond Operator is defined so that it could maintain particular properties.

Lemma A.1. Given N,M,P matrices with elements in the algebra RSn, and A a real
matrix, then the following associativity rules hold.

1. (A�M)�N = A� (M �N).

2. (M �N)�P = M � (N �P).

Proof.

1.

[(A�M)�N]:,i =∑
k

Nki(A�M):,k

=∑
k,s

Nki ·Msk(A:,s)

=∑
s
(M �N)si(A:,s) = [A� (M �N)]:,i .

2.

[(M �N)�P]:,i =∑
k

Pki · (M �N):,k

=∑
k,s

Pki ·Nsk ·M:,s

=∑
s
(N �P)si ·M:,s = [M � (N �P)]:,i .

45

46 APPENDIX A. PROPERTIES OF THE DIAMOND OPERATOR

One important remark, is that if A ∈ Rn×m, B ∈ Rm×k, and M has elements in RSn,
then (AB) �M is computable, but A(B �M) isn’t defined when n 6= m. However, even
when A is a square matrix, and we restrict to R×Tn we have almost never the associa-
tivity property:

Lemma A.2. Given A ∈ Rn×n real matrix, then

(AB)�M = A(B�M) ∀ B ∈ Rn×m, M ∈ (R×Tn)
m×k

if and only if A is a circulant matrix.

Proof. We’ll treat the elements of M, and in general any element of R×Tn, as circulant
matrices.

((AB)�M):,i = ∑
k

MkiAB:,k, (A(B�M)):,i = ∑
k

AMkiB:,k,

and we want them to be equal for all M and B, so in particular we have that given any
D ∈R×Tn and any v ∈Rn we have DAv = ADv, or equivalently AD = DA. D is a power
of the circulant matrix C with only 1 in the upper diagonal multiplied by a scalar, so

((AB)�M):,i = (A(B�M)):,i ∀ B,M, i ⇐⇒ ACk =CkA ∀ k ⇐⇒ AC =CA.

Since C is an orthogonal matrix, we have

Ai j = (CACT)i j = Ai+1, j+1,

so A is constant on the diagonals, meaning it is circulant.

In the next properties, we’ll use the operator on RSn valued matrices defined in
Appendix B that transposes each entry, and we’ll identify the entries with real matrices,
so that this operator coincides with the matrix transposition.

Lemma A.3. Given N,M matrices with elements in the algebra RSn, then

(N′ �M′)T = (MT �NT)′.

Proof.

(N′ �M′)T
i j =(N′ �M′) ji

=∑
k

M′ki ·N′jk

=∑
k
(N jk ·Mki)

′

=

(
∑
k

NT
k j ·MT

ik

)′
= (MT �NT)′i j.

Eventually, we report a result we’ll use to simplify the computations in the algo-
rithms. As before, we consider the elements of RSn as matrices, and given h ∈ RSn
we’ll use hi j to denote ϕ(h)i j.

47

Lemma A.4. Given A,B real matrices, and M a matrix with elements in the algebra
RSn, then the sum of elements of A .∗ (B�MT) and of B .∗ (A�M′) are equal.

Proof.

∑
i, j
(A .∗ (B�MT))i j =∑

i, j
Ai j(B�MT)i j

= ∑
i, j,k

Ai j[M jk(B:,k)]i

= ∑
i, j,k,s

Ai j(M jk)isBsk

= ∑
j,k,s

[(M jk)
′(A:, j)]sBsk

=∑
k,s
(A�M′)skBsk = ∑

s,k
(B .∗ (A�M′))sk.

Appendix B

Computation of W Gradient and
Hessian

B.1 Gradient of the error

Let’s derive the gradient of the error function with respect to W , when H has entries in
RSn, so that it still holds when we restrict to R+×Tn.

In the following steps, we consider the general element of H as a (circulant) matrix,
using implicitly the homomorphism ϕ , so we use the notation

(Hi j)uv := ϕ(Hi j)uv,

and we can write explicitly the error function as

F(W) =‖A−W �HT‖2
F

=∑
i, j
(A−W �HT)2

i j

=∑
i, j

[
Ai j−

(
∑
s

H js(W:,s)

)
i

]2

=∑
i, j

[
Ai j−∑

k,s
(H js)ikWks

]2

.

48

B.2. HESSIAN OF THE ERROR 49

Deriving with respect to the entry (u,v) of the variables matrix, we obtain

∂

∂Xuv
F(X) =

∂

∂Xuv
∑
i, j
(A−X �HT)2

i j

=2∑
i, j
(A−X �HT)i j

∂

∂Xuv
(A−X �HT)i j

=2∑
i, j
(A−X �HT)i j

∂

∂Xuv

(
Ai j−∑

k,s
(H js)ikXks

)

=−2∑
i, j
(A−W �HT)i j

∂

∂Xuv
(H jv)iuXuv

=−2∑
i, j
(H jv)iu(A−X �HT)i j.

Let’s call H ′ the matrix with the same dimension of H and H ′i j = (Hi j)
′ for each en-

try. We’ve already showed that the transposition of elements in RSn translate into the
transposition of the image matrices, so given any h ∈ RSn, with our notation, we have

huv = h′vu,

and given h = [r, t] an element of the group R+×Tn, it’s easy to see that the transpose h′

is the element [r,n− t].
The computation continues as

−2∑
i, j
(H jv)iu(A−X �HT)i j

=−2∑
i, j
(H ′jv)ui(A−X �HT)i j

=−2∑
j
(H ′jv(A−X �HT) j)u

=−2((A−X �HT)�H ′)uv.

So we can write in a compact form the gradient

∇X F(W) =−2(A−W �HT)�H ′.

B.2 Hessian of the error
The derivate of the gradient function is a square matrix with size nk×nk, so each coor-
dinate has two indexes. We’ll write

HX Fi j,uv(X) =
∂ 2

∂Xi j∂Xuv
F(X)

50 APPENDIX B. COMPUTATION OF W GRADIENT AND HESSIAN

to denote the element in position i j,kr of the Hessian matrix. We’ll use the gradient
computed in the section above.

∂ 2

∂Xkr∂Xuv
F(X) =

∂

∂Xkr

(
∂

∂Xuv
F(X)

)

=−2
∂

∂Xkr
∑
i, j
(H ′jv)ui(A−X �HT)i j

=−2∑
i, j
(H ′jv)ui

∂

∂Xkr
(A−X �HT)i j

=2∑
i, j
(H ′jv)ui(H jr)ik

=2∑
j
(H ′jv ·H jr)uk = 2((HT �H ′)rv)uk.

In the last row, we used the multiplication of elements in RSn, that is equivalent to the
multiplication of the corresponding matrix through ϕ .

Appendix C

Proof of the Descent of MU

Let’s prove that the MU update for W makes the error drop, mimicking the proof given
in [26] for the classical NMF. With the same notation of the last appendix, the update is

W ←W .∗ (A�H ′) ./(W �HT �H ′),

and the error function is still

F(X) = ‖A−X �HT‖2
F .

The matrix H in the PermNMF problem is composed by elements in R+×Tn, but the
computation for the gradient and the Hessian done in Appendix B still holds for elements
in RSn, so we can suppose that the entries of H are elements of R+Sn, that are α =

∑σ∈Sn [rσ ,σ] ∈ RSn with rσ ≥ 0.
The expression is quadratic in the entries of X , so it is equivalent to its second order

expansion. In the equation, we’ll suppose that the matrices X ,W and ∇X F are vectorized
so that the dot product makes sense.

F(X) = F(W)+(X−W)T
∇F(W)+

1
2
(X−W)T HF(W)(X−W).

Let’s also define a similar auxiliary function

G(X ,Y) = F(Y)+(X−Y)T
∇F(Y)+

1
2
(X−Y)T K(Y)(X−Y),

where K(Y) is a diagonal matrix, whose (i j, i j) element is

K(Y)i j,i j = 2(Y �HT �H ′)i j/Yi j,

and Y has positive entries.

Lemma C.1. For every real matrix X and for every real positive matrix Y , we have
G(X ,Y)≥ F(X) and G(X ,X) = F(X).

Proof. It’s obvious that G(X ,X) = F(X). For the other point, we use the second order
expansion of F(X) with center Y , and notice that the first two orders coincide, so that
there remains only

G(X ,Y)−F(X) =
1
2
(X−Y)T (K(Y)−HF(Y))(X−Y).

51

52 APPENDIX C. PROOF OF THE DESCENT OF MU

We want to prove that this quantity is nonnegative for every X , and it is equivalent to
prove that K(Y)−HF(Y) is positive semidefinite for every positive matrix Y . Given a
generic vector Z, we can compute

ZT (K(Y)−HX F(Y))Z = ∑
i j,kr

Zi jZkr(K(Y)−HF(Y))i j,kr

=∑
i j

2Z2
i j
(Y �HT �H ′)i j

Yi j
− ∑

i j,kr
Zi jZkrHF(Y)i j,kr

= ∑
i j,kr

2Z2
i j
((HT �H ′)r j)ikYkr

Yi j
−2Zi jZkr((HT �H ′)r j)ik.

The indexes i j and kr vary in the same range, so we can exchange them without changing
the result. Moreover, the Hessian is a symmetric matrix, so

HF(Y)i j,kr = ((HT �H ′)r j)ik = ((HT �H ′) jr)ki = HF(Y)kr,i j,

and this leads to

ZT (K(Y)−HF(Y))Z =
1
2

ZT (K(Y)−HF(Y))Z +
1
2

ZT (K(Y)−HF(Y))Z

= ∑
i j,kr

((HT �H ′)r j)ik

[
Z2

i j
Ykr

Yi j
+Z2

kr
Yi j

Ykr
−2Zi jZkr

]

= ∑
i j,kr

((HT �H ′)r j)ik

YkrYi j

[
Z2

i jY
2
kr +Z2

krY
2
i j−2Zi jZkrYkrYi j

]

= ∑
i j,kr

((HT �H ′)r j)ik

YkrYi j
[Zi jYkr−ZkrYi j]

2 ≥ 0.

This proves that K(Y)−HF(Y) is positive semidefinite, concluding the proof.

The function G(X ,Y) is quadratic in X , and if H hasn’t any zero rows or columns,
then K(Y) is a positive diagonal matrix, so the function is convex and there exists a
unique minimum at a fixed Y .

∇X G(X ,Y) = ∇F(Y)+K(Y)X−K(Y)Y = 0 =⇒ X = Y −K(Y)−1
∇F(Y).

If we continue the computation, we discover that the minimum coincides with the MU

53

update formula

Xi j =Yi j−∑
kr

K(Y)−1
i j,kr∇F(Y)kr

=Yi j−K(Y)−1
i j,i j∇F(Y)i j

=Yi j +
Yi j

(Y �HT �H ′)i j
((A�H ′)i j− (Y �HT �H ′)i j)

=
Yi j

(Y �HT �H ′)i j
(A�H ′)i j

X =Y .∗ (A�H ′) ./(Y �HT �H ′).

So it’s now easy to prove that the MU method is descending:

Lemma C.2. If W is a positive matrix, and H is a matrix with entries in R+Sn with
no zero rows or columns, then the error function F(W) is nonincreasing with the MU
update.

Proof. Let W̃ =W .∗ (A�H ′) ./(W �HT �H ′). From the above observations, we know
that

W̃ = argmin
X

G(X ,W),

and from the Lemma C.1, we conclude

F(W̃)≤ G(W̃ ,W)≤ G(W,W) = F(W).

The error function F(W) is continuous, in both W and the real coefficients of H, so
the conditions on H and W can be further simplified, since we only need that the update
is well defined. The matrix W can thus be nonnegative (instead of positive), and H can
have zero rows and columns, as long as the real matrix W �HT �H ′ has all elements
positive.

Bibliography

[1] S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a Nonnegative Matrix
Factorization – Provably. STOC ’12, to Appear, page 29, 2011.

[2] P. C. Barman, N. Iqbal, and S. Y. Lee. Non-negative matrix factorization based
text mining: Feature extraction and classification. Neural Inf. Process. Pt 2, Proc.,
4233:703–712, 2006.

[3] D. P. Bertsekas. Nonlinear programming. 1999.

[4] C. Boutsidis and E. Gallopoulos. SVD based initialization: A head start for non-
negative matrix factorization. Pattern Recognit., 41(4):1350–1362, 2008.

[5] A. Cichocki and A. H. Phan. Fast local algorithms for large scale nonnegative ma-
trix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., E92-A(3):708–721, 2009.

[6] K. Devarajan. Nonnegative matrix factorization: An analytical and interpretive
tool in computational biology, 2008.

[7] C. Ding, T. Li, and W. Peng. On the equivalence between Non-negative Matrix Fac-
torization and Probabilistic Latent Semantic Indexing. Comput. Stat. Data Anal.,
52(8):3913–3927, 2008.

[8] B. Dong, M. M. Lin, and M. T. Chu. Nonnegative rank factorization-a heuristic
approach via rank reduction, 2013.

[9] D. L. Donoho and V. C. Stodden. When does non-negative matrix factorization
give a correct decomposition into parts? Proc. Adv. Neural Inf. Process. Syst. 16,
pages 1141–1148, 2004.

[10] J. Eggert and E. Körner. Sparse coding and NMF. In IEEE Int. Conf. Neural
Networks - Conf. Proc., volume 4, pages 2529–2533, 2004.

[11] J. Eggert, H. Wersing, and E. Körner. Transformation-invariant representation and
NMF. In IEEE Int. Conf. Neural Networks - Conf. Proc., volume 4, pages 2535–
2539, 2004.

[12] P. Favati, G. Lotti, O. Menchi, and F. Romani. Adaptive symmetric NMF for graph
clustering. Technical report, Consiglio Nazionale delle Ricerche, IIT, 2016.

[13] N. Frey, B. J., Jojic. Transformation-invariant clustering and dimensionality reduc-
tion using em. In IEEE Trans. Pattern Anal. Mach., volume 25, pages 1000–1014,
2000.

54

BIBLIOGRAPHY 55

[14] N. Gillis. Sparse and Unique Nonnegative Matrix Factorization Through Data
Preprocessing. arXiv, 13:34, 2012.

[15] N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS
algorithms for nonnegative matrix factorization. Neural Comput., 24(4):1085–105,
2012.

[16] D. A. Gregory and N. J. Pullman. Semiring rank: Boolean rank and nonnegative
rank factorizations. J. Comb. Inf. Syst. Sci., 8:223–233, 1983.

[17] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear Gauss-
Seidel method under convex constraints. Oper. Res. Lett., 26(3):127–136, 2000.

[18] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general net-
work pruning. In IEEE Int. Conf. Neural Networks - Conf. Proc., volume 1993-
Janua, pages 293–299, 1993.

[19] M. Hazewinkel. On positive vectors, positive matrices and the specialization order.
Dep. Pure Math., (R8407):1–11, jan 1984.

[20] C. J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with variable se-
lection for non-negative matrix factorization. In Proc. 17th ACM SIGKDD, pages
1064–1072, New York, New York, USA, 2011. ACM Press.

[21] D. Kim, S. Sra, and I. S. Dhillon. Fast projection-based methods for the least
squares nonnegative matrix approximation problem. Stat. Anal. Data Min.,
1(1):38–51, 2008.

[22] H. Kim and H. Park. Nonnegative Matrix Factorization Based on Alternating Non-
negativity Constrained Least Squares and Active Set Method. SIAM J. Matrix Anal.
Appl., 30:713–730, 2008.

[23] J. Kim and H. Park. Fast nonnegative tensor factorization with an active-
set-like method. In High-Performance Sci. Comput. Algorithms Appl., volume
9781447124, pages 311–326. 2012.

[24] W. H. Lawton and E. A. Sylvestre. Self Modeling Curve Resolution. Technomet-
rics, 13(3):617–633, 1971.

[25] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–91, 1999.

[26] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. Adv.
neural Inf. Process., (1):556–562, 2001.

[27] H. Liu. Non-Negative Matrix Factorization with Constraints. Proc. 24th AAAI
Conf. Artif. Intell., pages 506–511, 2010.

[28] P. Paatero and U. Tapper. Positive Matrix Factorization - A Nonnegative Factor
Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics,
5(2):111–126, 1994.

[29] V. P. Pauca, J. Piper, and R. J. Plemmons. Nonnegative matrix factorization for
spectral data analysis. Linear Algebra Appl., 416(1):29–47, 2006.

56 BIBLIOGRAPHY

[30] V. K. Potluru, S. M. Plis, and V. D. Calhoun. Sparse shift-invariant NMF. In Proc.
IEEE Southwest Symp. Image Anal. Interpret., pages 69–72, 2008.

[31] H. Sawada, H. Kameoka, S. Araki, and N. Ueda. Multichannel extensions of
non-negative matrix factorization with complex-valued data. IEEE Trans. Audio,
Speech Lang. Process., 21(5):971–982, 2013.

[32] I. J. Schoenberg. Metric spaces and positive definite functions. Trans. Am. Math.
Soc., 44(3):522, mar 1938.

[33] S. A. Vavasis. On the Complexity of Nonnegative Matrix Factorization. SIAM J.
Optim., 20(3):1364, 2010.

[34] F. Y. Wang, C. Y. Chi, T. H. Chan, and Y. Wang. Nonnegative least-correlated
component analysis for separation of dependent sources by volume maximization.
IEEE Trans. Pattern Anal. Mach. Intell., 32(5):875–888, 2010.

[35] S. Wild, J. Curry, and A. Dougherty. Improving non-negative matrix factorizations
through structured initialization. Pattern Recognit., 37(11):2217–2232, 2004.

[36] Z. Yang, H. Zhang, Z. Yuan, and E. Oja. Kullback-Leibler divergence for non-
negative matrix factorization. In Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), volume 6791 LNCS, pages 250–
257, 2011.

[37] R. Zdunek and A. Cichocki. Non-negative matrix factorization with quasi-newton
optimization. In Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), volume 4029 LNAI, pages 870–879, 2006.

[38] G. Zhou, S. Xie, Z. Yang, J. M. Yang, and Z. He. Minimum-volume-constrained
nonnegative matrix factorization: Enhanced ability of learning parts. IEEE Trans.
Neural Networks, 22(10):1626–1637, 2011.

	Nonnegative Matrix Factorization
	Framework
	Applications
	Algorithms

	Permutation NMF
	Images and Permutations
	Algorithm
	Experiments

	Future Works
	Further Research on PermNMF
	Real Shifts

	Appendices
	Properties of the Diamond Operator
	Computation of W Gradient and Hessian
	Gradient of the error
	Hessian of the error

	Proof of the Descent of MU

